
HAL Id: hal-04489456
https://hal.science/hal-04489456

Submitted on 5 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximum-likelihood estimation in ptychography in the
presence of Poisson–Gaussian noise statistics

Jacob Seifert, Yifeng Shao, Rens van Dam, Dorian Bouchet, Tristan van
Leeuwen, Allard Mosk

To cite this version:
Jacob Seifert, Yifeng Shao, Rens van Dam, Dorian Bouchet, Tristan van Leeuwen, et al.. Maximum-
likelihood estimation in ptychography in the presence of Poisson–Gaussian noise statistics. Optics
Letters, 2023, 48 (22), pp.6027-6030. �10.1364/OL.502344�. �hal-04489456�

https://hal.science/hal-04489456
https://hal.archives-ouvertes.fr


Maximum-likelihood estimation in ptychography in the presence of Poisson-Gaussian
noise statistics

Jacob Seifert,1, ∗ Yifeng Shao,2 Rens van Dam,1 Dorian Bouchet,3 Tristan van Leeuwen,4, 5 and Allard P. Mosk1

1Nanophotonics, Debye Institute for Nanomaterials Science and Centre for Extreme Matter and Emergent Phenomena,
Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands

2Imaging Physics Department, Applied Science Faculty, Delft University of Technology, The Netherlands
3Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France

4Mathematical Institute, Utrecht University, Budapestlaan 6, 3584CD, Utrecht, The Netherlands
5Centrum Wiskunde & Informatica, Science Park 123, 1098 XG, Amsterdam, The Netherlands

Optical measurements often exhibit mixed Poisson-Gaussian noise statistics, which hampers image
quality, particularly under low signal-to-noise ratio (SNR) conditions. Computational imaging falls
short in such situations when solely Poissonian noise statistics are assumed. In response to this
challenge, we define a loss function that explicitly incorporates this mixed noise nature. By using
maximum-likelihood estimation, we devise a practical method to account for camera readout noise in
gradient-based ptychography optimization. Our results, based on both experimental and numerical
data, demonstrate that this approach outperforms the conventional one, enabling enhanced image
reconstruction quality under challenging noise conditions through a straightforward methodological
adjustment.

In the rapidly evolving field of computational imaging,
ptychography has emerged as a powerful technique ca-
pable of producing high-resolution phase and amplitude
images from diffraction patterns. It involves translat-
ing a thin object through overlapping illuminations and
measuring the resulting diffraction patterns behind the
object with a camera sensor [1, 2]. Subsequently, the
complex-valued image is constructed through an itera-
tive optimization algorithm, necessitating the formula-
tion and minimization of a loss function, alternatively
referred to as the objective, cost, or error function. Pty-
chography has found applications in a wide range of top-
ics, including label-free biological imaging [3–5], optical
metrology [6–10], and atomic-resolution imaging using
electron beams [11–13].

Fundamentally, the basis of ptychographic reconstruc-
tions is the detection of photon counts on a camera sen-
sor and, therefore, subject to Poissonian noise even under
ideal measurement conditions. Given the assumption of
an underlying noise model, a powerful and robust opti-
mization strategy is the maximum-likelihood estimation
(MLE) principle [14]. By leveraging MLE in ptychogra-
phy, one seeks to estimate the studied object parameters
that render the observed diffraction patterns most prob-
able [15–19]. However, additive camera readout noise is
often neglected, thus leaving a gap in the fidelity of the
reconstructions. This is a salient concern as the presence
of readout noise, typically Gaussian, is an important el-
ement of practical ptychographic measurements within
the visible spectrum. Ignoring this noise source oversim-
plifies the underlying statistical model and introduces er-
rors to the reconstructed image, especially when the de-
tected photon counts and signal-to-noise ratio (SNR) are
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low. The distinction between a Poissonian and a mixed
Poisson-Gaussian noise model is depicted in the simu-
lated images presented in Fig. 1.

Fig. 1. Comparative visualization of a greyscale image dis-
torted by different noise types. Panel (A) depicts an image
with simulated Poissonian noise, while panel (B) illustrates
the effect of simulated mixed Poisson-Gaussian noise result-
ing from additive readout noise. Inlaid values indicate Peak
Signal-to-Noise Ratio (PSNR) with respect to the ground
truth.

In this letter, we propose a loss function for automatic
differentiation ptychography that explicitly incorporates
both Poissonian and Gaussian noise sources. This ap-
proach brings us closer to the real-world conditions of
ptychographic measurements, thereby paving the way
for superior performance in image reconstruction un-
der challenging noise conditions. We outline a practical
method to incorporate camera readout noise in compu-
tational imaging. Furthermore, we provide a comprehen-
sive comparison between the image reconstruction qual-
ity using a mixed-statistics loss function and that of a
conventional loss function which presumes solely Poisso-
nian noise statistics. For this, we present reconstruction
results obtained from both experimental and numerical
data.
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Fig. 2. Schematic drawing of our ptychography setup used
in the experiment and for numerical simulations. A 500-µm
pinhole is illuminated and relayed onto the object using a 2-
lens system. The object laterally shifted through the beam
using an XY-stage. A CMOS camera records the diffraction
intensities at a distance of 38mm downstream of the object.

In ptychography, the typical reconstruction approach
involves minimizing a loss function representing the dif-
ference between the intensity values of the observed
diffraction pattern Xk and the anticipated diffraction
patterns Ik(θ) as determined by a parameter set θ, which
embodies the object under investigation, at all pixel lo-
cations indexed by k. In the presence of measurement
noise, it is insightful to tackle the problem of ptycho-
graphic reconstruction by maximizing the likelihood of
the observed given the object parameters. From this
probabilistic perspective, one seeks the object parameters
that make the observed data most likely, which renders
object retrieval more robust in scenarios of low SNR.

In the supplement (section 1), we elaborate on deriving
the maximum-likelihood estimation (MLE) loss functions
for two different types of noise statistics. When operating
under the assumption of Poissonian counting noise, the
loss function LPoisson that yields the maximum-likelihood
estimate is expressed as:

LPoisson(θ) =

N∑
k=1

(√
Xk −

√
Ik(θ)

)2

, (1)

where the sum encompasses N statistically independent
pixels on the camera sensor. To account for Gaussian
readout noise on the camera sensor, an additional data
acquisition step becomes essential to extend the MLE
loss function: the variance σ2

k of the readout noise of
the camera must be determined using multiple full-frame
dark images. With this additional information and the
assumption that the Poissonian component of the statis-
tics can be approximated by a Gaussian distribution, we
formulate the MLE loss function that incorporates mixed
Poisson-Gaussian noise statistics:

LMixed(θ) =

N∑
k=1

(
ln[Ik(θ) + σ2

k] +
[Xk − Ik(θ)]

2

Ik(θ) + σ2
k

)
.

(2)
Note that this expression is not only relevant for pixels
with high photon counts where the Gaussian approxima-
tion of Poisson statistics is most accurate, but also for

pixels with low photon counts. Indeed, for those low-
count pixels, the Gaussian readout noise is the dominant
source of noise such that the deviation of Poisson statis-
tics from a Gaussian distribution becomes irrelevant.

To validate the beneficial effect of the loss function
LMixed(θ) experimentally, we are considering a standard
ptychography setup in a transmission geometry (Fig. 2).
A circular 500-µm pinhole is illuminated with coherent
light with wavelength 561 nm and relayed to the sam-
ple plane using two lenses with a magnification M = 3.
There, a binary target sample is illuminated at 80 scan-
ning positions with an overlap of approximately 60%
between adjacent positions, which lies within the ideal
regime according to [20]. The scattered light is captured
by a CMOS camera positioned 38mm away from the ob-
ject. To ensure a comprehensive comparison as a function
of SNR, we employ four different exposure settings per
scanning position, spanning a range from 30 µs to 300ms,
with each subsequent exposure time differing by a factor
of 10 (see Fig. 3). For each exposure time, we deter-
mine the variances σ2

k by capturing a stack of 300 dark
images. This quantifies the readout noise level associ-
ated with each pixel k of our camera. A comprehensive
overview of further details about the experimental imple-
mentation and methodology can be found in section 2 of
the supplementary information.

By maintaining a constant illumination power, we ac-
quire four distinct ptychographic datasets, each corre-
sponding to a different signal-to-noise ratio (SNR), as
demonstrated in the top row of Fig. 3. With these
datasets in hand, we proceed to perform image recon-
structions utilizing two different loss functions (Eq. 1 and
2) within an automatic differentiation-based ptychogra-
phy framework, as detailed in [21] and similar to [22]. For
this analysis, we precalibrate the illumination field using
an additional high-SNR measurement and restrict our
optimizations to the complex-valued object transmission
functions, particularly under decreasing SNR conditions.
This approach enables us to isolate the impact of the
loss function choice from the convergence behavior asso-
ciated with an unknown illumination field. The recon-
struction procedure is explained in more detail in section
3 of the supplementary information, and the source code
and raw data are available in [23] under open licenses.
In scenarios characterized by high SNR, no noticeable
disparity in image quality is observed between the two
approaches. However, when confronted with low SNR
conditions, where the signal becomes immersed within
the readout noise, the advantages of the mixed-statistics
MLE loss function become clear. The reconstructed im-
ages exhibit superior quality and reveal finer details that
would otherwise remain obscured without accounting for
the readout noise statistics.

For a quantitative analysis and validation of our ex-
perimental findings, we generate a simulated object with
phase and amplitude contrasts which we treat as the
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Fig. 3. Comparison of image reconstruction qualities from ptychographic datasets with decreasing signal-to-noise ratio (SNR)
from left to right. Top row: Ptychographic datasets at different camera exposures with total illumination intensity, respectively.
Second row: Reconstructions using a loss function assuming solely Poissonian noise statistics. Third row: Reconstructions using
the loss function defined by Eq. 2 which incorporates mixed Poisson-Gaussian noise statistics. Edge length of every image
equals 3.5mm.

ground truth. Using numerical simulation and the
ground truth object, we compute the noisy diffraction
patterns assuming Poissonian photon count statistics and
an additive Gaussian readout noise with a standard devi-
ation of σ = 1.5 counts. The simulation allows for vary-
ing the illumination intensity given as the total number of
photons in an otherwise fixed illumination field that ap-
proximates the experimental conditions shown in Fig. 3,
thereby controlling the measurement SNR.

The achieved reconstruction quality of the object O
with respect to the ground truth Ogt can now be quanti-

fied using the correlation coefficient C =
|⟨Ogt,O⟩|
∥Ogt∥·∥O∥ as

defined and motivated in [21] as a function of illumi-
nation intensity (Fig. 4). Here, Ogt denotes the com-
plex conjugate of Ogt, ⟨·, ·⟩ denotes the dot product, and
∥ · ∥ denotes the norm. The simulation confirms the
same trend that we observe from the experiments: For
low SNR, optimization using a mixed-statistics loss func-
tion yields significantly better reconstruction results. In
the regime of high illumination intensities, all loss func-
tions converge excellently (up to machine precision) as
the readout noise becomes irrelevant, and all assumed
underlying probability density functions become valid
approximations. Image reconstruction using a Gaus-
sian loss function LGaussian(θ) =

∑N
k=1 (Xk − Ik(θ))

2

performs worst at low illumination intensities. How-
ever, introducing a weighting term as motivated in [24]
leads to a noteworthy improvement (shown in red) using

LnormMSE(θ) =
∑N

k=1

(
Xk−Ik(θ)
sg[Ik(θ)]+ϵ

)2

, where ϵ = 10−3 and
sg[·] indicates a stop-gradient function. This normalized

MSE loss function can be interesting in cases where σ2
k

is impractical to obtain.
The intensity readout at a given pixel may be nega-

tive due to the additive Gaussian component in the noise
statistics. This can occur in practice in an experiment via
background subtraction, when areas on the camera sen-
sor detect only low intensities. As a practical measure
to keep the loss function real-valued when calculating
the square root of intensity for the Poissonian loss func-
tion, negative intensity values are customarily forced to
zero [25, 26]. Hence, in both simulation and experimen-
tal scenarios, we assign zero to negative intensity values
when optimizing LPoisson. However, by zero-cropping the
intensity data, we may inadvertently eliminate valuable
information, thereby causing a potential bias in our re-
construction results. To examine this bias, and quantify
the potential information contained within negative val-
ues, we also test LMixed with zero-cropped data, as shown
in Fig. 4. The quality of reconstruction in these condi-
tions falls between the results from optimizing LPoisson

with zero-cropped data and LMixed with unaltered data.
This observation suggests that the enhanced reconstruc-
tion quality derived from using a mixed-statistics loss
function can partially be credited to the statistical infor-
mation encapsulated in the negative pixel values resulting
from background subtraction.

The results presented in this study underscore the im-
portance of considering mixed Poisson-Gaussian noise
statistics in ptychographic image reconstruction. We
have demonstrated, through both experimental and sim-
ulated data, that using an MLE loss function that con-
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Fig. 4. Correlation between ground truth and reconstructions as a function of total photon count in the illumination field,
based on numerical simulations. The dashed blue line represents reconstructions derived from intensity data where negative
values have been zero-cropped, while the solid line represents reconstructions that incorporate negative values, which can arise
due to the additive Gaussian noise component. (A) Amplitude and phase contrast reconstruction of the simulated object based
on high-intensity diffraction patterns. For comparison, with an illumination intensity of 3.4× 105 photons the reconstructions
achieved with LMixed (B) and LPoisson (C) are shown. The edge length of every image equals 3.5mm.

siders this mix of noise statistics improves reconstruc-
tion quality, particularly in low signal-to-noise ratio con-
ditions. This enhanced performance indicates that the
mixed-statistics loss function can extract more informa-
tion from the measured data by accurately accounting
for the underlying noise statistics. An interesting out-
come of this study concerns the practice of zero-cropping
negative intensity values. We find that this practice in-
troduces a bias into the reconstructions, highlighting the
importance of preserving all statistical information in the
data.

It is worth noting that some types of detectors by-
pass the issue of significant Gaussian readout noise, such
as high-performance photon-counting hybrid pixel detec-
tors notably used in x-ray ptychography [27, 28]. In such
cases, optimizing LPoisson(θ) can yield excellent recon-
struction results. Future research could focus on studying
the convergence behavior of a mixed-statistics loss func-
tion when the illumination field is jointly optimized, as
we have observed that optimizing LMixed(θ) occasionally
leads to a less reliable convergence when dealing with a
poor initial estimate for the illumination field. To ensure
valid comparison and to attain image retrieval under ex-
tremely ill-posed conditions, we included the additional
step of pre-calibrating the illumination field in this study.
Such a step is typically unnecessary in well-posed pty-
chographic reconstructions [29] or other approaches to
noise-robust phase retrieval methods [30, 31].

In summary, the findings presented here could po-
tentially propel significant advancements in the field of

computational imaging, leading to improved image re-
trieval under challenging noise conditions. By offering a
more accurate reflection of real-world ptychographic mea-
surements, a loss function that considers mixed Poisson-
Gaussian noise statistics could greatly contribute to var-
ious fields, including material science, biology, and nan-
otechnology, where high-quality image reconstruction un-
der low-SNR conditions is critical. Moreover, the utility
of using a mixed-statistics loss function is not just limited
to ptychography but extends to many computational and
gradient-based imaging methods, broadening its applica-
bility [32–36].

Funding: Netherlands Organization for Scientific Re-
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Disclosures: The authors declare no conflicts of in-
terest.
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This document provides supplementary material to Maximum-likelihood estimation in ptychography in the presence
of Poisson-Gaussian noise statistics.

DERIVATION OF THE MAXIMUM-LIKELIHOOD ESTIMATION LOSS FUNCTIONS

In this supplementary chapter, we provide a derivation of the maximum-likelihood estimation (MLE) loss functions
used in a ptychography framework based on automatic differentiation. MLE operates by selecting the set of parameters
that maximize the likelihood function, thus ensuring the best fit to the observed data when the noise follows a known
statistical probability distribution.

Poissonian noise statistics

Let us write the parameters of the ptychography model as a vector θ = [θ1, θ2, ..., θN̂ ] with N̂ denoting the total
number of free parameters, presented in our case as complex-valued object pixels. Within a physics-based forward
model of ptychography (as detailed in [1]), we can denote the expected intensity value at a certain pixel k as Ik(θ). In
essence, Ik(θ) is the noise-free predicted intensity given a specific parameter vector θ. Considering a discrete random
variable Yk, which characterizes the intensity measurement on a camera sensor, we assume a Poisson distribution with
an expectation value of Ik(θ). The probability mass function is thereby given by

p(Yk|θ) =
Ik(θ)

Yk

Yk!
exp (−Ik(θ)), Yk∈{1, 2, ..., N}. (S1)

Assuming that the N measurements are statistically independent, we can express the likelihood function as

L(θ) =
N∏
k

p(Yk|θ). (S2)

For the sake of computational convenience, we employ the log-likelihood function ℓ(θ), as the natural logarithm
preserves order while transforming the product into the following sum:

ℓ(θ) = lnL(θ) =
N∑
k

(Yk ln Ik(θ)− Ik(θ)− lnYk!) . (S3)

As suggested in Chapter 4.1 of [2], we can now find the second-order Taylor expansion in terms of
√

Ik(θ) at the
point

√
Ik(θ) =

√
Yk as

Yk ln Ik(θ)− Ik(θ) ≈ −Yk + Yk lnYk − 2
(√

Yk −
√

Ik(θ)
)2

. (S4)
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In practice, we aim to minimize the negative log-likelihood function. This transformation leads to equivalent outcomes
and enables us to implement the optimization problem using a reconstruction algorithm based on gradient descent
minimization and automatic differentiation libraries such as TensorFlow [3]. Hence, ignoring all constant additive
terms and all multiplicative constants, the MLE loss function for Poissonian noise statistics can be written as

LPoisson(θ) = −ℓ(θ) =

N∑
k=1

(√
Yk −

√
Ik(θ)

)2

. (S5)

Gaussian noise statistics

Minimizing the mean squared error is a common approach to optimization problems and is mathematically closely
related to using an MLE loss function with the assumption of Gaussian noise statistics. Even though that is not
the ideal assumption for a random variable Wk representing an intensity measurement, it becomes practicable for a
large number of detected photons or for cases where Wk can be modeled as a sum of a large number of independent,
identically distributed variables, regardless of their underlying distributions (central limit theorem). Considering the
random variable Wk following a Gaussian distribution with the mean Ik(θ) and constant variance σ2, we can express
the probability density function as

p(Wk|θ) =
1√
2πσ2

exp

(
− (Wk − Ik(θ))

2

2σ2

)
. (S6)

In analogy to the previous section, we can then express the log-likelihood as

ℓ(θ) = lnL(θ) = ln

N∏
k

p(Wk|θ) (S7)

ℓ(θ) = −N

2
ln(2πσ2)− 1

2σ2

N∑
k=1

(Wk − Ik(θ))
2
. (S8)

Now, by neglecting the constant additive term and multiplicative constants, it becomes evident that ℓ(θ) can be
maximized by the least squares method. We can write the MLE loss function for Gaussian noise statistics as

LGaussian(θ) =

N∑
k=1

(Wk − Ik(θ))
2
. (S9)

Mixed Poisson-Gaussian noise statistics

Continuing from the previous sections, let us consider a random variable Xk as the intensity measurement on a
camera sensor with readout noise. We express Xk as the sum over two random variables Xk = Yk + Zk, where
Yk follows a Poisson distribution of expectation value Ik(θ) (see equation S1) and Zk follows a centered Gaussian
distribution of variance σ2

k. The probability density function for Zk is given by

pg(Zk) =
1√
2πσ2

k

exp

(
− Z2

k

2σ2
k

)
. (S10)

The random variable Yk can be approximated as a Gaussian distribution with mean Ik(θ) and variance Ik(θ):

pp(Yk|θ) ≃
1√

2πIk(θ)
exp

[
− (Yk − Ik(θ))

2

2Ik(θ)

]
. (S11)

We can express the probability density function of Xk as

p(Xk|θ) =
+∞∫

−∞

pp(τ |θ)pg(Xk − τ) dτ (S12)

p(Xk|θ) =
1√

2π(Ik(θ) + σ2
k)

exp

[
− (Xk − Ik(θ))

2

2(Ik(θ) + σ2
k)

]
. (S13)
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In analogy to the case without readout noise above, we can now define the MLE loss function as the negative log-
likelihood function:

LMixed(θ) = −ℓ(θ) = − lnL(θ) = − ln

N∏
k

p(Xk|θ) (S14)

LMixed(θ) =

N∑
k=1

(
ln[Ik(θ) + σ2

k] +
[Xk − Ik(θ)]

2

Ik(θ) + σ2
k

)
. (S15)

Here, we have neglected all constant additive terms and all multiplicative constants. To apply this loss function
in an optimization framework, we need to obtain σ2

k, the variance on the readout noise for each pixel, from dark
measurements.

EXPERIMENTAL SETUP AND METHOD

The experimental setup for this ptychography study, also used for numerical simulations, is depicted in Fig 2 of the
main document. A coherent laser beam (Cobolt Jive 100™) with wavelength λ = 561 nm is coupled into a single-mode
fiber. A fiber collimator (60FC-L-0-M75-26, Schäfter+Kirchoff) expands the beam to around 25mm in diameter,
which then illuminates a 500 µm pinhole. Using a 2-lens system with a magnification of M = 3, the pinhole is imaged
onto the object, resulting in the illumination field shown in Fig. S1, panel A. The two transfer lenses have diameters
of 22.9mm, with focal lengths of 5mm and 15mm, respectively. The object (µChart1951 Test Target, QingYing
E&T LLC) is mounted on a motorized XY-stage with stepper motor actuators (ZFS25B, Thorlabs). The scanning
trajectory is shown in panel B of Fig. S1. It comprises a total of 80 positions in a Fermat spiral pattern to optimize
for overlap uniformness [37]. Using a traveling salesman algorithm, this trajectory is optimized to minimize total
travel distance. The linear overlap between adjacent positions is approximately 60% [20]. The diffraction patterns
are recorded 37.7mm behind the object using a CMOS camera (acA2440-35um, Basler) that features a binned pixel
size of 6.9 µm and 1024x1024 total pixels.

Fig. S1. (A) Visualization of the complex-valued illumination field that is used in the experiment. The image brightness
represents the field amplitude, and the color represents the phase (see circular colorbar). (B) The object’s scanning trajectory
through the illumination beam in the ptychographic experiment. (C) Horizontal and vertical intensity profiles, centered on the
illumination field.

To control the Signal-to-Noise Ratio (SNR) in the measurement, we vary the camera exposure time from 30 µs to
300ms over 22 steps, covering four orders of magnitude. We derive the spatially varying readout noise variances σ2

k
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for each exposure time from 300 dark measurements, during which the laser beam is blocked. To mitigate Johnson-
Nyquist noise fluctuations, we operate the camera sensor in a temperature controlled environment at 21 ◦C. These
measurements also provide us with an average background image for each exposure time setting that we subtract from
each diffraction pattern. To facilitate exact reproduction of the results presented in this study, the raw background
and noise statistics data are included alongside the reconstruction framework in [23].

It is crucial to extract statistical information from potential negative intensity values resulting from Gaussian
readout noise. Therefore, we require a black level offset to ensure that no pixel of the sensor ever reads the value
of zero in dark measurements. With our Basler camera, we monitor the smallest pixel value for increasing black
level settings and observe that an offset of 4 first ensures that all pixel values are larger than zero. To minimize the
reduction in dynamic range, we choose this relatively small black level offset for the rest of this work.

For each scanning point, an independent measurement is obtained for each exposure time setting, and an additional
high-SNR measurement is taken by averaging 100 images with the highest exposure time. This high-SNR measurement
aids the calibration during the reconstruction phase. In Fig. S2 presents an expanded version of Fig. 3 from the main
manuscript. In the left column, the noise degradation of a single diffraction pattern is shown for all 22 exposure time
settings. The central and right columns (B and C) provide a visual comparison of the reconstruction quality for each of
these exposure time settings. Specifically, column B showcases reconstructions obtained by using the Poissonian log-
likelihood loss function LPoisson(θ) for optimization, while column C displays reconstructions achieved by employing
the mixed Poisson-Gaussian log-likelihood loss function LMixed(θ). This comparative illustration provides a clear
understanding of the impact of the chosen loss function on the quality of reconstruction across a large range of
exposure times.

RECONSTRUCTION PROCEDURE

The reconstruction procedure begins with diffraction pattern preprocessing. An experimentally acquired mean dark
image is subtracted to correct for background noise and account for hot or dead pixels. In cases where LPoisson is
used for optimization, negative values are set to zero due to the need for a real-valued loss function. Negative values
cannot be incorporated into a noise model that solely assumes Poissonian statistics.

Typical CCD and CMOS cameras involve an analog-to-digital converter that converts the number of detected
photons into analog-to-digital units (ADU). To rectify the assumption that the intensity measurement is Poisson
distributed, we rescale the data by the inverse of the overall system gain. In the case of our CMOS camera, the
inverse of the overall system gain is specified by the manufacturer to be 2.7 e−

ADU .
Initially, a high-SNR reconstruction is conducted on the calibration dataset discussed in Section . This helps

rectify experimental uncertainties such as the object-camera distance and scanning positions, as well as obtaining
a high-quality reconstruction of the illumination field (see Fig. S1, panel A). Following this, reconstructions from
the lower-SNR diffraction patterns are retrieved using the pre-calibrated illumination field. Each reconstruction is
performed in sequence on a commercial GPU (Nvidia RTX A6000) with the same hyperparameter and regularization
settings. Over 100 epochs, the learning rate for the ADAM optimizer [38] starts at lr = 0.1 and exponentially decays
at a rate λ = 0.03, following the schedule lrn+1 = lrne

−λ.
Three regularization terms are added to the loss function, resulting in a final loss function in the form of L =

LPoisson/Mixed +
∑3

i=1 LReg,i.

1. An L1 norm on the amplitudes for the illumination field outside a circular support constraint S with a radius
of 1.5mm. This regularization term accelerates the convergence of the illumination calibration and is motivated
by our experimental setup producing a circular illumination with an approximate radius of 0.75mm. This is
expressed as

LReg,1 = α
∑

(x,y)∈S

|P (x, y)|, (S16)

where P (x, y) denotes the 2-dimensional illumination field (P for "probe"). The factor α regulates the strength
of the regularization, typically chosen as α ≈ 100 in our calibration procedure.

2. A minor L1 norm on the amplitudes in the object given by

LReg,2 = β

N̂∑
(x,y)

|O(x, y)|, (S17)
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Fig. S2. Column (A): Visualization of one diffraction pattern from the full data set at varying camera exposure time settings.
The exposure times range from 30ms (upper left) to 30 µs (lower right). Columns (B and C): Amplitude images reconstructed
from the ptychographic data sets with the respective exposure times shown in column A in the same order. Column B is
reconstructed with a loss function assuming solely Poissonian noise statistics. Column C is reconstructed with the mixed-
statistics loss function assuming Poisson-Gaussian noise.
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where O(x, y) denotes the 2-dimensional complex-valued object with a total number of pixels N̂ . This regular-
ization drives towards finding a compact solution and mitigates high object amplitudes in the object’s boundary
areas that are insufficiently illuminated. We set β = 0.0001.

3. A minor L1 norm on the summed magnitudes of the object in frequency space is expressed as

LReg,3 = γ

N̂∑
(x,y)

|Ô(u, v)|, (S18)

where Ô(u, v) denotes the Fourier transform Ô(u, v) = FT {O(x, y)}. We observe that this regularization
term can stabilize the optimization using LMixed, which sometimes exhibits a poorer convergence behavior than
optimizing LPoisson or helps prevent numerical divergence phenomena for less-than-optimal learning rates. We
set γ = 0.001.

Note that choosing the regularization prefactors α, β, γ is arbitrary and depends on non-physical parameters such as
the sampling. Therefore, we adopt a heuristical approach to set them small enough to ensure that the data fidelity
term strongly dominates the reconstruction process. By doing so, we preserve the valuable comparative basis between
the two maximum likelihood estimation (MLE) loss functions while subtly enhancing the reconstructions:

LPoisson/Mixed∑3
i=1 LReg,i

≥ 100. (S19)
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