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Highlights:

- A methdological alternative to handle highly censored As data is developed

- Higher risk associated with warmer, higher areas with clayey and phosphorus-rich soils

- Higher As concentrations in Portugal, Spain, Austria, France and Belgium

- Countries present a non-negligible risk of exceeding the 45 mg/kg limit of action

- As concentrations exceed background values, but the threshold adopted is uncertain

Abstract

Arsenic (As) is a versatile heavy metalloid trace element extensively used in industrial 
applications. As is carcinogen, poses health risks through both inhalation and ingestion, and 
is associated with an increased risk of liver, kidney, lung, and bladder tumors. In the 
agricultural context, the repeated application of arsenical products leads to elevated soil 
concentrations, which are also affected by environmental and management variables. Since 
exposure to As poses risks, effective assessment tools to support environmental and health 
policies are needed. However, the most comprehensive soil As data available, the Land 
Use/Cover Area frame statistical Survey (LUCAS) database, contains severe limitations due 
to high detection limits. Although within International Organization for Standardization 
standards, the detection limits preclude the adoption of standard methodologies for data 
analysis. The present work focused on developing a new method to model As contamination 
in European soils using LUCAS soil samples. We introduce the GAMLSS-RF model, a novel 
approach that couples Random Forests with Generalized Additive Models for Location, Scale, 
and Shape. The semiparametric model can capture non-linear interactions among input 
variables while accommodating censored and non-censored observations and can be 
calibrated to include information from other campaign databases. After fitting and validating a 
spatial model, we produced European-scale As concentration maps at a 250 m spatial 
resolution and evaluated the patterns against reference values (i.e., two action levels and a 
background concentration). We found a significant variability of As concentration across the 
continent, with lower concentrations in Northern countries and higher concentrations in 
Portugal, Spain, Austria, France and Belgium. By overcoming limitations in existing databases 
and methodologies, the present approach provides an alternative way to handle highly 
censored data. The model also consists of a valuable probabilistic tool for assessing As 
contamination risks in soils, contributing to informed policy-making for environmental and 
health protection.
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1. Introduction

Arsenic (As) is a versatile heavy metalloid trace element used in the production of 
semiconductors, batteries, paints, wood preservatives (Flora, 2015), plant defoliants, 
agricultural pesticides, and herbicides (Adriano, 1986), among others. As is the 53rd most 
abundant element among the 92 that occur naturally in the Earth's crust (Reimann et al., 
2009), with a median global total concentration in soils estimated to be 5 mg kg-1 (Reimann 
and De Caritat, 1998), and an average of 7.2 mg kg-1 (Adriano, 1986). Despite being a non-
essential element for humans (Medunić et al., 2019), the medical use of As dates back to the 
time of Hippocrates (Klaassen, 2013), and its use as a poison is reported to have happened 
in Roman times (Reimann et al., 2009). For its toxicity, As was one of the first chemical 
elements identified as a cause of cancer in the 19th century (Smith et al., 2002). As is the only 
known carcinogen that presents risks to humans by both inhalation and ingestion (McLaren et 
al., 2006), and currently, it is understood that exposure to As relates to the development of 
vascular diseases and to increased risk of liver, kidney, lungs, and bladder tumors 
(Palma‐Lara et al., 2020). Human exposure to As can be detected through blood, hair, and 
urine samples. While concentrations of 0.1 to 0.5 mg kg-1 in hair samples may indicate chronic 
As poisoning, the acute ingestion of 100 to 300 mg can be fatal after one to four days 
(Ratnaike, 2006). Worldwide, It is estimated that 226 million people are exposed to As 
contamination from drinking-water or food. Asia, with 174.1 million people at risk, accounts for 
most of this global exposure (Murcott, 2012).

In agricultural areas with repeated application of organic or inorganic arsenical 
products, very high concentrations of As can be detected due to the continuous accumulation 
of their residuals (Adriano, 1986). Examples of such products include As detected in manure 
(Adamse et al., 2017), herbicides based on dimethylarsinic acid and pesticides based on 
sodium arsenite (Saxe et al., 1964). Once in the soil environment, As molecules can react and 
become sorbed onto the solid phase of the soil, be uptaken by plants, be volatilized back into 
the atmosphere, or leach (McLaren et al., 2006). Experiments after the continuous application 
of As pesticides in the United States showed that As did not leach below the 20 cm depth 
(Veneman et al., 1983), but field studies in Denmark found traces of As contamination in up 
to 2.5-meter depth (Lund and Fobian, 1991), indicating a different behavior. The mobility and 
availability of As in soils are affected by environmental factors - such as pH, soil texture, clay 
minerals, metal (hydr)oxides, and redox potential -, and by management practices, such as 
the application of phosphorus products, the use of plowing, and the adoption of cover crops 
(Adriano, 1986). Other than the application of agricultural products, As accumulation in the 
soil can also result from the redeposition of atmospheric As particles, the contamination of 
surrounding areas by mining and smelting activities, the deposition of ashes after coal 
combustion, the disposal of urban and industrial wastes, or the spread by irrigation (McLaren 
et al., 2006).

Apart from the exposure to high doses, contact with As can also be a problem at lower 
concentrations. In the case of soil contamination, some potentially harmful activities include 
direct contact with the skin and hand-to-mouth ingestion through recreation, landscaping, and 
gardening (Klaassen, 2013; Venteris et al., 2014). According to the Integrated Risk Information 
System of the United States Environmental Protection Agency, the estimated increased 
cancer risk due to oral exposure to inorganic As equals 1.5 per mg kg-1 day-1, being higher 
than that of insecticide toxaphene, 1.1 per mg kg-1 day-1, and similar to the fungicide 
hexachlorobenzene, 1.6 per mg kg-1 day-1 (USEPA, 2023a). Consequently, the generic 
screening level for total inorganic As in residential soils is recommended to be as low as 0.68 
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mg kg-1, indicating that sites exceeding such threshold may require further investigation of 
their carcinogenic potential (USEPA, 2023b).

Due to the high toxicity of As and its low generic threshold, an information tool to assist 
the development of environmental, health and soil policies must be able to estimate the risk 
of contamination for multiple reference threshold values. However, implementing this idea can 
face further complications. For instance, the Land Use/Cover Area frame statistical Survey 
(LUCAS) topsoil database, the largest and most comprehensive soil sampling campaign 
across the European Union (EU), collected information on As concentrations at more than 
20,000 locations (Orgiazzi et al., 2018). However, the analytical procedures adopted do not 
allow a proper quantification of the values below the Limit of Quantification (LOQ) of 2.84 mg 
kg-1 (Tóth et al., 2016). With such a high LOQ, the LUCAS samples can be divided into two 
groups: i) the non-censored observations, for which we know the exact measured As 
concentration, and ii) the censored observations, for which we can only know that the 
measurement is inferior to 2.84 mg kg-1 (i.e., the interval where the measurement belongs). 
One way to potentially overcome this issue could be by incorporating soil samples from other 
campaigns, such as the Forum of European Geological Surveys (FOREGS) database 
(Salminen et al., 2005), the Geochemical Mapping of Agricultural Soils (GEMAS) database 
(Fabian et al., 2014), or national soil monitoring systems, such as the Réseau de Mesures de 
la Qualité des Sols from France (Marchant et al., 2017). However, because these observations 
were made on different dates, often years apart, using different and non-harmonized sampling 
and analytical procedures, combining databases would demand strong assumptions and a 
very extensive harmonization step.

Another potential way to take advantage of the large number of observations in the 
LUCAS database without the need for strong preprocessing assumptions is by developing 
methods to handle the particular data characteristics. For instance, the method used by Tóth 
et al. (2016) to generate European As maps does not mention how the censored observations 
were handled, which raises concern about the reliability of the spatial patterns obtained. 
Additionally, the method assumes a linear dependence of the As concentration on the spatial 
covariates, while more modern approaches suggest that the relationships among variables 
may contain complex high-order interactions (Van Eynde et al., 2023; Helfenstein et al., 2022; 
Ballabio et al., 2021). Ideally, a proper method for the LUCAS As data would take both 
limitations into account while preserving the strengths of the original dataset, such as the 
applicability at a continental scale.

In the present work, we generate maps of As concentration at the European scale 
based on the LUCAS 2009 database using a novel approach. We do so by presenting a new 
model in Section 2.3, which consists of coupling Random Forests (RF) to the Generalized 
Additive Models for Location, Scale and Shape (GAMLSS) framework. The model is named 
GAMLSS-RF after its components. The proposed semiparametric approach models the 
censored and non-censored parts in a coupled manner, allowing the reconstruction of missing 
information by borrowing information from the other observations. The model selection 
process is presented in Section 2.4, and the resulting chosen model is given in Section 3.2. 
After thorough model calibration and validation procedures (see Section 2.5), we produce 
maps of As concentration across most EU member states at a 250 m spatial resolution and 
evaluate the exceedance probabilities concerning two limits of action and a threshold selected 
as representative of the background concentrations (see Section 3.3). Then, we discuss in 
Section 4 the policy implications of the results obtained. Conclusions are given in Section 5. 
A list of the abbreviations used in this work is provided in SM13.

2. Materials and Methods
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2.1 Soil samples and LUCAS topsoil survey

The As observations used in the present study come from the LUCAS topsoil survey, 
the largest periodic survey to collect topsoil information across Europe (Orgiazzi et al., 2018). 
The LUCAS database contains over 20,000 topsoil samples taken in European countries 
(SM7) and discloses information about soils' physical, chemical, and biological properties for 
different land use types in the years 2009 (plus 2012 for Bulgaria and Romania), 2015, 2018, 
and 2022 (EC, 2023a). Beyond the general topsoil information, the 21,682 soil samples of the 
LUCAS 2009/2012 survey were also analyzed for heavy metals and metalloids quantification 
and other elements, including Sb, As, Cd, Co, Cr, Cu, Fe, Pb, Hg, Mg, Mn, Ni, V, Zn.

Pseudototal concentration of metals and metalloids in LUCAS 2009/2012 soil samples 
were firstly obtained by using the aqua regia extractable fraction (HNO3/HCl 1.5/4.5 v/v) and 
microwave-assisted digestion (140°C, 35min, 20 bar) (prEN16174) (Carmen-Ileana et al., 
2014; Cristache et al., 2014), and then quantified by using inductively coupled plasma-optical 
emission spectrometry (ICP-OES). This analytical procedure differs from that used by the 
GEMAS topsoil database where a modified aqua regia extractable fraction (HNO3/HCl/H2O 
1/1/1 v/v/v) and open digestion (95°C, 60 min) was used for metals extraction and 
quantification was then carried out by using Inductively coupled Plasma quadrupole mass 
spectrometer (ICP-QMS). Due to these methodological differences, the limit of quantification 
(LOQ) of arsenic in the LUCAS soil samples (2.84 mg kg-1) is significantly higher than that of 
the GEMAS database (0.05 mg kg-1) (Tarvainen et al., 2013). However, the LOQ of arsenic 
from LUCAS database is similar to that obtained by testing wavelength dispersive X-ray 
fluorescence spectrometry (XFS) on the GEMAS samples (i.e., 3.0 mg kg-1), which led to a 
fraction of 25% of the XFS observations below the detection limit on that database (Tarvainen 
et al., 2013).

2.2 Spatial covariates

Since the As observations of the LUCAS database are spatially explicit, our model 
covariates correspond to point attributes extracted from digital maps. The set of 17 variables 
used in the current work covers:

 8 soil properties related to the As chemistry on soils based on LUCAS topsoil 
data published by Ballabio et al. (2019): pH, soil organic carbon content (SOC), 
cation exchange capacity (CEC), concentrations of phosphorus and calcium 
carbonate (CaCO3), fractions of clay, sand and silt;

 1 variable representing land cover, namely the normalized difference 
vegetation index (NDVI) (USGS, 2022);

 2 landscape features namely terrain slope and elevation (DEM) (EEA, 2016);

 2 climatic variables: annual average temperature and precipitation (Noce et al., 
2020);

 and 4 indicators of anthropogenic activity: distance to mines (Lopes et al., 
2018), distance to roads (OpenStreetMap, 2018), lights at night (Elvidge et al., 
2017), and distance to coal, oil and gas (COG) industries (ResourceWatch, 
2019).

Prior to any processing, all the distance variables were converted to the log-scale, and the 
datasets were spatially resampled to the target model spatial resolution of 250 m x 250 m.
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2.3 Exploratory analysis and modeling

The LUCAS 2009/2012 database contains 21,682 samples, of which 329 do not have 
As data available. In the remaining 21,353 observations, 9,784 (i.e., 45.82%) are below the 
LOQ of 2.84 mg kg-1. Such a censored nature of these As observations has several 
implications to the exploratory analysis and modeling procedures. For instance, the commonly 
used distribution moments, such as the mean and variance, can not be calculated to 
characterize the data, and quantiles have to be used as an alternative. In that case, the only 
quantiles that can be obtained are those that exceed the fraction of observations below the 
detection limit for a given subset of the data. To deal with such restriction, the exploratory 
analysis in this work consisted of reporting the empirical cumulative function for the As 
concentration. The data was split into two different selections for exploratory purposes: by 
European country and by land use type.

Another implication of having a high proportion of censored As data is that the adoption 
of common simplifications found in the literature for similar cases, which include removing 
censored observations or replacing them with a fixed value within the interval they represent 
(Ballabio et al., 2019; Helsel, 1990), would have huge impacts on the results and can not be 
used without major drawbacks (i.e. losing important information) and biases. Such techniques 
are only less problematic when the fraction of censored observations is at most 10% (Williams 
et al., 2020). These properties also mean that most methods that successfully handle similar 
problems do not support the use of left-censored data and, therefore, can not be used for the 
LUCAS As data. These approaches include quantile RFs for the spatial distribution of Zn in 
topsoils (Van Eynde et al., 2023) or soil pH (Helfenstein et al., 2022), regression-kriging for 
heavy metals (Rodríguez‐Lado et al., 2008), deep neural networks for the Hg content in the 
topsoil (Ballabio et al., 2021), Gaussian process regression for chemical properties, such as 
N, P and the C/N ratio (Ballabio et al., 2019), among others. In this sense, a proper method 
for our data would allow the use of left-censored positive data while still capturing the high-
dimensional interactions between variables that proved successful in similar contexts.

To address these issues, the proposed GAMLSS-RF model couples a RF model 
(Breiman, 2001) to the semiparametric regression GAMLSS framework (Stasinopoulos et al., 
2018; Rigby and Stasinopoulos, 2005). In GAMLSS, the response variable can be assumed 
to have any parametric distribution, and all distribution parameters (i.e., location [e.g., mean], 
scale, and shape) can vary according to parametric or nonparametric functions of the 
explanatory variables. Because GAMLSS do not have the same distributional limitations as 
other statistical frameworks, e.g.,  Linear Models or Generalized Linear Models, standard 
distributions can be properly modified to capture relevant properties of the data, such as 
skewness, heavy tails, bimodality, truncation, and (left-, right- or interval-)censoring. 
Parameter estimation in GAMLSS is achieved through iterative procedures to maximize the 
(penalized) log-likelihood. These procedures contain a backfitting component, which allows 
the incorporation of several nonparametric techniques, such as neural networks, Multivariate 
Adaptive Regression Splines, and RFs (Stasinopoulos et al., 2017).

The second component of the GAMLSS-RF is the nonparametric RF model. Standard 
RFs consist of a learning method combining many tree-based models (Breiman, 2001), which 
can capture high-order interactions in the data by partitioning the feature space into disjoint 
regions (Hastie et al., 2009). The method contains two sources of randomness. The first 
consists of the different samples with replacement taken and used to construct each tree, and 
the second is the random subset of the explanatory variables from which a variable is chosen 
to partition the feature space in each step (Fawagrehet al., 2014), with both procedures aiming 
at increasing robustness to noise and reducing overfitting and the variance of predictions 
(Hastie et al., 2009). The main advantages of RFs compared to standard parametric 
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smoothers are their higher predictive performance and ability to capture complex 
multidimensional relationships, although at the cost of having harder interpretability or 
explainability (Aria et al., 2021; 2023).

2.4 Model selection

In GAMLSS-RF, RFs can be used as nonparametric learners for one or more of the 
distribution parameters, so we searched for the best possible model with several steps:

1) First, we divided the dataset of 21,353 observations into training and validation 
datasets with 12,811 and 8,542 entries (i.e., approx. 60%, 40%), respectively. 
Then, we expanded the set of 23 statistical distributions for positive continuous 
values available in the gamlss R implementation to include 31 distributions for 
real continuous data that were exponentially-transformed to modify its range to 
the positive continuous line (Rigby et al., 2019). Then, we modified the 
probability density functions of the resulting set of 54 distributions to handle 
censored variables (Stasinopoulos et al., 2017).

2) Next, we selected the best marginal statistical distribution among the 54 options 
by comparing quantitatively and qualitatively their results when fitted to the 
training data without any predictors. Several distributions failed to converge to 
a solution. For the successful ones, the quantitative and qualitative criteria used 
were their deviance (i.e., minus two times the log-likelihood) and a visual 
residual analysis, respectively.

3) For the best marginal distribution selected in (2), a standard RF with default 
hyperparameters and 200 trees was added as a potential predictor for each 
distribution parameter (i.e., µ, 𝜎, 𝜈 and 𝜏 - see Section 3.2) and their possible 
combinations. The results were also evaluated quantitatively and qualitatively 
using the training dataset. After finding the best model structure, the resulting 
GAMLSS-RF model was used to fine-tune two RF hyperparameters: the 
number of trees (num.trees) and the number of variables considered in each 
split (mtry). The first hyperparameter was allowed to vary from 10 to 250 in 
steps of 10, and the second, from 1 to 17 in steps of 2.

4) Since the results of (3) selected a RF learner only for the first distribution 
parameter µ, a linear model was tested for the remaining parameters. To do 
so, we first reassessed the choice marginal distribution of (1) and then used a 
stepwise strategy by adding linear terms to the distribution parameter 𝜎 in a 
forward manner. A limit of three variables was defined and the Bayesian 
Information Criterion (BIC) was used to compare models in every step.

5) The result of (4) did not provide an adequate fit to the training dataset. In 
particular, the multiple worm plot of the residuals against the distance to mines 
was inadequate. To mitigate this issue, the last step consisted of manually fine-
tuning the GAMLSS model and two RF hyperparameters. For the GAMLSS 
model, a linear term for the distance to mines variable was added to 𝜈 and 𝜏 to 
improve the distance to mines multiple worm plot diagnostics (see Section 2.5). 
For the RF, the fraction of observations used to grow each tree 
(sample.fraction) and the fraction of the samples used to select tree splits 
(honesty.fraction) were manually fine-tuned by iteratively subtracting 0.05 from 
the default values and visually assessing the impact on the residuals calculated 
using the training dataset.
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2.5 Residual diagnostics and predictive assessment

The model diagnostics were made through residual analysis. The standard raw 
residuals (i.e., defined by the difference between model predictions and observations) could 
not be used since they are not well-defined for censored observations and do not generalize 
to other distributions than the Gaussian. A possible alternative in this case is the normalized 
randomized quantile residuals (NRQR). NRQRs result from a probability integral transform of 
the As values given their fitted distribution, with an additional randomization procedure for the 
censored observations. Consequently, if a GAMLSS model is adequate for the response 
variable being analyzed, then its NRQRs have an approximate standard normal distribution, 
which can be assessed using, for example, detrended quantile-quantile plots (also called 
worm plots) (Stasinopoulos et al., 2017). Worm plots can be used to evaluate the overall model 
accuracy (i.e., single worm plot) or the model accuracy for different ranges of the explanatory 
variables (i.e., multiple worm plots).

In the residual analysis, we evaluated model adequacy visually by plotting the single 
and multiple worm plots of the NRQRs from the fitted model using the training and validation 
datasets, with approximate 95% intervals. While the single worm plot allowed us to evaluate 
the overall model performance, the multiple worm plots enabled the investigation of possible 
systematic prediction biases. The NRQRs of the training dataset were also used for a spatial 
autocorrelation analysis, where a variogram was constructed based on three different models 
(i.e., Matern, Spherical and Gaussian), and the nugget-to-sill ratio was calculated. The NRQRs 
and the worm plots of the validation dataset allowed us to check the model's adequacy for 
extrapolation. Since NRQRs contain a random component due to the censored observations, 
we did 250 repetitions in each case and calculated summary statistics.

Besides, to improve our understanding of the model’s internal behavior, we calculated 
each explanatory variable’s importance in three ways. The first method corresponds to the 
change in deviance that resulted from randomly permuting the values of each covariate. A 
total of 250 repetitions per variable were performed. Such a method was adopted for its 
popularity, but the model extrapolation that it tends to induce likely limits its power (Hooker et 
al., 2021). For this reason, the second importance measure was calculated for each variable 
by the change in deviance resulting from refitting the chosen GAMLSS-RF model after 
removing them from the set of explanatory variables. In this case, 250 pseudorandom number 
generators were used, resulting in different fitted RF models. The third importance measure 
was calculated by generating the isolated effect of each variable (i.e., the Accumulated Local 
Effects (ALE) plot (Apley and Zhu, 2020), and using the range used as a measure of practical 
importance. The permutation and leave-one-out methods evaluate each variable’s statistical 
importance, while the ALE plot range evaluates their practical importance. For improved 
comparison, the results were divided by the maximum absolute effect, which constrained the 
absolute values to the (0, 1) interval.

2.6 Development of European maps of arsenic concentrations

As mentioned in Section 2.4, a new statistical distribution was generated by modifying 
the probability density function (PDF) of the best distribution found to account for the censoring 
on the interval (0, 2.84]. Such a modification solely affects the values within the two extremes 
of the censoring interval, where the continuous PDF from the original distribution is replaced 
by a mass point equal to the integral over the interval, while the other parts of the distribution 
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do not change. The definite integral is not invertible, which, in practice, means that we don't 
have enough information to reconstruct the distribution of the lower As values with certainty. 
Despite this limitation, we adopted the additional assumption that the best reconstruction for 
the left tail of the censored PDF is the original PDF itself. Such an assumption is notably 
strong, but natural since the adopted approach couples all parts of the distribution, meaning 
that modifications made to its right tail also affect its left tail, and vice-versa. Therefore, we 
assumed that a properly fitted model, which should be necessarily well-adjusted to the 11,569 
non-censored observations and the 9,784 censored observations simultaneously, should 
contain enough information to extrapolate on the missing range of values.

With the additional assumption for the reconstruction of the left tail, we generated maps 
describing the estimated median of As and evaluated the spatial patterns across European 
countries and against two action levels and one background concentration. The action levels 
taken were those reported by Tarvainen et al. (2013): the limit of good soil status of 20 mg kg-

1 in Norway, which is also the maximum tolerable concentration in agricultural soils of Germany 
(Reimann and De Caritat, 1998), and the threshold of 45 mg kg-1 defined on Belgium’s 1995 
Soil Remediation Act (bottom). The background concentration adopted was that estimated by 
Taylor and McLennan (1995) in the upper continental crust: 1.5 mg kg-1. The adequacy of 
these limits is discussed in the discussion section. Per-country average values were calculated 
by sampling from their pixels’ predicted distribution. This procedure was repeated 500 times, 
and the average and standard deviation were calculated. Cyprus and Malta are not included 
in the model results due to the lack of observations.

Due to systematic database differences, the model obtained in Section 2.4 (i.e., the 
‘fitted LUCAS model’) naturally does not perform well against the GEMAS dataset (SM9). 
However, since GEMAS is a valuable source of information for As in soils, we generated an 
alternative model version called the ‘calibrated GEMAS model’. The calibrated GEMAS model 
was obtained by first filtering the GEMAS dataset to keep only the observations in cropland 
areas, whose samples were taken in the 20 cm of the topsoil (Tarvainen et al., 2013). This 
step attempted to reduce the divergences between GEMAS and LUCAS data. Next, the 
NRQRs of the GEMAS observations were extracted using the fitted LUCAS model, and a best 
distribution (i.e., the generalized t distribution, according to the log-likelihood criterion) was 
fitted to them. Following the derivation in Stasinopoulos et al. (2017, p.441-442), this 
information can be combined with the fitted LUCAS model to derive a new, calibrated, fitted 
model consistent with the GEMAS observations. All results presented in the current work refer 
to the ‘fitted LUCAS model’, unless mentioned otherwise. Calculations for the calibrated 
GEMAS model were made in a lower spatial resolution (i.e., 1000 m) for computational speed. 

The GAMLSS-RF model was implemented using the gamlss R package (Rigby and 
Stasinopoulos, 2005) and the grf package (Tibshirani et al., 2023).

3. Results

3.1 Exploratory analysis

Figure 1 (top) presents the empirical cumulative distribution function for the As 
concentrations separated by land-use class. It shows that wetlands and the group of forests 
and semi-natural areas contain the largest shares of observations smaller than 2.84 mg kg-1, 
69% and 63%, respectively, while non-irrigated croplands, artificial areas, pasturelands, and 
other croplands follow a gradient from the higher to the lower shares. Grasslands and 
permanently irrigated croplands present the lowest shares among all uses, at 27% and 23%, 
respectively. With a few changes in the ordering between uses, 91% to 98% of the 
observations in each class are lower than 20 mg kg-1. In all cases, 97% to 99% of the 
observations are lower than 40 mg kg-1. The stratification per country of Figure 1 (bottom) 
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shows a large variability. While in Estonia, Latvia, and Sweden, the shares of censored 
observations are 91%, 86%, and 82%, respectively, these values equal 22% for Austria and 
17% for both Italy and France, indicating a strong geographical trend of As concentration in 
the EU. The same three countries contain 6%, 9%, and 12% of the observed As exceeding 
20 mg kg-1 (in Italy, Austria, and France, respectively).
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Figure 1 - Sample cumulative distribution of Arsenic stratified per land use (top) or 
country (bottom). The numbers in the top plot correspond to each land use class, while in 

the bottom plot correspond to the 4 top and bottom country classes.
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3.2 GAMLSS-RF Modeling

The procedure to select the GAMLSS distribution yielded better results with the log-
transformed sinh-arcsinh distribution (Jones and Pewsey, 2009), denoted logSHASH, after 
step (2) and its original parameterization (hereinafter referred to as logSHASHo) after step (4). 
This distribution is described by four parameters: 𝜇, 𝜎, 𝜈, and 𝜏. These parameters marginally 
control the location, shape, and scale of (non-censored) logSHASHo according to the patterns 
displayed in Figure 2. Depending on the combination of parameters, the logSHASHo 
distribution can become more or less heavy-tailed and be uni or bimodal, indicating that a high 
degree of flexibility can be achieved. For some combinations of parameters, its mean (or 
expected value) is properly defined, but for others, the integral may diverge, while the median 
is always properly defined.

  

 
Figure 2 - The marginal effect of the 𝜇 (top left), 𝜎 (top right), 𝜈 (bottom left), and 𝜏 

(bottom right) parameter on the probability distribution function of the log-transformed 
sinh-arcsinh (logSHASHo) distribution. The parameter 𝜇varied from -1 to 1, 𝜎 from 0.1 to 
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0.7, 𝜈 from 1.5 to 5, and 𝜏 from 0.5 to 10, and a gradient from gray to black indicates an 
increase in the parameter.

The model selected as the best presented the following structure:

𝑦𝑙𝑜𝑔𝑆𝐻𝐴𝑆𝐻𝑜𝑐(𝜇,𝜎,𝜈,𝜏)

𝜇 = 𝑅𝐹X

𝜎 = 𝑒𝑥𝑝[ ―0.613 ― 0.473·𝑝𝐻 ― 0.286·𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 ― 1.466·𝑑𝑖𝑠𝑡(𝑚𝑖𝑛𝑒𝑠)]

𝜈 = 0.467 ― 1.002·𝑑𝑖𝑠𝑡(𝑚𝑖𝑛𝑒𝑠)

𝜏 = 𝑒𝑥𝑝[0.259 ― 1.049·𝑑𝑖𝑠𝑡(𝑚𝑖𝑛𝑒𝑠)]

with 𝑦 denoting the As concentration in mg kg-1; 𝑙𝑜𝑔𝑆𝐻𝐴𝑆𝐻𝑜𝑐 being the censored version of 
the four-parameter logSHASHo distribution; 𝑅𝐹X denoting a RF learner including all 
explanatory variables, and selected parameters num.trees = 160, mtry = 17, sample.fraction = 
0.35, and honest.fraction = 0.35; and 𝑝𝐻, 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 referring to the variables with the 
corresponding names, and 𝑑𝑖𝑠𝑡(𝑚𝑖𝑛𝑒𝑠) referring to the log-transformed distance to mines 
variable, as detailed in Section 2.2.

The residual diagnostics displayed in Figure 3 (left) indicate an adequate model for the 
training dataset, with most points falling within the approximate 95% intervals. As a 
consequence of the number of censored observations, the left tail presents variability due to 
the 250 repetitions of the NRQRs (see Section 2.5), but no variability in the right tail. The 
assessment of spatial correlation with the nugget-to-sill ratio of the  NRQRs for the Gaussian, 
Matern, and Spherical covariance functions presented median values of 0.70, 0.76 and 0.81, 
respectively, and averages (± standard deviation) of 0.62 ± 0.23, 0.66 ± 0.24, and 0.76 ± 0.24, 
respectively, indicating low residual spatial correlation. The model was also found to be 
adequate according to the validation dataset (Figure 3, right), as found by the small percentage 
of points outside the 95% intervals. Such a result points to the adequacy of the model to predict 
outside the training dataset. The multiple worm plots split by the predicted median (SM10) 
points in the same direction overall, indicating a reasonable fit through most of the range of 
predicted values despite some deviations in the class of higher values.
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Figure 3 - Worm plot of the normalized randomized quantile residuals for the training dataset 
(left) and the validation dataset (right).

The statistical importance measures of variables in Figure 4 (left plot) indicate a strong 
influence of air temperature, distance to mines, terrain elevation and clay content.  Figure 4 
(right plot) shows the practical importance measure of variables (i.e. the range of the ALE 
plot), indicating a strong influence of air temperature, clay content, phosphorus content, 
distance to roads and terrain elevation. The worm plot of the residuals from the validation 
dataset against each of these variables (SM1-5) indicates an overall good fit within the ranges 
of the explanatory variables, with the most serious violation happening for high Phosphorus 
content values (S2, top right). SM6 indicates that the linear dist(mines) terms were able to fix 
violations in the distance to mines multiple worm plots. Furthermore, Figure 4 (left) shows that 
other variables had an ambiguous statistical impact in the model, varying according to the 
criteria used. This pattern indicates their lower statistical influence on the As model.
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Figure 4 - Scaled importance measures: statistical measures based on the deviance 
variation (left) and a practical measure based on the Accumulated Local Effects (ALE) 
range (right). In the left plot, the feature permutation measure is shown in light gray and the 
leave-one-out measure, in dark gray. The uncertainty bars refer to the standard deviation of 

250 repetitions of the method.

The ALE plots (Figure 5, top) for the explanatory variables show an increasing 
relationship for temperature, terrain elevation, clay content, and phosphorus content, 
indicating that warmer and higher areas with clayey and phosphorus-rich soils tend to have 
higher As concentrations. Figure 5 (top and bottom) also shows a decreasing relationship for 
the distance variables (i.e., from roads, mines and COG industries) indicating that As 
concentrations tend to be higher around areas of more intense human influence. A 
visualization of how the curves of Figure 5 vary in space can be found in SM11 and SM12.
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Figure 5 - Accumulated Local Effects (ALE) on the µ parameter (i.e. the log of the 
median As concentration) for the 5 explanatory variables of higher practical 

importance (top) and the other variables (bottom). The distance variables are displayed 
in their original scale, not log-transformed.

3.3 Arsenic in European soils

Figure 6 (top) shows the median As concentrations calculated with the fitted LUCAS 
model at the 250 m spatial resolution for Europe. The values range from 1.1 to 64.6 mg kg-1, 
with arithmetic and geometric means of 4.1 and 3.5 mg kg-1, respectively. The map also 
contains three points, (a), (b), and (c), in Spain, Sweden and Bulgaria, respectively. The 
corresponding estimated probability density function for these points have different shapes 
and reconstructed left tails. In the three cases, the logSHASHo distributions show a heavy 
right-tail. In Figure 6, bottom, the ratio between the predictions from the calibrated GEMAS 
model over the fitted LUCAS model are presented. In all pixels, the calibrated GEMAS model 
(see SM8), predicts higher values than the fitted LUCAS model, with the ratio ranging from 
131 to 254%. Such a difference is more evident in Sweden and Finland, where the fitted 
LUCAS model calculates generally low values, but also happens in Austria and north-west 
Spain, where the fitted LUCAS model calculated high As concentrations. Per land use, 
average median predictions of 4.32, 4.94, 5.02 and 5.35 mg kg-1 are calculated for arable land, 
pasture, other agricultural areas and permanent crops, respectively.
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Figure 6 - Median arsenic concentrations in Europe: model predictions, along with three 
example points (top), and ratio between results using the GEMAS and the LUCAS 

database (bottom). In the top right plot, the continuous line is the probability density function 
for the censored logSHASHo distribution, while the dashed line shows the reconstructed left tail. 

The points on the vertical line show the corresponding fitted probabilities of being below the 
censor value 2.84 mg kg-1. The bottom plot shows the ratio of predictions by the calibrated 

GEMAS model over the fitted LUCAS model.

The average value per country (Figure 7) shows that Latvia, Estonia, Lithuania, 
Finland and Poland present the lowest averages, equal to 2.03, 2.10, 2.30, 2.41 and 2.68 
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mg kg-1, respectively. Among the countries with the highest values, Luxembourg, Portugal, 
Slovenia, France and Austria present averages of 9.00, 9.00, 9.21, 9.71 and 9.74 mg kg-1, 
respectively.

Figure 7 - Average modeled arsenic concentrations per European country. The 
uncertainty lines represent confidence intervals and are equal to two times the standard 

deviation of the 500 repetitions used to calculate the average.

Figure 8 shows the probability of pixels exceeding two soil As action levels in European 
countries, 20 mg kg-1 (top) and 45 mg kg-1 (bottom), obtained from the fitted distribution of As 
for each pixel. Austria, France, Spain, Portugal, and Belgium contain several locations where 
the chance of exceeding the Norwegian/German and Belgian thresholds (i.e. 20 mg kg-1 and 
45 mg kg-1, respectively) surpasses 12% and 2%, respectively. Germany, the Czech Republic, 
Slovenia, Italy and Greece also display a similar pattern, but to a more limited extent. The 
highest probability calculated for exceeding the first and second thresholds was 77.1% and 
58.1%, respectively, with the two pixels belonging to France. A comparison with the calibrated 
GEMAS model indicates that the LUCAS dataset may be underestimating the risk against the 



19

20 mg kg-1 threshold in Portugal, Scotland (in the United Kingdom - UK), France, Spain, 
Poland, Lithuania and Latvia. For the 45 mg kg-1 threshold, the comparison with GEMAS 
indicates that the fitted LUCAS model may be overestimating the risk for most of Western 
Europe, but largely underestimating for the UK, Romania, Germany, Poland, Lithuania, Latvia 
and Estonia. In Sweden and Finland, both over and underestimation may be occurring.

Figure 8 - Exceedance probabilities for two limits of action in Europe: 20 mg kg-1 (top) 
and 45 mg kg-1 (bottom). Results are predictions from the fitted LUCAS model (left), and 
the ratio of predictions from the calibrated GEMAS model to those of the LUCAS model 

(right).

The probability of exceedance concerning the background concentration of 1.5 mg kg-

1 (Figure 9) shows a high chance that the As concentrations from the fitted LUCAS model are 
higher than to the natural occurrence levels. In several locations in Poland, Sweden, Finland, 
Latvia, Estonia, and Lithuania, such a chance does not generally exceed 50%. However, the 
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comparison against the GEMAS dataset indicates that the risks may be underestimated in 
these countries.

Figure 9 - Exceedance probabilities for the background concentration of 1.5 mg kg-1. 
Results are predictions from the fitted LUCAS model (left), and the ratio of predictions 

with the calibrated GEMAS model (right).

4. Discussion

4.1. GAMLSS-RF approach and the drivers of As concentration in Europe

The diagnostics made on the residuals from the fitted LUCAS model indicated a good 
fit and ability to extrapolate beyond the training dataset, with very few violations to the 95% 
pointwise confidence intervals (Figure 3). Such a result was reinforced by the mostly flat worm 
plots obtained against the validation dataset (SM1-6) for different ranges of the five variables 
with the most practical influence on the model. Model residuals also indicated low spatial 
correlation due to a high nugget-to-sill ratio, which indicates a non-violation of the assumption 
of independence between observations. Comparison against the GEMAS samples indicated 
that the values represented in our fitted LUCAS model are possibly underestimated, but 
comparison must be taken with care due to methodological differences. The generation of 
maps of median values and exceedance probabilities was only possible due to the assumption 
that the left tail could be reconstructed (Figure 6, right). Although necessary to overcome the 
data limitation problems described earlier, this assumption is strong and can be seen as a 
limitation of the modeling approach itself. However, In comparison to other works that mapped 
Arsenic in Europe, the GAMLSS-RF model advances other assumptions beyond the 
incorporation of censored observations. For instance, the inclusion of explanatory variables 
produces more detailed results than the kriging interpolations performed by Tarvainen et al. 
(2013), and the RF model is able to capture non-linear relationships, therefore extending the 
linear assumption of Tóth et al. (2016) and Rodríguez-Lado et al. (2008). Furthermore, 
applying a learning technique to censored data adds to recent efforts to improve As 
contamination mapping. Such efforts include, for example, the detection of As concentrations 
using hyperspectral data using RFs (Agrawal and Petersen, 2021), the use of several machine 
learning algorithms to estimate As concentrations from drone imagery (Jia et al., 2021), the 
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estimation of background As concentrations using support vector machines (Wu et al., 2016), 
the prediction of sustainable As mitigation techniques using Naïve Bayes classifier (Singh et 
al., 2022), among others.

The assessment of the importance of the input variables for the parameter 𝜇 was made 
using three different metrics, and pointed towards the high importance of edaphoclimatic 
factors and indicators of human influence. In decreasing order, temperature, clay content, 
phosphorus content, distance to roads and terrain elevation were found to be the most 
practically influential features (i.e., with higher practical importance). These variables were 
followed by soil pH, annual precipitation and distance to mines, although the statistical effect 
of these variables was usually not unanimous across all metrics used (Figure 4). The linear 
models for the other distribution parameters indicated an effect of soil pH, phosphorus content 
and distance to mines on the shape of the distribution. The linear models coefficients suggest 
that all variables tend to marginally decrease 𝜎, 𝜈 and 𝜏, leading to different patterns, as 
described in Figure 2.

For the human-related factors, the one-dimensional ALE plots for the model variables 
(Figure 5) shows that As concentrations tend to be higher in areas surrounding the existence 
of mines and roads. As is known to be found in metal ores (McLaren et al., 2006), and the 
results may be capturing a pattern of As accumulation in the soil as a result of human pollution, 
for example from the release of dusts and effluents (Thornton and Farago, 1997). Among the 
edaphoclimatic variables, the reasoning behind the temperature effect on As concentration 
may reflect its impact on solubilization and sorption rates, as well as the uptake by roots and 
leaves (Horswell and Speir, 2006). Besides, clay-sized particles include metal (Fe, Al, Mn) 
(hydr)oxides, which are the most important adsorbents for As in soils (Voegelin et al., 2007). 
The relationship obtained for the phosphorus content may relate to the fact that this element 
reacts similarly to As in the soil environment (Adriano, 1986), to the highly complex interactions 
between their availability in soils (Jing et al., 2022), and to the previous application of 
agricultural products (Jayasumana et al., 2015).

4.2. As Contamination assessment and policy implications

The country-averaged As concentration of Figure 7 points to the existence of three 
groups of countries: with lower (< 4 mg kg-1), medium (4 - 7 mg kg-1), and higher (> 7 mg kg-

1) As concentrations. The group of low values is geographically clustered, with the spatial 
distribution of Figure 6 displaying a clear difference between the As concentrations in Northern 
Europe and the other regions. These findings visually coincide with previous modeling efforts, 
such as those by Tóth et al. (2016), Tarvainen et al. (2013) and Rodríguez-Lado et al. (2008). 
This North-South differentiation between topsoil As concentration has been explained by the 
natural difference between Southern Europe's older and more fine-textured soils and Northern 
Europe's younger and more coarse-textured soils (Tarvainen et al., 2013). As noted by 
Tarvainen et al. (2013), the spatial pattern coincides with the areas covered by glacial ice in 
the last glacial period. A similar case is observed, for instance, in the concentration of Zn in 
European topsoils (Van Eynde et al., 2023). Besides, the visualization of the practical 
importance of model variables (SM11 and SM12) suggests different conditions affecting As 
concentration across countries. In the Northern countries mentioned above, the status of most 
variables with high practical importance in the model (e.g., temperature, clay content, and soil 
pH) leads to predominantly lower As concentrations. On the other hand, different dynamics 
are observed in the countries with the highest As concentrations. For example, the high As 
median concentrations in regions of Central France (Figure 6) are correlated with a particular 
combination of precipitation and temperature, soil phosphorus content, distance to mines, and 
terrain elevation. It is worth mentioning, however, that this analysis ignores interactions 
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between variables, which are presented in our model but not in the visualizations of SM11 and 
SM12.

While the results of the comparison against the background concentration (Figure 9) 
indicate that most of the As found may come from human contamination, the comparison 
against exceedance probabilities (Figure 8) indicate that most of Europe has a relatively small 
risk of exceeding 45 mg kg-1. Higher risks are found in France, Austria, Spain and Portugal, 
as well as smaller contamination areas in Belgium, Germany, Italy and the Czech Republic. 
Since the highest threshold adopted exceeds the 40 mg kg-1 usually used to detect harm for 
crop plants (Sheppard, 1992), these regions must take extra care for adverse effects that 
include inhibited metabolic processes and death (Mahimairaja et al., 2005). It must be noted 
that the thresholds adopted in Figure 8 are not a consensus, and some regionality exists in 
the regulations. For instance, in Finland, where As concentrations are generally lower than in 
other countries (Figure 7), the threshold for assessing contamination and remediation needs 
is 5 mg kg-1, and the limit for ecological risks ranges between 50 and 100 mg kg-1 (FME, 2007). 
In Sweden and Denmark, the screening values for residential use are 15 and 20 mg kg-1, 
respectively, with the second value also being the threshold for Austria (Carlon, 2007). 
Slovakia, Germany, and the Czech Republic adopt screening values of 30, 50, and 65 mg kg-

1, respectively (Carlon, 2007). In a slightly different context, the European Chemicals Agency 
(ECHA) evaluated the toxicity of As against terrestrial organisms, and the mean values of the 
10% effect concentration (i.e., EC10) ranged from 5.0 to 142.8 mg (kg dry weight of soil)-1, 
depending on the species under consideration (ECHA, 2023). Since EC10 values correspond 
to the concentrations at which 10% of the organisms present are significantly negatively 
affected (Corn, 1993), the range presented is expected to be lower than other commonly used 
indicators, such as the LC10 and LC50 values (i.e., the concentrations at which 10 and 50% 
of the organisms die, respectively). The different references, together with the increased 
variability when including GEMAS observation in the analyses, suggests a relatively large 
uncertainty concerning the true risks of As concentration in European soils.

Similarly to the contamination levels, the definition of background concentrations also 
varies. Beyond the 1.5 mg kg-1 adopted, the Registration, Evaluation, Authorisation and 
Restriction of Chemicals (REACH) regulation from the ECHA defined the predicted no-effect 
concentration as 0.7 mg kg-1 (Reimann et al., 2018). In Finland, the Ministry of the Environment 
defines natural concentrations as 1.0 [0.1, 2.5] mg kg-1 (FME, 2007), and the background 
concentration in German soils were calculated to vary spatially from the interval [0, 5] to > 25 
mg kg-1 (BGR, n.d.). In Sweden, sediment data from the Baltic Sea indicated a median pre-
industrial concentration of 12.4 mg kg-1, exceeding the 10 mg kg-1 recommended by the 
National Environmental Protection Agency (Shahabi-Ghahfarokhi et al., 2021). Additionally, 
natural background concentrations in Poland were reported to vary between 0.8 to 9.1 mg kg-

1, 2.76 to 16.0 mg kg-1 in the Czech Republic, and equal to 15 mg kg-1 in Austria (Sakala et 
al., 2011). In this sense, the large spatial variation of As concentration across Europe (Figure 
6) led Tarvainen et al. (2013) to state that "it is clearly not possible to define one background 
value for the whole continent".

Concerning policy developments, the European Commission proposed in 2021 the 
Zero Pollution Action Plan (ZPAP) to improve soil quality and reduce diffuse contamination, 
including improvements to air and water quality. The overarching objective of ZPAP is to 
create a toxic-free environment by reducing soil pollution to levels considered no longer 
harmful for health and ecosystems. In ZPAP, the goals of better preventing, remedying, 
monitoring and reporting on soil pollution are pursued by monitoring the current state of diffuse 
pollution in soils. In this sense, the present work contributes to establishing baselines of 
pollution by As, therefore aligning with the objectives of the EU Soil Observatory of searching 
for better uses of the LUCAS soil survey, and promoting modeling assessments to develop 
baseline maps of metals in the soil environment (Panagos et al., 2022b). In addition, the 
European Commission recently adopted new rules to increase food safety by reducing the 
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presence of As in food products (i.e., Commission Regulation no 2023/465 of 3 March 2023). 
With most of the food coming from soils, this regulation exemplifies how policy measures could 
benefit from more knowledge of baseline indicators of heavy metal occurrence in European 
lands. As, along with Hg, Cd and Pb, has a high priority for the dangers it poses (Fuller et al., 
2022). This and other legal efforts could help prevent industrial abuse in the application of As-
based products.

Furthermore, the proposed Soil Monitoring Law has three main objectives: i) “a solid 
and coherent monitoring framework for all soils across the EU”, ii) “making sustainable soil 
management the norm in the EU”, and iii) “requesting Member States to identify potentially 
contaminated sites and contributing to a toxic free environment by 2050” (EC, 2023b). In this 
context, the proposed As map of the European Union is a baseline that contributes to the 
estimation of diffuse soil contamination. The present work aligns with past efforts to map other 
elements in soil, such as Cu (Ballabio et al., 2018), Hg (Ballabio et al., 2021), and Zn (Van 
Eynde et al., 2023), and the development of a high resolution As dataset as well as the 
investigation of the main natural and anthropogenic variables correlated with increased As 
concentration contribute to a better understanding of soil contamination in the EU.

5. Conclusions

In this work, a model called GAMLSS-RF was proposed as an alternative to mapping 
As concentrations in Europe while dealing with data censoring issues that appear in the 
LUCAS database. GAMLSS-RF allowed modeling highly nonlinear interactions among 
variables while establishing a coupled model for the left and right parts of data (i.e. below and 
above the LUCAS detection limit of 2.84 mg kg-1, respectively) in such a way that an additional 
assumption leads to the reconstruction of the unobserved left tail. Before the fitting procedure, 
the observations were split into training and validation datasets, and the analysis of residuals 
showed a consistent performance of the fitted model against all datasets. An interpretation of 
the statistical importance of model variables showed a reasonable behavior, with 
edaphoclimatic and human-related variables playing a relevant role in the prediction of As 
concentrations. 

Compared to other existing approaches to map As at the European level, the present 
work contains a higher spatial resolution and presents more adequate modeling assumptions, 
thus advancing towards more realistic spatial representations. The approach also allows the 
incorporation of observation from external data sources, which helps to understand the 
uncertainties of the analysis developed. The results indicated a high spatial variability of As 
concentrations in Europe, and countries such as Portugal, Belgium, Austria, France and Spain 
present a non-negligible risk of exceeding even the highest limit of action considered in the 
analysis (i.e., 45 mg kg-1). Results also indicated a high chance of human-related 
contamination of As in the whole of Europe, but the background concentration adopted is 
highly uncertain (i.e., 1.5 mg kg-1) and other threshold values could be checked for the whole 
EU when consolidated. The proposed GAMLSS-RF approach can be adopted by researchers 
facing similar limitations in other contexts, and the findings presented in this work can help 
support future assessments of soil health and pollution at a continental level, as well as its 
ecotoxicological implications.

6. Data availability

The datasets generated are available in the European Soil Data Centre 2.0 (ESDAC) (ESDAC, 
2023; Panagos et al., 2022a).
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