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A B S T R A C T   

In intensively managed forests in Europe, where forests are divided into stands of small size and may show 
heterogeneity within stands, a high spatial resolution (10–––20 m) is needed to capture the differences in canopy 
height. In this work, we developed a deep learning model based on multi-sensor remote sensing measurements to 
create a high-resolution canopy height map over the “Landes de Gascogne” forest in France, a large maritime pine 
plantation of 13,000 km2 with flat terrain and intensive management. This area is characterized by even-aged 
and mono-specific stands, of a typical length of a few hundred meters, harvested every 35 to 50 years. Our 
deep learning U-Net model uses multi-band images from Sentinel-1 and Sentinel-2 with composite time averages 
as input to predict tree height derived from GEDI waveforms. The evaluation is performed with external vali
dation data from forest inventory plots and a stereo 3D reconstruction model based on Skysat imagery available 
at specific locations. We trained seven different U-Net models based on combinations of Sentinel-1 and Sentinel-2 
bands to evaluate the importance of each sensor in the dominant height retrieval. The model outputs allow us to 
generate a 10 m resolution canopy height map of the whole “Landes de Gascogne” forest area for 2020 with a 
mean absolute error of 2.02 m on the test dataset. The best predictions were obtained using all available bands 
from Sentinel-1 and Sentinel-2 but using only one satellite source also provided good predictions. For all vali
dation datasets in coniferous forests, our model showed better metrics than previous canopy height models 
available in the same region.   

1. Introduction 

Forest biomass plays a crucial role in the global carbon cycle, and its 
preservation or increase is an essential element of land-based mitigation 
policies (Griscom et al., 2017; IPCC, 2019; Pan et al., 2011; UNFCCC, 
2015). In intensively managed European forests, which are divided into 
small stands, a high spatial resolution (10–20 m) is needed to capture the 
difference in biomass between adjacent stands or within stands in case of 
heterogeneous forest structure. Canopy height, combined with other 

forest parameters such as tree species, may be a good proxy for forest 
biomass estimation (Duncanson et al., 2022). Forest inventories have 
been the only method to estimate forest biomass and height in the past. 
They provide reliable statistical information on forests over large re
gions but are not designed to produce high-resolution maps. In recent 
decades, remote sensing data opened the possibility of height estimation 
at a finer scale with more data collected. Airborne Laser Scanning (ALS) 
may provide accurate height estimations consistent with forest in
ventory measurements at a high spatial resolution. These data, used as 
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reference height for models using space-borne images, have a high po
tential to accurately describe forest structures (Wilkes et al., 2015). 
However, their acquisition is costly, and measurement campaigns are 
sparse in time, which does not enable up-to-date maps. On the other 
hand, space-borne measurements have a lower spatial resolution but a 
higher temporal resolution and global coverage. They have the potential 
to map forest properties at a global scale monthly or yearly like the 
product developed by Hansen et al. (2013), which derived global forest 
annual loss and probability of gain at 30 m resolution from 2000 to 2012 
from Landsat imagery. Additionally, spaceborne LiDARs such as ICESat 
have demonstrated the potential to map forest height (El Hajj et al., 
2019; Fayad et al., 2014; Pourrahmati et al., 2015). Global and local 
maps of forest biomass and height have been developed based on various 
remote sensing approaches, often with worldwide coverage and a me
dium to low resolution (~100 to 1000 m). They are often based on 
spaceborne or airborne observations, calibrated with in-situ 
measurements. 

The GEDI (Global Ecosystem Dynamics Investigation) LiDAR 
mission, developed and operated by NASA onboard the International 
Space Station (ISS) since 2019, has produced accurate point-wise ob
servations of forest structure (Dubayah et al., 2020). Combined with 
other space-borne and airborne data, this instrument has shown prom
ising capabilities for height mapping (Fayad et al., 2021a; Lang et al., 
2022, 2023; Potapov et al., 2021). Sentinel-1 (S1) and Sentinel-2 (S2) 
are two satellite missions of ESA’s Copernicus program for Earth 
observation. They provide measurements of Earth’s radar (Synthetic 
Aperture Radar) backscattering coefficients (Sentinel-1) or multi- 
spectral reflectance (Sentinel-2) at a 10 m resolution with a revisit in
terval of approximately five days since 2015 and have already been used 
to estimate biomass and canopy height at high resolution (Lang et al., 
2019; Li et al., 2020; Morin et al., 2019). GEDI and Sentinel-2 combi
nations have been proposed for mapping crop height (Tommaso et al., 
2021) and forest canopy height (Lang et al., 2023), and its potential to 
estimate forest height was evaluated by Pereira-Pires et al. (2021) with 
linear and exponential regressions. 

Machine learning has proven some solid results for forest parameter 
estimations in previous remote sensing studies (Fayad et al., 2014; 
Morin et al., 2019; Potapov et al., 2021). More recently, deep learning 
and, more specifically, convolutional neural networks (CNN) have 
provided a new set of tools allowing remote sensing research to process 
large amounts of training data for more accurate predictions (Ball et al., 
2017; Zhu et al., 2017). CNNs (LeCun et al., 2015) have significantly 
increased accuracy in image interpretation tasks. Thanks to a series of 
linear operations (convolutions) and non-linear “activation” functions, 
these models can learn multi-scale image features, including image 
texture, which are then used to carry out predictions. CNNs are already 
widely used for object detection or scene classification tasks and have 
proven their efficiency in remote sensing (Zhu et al., 2017). However, 
few studies have used these models for regression tasks like tree height 
mapping (Dalagnol et al., 2022; Illarionova et al., 2022), and, to our 
knowledge, no studies have used simultaneously GEDI, Sentinel-1, 
Sentinel-2 and a CNN model to estimate canopy height up to now. 

Here, we introduce a new methodology that leverages the potential 
of GEDI to be used as reference height to train a deep-learning model. 
The methods combine GEDI’s height pointwise measurements and S1 
and S2 images at a high temporal and spatial resolution to create wall-to- 
wall height maps at 10 m scale, based only on space-borne data, over a 
large forest area in France. The region analyzed is the largest western 
European plantation forest: the Landes de Gascogne (referred to as Landes 
forest in the following), a maritime pine plantation located in the 
southwestt of France. Our model is trained on seven combinations of S1 
and S2 layers. The retrieval results are evaluated using several in-situ 
datasets: a dense maritime pine inventory performed in 2016 (GLO
RIE), the French National Forest Inventory (NFI) distributed all over the 
study area, and a height map based on 3D stereo height reconstruction 
from Skysat imagery at a specific location within the Landes forest. 

Additionally, the model is compared to three canopy height maps 
available in the area of interest. 

2. Material and methods 

This study relies on the use of canopy height measured by the GEDI 
sensor, a space-borne LiDAR onboard the ISS (Dubayah et al., 2020). We 
used GEDI’s RH95 variable defined in 2.2.1 as reference height samples 
and Sentinel-1 and Sentinel-2 images (2.2.2 and 2.2.3) as predictors for a 
deep learning U-Net framework (2.4.1) to generate a gridded map of the 
Landes de Gascogne area at a resolution of 10 m. Fig. 1 describes this 
general workflow. 

2.1. Study area 

The Landes forest is located in a flat region with an oceanic climate 
and sandy soils in the South-West of France (Fig. 2). It is the largest 
European plantation (~1 million hectares) composed of 90 % of mari
time pine (Pinus Pinaster). The remaining forested part consists of 
broadleaved forests, including several species of oaks, mainly located 
around rivers. This forest is intensively managed: thinning occurs every 
5–10 years, clear-cuts are performed after 35–50 years, and they are 
replanted within 2–3 years. Forest management leads to very homoge
neous tree repartition within stands but also to high heterogeneity be
tween separate forest parcels. Understory vegetation comprises various 
woody shrubs and perennial herbaceous plants (fern). It is regularly 
cleared during the first years following reforestation. 

2.2. Datasets used to train the model 

2.2.1. GEDI 
Data from the Global Ecosystem Dynamics Investigation (GEDI) are 

used as a reference variable to model a continuous height map at 10 m 
resolution. GEDI is operated by NASA and produces high-resolution 
LiDAR observations of the Earth’s vertical structure (Dubayah et al., 
2020). This spaceborne infrared LiDAR, deployed in December 2018 on 
the ISS, provides energy return waveforms (L1B product) and derived 
metrics such as canopy relative height (RH) and plant area index (L2A/ 
L2B product) that describe the vertical forest structure within 25 m 
diameter circular footprints. The instrument acquires data over eight 
tracks with a footprint spacing of 60 m along the track and 600 m across 
tracks. Due to the ISS orbit, it covers latitudes between 51.6◦ South and 
51.6◦ North. The precision of the horizontal footprint location, initially 
around 20 m, has been improved in GEDI’s second release to a value of 
10 m, as shown in Appendix 1 (Dubayah et al., 2021). 

The GEDI L2A product provides RH metrics representing the height 
relative to the ground of n% (RHn with n ranging from the 0 to 100) of 
the total returned energy between the top of the canopy and the signal 
end. These metrics are extracted from the raw waveforms with six 
different algorithms representing different combinations of thresholds 
and smoothing settings. They can vary from one algorithm to another 
depending on the forest type (Adam et al., 2020). In our study area, most 
footprints had the same RH values for most algorithms. Hence, we chose 
to use the algorithm selected by NASA in the “selected_algorithm” var
iable in GEDI data, which corresponds mainly to algorithm 1 over our 
study area. In theory, RH100 should represent the top of canopy height. 
Still, this metric is affected by noise from atmospheric disturbances, 
uncertainties on the position of the detected ground return, vegetation, 
and ground variability. Here, we used RH95, as it has showed a better 
correlation with other height sources and has been used as a proxy for 
height in previous studies (Fayad et al., 2021b; Potapov et al., 2021) 
even though other similar metrics such as RH98 have also been used 
(Lang et al., 2022). Due to the LiDAR properties, this measure is inten
ded for vegetation and may represent confusing results for bare soil or 
water bodies (Beck et al., 2020). Indeed, these surfaces mirror the 
transmitted waveforms that have a pulse width of ~ 15 ns which 
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corresponds to a ~ 4.5 m wide waveform and hence to a RH100 value of 
2.25 m (Dubayah et al., 2020). 

In total, 526,449 footprints from the GEDIv002 L2A product 
(Dubayah et al., 2021) were downloaded from NASA’s EarthDataSearch 
website (https://search.earthdata.nasa.gov/search) for this study, 
covering the entire area of interest for 2020. Due to atmospheric per
turbations, some waveforms could not be used to give information on 
the vertical forest structure. Therefore, several filtering criteria were 
applied to remove unusable waveforms: (1) When the quality_flag pro
vided in the GEDI data was set to zero. (2) When one of toploc, botloc, 
num_detectedmodes, RH100 provided metrics had a null value. (3) When 
the ratio defined as the maximum amplitude of the waveform divided by 
the standard deviation of noise was lower than 30 (arbitrary value that 
removed 3 % of the remaining waveforms). As the study area is mostly 
flat, terrain was not considered in the data filtering. Moreover, recent 
studies (Fayad et al., 2021c) showed that GEDI canopy height retrievals 
were not affected by small slopes (<45 %). After these operations, 
175,511 GEDI valid waveforms (33 %) were kept in 2020. 

These GEDI footprints were then spatially separated into train, 
validation, and test datasets. For this, the study site was divided into 117 
tiles of 100 km2 and randomly separated into 91 train tiles, 15 validation 
tiles, and 11 test tiles so that it corresponds respectively to 75 %, 15 %, 
and 10 % of the GEDI footprints (Fig. 3a). The temporal distribution of 
the data is uneven and some months (July, ~ 16 % of the data) are more 

represented than others (January, ~ 4 % of the data). The spatial dis
tribution of the data is also uneven due to the ISS trajectory and the 
northern tiles of the study area contain more footprints than other tiles. 
The spatial and temporal distributions of these data are shown in Ap
pendix 5. To evaluate our model on forested areas only, in test and 
validation tiles, we removed the GEDI footprints located in pixels where 
the tree cover has a null value in the Copernicus tree cover density map 
(Copernicus Land Monitoring Service, 2018). For the train dataset, we 
kept all data, thus leading to more realistic results over non-forest areas. 
The height repartition of data in train, validation, and test datasets is 
presented in Fig. 3b. 

2.2.2. Sentinel-1 
Sentinel-1 (S1) is a C-band Synthetic Aperture Radar (SAR) mission 

composed of 2 satellites with a sun-synchronous orbit and 12 days repeat 
cycle (Sentinel-1A, Sentinel-1B) launched respectively in 2014 and 2016 
by ESA. Here, we used the Ground Range Detected (GRD) scenes with 
dual-band cross-polarization (Vertical-Vertical + Vertical-Horizontal 
bands at 10 m resolution). They were preprocessed with the Sentinel-1 
toolbox in Google Earth Engine, which includes thermal noise 
removal, radiometric calibration, and terrain orthorectification as 
specified at https://developers.google.com/earth-engine/guides/ 
sentinel1. The S1 data set provides backscattering coefficients (dB) 
which are a measure of the backscattered microwave radiations 

Fig. 1. General workflow showing the data preprocessing steps, the U-Net model training, and the evaluation strategy. More details for the U-Net training process are 
presented in Fig. 5. The seven training scenarios correspond to the layers from S1 (VVasc: Vertical-Vertical polarization for ascending orbits, VHasc: Vertical- 
Horizontal polarization for ascending orbits, VVdes: Vertical-Vertical polarization for descending orbits, VHdes: Vertical-Horizontal polarization for descending or
bits) and S2 (B2: Blue, B3: Green, B4: Red, B5-B6-B7: Red edge, B8: Near Infrared (NIR), B8A:”narrow” NIR, B11-B12: Short Wave Infrared (SWIR)) used in the 
training process: 1 - all layers; 2 - all S1; 3 - all S2; 4 - S2 RGB + NIR, 5 - S1 VVdes + VHdes; 6 - VVdes; 7 - S2 NIR. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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(backward direction) emitted by the radar system. 
Using the Google Earth Engine (GEE) online platform, we selected 

280 images covering the entire area of interest over a five-month period 
in 2020 (2020–05-01 to 2020–10-01). This period was selected to have 

enough data to reduce the speckle observed in raw S1 images but still 
not too large to keep a similar aspect of the forest canopy (leaf-on sea
son) to calculate a median composite. We then separated them between 
ascending and descending orbits (140 images per category) and 

Fig. 2. Study site, known as “Les Landes de Gascogne” (referred to as Landes forest). Forest inventory plots, GLORIE inventory, Skysat 3D reconstruction, and forest 
areas considered in the results are shown. Greenness indicates tree cover density (Copernicus Land Monitoring Service, 2018). 

Fig. 3. (a) Repartition of the area of interest into 100 km2 tiles divided into train, validation, and test datasets. (b) Count of GEDI waveforms per height in train, 
validation, and test datasets. Gedi footprints from non-forest areas were removed from validation and test datasets. 
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calculated the per-pixel median of these image time series, thus creating 
a single composite image of 4 layers: VV_ascending, VH_ascending, 
VV_descending, and VH_descending at 10 m resolution. Each pixel of the 
composite image corresponds to the median value of pixels from ~ 25 
images at different dates. The median is little influenced by extreme 
values and reduces the potential soil and vegetation moisture-related 
effect that could be observed on raw S1 images. These bands were 
then restrained to values between − 30 dB and 0 dB and scaled to a 0 to 1 
interval in order to have a similar range of values as the Sentinel-2 input 
data (See 2.2.3). 

2.2.3. Sentinel-2 
The Sentinel-2 (S2) mission is part of the European Spatial Agency’s 

(ESA) Copernicus program for Earth Observation (EO). It is composed of 
two satellites, Sentinel-2A, launched in 2015, and Sentinel-2B, launched 
in 2017, on a sun-synchronous orbit. S2 provides multi-spectral images 
of the Earth surface reflectance with a low revisit interval of ~ 5 days, 
including images from both satellites, thanks to a large swath of 290 km. 
The L2A product used here provides bottom-of-the-atmosphere reflec
tance, processed from L1C (Top-of-the-atmosphere reflectance) with 
ESA’s Sen2Cor processor (Main-Knorn et al., 2017). It comprises 13 
spectral bands ranging from 10 m to 60 m resolution in visible, near- 
infrared (NIR), and short-wave infrared (SWIR). 

Based on the Google Earth Engine (GEE) online platform, we selected 
172 images within the entire area of interest during the same period as 
the S1 images (2020–05-01 to 2020–10-01) with less than 50 % of 
clouds. After applying a cloud mask, we created a single composite 
image by taking the per-pixel median value over the image time series. 
We chose the median composite to be less sensitive to outlier pixels such 
as pixels affected by clouds or cloud shadows that could remain even 
after the cloud mask. The median value computed for each pixel comes 
from 16 to 72 images depending on the pixel location because of dif
ferences in image overlap. The ten following spectral bands (10 and 20 
m resolution) were kept and resampled to 10 m if necessary: B2: Blue, 
B3: Green, B4: Red, B5-B6-B7: Red edge, B8: Near Infrared (NIR), 
B8A:”narrow” NIR, B11-B12: Short Wave Infrared (SWIR). We did not 
calculate any hand-crafted features such as vegetation indices or texture 
features insofar as we used a deep learning network (See 2.4.1) which 
calculates its own features from the raw images thanks to convolutional 
filters. This approach is very flexible and encompasses non-linear com
binations of features derived from raw satellite data that may be less 
rigid than setting fixed indexes. However, adding hand-crafted features 
to the prediction layers may be tested in further research to evaluate 
their potential to improve the model’s accuracy. The input data of a 
neural network should be on a similar scale to help stabilize the gradient 
descent step in the training phase. Thus, it is important to have the same 
range of values for the different inputs of our model (S1 and S2). 
Sentinel-2 reflectance values in GEE are given in digital units (DN) be
tween 0 and 10,000 (https://developers.google.com/earth-engine/ 
datasets/catalog/COPERNICUS_S2_SR) where DN = 10000 * Reflec
tance. Forest reflectance typically ranges from 0 to 0.3 (DN from 0 to 
3000) depending on the spectral bands. To have a better contrast and a 
more suited distribution for deep learning without a long tail, we clipped 
the DN values in the 0 ~ 5000 interval (values higher than 5000 were set 
to 5000). Then we divided all the values by 5000, creating a range of 
values from 0 to 1. Thanks to filtering, cloud mask, and median average, 
the resulting composite image was exempt from cloudy areas. 

2.3. Evaluation datasets 

To compare our height predictions with independent sources, we 
used three complementary datasets covering different spatial scales: a 
very high-resolution 3D stereo reconstruction from Skysat imagery, a 
dense local forest inventory (GLORIE) performed near the Bordeaux 
area, and the French national forest inventory data from IGN (Institut 
national de l’information géographique et forestière) spanning the 

entire area of interest (Fig. 2). Additionally, we compared our pre
dictions to canopy height maps computed from previous local and global 
studies using alternative techniques or data sources (Lang et al., 2023; 
Morin et al., 2019; Potapov et al., 2021). 

2.3.1. Forest inventory data 
The French national forest inventory (NFI), performed yearly by the 

French Geographical Institute (IGN, Institut Géographique National), 
carries out forest measurement campaigns in France (IGN, 2022). Every 
year, 30 m diameter circular plots are sampled in one-tenth of a grid that 
covers the national territory. These forest plots are distributed in the 
train, validation, and test tiles (see 2.2.1). The dominant height variable 
provided by IGN for these forest plots corresponds to the estimated mean 
height of the 100 highest trees within a surface area of 1 ha. In order to 
avoid a too-long time difference between the date of inventory and the 
date of our prediction, we selected only plots that were measured be
tween 2017 and 2021. To compare these heights to our predicted 
heights, we used the mean value of our 10 m x 10 m pixels that intersect 
the 30 m circular plots of the NFI, which corresponds to the mean of ~ 9 
pixels. We also tested other comparison methods, e.g., taking the 
maximum value of these pixels and taking the single 10 m x 10 m pixel 
value at the center of the plot. These different comparison methods 
yielded very similar results and we used the mean value for this study. 

The GLORIE local forest inventory was acquired in the winter of 
2015–2016 before the beginning of tree growth (Motte et al., 2016; Zribi 
et al., 2019). It includes measurements of, among others, tree heights, 
DBH, and tree density. The 99 forest plots (location indicated in Fig. 2) 
were selected from forest stands of maritime pines, trying to cover the 
entire range of forest structures in this region. The GLORIE forest plots 
are located within the train tiles (see 2.2.1). The dominant height var
iable provided in this dataset was calculated as the mean height of the 
two largest trees (higher diameter at 1.30 m) among the ten trees closer 
to the center of the forest plot. Here, we computed the mean value of the 
height pixels predicted by our model within a 25 m diameter circle 
(typical size of these forest plots) around the location of the forest in
ventory plots and compared it to the dominant height measured in the 
inventories. 

Although forest inventory canopy height data were considered as 
ground truth to evaluate our model, uncertainties are associated with 
them. Forest inventory accuracy on height measurements strongly relies 
on the surveyors and the method used (Berger et al., 2014; Jurjević et al., 
2020; Kitahara et al., 2010). Internal IGN studies based on forest in
ventory control, re-measuring ~ 4000 trees each year, have shown that 
the typical standard error on tree height estimation ranges from 1.4 m to 
1.75 m. 

2.3.2. Stereo 3D reconstruction from Skysat imagery 
Skysat is a constellation of optical sub-meter resolution EO satellites 

owned by Planet Labs, providing high-resolution imagery in panchro
matic, visible, and infrared bands at 0.9 m resolution. Its geolocation 
accuracy is 3.4 m for all images (Saunier et al., 2021), but it should be 
better on the cloud-free images used here. The stereo 3D height recon
struction technique of de Franchis et al. (2014) uses multiple image 
acquisitions with different view angles to reconstruct 3D objects with a 
dispersion error of ~ 0.5 m. Here, we applied this technique to recon
struct canopy height in a small area of 11 km2 (Location indicated in 
Fig. 2) and compared it to our model outputs. We first created a digital 
surface model (DSM) at 0.8 m resolution from point-cloud 3D recon
struction based on Skysat images acquired in 2021. Then we used a cloth 
simulation algorithm (Zhang et al., 2016) to select ground points from 
the 3D point cloud. Finally, we used a Laplace interpolation to create a 
terrain model from those points that we subtracted from the raw DSM to 
obtain a canopy height model (CHM). To compare it to our model, we 
resampled this CHM to a 10 m grid aligned with our prediction map. For 
this, we took the maximum value of the CHM within each 10 m x 10 m 
grid cell, which corresponds to the top canopy height and is thus 
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relevant for a comparison with our RH95-based model. As forest stands 
in the Landes region are very homogeneous, we carried out two types of 
comparison with our model: (1) a simple per-pixel comparison of the 
two maps. 2 A comparison at the forest stand level by calculating the 
median value over manually delimited forest stands (Fig. 4). 

2.3.3. Canopy height maps from previous studies 
We compared our model predictions to three canopy height maps 

from independent studies available in the Landes forest (Lang et al., 
2023; Morin et al., 2019; Potapov et al., 2021). Maps from Potapov et al. 
(2021) and Lang et al. (2023) are two global canopy height maps, hence 
non-specific to the study area, based on GEDI and optical data only. 
Potapov et al. (2021) have mapped forest height globally in 2019 at 30 
m resolution, using Landsat-8 images to extrapolate canopy height from 
GEDI footprints with a bagged regression trees ensemble method. Lang 
et al. (2023) have used Sentinel-2 images to extrapolate canopy height 
from GEDI footprints with a deep fully convolutional network and create 
a global canopy height map for 2020 at 10 m resolution. The map from 
Morin et al. (2019) is a local canopy height product specific to maritime 
pine homogeneous plantations in the Landes forest. Contrary to the two 
previous maps that used GEDI, reference height measurements were 
based on a small local forest inventory of maritime pine only (GLORIE 
inventory, see 2.3.1). These forest inventory measurements were used 
with remote sensing data (Sentinel-2, Sentinel-1, ALOS-PALSAR…) and 
a machine learning model (Support vector machine) to produce a can
opy height map of the Landes forest in 2016, only valid for maritime 
pine plantations. 

2.4. Methodology 

2.4.1. U-net model description 
In this study, we performed a pixel-wise regression, which is the 

process of attributing a particular value (tree height) to each pixel 
instead of attributing a label to the whole image. This task can be 
addressed by fully convolutional networks (FCNs) (Long et al., 2015) 
that have been adapted from classical CNNs. Here, we use a U-Net model 
adapted from Milesi (2022) which is a FCN that outperformed previous 
models in speed and accuracy and requires fewer training examples 
thanks to its U-shape architecture (Ronneberger et al., 2015). This model 
consists of a contracting path (left) and an expansive path (right) which 
gives it its “U” shape and enables the model to extract relevant infor
mation at different spatial scales. In the contracting path, the input 

image goes through two 3x3 convolutions followed by a rectified linear 
unit (ReLU) and is then downsampled with a 2x2 max pooling operation 
with stride 2. This is repeated four times, and at each step, the number of 
feature channels is multiplied by two. In the expansive path, the image 
first goes through a bilinear upsampling, then it is concatenated with the 
corresponding image of the contracting path and finally goes through 
two 3x3 convolutions followed by a ReLU like in the contracting path. 
This step is also repeated four times and at each step, the number of 
feature channels is divided by four instead of two because of the 
concatenated image. The final layer consists of a 1x1 convolution that 
creates an output image with the same height and width as the input 
image. After the training process, this output will represent the canopy 
height map derived from the input image. In total the network has 18 
convolutional layers and ~ 17 Million trainable weights. The exact ar
chitecture of the prediction model we developed can be found in Ap
pendix 2 (it will be referred to as the “FCN model” in the following). 

2.4.2. Training process 
The objective of the training process was to adjust all the trainable 

weights of the FCN model so that when the FCN model takes a multi- 
channel image composed of S1 and S2 layers as input, it outputs an 
estimated canopy height map. One single FCN model was trained on all 
the train tiles. To achieve this, we followed the process described in 
Fig. 5: (1) We randomly selected one of the 91 train tiles. This random 
selection was weighted by the number of GEDI footprints in each tile. (2) 
We took a random 2560x2560 m subset from this tile with at least one 
GEDI footprint inside. This technique increases the number of different 
images used as input of the model and contributes to reducing model 
overfitting (3) The corresponding 256x256 pixels image composed of S1 
and S2 layers was used as input of the U-Net. In the case where we chose 
to use all S1 and S2 bands, this image was composed of 14 layers. (4) The 
GEDI RH95 values in this 2560x2560 m subset were rasterized on a 10 m 
grid aligned with S1 and S2. For each GEDI footprint, the RH95 value was 
rasterized on the pixel where the center of the circular footprint was 
located. As the GEDI footprints correspond to 25 m diameter circles with 
a 10 m uncertainty on their location, we acknowledge that our raster
ization process at 10 m could create label noise, especially in forests with 
a very heterogeneous canopy. Still, training at 10 m was shown to give 
better results than training at 20 m (see Appendix 7). (5) The FCN model 
output was compared to the reference height from the rasterized GEDI 
data with a mean absolute error (MAE) loss only for pixels where a RH95 
height value was available. (6) The gradient of this loss was calculated 

Fig. 4. Stereo 3D reconstruction from Skysat imagery (0.8 m resolution). Forest stands estimated from manual delimitation are represented by blue polygons. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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with respect to each of the model weights and weights were then 
adjusted accordingly. This process is called “loss backpropagation” and 
is a key element in the training of neural networks. Here it was per
formed with a SDG optimizer (momentum of 0.9) with a cyclic learning 
rate scheduler “triangular2” (Smith, 2017). The base value was set to 
1.10-7, the max value to 0.1, with 320 steps for a half cycle. After each 
epoch of 960 images (32 batches of 30 images), we calculated the MAE 
loss on all the validation tiles. After ~ 100 epochs, which corresponded 
to ~ 2 h, this validation loss was stabilized and we manually stopped the 
training process. We also tried other types of learning rate schedulers but 
this one led to faster convergence and similar results. The training 
process was done with Amazon AWS cloud platform on a GPU NVIDIA 
Tesla T4 (16 GB). We used the Pytorch library, an open-source machine 
learning framework in Python, to implement the FCN model. 

2.4.3. Training scenarios 
To understand the importance of each spectral (Sentinel-2) and po

larization (Sentinel-1) band, we designed seven FCN models that fol
lowed exactly the same training process but with seven different 
combinations of S2 and S1 bands as input. The first FCN model was 
trained on all layers (Scenario 1: 10 from S2 and 4 from S1). The second 
and third FCN models were based on one source of data only (either S2 
or S1). The other FCN models were trained on subsets of S2 (only 10 m 
resolution bands or only B8 (NIR band)) and S1 bands (only descending 
orbit, only VV polarization for descending orbit) respectively (See Fig. 1 
for a summary of the 7 scenarios used). 

2.4.4. Used metrics 
To evaluate our FCN model against the validation datasets, we used 

several metrics, namely the mean absolute error (MAE), the root mean 
squared error (RMSE), the mean error (ME) that indicates the bias, and 
the coefficient of determination (R2) that is a measure of the correlation 
between predicted height and true height values. Additionally, in order 
to have more information on the source of errors, we decomposed the 
mean squared error (MSE) into three additive terms: squared bias (SB), 
squared difference between standard deviations (SDSD), and lack of 
correlation weighted by the standard deviations (LCS) as proposed by 
(Kobayashi and Salam, 2000) where MSD = SB + SDSD + LCS. SB in
dicates the bias, SDSD shows how the FCN model is able to simulate the 
magnitude of the fluctuation between the n measurements and LCS is the 

ability of the FCN model to simulate the fluctuations across the n mea
surements. The detailed formulas for these metrics are provided in Ap
pendix 3. 

3. Results 

3.1. Canopy height model 

Here, we present the results for Scenario 1 where the FCN model was 
trained using all Sentinel-1 and Sentinel-2 layers. In Section 3.4, we 
present the results for Scenarios 2–7, where different subsets of the 
layers were used; all of which performed less well than Scenario 1. Fig. 6 
illustrates four examples of predictions for different types of forested 
areas, while Fig. 7 shows our prediction map for the whole Landes forest 
in 2020. 

Overall, even though our FCN prediction model was trained on 
sparse reference data (eg. rasterized GEDI RH95 values in the train tiles), 
it is still capable of producing a continuous canopy height map, where 
forest structures and other landscape features are recognizable and look 
similar to the image input. Fig. 6a shows that the FCN model is able to 
capture high height differences between forest and non-forested areas. 
When compared to the GEDI test dataset for maritime pine plantations 
(Fig. 6a, b, c), most errors are below 5 m except in areas close to forest 
borders. The within-stand homogeneity and across-stand heterogeneity 
are well captured by the FCN model over coniferous forest stands with 
different heights (Fig. 6b). Fig. 6d shows an example obtained in an area 
including deciduous trees along a river path.There is a higher number of 
differences greater than 5 m when comparing to the GEDI test footprints 
and the predicted forest delimitations are less precise. 

3.2. GEDI test set evaluation 

We compared the predictions of our FCN model (Scenario 1) to the 
RH95 values for the test dataset. We obtained a mean absolute error 
(MAE) of 2.02 m, RMSE = 2.98 m, and R2 = 0.73 (Fig. 8). The FCN 
model tends to slightly underestimate higher heights (ME = − 2.5 m for 
trees between 20 m and 25 m) and predictions for lower heights start 
around 2.5 m due to the RH95 properties (see 2.2.1). Predictions are 
relatively well scattered around the y = x axis with the exception of a 
cluster of points located on the left side of the graph where the 

Fig. 5. Computation of the mean absolute error (MAE) loss in the FCN prediction model training process. The numbers in the black circles correspond to the steps 
described in section 2.4.2 (training process). 
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predictions overestimated the reference height values. This discrepancy 
is likely due to GEDI footprint location errors (See 2.2.1). Boxplots in 
Fig. 8a reveal almost no bias for height values between 5 m and 20 m 
(ME = − 0.36 m, MAE = 1.80 m) which accounts for 79 % of the GEDI 
footprints. 

3.3. Evaluation with independent datasets 

3.3.1. Forest inventory data 
The comparison with the GLORIE dataset (Fig. 9a), a dense forest 

inventory of homogeneous stands of maritime pine in Les Landes carried 
out in 2015–2016 shows a good correlation with our predicted height 
with a R2 coefficient of 0.93 (ME = 1.56 m, MAE = 2.43 m, RMSE =
2.84 m). We observe a higher prediction bias for lower heights from 0 to 
10 m. The NFI dataset (Fig. 9b), composed of more diverse inventory 
plots (broadleaves, coniferous, distributed all over the study area and 
not only with homogeneous forest stands, see Fig. 2), is also well 
correlated to our canopy height retrievals (R2 = 0.71, ME = -1.18 m, 
MAE = 2.67 m, RMSE = 3.55 m), especially for coniferous forests (R2 =

0.79, RMSE = 3.09 m). Broadleaved forests show a lower correlation and 
poorer error metrics: R2 = 0.38, RMSE = 5.74 m. Points highlighted in 
red in Fig. 9 indicate clear-cuts (we checked it visually with Sentinel-2 
images time series) and were not considered in the calculation of the 
metrics. 

3.3.2. 3D reconstruction from stereo satellite acquisition 
The pixel distribution in height (Fig. 10a) of our FCN model follows 

globally the same pattern as the 3D reconstruction canopy height model 
(referred to as 3D CHM hereafter). The 3D CHM shows a higher number 
of low-height pixels between 5 m and 10 m, while the FCN model has a 
higher number of pixels for all heights above 4 m, especially for heights 
around 16 m. The comparison at forest stand level (Fig. 10b) reveals a 
very good correlation (R2 = 0.90, MAE = 1.17 m) with no bias (ME =
-0.03 m) between the 3D CHM and the FCN predictions of forest heights. 
Visually, the 3D reconstruction (Fig. 10c) presents sharper delimitations 
between the different forest units compared to the FCN model (Fig. 10d). 
This is confirmed by the height profile (Fig. 10e) which reveals that the 
FCN model tends to smooth the transitions between forest units. Within 
forest stands, the height also seems to be averaged and more homoge
neous with the FCN model compared to 3D CHM which shows more 
fluctuations. 

3.4. Influence of Sentinel-1 and Sentinel-2 bands on height predictions 

The results presented above are all retrieved from our best training 
scenario (Scenario 1: based on all S1 and S2 layers). Here, we evaluate 
other combinations of the S1 and S2 layers as inputs to the FCN model to 
understand the influence of the S1 and S2 layers in the FCN retrievals of 
forest heights (Fig. 11). Overall, the two first scenarios (1: All bands, 2: 

Fig. 6. Model input data and model predictions on four different areas in the test tiles. The first column shows Goggle Maps images for reference, not used by the FCN 
prediction model. The two middle columns show some of the input bands to the FCN prediction model. The last column shows our predicted map of forest height 
where GEDI height values (RH95) can be identified by circles. When the predicted and the GEDI heights are different by at least 5 m, the GEDI footprints are shown 
with cyan circles. (a) and (b): Maritime pine forest stands of different heights. (c) old forest stands of maritime pine. (d) deciduous forest. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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All Sentinel-1 bands) perform better, with a lower RMSE value when 
compared to any of the four evaluation datasets (e.g. 3.55 m and 3.76 m 
when compared to the French NFI while the results obtained for the 
other scenarios led to a RMSE > 4 m). Scenarios including only Sentinel- 
2 bands have lower performances (Scenarios 3, 4, and 7) but still, lead to 
relatively good error metrics. Similar results are observed between 
Scenarios 3 (all S2 bands), 4 (only 10 m resolution i.e., 4 bands: RGB +
NIR), and 5 (VV and VH descending from S1) except for the GLORIE 
dataset where Scenario 5 is better with no bias and lower SDSD. Lastly, 
Scenarios 6 and 7, respectively based on one Sentinel-1 (VV descending) 
and one Sentinel-2 (B8: NIR) band lead to larger errors for all validation 
datasets (RMSE > 3 m when compared to 3D CHM while other scenarios 
lead to a RMSE < 2.5 m). 

Overall, SB is higher when the FCN model is compared to forest in
ventory datasets (GLORIE and IFN). SDSD indicates how the FCN model 
retrieves the magnitude of the spatial fluctuations and shows higher 
values only for the GLORIE dataset. LCS indicates the ability of the FCN 
model to simulate the fluctuations across the n measurements and is the 
dominant term of the error for most validation datasets. For all sce
narios, the correlation is better when compared to the 3D Skysat height 
reconstruction model. 

3.5. Comparison with other canopy height maps 

To evaluate our height predictions against existing models, we 
compared the predictions from the FCN model that performed best on 
the validation datasets (Scenario 1, trained with all S1 and S2 layers, see 
Sect. 3.4) with three different canopy height maps: L23 (Lang et al., 
2023), P21 (Potapov et al., 2021), and M19 (Morin et al., 2019) at 
various locations in the test tiles. 

As an illustration, a visual comparison (Fig. 12) reveals that the FCN 
and L23 models predict a higher homogeneity within the forest stands 
while the two other models (P21 and M19) show a higher variability 
between adjacent pixels. Fig. 12a shows two adjacent planted forests, 
surrounded by a non-forested area. The GEDI footprints in this region 
indicate (unshown results) that the forest in the southern part of the 
forest plot is higher (RH95 ~ 14 m) than that in the northern part (RH95 
~ 10 m). This height difference is well captured by the FCN model and 
by L23 to a lesser extent. On the contrary, P21 shows opposite height 
predictions and M19 does not seem to differentiate forest heights in the 

southern and northern parts of the forest plot. Similarly, Fig. 12b shows 
an example of a more complex landscape structure with forest patches of 
various heights. In this case, all models are able to predict different 
heights for different forest stands. However, the FCN model produces 
more plausible outputs with clearer delimitations between forest stands 
of different heights. Over a broadleaved forest along a river path 
(Fig. 12c), L23 and P21 present higher predictions than the FCN model. 
M19 has not been trained on broadleaved forests, and therefore the 
comparison for this particular case is not relevant. 

The comparison of the three height models (L23, P21 and M19) with 
the GLORIE forest inventory, the French NFI (separated into coniferous 
and broadleaved) and the Skysat 3D CHM (Fig. 13 and Fig. 14) reveals 
that the FCN model presents better error metrics except for broadleaved 
forests. The FCN model has a RMSE of 3.09 m when compared to the 
French NFI coniferous stands (Fig. 13b) while L23 (RMSE = 5.01 m), 
P21 (RMSE = 6.57 m), and M19 (6.75 m) show higher errors. However, 
L23 has better performances over broadleaved forests (RMSE = 5.26 m, 
R2 = 0.42, Fig. 13c) compared to the FCN model (RMSE = 5.74, R2 =

0.38). For coniferous forests, the FCN model, along with M19 shows a 
much lower bias (almost null for the 3D CHM) than the two global 
canopy height maps (P21 and L23). L23 has a high SB value (high bias) 
when compared to the GLORIE forest inventory and to the Skysat 3D 
CHM but still has a good correlation with these datasets (R2 = 0.81 for 
GLORIE with a low LCS). This can also be visually seen in predictions in 
Fig. 12 and scatterplots in Fig. 14. All canopy height models have better 
performances on the Skysat 3D reconstruction (all RMSE values below 5 
m, Fig. 13.d). P21 presents a saturation effect for coniferous forests at 
around 15–20 m for coniferous forests only (Fig. 14). 

L23 shows a higher correlation (R2 = 0.52 for coniferous forests) 
than the FCN model (Fig. 15) but tends to predict higher heights (ME =
3.75 m for coniferous forests and ME = 6.0 m for broadleaved forests). 
The bias observed in the previous figures is also visible in Fig. 15, 
especially for lower heights. A lower correlation is obtained with M19 
(R2 = 0.28 for coniferous forests only) but with almost no bias (ME =
(-0.3 m) and the predictions seem to follow the same pattern but with a 
high variability around the x = y axis. The comparison with broadleaved 
forests for M19 is not relevant as M19 has not been trained on such types 
of forests. P21 predicts most coniferous forests at ~ 15 m, most broad
leaved forests at ~ 22 m and most other pixels at ~ 5 m. 

Fig. 7. Map of forest canopy height of the Landes forest for 2020, predicted by the FCN model from training Scenario 1: 10 layers from Sentinel-2 + 4 layers from 
Sentinel-1. 
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4. Discussion  

• Forest border errors 

The visual analysis of the FCN height predictions shows higher errors 
at the forest borders (Fig. 6). These errors are likely related to the GEDI 
uncertainty of ~ 10 m for the ground location. Some GEDI footprints are 
located within a forest, close to the border, but the waveform corre
sponds to the reflection on bare soil outside the forest. This effect may 
also explain the high FCN height predictions when the RH95 values are 
close to zero in Fig. 8. However, the opposite phenomenon of low pre
dictions for high RH95 values is less frequently observed. This is likely 
becausethe GEDI test dataset we used only includes footprints located 
within forests. As the GEDI’s footprint diameter is 25 m, small gaps in 

the canopy that are invisible in the S1 and S2 images cannot be reflected 
in GEDI’s RH95 and cannot explain these high prediction errors. To a 
lesser extent, clearcuts occurring between the date of the GEDI acqui
sition and the date of the S1 and S2 images could be responsible for some 
of these errors.  

• Smoothness 

At the border of landscape units, a smoothing effect seems to occur in 
the predictions. This can be particularly observed in the comparison 
with the 3D reconstruction from stereo Skysat images (Fig. 10c,d,e). 
Unlike per-pixel predictions, such as those performed in P21, each pixel 
of the FCN canopy height map is the result of multiple convolutions 
involving the surrounding pixels (See 2.4.1 for U-Net structure). Pixels 

Fig. 8. Comparison of the GEDI height (RH95) in the test dataset and predicted values from the FCN prediction model for Scenario 1. (a) Histogram with box plots 
that show the differences between predicted and GEDI height per height range of 5 m. The red lines represent median values. The upper and lower edges are the 
upper and lower quartiles and whiskers symbolize the 5th and 95th percentiles. (b) Density scatterplot. The dashed line corresponds to x  = y. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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close to forest borders have neighbor pixels from forest and bare soil 
which could lead to this average height prediction, creating smoothness 
between landscapes units. Additionally, the 10 m x 10 m S1 and S2 
pixels on forest borders contain also average information from both 
forest and non-forest areas and are also “smoothed” which can explain 
the smoothing effect in our predictions (Fig. 16). Finally, it is likely that 
the FCN model tends to predict average values at forest borders to avoid 
making high errors during the training process because of the GEDI 
location uncertainty.  

• Bare soil 

The RH95 properties result in bare soil being retrieved at a height of 
~ 2.25 m (See 2.2.1). As a consequence, the FCN canopy height model is 
not suitable for heights below this threshold. The height profile (Fig. 10. 
e) used to compare the 3D reconstruction with the FCN model highlights 
this phenomenon where we can see that low non-forest heights are 
overestimated. The overestimation of lower heights visible in Fig. 9a for 
the GLORIE dataset is mainly related to this RH95 effect and explains the 
higher SDSD values in Fig. 11b. Indeed, this dataset contains several 
forest plots with tree height measurements close to zero (no forest in 
some cases or newly planted forest in other cases). Additionally, a tree 
growth effect may be present due to the four-year difference between the 
inventory (2016) and the prediction (2020), which could further 
accentuate this phenomenon.  

• Underestimation at high forest heights 

Our model underestimates heights above 20 m (ME = -2.5 m for trees 
between 20 and 25 m, Fig. 8a). This phenomenon is common in most 
studies that try to predict forest height from machine learning algo
rithms but do not always occur at the same height (Lang et al., 2023, 
2019; Morin et al., 2019; Potapov et al., 2021). Rather than a saturation 
effect related to the information contained in S1 and S2, it is more likely 

due to an imbalanced distribution of reference height labels. Indeed, in 
the test dataset (only forests), GEDI RH95 values above 20 m account 
only for 8.9 % of the total number of footprints and 1.5 % for RH95 > 25 
m. Several techniques such as a weighted cost function or a different 
sampling strategy among the height labels can be used to reduce this 
effect and will be investigated in future developments of the FCN model.  

• Better performance over coniferous forests 

Thanks to the French NFI data, we were able to evaluate separately 
the performance of the FCN model over broadleaved and coniferous 
forests. The error metrics are much better for coniferous forests for 
several reasons. First, as well as for higher heights, the number of GEDI 
footprints in broadleaved forests was much lower in our dataset than for 
maritime pine forests (only 10 % of the forested areas in the Landes 
forest is not covered by maritime pines). This lower number of reference 
height data for broadleaved forests could likely explain the lower per
formances of the FCN model on this type of forest. Additionally, 
broadleaved forests have a more complex structure, with a higher spatial 
heterogeneity. Within one 25 m GEDI footprint, several tree species, 
with different heights and shapes are summed up into one RH95 value. 
Therefore, an error on the GEDI footprint location has a higher impact 
on model training for this type of forest. Finally, this complexity also 
makes the on-site measurement of tree height more difficult which re
sults in less precise validation data and therefore degraded performance 
metrics for broadleaved forests.  

• Influence of the S1 and S2 layers 

The analysis of the seven training scenarios (Fig. 11) reveals that the 
more S1 & S2 layers are available as inputs, the better the prediction is. 
However, training the model only with a subset of the 14 layers pro
posed as inputs (10 for S2, 4 for S1) still leads to quite satisfying error 
metrics. The S1 bands seem to be the most interesting predictors in our 

Fig. 9. Comparison between the predicted height from the FCN model (Scenario 1) for the year 2020 with the forest inventory dominant height from the GLORIE 
project (measurements made in 2016) (a), and with French National Forest Inventory (NFI, measurements made over 2017–2020) (b). For both graphs, the dotted 
line represents x = y. The predicted height corresponds to the mean height of the pixels within the forest plot area. The French NFI (b) dataset is colored by year of 
sample and separated into broadleaved and coniferous forests. Red circles indicate plots that are not considered in the calculation of the error metrics because of 
forest clear-cuts between the date of the forest inventories and the date of the S1 and S2 images. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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case (Scenario 2, RMSE = 3.76 m on French NFI), and adding 10 S2 
bands (Scenario 1) only decreases the RMSE to 3.55 m. But a model 
trained only with S2 (Scenario 3) is still able to carry out good pre
dictions (RMSE = 4.19 m on French NFI). Scenario 4 highlights that only 
the S2 spectral bands with a 10 m resolution are necessary to obtain such 

results which can be related to the higher resolution of these bands but 
also to the contained information (RGB + NIR). A combination of two S1 
layers (Scenario 5) leads to much better results than a single layer 
(Scenario 6). In other results that were not presented here, we found that 
any combination of two S1 bands led to better results than the best S1 

Fig. 10. Comparison of the FCN prediction model for Scenario 1 (2020) and a 3D canopy height model (3D CHM) based on Skysat imagery (2021). (a) Pixel 
distribution of the FCN and 3D CHM height predictions resampled at 10 m with a max method. (b) Scatter plot of the comparison of the pixel median over forest 
stands which were labeled manually (Fig. 4). The dashed line corresponds to x = y. (c) Stereo 3D reconstruction from Skysat imagery resampled at 10 m (2021). (d) 
FCN model (2020). (e) Comparison of the FCN and 3D CHM height predictions over a 1-km height profile shown in Fig. 10c and 10d. 

Fig. 11. Comparison of the error metrics on four evaluation datasets for the 7 training scenarios. Mean squared error is decomposed into three additive terms (see 
2.4.4). Squared Bias (SB) is the squared difference of the mean of both datasets. Squared Difference between Standard Deviations (SDSD) indicates how the model is 
able to simulate the magnitude of the fluctuations between the n measurements. The lack of correlation weighted by the standard deviations (LCS) indicates the 
ability of the model to simulate the fluctuations across the n measurements. RMSE and R2 values are presented in the tables below the graphs. Description of the 
scenarios: 1 - all bands; 2 - all S1; 3 - all S2; 4 - S2 RGB + NIR; 5 - S1 VV_des + VH_des; 6-VV_des; 7-S2 NIR. 
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band alone (VH descending). Hence, increasing the number of input 
bands improves the predictive power of the model. Even though they 
might be very specific to the very particular forest structure of the 
Landes forest, these results suggest that, for highly cloudy regions where 
cloud-free S2 images are rare, a training based only on S1 could be 
sufficient to retrieve forest height.  

⋅ Better validation with Skysat 3D reconstruction 

The validation datasets used in this study, as presented in Fig. 2, 
show significant discrepancies in the error metrics, as shown in Fig. 11 
and Fig. 13. For example, the RMSE for training scenario 1 is 3.55 m 
when compared to the French NFI data, while it is only 1.47 m for the 

Skysat 3D reconstruction. Each validation dataset has its own specific 
characteristics related to the quality of the measurements, the date of 
acquisition, or the representativeness of the validation area. The vali
dation results for the 3D reconstruction from Skysat imagery are supe
rior for our model (Fig. 11) and other canopy height maps (Fig. 13). This 
may be due to three reasons. First, the Skysat imagery area only covers 
homogeneous coniferous pine stands, which are more easily retrieved by 
our FCN model, as well as P21, L23, and M19, as shown in Fig. 13b and 
Fig. 13c. Then, this 3D reconstruction technology is likely to be more 
reliable than ground-based measurements for height retrieval and it was 
performed in 2021, while GLORIE and the French NFI comprise mea
surements that have a longer time difference with maps to evaluate. 
Lastly, the height at the forest stand level was aggregated before doing 

Fig. 12. Comparison of our model (FCN model) with three independent canopy height models (Lang et al., 2023; Morin et al., 2019; Potapov et al., 2021) at three 
different locations in the test tiles. (a) Two homogeneous forest stands of maritime pines with different heights. (b) Several forest stands of maritime pines with 
different heights. (c) Broadleaved forest along a river path.. 

Fig. 13. Comparison of the error metrics for the different models: FCN (our model), L23 (Lang et al., 2023), P21 (Potapov et al., 2021), and M19 (Morin et al., 2019) 
against data from the GLORIE forest inventory (a), the French NFI separated into coniferous (b) and broadleaved (c) forests and the stereo 3D reconstruction of Skysat 
imagery (d). The mean squared error (MSE) is decomposed into three additive terms (see 2.4.4). RMSE and R2 values are presented in the tables below the graphs. 
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the comparison to evaluate the median canopy height within each 
parcel. The error metrics provided by this comparison with the Skysat 
dataset thus offer insight into the accuracy of our FCN models in pre
dicting forest height at the forest stand level, rather than at the pixel 
level.  

• Comparison with other canopy height estimation models 

For most evaluation metrics, the FCN model shows improved per
formance compared to available canopy height maps for the Landes 
forest. Better delimitation between landscape units, lower bias, better 
correlation, and better RMSE are obtained on all validation datasets 
except for the broadleaved part of the NFI data set where L23 is better. 
These results underline the importance of the scale at which the training 
is performed. P21 and L23 are the outputs from global models, trained 
with optical imagery (Landsat-8 for P21, S2 for L23) and GEDI metrics as 
reference height. Even though the number of GEDI data used specifically 

for the Landes forest by P21 and L23 had the same order of magnitude as 
our train dataset, they only represent a very small fraction of the global 
GEDI dataset. The P21 and L23 models were trained to optimize height 
prediction globally and can make predictions on more diverse forest 
types but they are less specific to the Landes forest. For instance, L23 
performs slightly better on broadleaved forests which is most likely 
related to the higher number of reference height data for this type of 
forest available in the global dataset used for training. It is likely that the 
bias observed for lower heights comes also from this global training 
process. 

The comparison with M19 highlights the importance of representa
tivity and quantity of reference height data. In this case, the reference 
data used for training M19 (GLORIE dataset only) is only representative 
of homogeneous areas within maritime pine plantation stands. There
fore, the M19 model did not learn to deal with different forest surfaces 
such as borders, gaps or broadleaved forests. This model shows good 
performances on the 3D Skysat reconstruction which is close to the area 

Fig. 14. Evaluation of the FCN model (Scenario 1), L23 (Lang et al., 2023), P21 (Potapov et al., 2021), and M19 (Morin et al., 2019) against data from the GLORIE 
forest inventory, the French NFI (separated into broadleaved and coniferous) and the 3D height reconstruction from Skysat imagery. Points circled in red indicate 
forest clearcuts between the date of inventory and 2020. The latter data are not considered in the calculation of R2 and MAE. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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where it was trained and where we aggregated the height values at the 
forest stand level. Lower performances are observed on the French NFI, 
probably because some of the forest plots are close to forest borders and 
not located close to the training area. Additionally, the GLORIE forest 
inventory (see 2.3.1) contains only 99 height samples while we used 
175,511 valid GEDI waveforms to train our FCN model. 

Deep learning techniques applied to images (CNN) have the advan
tage of being “spatially aware” while other classical machine learning 
methods (Random Forest for P21, Support Vector Machine for M19) are 
not. In P21 and M19, forest texture metrics were added to the prediction 
variables in order to give this spatial awareness to the model but it is 
limited compared to the high number of convolution filters within the U- 
Net model that we used. In a newer study, Morin et al. (2022) have 
integrated GEDI features into their forest parameters retrieval method. 
Another comparison with these new methods would be interesting to 
understand whether it is deep learning (compared to simpler machine 
learning algorithms) or the number of training data (from GEDI) that 
makes our current model better than M19.  

• On the use of GEDI 

The GEDI mission provides an unprecedented database of LiDAR 
waveforms with high precision and has a high potential for forest 
parameter estimation. However, some caveats remain when using this 
type of data as ground truth for deep learning models. Indeed, the ability 
of GEDI to retrieve canopy height properly in more complex forest 
structures is still uncertain. In denser forests, some GEDI laser beams 
could not penetrate deep enough in the trees to reach the ground thus 
leading to a height underestimation. Moreover, the uncertainty associ
ated with the GEDI footprint location could potentially lead to large 
errors. Here, we rasterized the GEDI footprint in a 10 m x 10 m pixel that 
corresponds to the center of this footprint. However, the height infor
mation contained in this GEDI footprint encompasses a 25 m diameter 
circle. Additionally, the 10 m uncertainty on the footprint location ex
tends the area where the height information is potentially captured by 
GEDI to a 45 m diameter circle around the supposed center of the 
footprint. Hence the height information could potentially come from a 
point that is the third neighbor of the actual pixel that was rasterized. 

Fig. 15. Pixel-wise comparison of the FCN model with three independent canopy height models: L23, M19, and P21 (Lang et al., 2023; Morin et al., 2019; Potapov 
et al., 2021). Forest pixels were categorized into coniferous or broadleaf forests with the Copernicus forest type map. The white line represents x = y. 

Fig. 16. (a) Sentinel-2 composite image used for prediction. The transition between the forest and non-forest area is not sharp. Some 10 m x 10 m pixels contain 
average information from both landscape units. (b) Height prediction from the FCN model (Scenario 1). The transition between the two landscape units 
is “smoothed”. 
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These errors are randomly distributed and, thanks to the large number of 
GEDI samples, they only create noise in the reference height data used 
for training. So, it seems that these errors can be well handled by the 
FCN model. But in other more complex regions, this noise can be higher 
and the FCN model could have difficulties to carry out correct height 
predictions. To evaluate the impact of this uncertainty, we retrained our 
model with the previous GEDI release (GEDI v001). In this previous 
version, the standard deviation on the GEDI footprint location was 20 m 
(GEDI v001) and it was improved to 10 m in the GEDI v002 version. The 
MAE on the test dataset improved from 2.43 m to 2.02 m when using the 
more recent version of GEDI. FCN model outputs show clearer patterns 
and transitions between forested and non-forested areas for v002 vs 
v001 (See Appendix 4). The FCN model based on GEDIv001 produces 
blurred transitions between landscape units, thus trying to avoid high 
losses related to location errors. A further improvement in GEDI location 
has the potential to increase even more the accuracy of the FCN height 
maps we produced in this study.  

• Influence of the number of training samples 

The GEDI footprints are unevenly distributed globally because of the 
ISS trajectory. Therefore, in some other regions, fewer waveforms would 
be available to apply the same methodology. In order to assess how this 
can affect the reproducibility of the proposed method, we trained three 
additional models like the one from scenario 1 (all S1 and S2 bands) by 
randomly keeping only 10 %, 1 % and 0.1 % of the footprints from the 
training dataset. As shown in Table 1, a model trained with only 10 % of 
the original train dataset still leads to good results (MAE = 2.43 m on the 
test dataset) and a canopy height map that looked very similar to the 
original one by visual inspection. However, when the number of training 
samples drops to 1 % of the original sample size, the output map looks a 
little noisier with a lower MAE (3.02 m). 

These results stress the importance of having large training datasets, 
especially for deep learning algorithms like our FCN model. However, 
the model still has good performances with only 10 % of the original 
train dataset size which makes this methodology robust and suitable for 
being applied in other regions with a lower amount of GEDI data. 

5. Concluding remarks 

This study highlights the potential of deep learning models to 
continuously map forest height at high resolution with sparse refer
ences, e.g. GEDI LiDAR data, and continuous images from Sentinel-1 
SAR and Sentinel-2 multispectral imager. Additionally, it confirms the 
potential of GEDI data to produce a good estimation of forest height, 
especially when integrated into a deep learning prediction model that 
reduces uncertainty related to the measurement of a single LiDAR 
footprint. Our FCN model is able to retrieve forest height at 10 m res
olution in a French coniferous plantation with a relatively good accuracy 
(MAE = 2.02 m) for the GEDI test dataset and a high correlation with 
independent height measurement sources. These results remain 

relatively good when using only one satellite source for model training 
which is particularly interesting for extending the study to other regions 
of the globe with a higher cloud cover or to use other satellite sources 
like Planet that have only four spectral bands but a higher spatial res
olution. The map we produced showed improved results in comparison 
to other existing canopy height models over this region. The Landes 
forest is mainly composed of even-aged forest parcels of maritime pines. 
This very specific situation may have been “learned” by the deep 
learning model which tends to smooth the height within one forest stand 
and its performance on other types of forest structures is probably 
different. However, the method we developed still appears to be 
promising to retrieve canopy height on other forest structures such as 
broadleaved forests. For instance, we applied this methodology to 
another French “sylvoecoregion” called Sologne, mostly composed of 
broadleaved forest and obtained a similar accuracy with external vali
dation from NFI plots (MAE = 2.62 m, see Appendix 6). Additionally, the 
area of interest is mostly flat. Sentinel-1 images are very sensitive to 
steep terrain and GEDI waveforms are also affected by higher slopes that 
tend to overestimate tree heights (Kutchartt et al., 2022). Further studies 
in more mountainous regions, e.g., by including a digital surface model 
in the deep learning process, could be potentially interesting to address 
these issues. Considering the availability of the Sentinel-1 and − 2 ob
servations, the canopy height map we retrieved could be used to monitor 
tree height with a yearly time frequency. Furthermore, due to the sig
nificant correlation between canopy height and biomass (Saatchi et al., 
2011), the canopy height map could be used in a subsequent step to 
monitor forest biomass at the forest stand level and with a good tem
poral repetition (at least yearly), thus following the guidance of the 
Global Forest Observation Initiative (GFOI) to integrate earth observa
tion data into national forest monitoring systems. 
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Table 1 
Evolution of the MAE on the test dataset for 4 different FCN models trained with 100% (131.633 footprints), 10%, 1% and 0.1% of the original train dataset size. All the 
models correspond to scenario 1 (All S1 and S2 bands). The second row shows an example of the height prediction, with the corresponding S2 image in the first column.  

Size of the training sample (% of the original training sample size) 100 % 10 % 1 % 0,1% 

MAE on test dataset 2.02 m   2.43 m   3.02 m   3.94 m  
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