
HAL Id: hal-04489541
https://hal.science/hal-04489541

Submitted on 8 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development and validation of algorithms to predict left
ventricular ejection fraction class from healthcare claims

data
Damien Logeart, Maxime Doublet, Margaux Gouysse, Thibaud Damy,

Richard Isnard, François Roubille

To cite this version:
Damien Logeart, Maxime Doublet, Margaux Gouysse, Thibaud Damy, Richard Isnard, et al.. Devel-
opment and validation of algorithms to predict left ventricular ejection fraction class from healthcare
claims data. ESC Heart Failure, In press, �10.1002/ehf2.14725�. �hal-04489541�

https://hal.science/hal-04489541
https://hal.archives-ouvertes.fr


Development and validation of algorithms to predict left 

ventricular ejection fraction class from healthcare claims 

data 

Damien Logeart
  1 

, Maxime Doublet
  2 

, Margaux Gouysse
  2 

, Thibaud Damy
  3 

, Richard 

Isnard
  4 

, François Roubille
  5 

 
 

 

1
 Department of Cardiology, Paris Cité University, AP-HP Hôpital Lariboisière, Inserm U942, 

2 rue Ambroise Paré, Paris, France. 

2
 Clinityx, Boulogne-Billancourt, France. 

3
 Department of Cardiology and French National Reference Centre for Cardiac Amyloidosis, 

Hôpitaux Universitaires Henri-Mondor AP-HP, IMRB, Inserm, Université Paris-Est Créteil, 

Créteil, France. 

4
 Hôpital Pitié-Salpétrière, AP-HP, Paris, France. 

5
 Department of Cardiology, INI-CRT PhyMedExp Inserm CNRS, CHU de Montpellier, 

Université de Montpellier, Montpellier, France. 

 

Keywords:  

Claims database; Heart failure; Left ventricular ejection fraction; Machine learning; Registry 

records.  

 

 

  

https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Logeart+D&cauthor_id=38438250
https://pubmed.ncbi.nlm.nih.gov/38438250/#full-view-affiliation-1
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Doublet+M&cauthor_id=38438250
https://pubmed.ncbi.nlm.nih.gov/38438250/#full-view-affiliation-2
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Gouysse+M&cauthor_id=38438250
https://pubmed.ncbi.nlm.nih.gov/38438250/#full-view-affiliation-2
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Damy+T&cauthor_id=38438250
https://pubmed.ncbi.nlm.nih.gov/38438250/#full-view-affiliation-3
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Isnard+R&cauthor_id=38438250
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Isnard+R&cauthor_id=38438250
https://pubmed.ncbi.nlm.nih.gov/38438250/#full-view-affiliation-4
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Roubille+F&cauthor_id=38438250
https://pubmed.ncbi.nlm.nih.gov/38438250/#full-view-affiliation-5


Abstract 

Aims:  

The use of large medical or healthcare claims databases is very useful for population-based 

studies on the burden of heart failure (HF). Clinical characteristics and management of HF 

patients differ according to categories of left ventricular ejection fraction (LVEF), but this 

information is often missing in such databases. We aimed to develop and validate algorithms 

to identify LVEF in healthcare databases where the information is lacking.  

Methods and results:  

Algorithms were built by machine learning with a random forest approach. Algorithms were 

trained and reinforced using the French national claims database [Système National des 

Données de Santé (SNDS)] and a French HF registry. Variables were age, gender, and 

comorbidities, which could be identified by medico-administrative code-based proxies, 

Anatomical Therapeutic Chemical codes for drug delivery, International Classification of 

Diseases (Tenth Revision) coding for hospitalizations, and administrative codes for any other 

type of reimbursed care. The algorithms were validated by cross-validation and against a 

subset of the SNDS that includes LVEF information. The areas under the receiver operating 

characteristic curve were 0.84 for the algorithm identifying LVEF ≤ 40% and 0.79 for the 

algorithms identifying LVEF < 50% and ≥50%. For LVEF ≤ 40%, the reinforced algorithm 

identified 50% of patients in the validation dataset with a positive predictive value of 0.88 and 

a specificity of 0.96. The most important predictive variables were delivery of HF medication, 

sex, age, hospitalization, and testing for natriuretic peptides with different orders of positive 

or negative importance according to the LVEF category.  

Conclusions:  

The algorithms identify reduced or preserved LVEF in HF patients within a nationwide 

healthcare claims database with high positive predictive value and low rates of false positives.  

  



Introduction 

Data from real-life patient registries are highly valuable for the assessment of efficiency, 

safety, and outcomes of treatments, as well as the quality and performance of healthcare 

provided in everyday practice. Claims databases include data on very large numbers of 

individuals and are increasingly used in comparative effectiveness and safety studies of drug 

treatments.
1
 However, claims databases do not always capture all information relevant to such 

analyses and may need to be enriched by other sources such as registries, the quality of which 

often suffers from data gaps and losses to follow-up.
2
 Hence, there is a major need for 

improved data quality overall. 

Heart failure (HF) is an important public health issue with high prevalence—up to 1–2% of 

the population—and a severe impact on morbidity and mortality despite considerable progress 

in therapies and management over the last decades.
3
 Most of the available treatments are 

effective in HF with reduced (≤40%) left ventricular (LV) ejection fraction (LVEF).
4
 

However, there is a relative lack of pharmacological agents with proven efficacy in patients 

with preserved LVEF (≥50%) and little data on patients with mildly reduced LVEF between 

41% and 49%. Thus, information on LV class is important for an informative analysis of the 

care pathways and outcomes of HF patients. Yet such data are often not captured in claims 

databases. 

The French health system offers universal health protection to anyone who works or resides in 

France on a stable and regular basis. The single-payer nationwide healthcare database 

[Système National des Données de Santé (SNDS)] includes health-related reimbursement 

information on close to 99% of the French population or more than 68 million persons, 

making it one of the world's largest continuous claims databases.
5
 The SNDS also includes 

data on mortality, hospitalizations, and chronic diseases. By law, all SNDS data are 

anonymized. The International Classification of Diseases (Tenth Revision, ICD-10) codes are 

used to identify reasons for hospitalizations, including HF, but up to 2019, the SNDS 

contained no information on LVEF class. We have previously reported on the feasibility of 

anonymous matching of the population in the SNDS and a registry cohort of patients, either 

hospitalized for HF or identified as outpatients [FREnch Survey on HeartFailure (FRESH); 

NCT01956539].
6
 As the FRESH registry captures LVEF dimensions, the linked population 

can be viewed as an enriched SNDS cohort, which enables outcomes analyses according to 

LVEF class. Because of the small size of this cohort as well as its unperfect 

representativeness of real life, we need to study HF in a much larger sample of patients such 

as the SNDS database. However, LVEF class remains poorly informed in the nationwide 

healthcare database. 

The availability of two subsets of SNDS data, the linked cohort from before 2019 and the later 

database, which includes LVEF information, provides data that may be used to develop 

proxy-based algorithms to identify LVEF categories in administrative healthcare databases 

where this information is missing. We here report the development and validation of such an 

algorithm. 
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Methods 

Data sources 

Two data sources were used: the SNDS database from the year 2019 (‘2019-SNDS’) and the 

cohort from the linked FRESH/SNDS databases (‘FRESH-SNDS’). 

The SNDS contains data on care pathways (medical consultations, nursing care, biology, 

imaging, etc.), hospitalizations (types and causes described by ICD-10 classification), drug 

deliveries, and deaths.
5
 All reimbursed provision of care, devices, and drugs are encoded with 

specific administrative codes. Age and sex are included in the database, but there are no 

clinical data or results from tests. Following an ICD-10 update, the LVEF category is taken 

into account in coding of HF hospitalization since 2019. All data are anonymized, and 

patients are registered by a unique personal identification number that allows linking of 

hospitalization registries, the national healthcare reimbursement database, and the national 

registry of deaths. 

We obtained authorization to identify and analyse HF patients within the SNDS. Patients were 

identified by at least one of the following within SNDS: (i) hospitalization with a main, 

associated, or related diagnosis corresponding to HF (ICD-10 Codes I50, I500, and I501); (ii) 

at least one dispensation of sacubitril/valsartan; (iii) pacemaker with biventricular 

resynchronization with or without an implantable automatic defibrillator; and (iv) long-term 

disease status for HF (full reimbursement of care related to chronic HF). From this dataset, we 

extracted the subset of HF patients who were hospitalized during the first quarter of 2019 with 

a main, associated, or related diagnosis coding corresponding to HF and with an HF coding 

that included LVEF categories: I50-1, I500-1, or I501-1 for LVEF ≤ 40%; I50-2, I500-2, or 

I501-2 for LVEF 41–49%; and I50-3, I500-3, or I501-3 for LVEF ≥ 50%. We assumed that 

the LVEF class for a patient was the same in 2019 as in the 1 or 2 years before. Only patients 

who were alive at least 3 months after hospitalization were included. Patients with no 

dispensation of at least one cardiac treatment during the period of interest (6 months before 

and 12 months after the index date) were excluded. 

The construction of the FRESH-SNDS database has been described previously.
6
 The FRESH 

multicentre cohort includes 2719 HF patients enrolled between 2014 and 2018, either during a 

hospitalization for decompensation or during an outpatient clinic visit. The matched 

population consists of 1656 patients with claims data on care pathways and outcomes for 

2 years before inclusion and up to 3 years after inclusion. 

Included variables 

Variables of interest were identified according to literature reviews and validated by the 

FRESH Scientific Committee. Four types of variables were extracted from the SNDS: 

demographics (age, sex, and chronic diseases), treatments [Anatomical Therapeutic Chemical 

(ATC) codes for drugs], comorbidities (proxies based on ICD-10, chronic diseases, ATC, and 

others related to specific medical or surgical procedures), and care pathway (consultations, 

biology, and hospitalization). All variables were initially binary (0 or 1) according to the 

presence or absence of the event and then censored (2) according to death occurring before 

the period or in the first half of the observed period. Age was stratified into five categories: 

≤60, 60–70, 71–80, 81–90, and >90 years. The index date was set to the first day of the 
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quarter associated with the LVEF diagnosis. Treatments and care pathway variables were 

captured at 3 and 6 months before and 12 months after the index date. Comorbidities were 

included at 6 months and for the maximum time available from the index date. Among 547 

variables identified as relevant for the HF algorithm, the final selection of variables used in 

algorithms was obtained during the training process of the respective algorithms. 

Three LVEF categories are currently used in the guidelines. However, the category HF with 

midrange LVEF (41–49%) comprises an exceptionally heterogeneous population, and many 

patients with midrange LVEF can change class over time.
7
 Thus, we did not develop a 

specific algorithm for this class of patients. We tested the LVEF thresholds at 40% and 50%. 

LVEF categories for the FRESH-SNDS cohort were obtained directly from the FRESH data 

files. 

For the 2019-SNDS cohort, LVEF categories were obtained by using the updated ICD-10 

codes (Supporting Information, Table S1): I50-1, I500-1, or I501-1 for LVEF ≤ 40%; I50-2, 

I500-2, or I501-2 for LVEF 41–49%; and I50-3, I500-3, or I501-3 for LVEF ≥ 50% (and 9 

when LVEF was unknown). All patients with ambiguous diagnoses were excluded from this 

analysis. 

Generation of algorithms 

Algorithms were built using random forest machine learning
8
 with a three-step approach 

(Figure 1). Algorithms were generated with scikit-learn (Python ML library). 

 

Figure 1: Study design with flow charts of datasets that were used for algorithms. FRESH, FREnch Survey on 

HeartFailure; LVEF, left ventricular ejection fraction; SNDS, Système National des Données de Santé. 
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Algorithms were initially trained on the FRESH-SNDS dataset rather than the 2019-SNDS 

dataset because the FRESH cohort included HF patients with or without hospitalization over a 

wide period contrary to the 2019-SNDS cohort. The performance was calculated either using 

cross-validation with five-fold and bootstrap method (‘FRESH-based with cross-validation’) 

or against the 2019-SNDS dataset (‘FRESH-based with SNDS validation’). Because of the 

limited number of patients and the inherent bias of the FRESH cohort, reinforcement learning 

was performed by enriching with new decision trees trained on 80% of patients in the 2019-

SNDS cohort. The resulting ‘reinforced algorithms’ included 50% trees from FRESH-SNDS 

and 50% trees from 2019-SNDS. The performances of ‘FRESH-based with SNDS validation’ 

as well as ‘reinforced algorithm’ were calculated on the remaining 20% of patients from the 

2019-SNDS dataset (validation dataset). 

Finally, two sets of algorithms were constructed, one for discriminating patients with LVEF 

either ≤40% or >40% and the second for discriminating patients with LVEF ≤ 50% or >50%. 

Isotonic calibration was applied to adjust the model's predicted probabilities.
9
 The 

effectiveness of the calibration was evaluated by the Brier score (average of the squared 

differences between the predicted probabilities and the observed outcomes) and by calibration 

curves. 

Statistical methods 

A machine learning approach was carried out, and we tested the following models: logistic 

regression, random forest, and extreme gradient boosting (XGB). In this work, random forest 

resulted in better performances than other models. Random forest is an assembling model that 

trains and combines multiple tree-based models to predict the outcome of interest. It combines 

bagging (bootstrap aggregation) with random feature selection to build uncorrelated decision 

trees. Each tree yields predictions, which are then aggregated into one final result by a voting 

method to give a final, more accurate global prediction. The main benefits of these models are 

versatility, reduced variance, and bias, as well as the ability to determine the importance of 

each variable in the final output. In our model, the output was the LVEF category selected by 

most trees. The tuning of hyperparameters was obtained with the GridSearch method. 

French legislation bars the merging of the two datasets. Hence, the reinforcement of the 

algorithm using the 2019-SNDS dataset was performed using the warm-start method,
10

 which 

allows the addition of decision trees trained on the 2019-SNDS dataset to the random forest 

results while preserving variables and parameters previously optimized using the FRESH-

SNDS dataset. The algorithm parameters were optimized according to the metrics of interest 

[positive predictive value (PPV) and sensitivity]. Different probability thresholds were also 

tested to obtain different populations. 

To evaluate the performance of the classification model, analyses of the confusion matrix of 

predictions as well as the receiver operating characteristic (ROC) curves were performed. 

Additional performance evaluation metrics included PPV or precision, sensitivity or recall, 

specificity, negative predictive value, accuracy, and Matthew's correlation coefficient. As the 

primary objective of the algorithm was to allow subsequent studies in the whole HF 

population in the SNDS according to LVEF categories, the main quality criterion was the 

maximal PPV while maintaining an acceptable sensitivity to minimize bias. The importance 

of included variables and their hierarchy in the algorithms were calculated and shown by their 

SHapley Additive exPlanations (SHAP) values.
11
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Ethics 

All patients in the FRESH cohort provided written, informed consent. Ethics approval to link 

the FRESH and SNDS databases was obtained from the French Expert Committee on 

Research, Studies and Assessments in Health (CEREES) on 25 April 2019 (TPS 347113bis) 

and from the Commission Nationale de l'Informatique et des Libertés (CNIL) on 19 

November 2019 (DR-2019-34). All data were analysed anonymously. Each individual record 

in the SNDS was randomly assigned a numerical identity, which included no information 

about the identity of the patient or centre. This number was used in the analysis with no 

reverse identification possible. A different individual identity was assigned to each patient in 

the FRESH cohort. All transmissions of data were encrypted and stored on secure servers. At 

no point did the analysts have access to the original names or NIRs. Because all patient data 

were from a registry that had already obtained informed consent and ethical clearance, no 

additional ethical approval was necessary. 

Results 

Study populations 

In the 2019-SNDS dataset, 18 221 HF patients were hospitalized during the first quarter of 

2019 with a main, associated, or related diagnosis of HF (I50x) and LVEF coding (Supporting 

Information, Figure S1). In this cohort, 37.0% and 58.4% of the population had LVEF ≤ 40% 

and <50%, respectively. As compared with the 2019-SNDS dataset of HF patients with LVEF 

coding, HF patients were older and had a lower rate of coding for ischaemic heart disease, 

atrial fibrillation, diabetes, and HF drugs delivery than in the whole 2019-SNDS dataset 

(Supporting Information, Table S1). In the FRESH-SNDS cohort, 59.8% and 71.7% of HF 

patients had LVEF ≤ 40% and <50%, respectively. Table 1 shows the demographics and 

clinical characteristics of patients in the two datasets. Patients from the 2019-SNDS cohort 

were significantly older, more frequently female, and had more comorbidities than patients in 

the FRESH-SNDS cohort. In both cohorts, most characteristics differed according to LVEF 

categories: HF patients with reduced LVEF were younger, had less comorbidities and more 

ischaemic heart disease, and received more HF drugs. However, outcomes did not differ 

between LVEF classes. 
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Table 1. Baseline characteristics of the registry linked to the claims database (FRESH-SNDS) and 2019 claims 

database (2019-SNDS) cohorts according to the LVEF categoryACE, angiotensin-converting enzyme; COPD, 

chronic obstructive pulmonary disease; GP, general practitioner; LVEF, left ventricular ejection fraction; MRA, 

mineralocorticoid antagonist; PAD, peripheral arterial disease.Treatments were cardiac drugs delivered during 

the 1 year follow-up. HF hospitalization was defined as the main diagnosis. 



 

Performance of algorithms 

Reinforcing algorithms with new decision trees trained on 80% of patients in the 2019-SNDS 

cohort resulted in the best global performance. Table 2 shows the performance of reinforced 

algorithms. Supporting Information, Figure S2 shows calibration curves for reinforced 

algorithms before and after applying isotonic calibration. Brier scores before and after 

calibration were 0.16 and 0.14 for LVEF ≤ 40% and 0.19 and 0.18 for LVEF < 50%, 

respectively. 

 

 

 

Table 2. Performances of the reinforced algorithms for predicting LVEF ≤ 40% and >40% and LVEF < 50% 

and ≥50%  ACC, accuracy; AUC, area under the receiver operating characteristic curve; LVEF, left ventricular 

ejection fraction; MCC, Matthew's correlation coefficient; NPV, negative predictive value; PPV, positive 

predictive value; SE, sensitivity; SPE, specificity. These metrics were calculated for a probability threshold of 

0.5 and after isotonic calibration. 

 

Figure 2 shows ROC curves obtained with the reinforced algorithms. For LVEF ≤ 40%, the 

reinforced algorithm identified 50% of patients (true positives) in the validation dataset with a 

PPV of 0.88 and a specificity of 0.96. The clinical characteristics of true and false positives 

predicted by the reinforced algorithm for LVEF ≤ 40% in the validation dataset and using a 

probability threshold of 0.5 were highly similar (Supporting Information, Table S4) as were 

the characteristics of true and false negatives. 

For HF and LVEF < 50%, the reinforced algorithm identified 50% of patients (true positives) 

with a PPV of 0.85. With the false-positive rate reduced to 5%, the algorithm identified 40% 

of true positives. For HF and preserved LVEF (≥50%), the area under the ROC curve (AUC) 

was similar to the LVEF < 50% group, but the cut-off for identifying 50% of patients (true 

positives) had a 17% rate of false positives (PPV 0.71). With a false-positive rate of ≤5%, 

22% of true positives were identified (Figure 2). 

Supporting Information, Table S3 shows the performances of algorithms based only on the 

FRESH-SNDS dataset: Model 1 with cross-validation and Model 2 with external validation 

(SNDS database). 
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Figure N°2 Receiver operating characteristic curves of reinforced algorithms to predict (A) left ventricular 

ejection fraction (LVEF) ≤40%, (B) LVEF > 40%, (C) LVEF < 50%, and (D) LVEF ≥ 50%. The area under the 

receiver operating characteristic curve (AUC) is indicated, as well as metrics for different probability thresholds. 

NPV, negative predictive value; PPV, positive predictive value; SE, sensitivity; SPE, specificity. 

 

The importance of the 14 most significant variables used by the reinforced algorithms to 

predict LVEF categories is shown in Figure 3. Many variables, for example, administration of 

drugs, were included for different time periods (12–6 months before hospitalization, 6 months 

before hospitalization, or 6 months after hospitalization). As there were no differences 

between the periods for such variables, the values were aggregated in the final analysis. The 

most important variables that predicted LVEF ≤ 40% were delivery of mineralocorticoid 

receptor antagonists (MRAs), beta-blockers, loop diuretics, and angiotensin-converting 

enzyme (ACE) inhibitors; male sex; age ≤75 years; high rate of natriuretic peptide assays; and 

cardiomyopathy. The same variables predicted LVEF < 50%, differing only in ranking. 
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Figure N°3 : Weighting of variables in reinforced algorithms based on SHapley Additive exPlanations values to 

predict left ventricular ejection fraction (LVEF) ≤40% and LVEF < 50% and ≥50%. ACE, angiotensin-

converting enzyme; EF, ejection fraction; GP, general practitioner; MRA, mineralocorticoid antagonist; NP, 

natriuretic peptide. 

The weight of the variables differed between the ‘FRESH-based’ and ‘reinforced’ algorithms 

with the reinforced algorithm weighting attributing a lower weight to age and sex (Supporting 

Information, Figure S2). In addition to these two variables, for LVEF < 50%, the reinforced 

algorithm attributed a lower weight to the type of heart disease (ischaemic heart disease and 

cardiomyopathy). 

Neither the use of specific algorithms for outpatients and inpatients nor the attribution of 

different weights to these groups improved the results compared with the final algorithm (data 

not shown). 

Discussion 

Claims databases are important sources of information for the evaluation of health outcomes, 

healthcare utilization, and cost of care among HF patients in routine care. However, LVEF 

measurements are often not available, which limits the possible range of analyses. The present 

communication describes the development of machine learning algorithms to identify patients 

with reduced or preserved LVEF in the French SNDS national claims database based on the 

international diagnostic codes of hospitalizations (ICD-10), pharmacological treatments 

(ATC), and codes related to the billing of other treatments reimbursed by the national health 

system, but without access to demographic or clinical data except age and gender. As the 

https://onlinelibrary.wiley.com/doi/10.1002/ehf2.14725#support-information-section


database covers ~99% of the population, these algorithms have the potential to enable 

scientific and health-economic population-based studies on HF patients with either reduced or 

preserved LVEF nationwide. The significant disparities between these types of HF in clinical 

characteristics, treatments, care pathways, and outcomes
4
 mean that the groups need to be 

analysed separately to provide useful information. 

Several claims-based models to predict LVEF class have been developed internationally in 

recent years. Our study is the first such exercise in a French HF population and the first to 

utilize a random forest-based algorithm using only administrative codes from a national health 

insurance system. As each health system is unique, capturing differing variables, it can be 

difficult to compare results between algorithms. In a previous study, Desai et al.
12

 built an 

administrative claims data-based model to identify patient subgroups with specific LVEF 

class by linking Medicare data to electronic medical records containing LVEF measurements 

from two academic medical centres and using logistic regression models. In their study, the 

best model was obtained using the LVEF threshold of 0.45 and the algorithm required up to 

35 predictor variables defined in Medicare claims. Recently, the authors published an external 

validation with a sample of commercial insurance enrollees.
13

 Other studies have utilized 

clinical data from electronic medical records.
14, 15

 Such algorithms could be useful for 

research purposes to identify HF and LVEF categories from databases where the specific 

information is not present. 

Other algorithms have identified similar key predictors to ours. HF medication is repeatedly 

confirmed as one of the strongest differentiators between reduced and preserved LVEF.
16

 In 

our model, the use of calcium channel blockers was strongly negatively related to reduced 

LVEF, which is in accordance with the contraindication of this drug class in HF with reduced 

LVEF.
4
 Natriuretic peptide lab code was an important differentiator between preserved and 

reduced LVEF; similarly, natriuretic peptide lab code predicted preserved LVEF in a study of 

data from inpatient and outpatient visits.
17

 

The key predicting variables did not differ to any relevant degree between the algorithms, but 

the relative importance of the variables differed between the predicted LVEF classes. That sex 

was strongly predictive is in line with the higher prevalence of reduced LVEF in men. 

Conversely, greater age, female sex, and hypertension are known risk factors for HF with 

preserved LVEF. The predictive value of the variable ‘long-term disease’ (full reimbursement 

for specific chronic disease) related to other diseases than HF reflects the weight of 

comorbidities. The highly similar set of important predictive variables in algorithms for 

LVEF ≤ 40% and <50% are in agreement with the most recent studies and guidelines, which 

have suggested that HF patients with mildly reduced LVEF (41–49%) are close to HF patients 

with reduced LVEF (≤40%) and should probably be treated in the same way.
18

 Interestingly, 

we also observed that the clinical characteristics of false-positive patients identified by the 

algorithm for LVEF ≤ 40% (for the usual probability threshold of 0.50) were close to those in 

true-positive patients (Supporting Information, Table S2), which is reassuring for subsequent 

analyses on healthcare databases using these algorithms to identify LVEF. 

The lower PPV and higher rate of false positives for predicting preserved LVEF compared 

with LVEF ≤ 40% in our model show the continuing difficulties in identifying (and treating) 

this type of HF. Among previous studies that used only medico-administrative codes, 

Sundaram et al.
16

 and Cohen et al.
17

 reported even lower performance of their predicting 

algorithms for preserved LVEF with PPV ≤ 35%. However, higher performance such as PPV 

at 81% could be obtained to predict HF with preserved ejection fraction (HFpEF), but such 
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performance was obtained by adding numerous comorbidities.
13

 In our study, the final 

algorithm for preserved LVEF was the same as for LVEF < 50%, that is, patients predicted as 

‘not LVEF < 50%’ were the same as those predicted as ≥50%. By the same token, the AUCs 

were similar for predicting the two LVEF categories. 

To develop algorithms, several approaches were tested including standard logistic regression 

and machine learning models. The best results were obtained with the random forest 

approach, which resulted in algorithms with an AUC above 0.75 in most cases when logistic 

regression resulted in algorithms with AUCs that were never above 0.70 (data not shown). 

The random forest approach is particularly robust with the noisy data that typically 

characterize administrative claims and electronic health records datasets and has demonstrated 

high reliability to predict outcomes or identify specific populations within large databases.
19-21

 

The variables selected by the random forest algorithm were consistent with regard to the 

literature describing the characteristics of HF patients according to their LVEF category.
4, 22

 

Even when data are supposed to be captured, databases are rarely complete. Changes to the 

SNDS in 2019 include ICD-10 codes for the LVEF category and specific diagnostic codes for 

HF hospitalization as the main, associated, or related diagnosis. Yet, in the 2019-SNDS 

dataset used for the current algorithm development, the LVEF category was coded in <20% of 

patients hospitalized with an HF diagnosis. What is more, coding inconsistencies were 

identified in more than half of HF patients with LVEF coding. With time, LVEF coding in the 

SNDS will probably improve, but there will likely be a need for identification algorithms in 

the foreseeable future. In addition, a number of HF patients are not hospitalized because of 

HF or may not be hospitalized during the time of analyses and will only be identifiable by 

models such as the one presented here. 

The study has a number of limitations. The reliability of any machine learning system 

depends on the quality and size of the training and validation datasets. The FRESH cohort 

comprises patients with confirmed HF diagnosis and LVEF dimensions. These patients may 

not be fully representative of the real-life HF population, and the sample size is relatively 

small. The quality of the 2019-SNDS dataset with updated ICD-10 codes for the LVEF 

category was not independently verified. We also assumed that patients did not change LVEF 

class in the analysis period between 2017 and 2019. In addition, there were differences in 

baseline characteristics between the subgroup of the 2019-SNDS dataset that we used for 

reinforced algorithms (HF patients with coding for LVEF class) and the whole 2019-SNDS 

dataset (with or without coding for LVEF class); these differences could be related to 

differences in the global accuracy of diagnostic coding. As an example, I50 was the main 

diagnostic code in 70% of the patients in the subgroup vs. only 50% of the whole dataset. The 

‘reinforced algorithms’ that obtained the best predictive performances were trained on two 

independent cohorts and validated on the remaining part of one cohort. An additional and 

external validation (on a third independent cohort) would have been interesting. Because a 

number of HF drugs were included in the development, the populations identified by the 

trained algorithms may not be suitable for the analysis of optimal HF therapy. However, an 

optimization analysis of the most recent evidence-based HF drugs, angiotensin 

receptor/neprilysin inhibitor and sodium–glucose cotransporter-2 inhibitor, would be possible, 

as these agents were not included in the algorithms. The involvement of HF drugs in 

algorithms makes them dependent on geographical and socioeconomic factors as well as 

changes in national or international guidelines over time. Consequently, any algorithm would 

need to be reworked for a specific claim. 
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To get reliable predictive models, it is crucial to use at least two different datasets for training, 

reinforcement, and external validation. In our work, the FRESH cohort was matched to SNDS 

to collect medico-administrative data on treatments, care pathways, and clinical events before 

and after inclusion. This cohort was different from the 2019-SNDS cohort that we used for 

reinforcement and validation. Indeed, this 2019 SNDS cohort included only HF patients with 

hospitalization during the first quarter of 2019, while the FRESH cohort included patients 

without hospitalization and patients with hospitalization over a longer period. It is why we 

firstly trained predictive models on FRESH-SNDS. It should be noted that the performances 

of algorithms were lower when models were firstly trained on 2019-SNDS cohort and then 

reinforced on FRESH-SNDS cohort (data not shown). 

In conclusion, these validated claims-based algorithms can identify reduced or preserved 

LVEF in HF patients within a nationwide healthcare database with high PPV and low rates of 

false positives. Using these tools, specific analyses of different classes of HF would be 

possible. They could also help identify, on a nationwide scale, patients who would benefit 

from targeted HF management information or preventive interventions. 
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