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Quantum dipole emitters in structured environments: A scattering approach (tutorial)

Dorian Bouchet and Rémi Carminati∗
ESPCI Paris, PSL University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris, France

We provide a simple semi-classical formalism to describe the coupling between one or several
quantum emitters and a structured environment. Describing the emitter by an electric polarizability,
and the surrounding medium by a Green function, we show that an intuitive scattering picture
allows one to derive a coupling equation from which the eigenfrequencies of the coupled system
can be extracted. The model covers a variety of regimes observed in light-matter interaction,
including weak and strong coupling, coherent collective interactions, and incoherent energy transfer.
It provides a unified description of many processes, showing that different interaction regimes are
actually rooted on the same ground. It can also serve as a basis for the development of more refined
models in a full quantum electrodynamics framework.

I. INTRODUCTION

Many aspects of light-matter interaction can be un-
derstood from the coupling between dipole emitters (or
absorbers) and the electromagnetic field in a structured
medium. Indeed, the basic processes in molecular spec-
troscopy, light scattering from small particles or atoms,
fluorescence, nonlinear optics or cavity quantum electro-
dynamics (QED) are most of the time described based on
electric (or magnetic) dipoles interacting with the elec-
tromagnetic field [1–4]. With the advent of nanophoton-
ics, structuring the environment at scales much smaller
than the wavelength is used to modify and control the
emission and absorption dynamics of quantum emitters
(such as molecules or quantum dots). This has become
an active area of research, with fundamental and applied
perspectives [5, 6].

Depending on the strength of the interaction, differ-
ent regimes are observed. In the weak coupling regime,
spontaneous emission can be either accelerated or inhib-
ited, a phenomenon referred to as the Purcell effect [7].
When the emitter strongly couples to a specific mode
of the electromagnetic field, two new hybridized eigen-
modes (polaritons) are created, characterized by a fre-
quency splitting or the appearance of Rabi oscillations
in the time domain [8, 9]. Initially the realm of cavity
QED, changes in the spontaneous emission dynamics in
the weak and strong coupling regimes has been demon-
strated in nanophotonics using optical antennas [10], mi-
crocavities [11, 12], photonic crystal cavities [13], or plas-
monic cavities [14]. The mutual interaction between sev-
eral emitters in the presence of an electromagnetic field
also gives rise to different phenomena, from energy trans-
fer between two molecules in weak coupling [15], to coher-
ent collective interactions leading to sub and superradi-
ance [16, 17]. Here as well, confining the electromagnetic
field allows one to act on the coupling strength. For ex-
ample, the range of energy transfer can be modified using
surface plamons [18], and collective interactions can be
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enhanced using photonic crystal cavities [19].

In this tutorial, we propose a simple and unified ap-
proach to deal with the interaction between a quantum
emitter and the electromagnetic field in a structured
medium, and we show how the same starting point allows
one to describe many different regimes and phenomena in
light-matter interaction. The emitter is described by an
electric polarizability and the field is described in terms
of a Green function. Assuming an external excitation, we
address the coupling as a semi-classical scattering process
(by semi-classical we mean that the field is not explic-
itly quantized), and we derive a coupling equation from
which the eigenfrequencies of the resulting eigenmodes
can be deduced. By choosing the correct model for the
Green function, which describes the response of the envi-
ronment, the formalism naturally leads to a description
of the weak and strong coupling regimes. The intuitive
scattering approach is easily extended to the situation of
two emitters coupled through a structured environment.
Interestingly, beyond coherent mutual interactions lead-
ing to strong coupling, the model also includes a descrip-
tion of incoherent energy transfer between molecules in
the weak coupling regime. Finally, we show how a gen-
eralization to a set of N emitters provides an appealing
coupled-dipole model to describe collective interactions.

The tutorial is organized as follows. In Section II,
starting from the optical Bloch equations, we derive the
polarizability model that allows us to describe either the
full dynamics of a two-level atom or the excitation dy-
namics of a three-level molecule. In Section III, we in-
troduce the concept of Green function, which is a useful
tool to describe the electrodynamic response of an ar-
bitrary environment. In Section IV, we derive the cou-
pling equation that drives the dynamics of the coupled
emitter-field system, based on an intuitive scattering ap-
proach. From this equation, we show how the weak and
strong coupling regimes emerge. In Section V, we extend
the scattering approach to the situation of two emitters
coupled through a structured environment, focusing the
analysis on the regimes of weak and strong dipole-dipole
interaction. In the weak coupling regime, we show how
irreversible energy transfer can be described using ap-
propriate polarizability models. In Section VI, we briefly
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discuss the generalization of the model to the collective
interaction between N identical emitters, with N arbi-
trary large. Finally, Section VII summarizes the main
conclusions.

II. POLARIZABILITY OF A DIPOLE EMITTER

The electrodynamic response of a subwavelength reso-
nant scatter can be described in the electric-dipole limit
using a dynamic polarizability. The same description
holds for an atom or a fluorescent molecule. The interac-
tion between a two-level atom and a classical monochro-
matic electric field is a textbook problem, that is usu-
ally treated by solving the optical Bloch equations [1, 8].
Here we use this framework to describe the excitation of
a three-level system by a quasi-monochromatic electric
field. The three-level model includes the two-level atom
as a particular case. It also encompasses the main fea-
tures needed to describe the excitation of a fluorescent
molecule.

A. Three-level model

We consider a three-level system characterized by three
stationnary and non-degenerate eigenstates |a〉, |b〉 and
|c〉, as represented in Fig. 1, with Γbc, Γba and Γca the
spontaneous decay rates of each level. In practice, this
three-level model can be used to describe a two-level atom
(by taking Γbc = 0), or a three-level system with a high
decay rate towards the auxiliary level (Γbc � Γba) that
provides the simplest model of a fluorescent molecule.

Гba ГcaE(t)

Гbc

|a˃

|c˃
|b˃

FIG. 1: Jablonski diagram of a three-level system. For
Γbc = 0 the system reduced to the model of a two-level atom.
For Γbc � Γba, the three-level system is the simplest relevant
model of a fluorescent molecule. In this case, Γbc corresponds
to a fast non-radiative decay towards state |c〉 and Γca corre-
sponds to the radiative transition.

The state of the system is conveniently described by
a density operator ρ̂. The diagonals elements of this op-
erator, known as populations, give the probability for
the system to be in one of its eigenstates. The off-
diagonal elements, known as coherences, describe dy-
namic effects related to the coherent superpositions of
eigenstates. They enter, as we shall see, the expression

of the polarizability. The evolution of the density opera-
tor is driven by the Hamiltonian Ĥ according to [20]

d ρ̂

d t
=

1

i~
[Ĥ, ρ̂] . (1)

Using this equation is equivalent to using the Schrödinger
equation for an arbitrary state |ψ(t)〉 of the system, with
the advantage of providing a straightforward description
of mixed states. Since we are interested in the interaction
between the three-level system and an external electric
field, it is convenient to write Ĥ = Ĥ0 + Ĥ1 where Ĥ0 is
the unperturbed Hamiltonian (describing the emitter in
absence of electric field) and Ĥ1 is the interaction Hamil-
tonian (describing the coupling with the field). Following
the procedure commonly used for two-level systems [2],
we can construct the unperturbed Hamiltonian for three-
level systems, which is

Ĥ0 = ~ωabσ̂
+
abσ̂
−
ab + ~ωacσ̂

+
acσ̂
−
ac , (2)

where ωij is the Bohr frequency associated with the tran-
sition ij, and σ̂+

ij = |j〉〈i| and σ̂−ij = |i〉〈j| are the atomic
raising and lowering operators, respectively. In order to
describe the excitation of the emitter, we use a semi-
classical description and assume that it interacts with a
classical quasi-monochromatic electric field tuned to the
transition ab. In the electric-dipole approximation, we
can express the interaction Hamiltonian as [1, 21]

Ĥ1 = −dab ·E(t)(σ̂+
ab + σ̂−ab) , (3)

where E(t) is the electric field at the position of the emit-
ter and dab = 〈a|D̂|b〉 = 〈b|D̂|a〉 is the dipole matrix
element (or transition dipole). At this stage we did not
consider the effects of spontaneous emission and other in-
teractions with the environment (such as collisions with
other molecules in a gas, with phonons in a solid, or with
internal degrees of freedom in the emitter itself). These
processes, assumed to be independent of the external ex-
citing field, affect the populations and the coherences,
and need to be included in Eq. (1). This leads to the
master equation

d ρ̂

d t
=

1

i~
[Ĥ0 + Ĥ1, ρ̂] +

{
d ρ̂

d t

}
relax

(4)

in which the last term accounts for the decay of pop-
ulations and coherences due to spontaneous emission
and dephasing processes (that contribute to the relax-
ation of the coherences). The form of the relaxation
terms can be found by considering the three-level sys-
tem in absence of an external driving field. In this case
we know that the populations of states |b〉 and |c〉 de-
cay spontaneously, with the rates indicated in Fig. 1,
allowing us to write d ρbb/ d t = −(Γba + Γbc)ρbb and
d ρcc/d t = −Γcaρcc + Γbcρbb. The coherences ρba and
ρab = ρ∗ba, that will be needed to compute the polar-
izability in the next sections, also decay according to
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d ρba/ d t = −(γab/2)ρba, with a damping rate γab sat-
isfying γab ≥ Γba + Γbc (the equality holding only when
pure dephasing processes, that do not change the energy
states, can be neglected). Note that formally, the last
term in Eq. (4) can be represented by an operator L̂d(ρ̂)
known as Lindblad superoperator, that is sometimes used
to include explicitly the relaxation terms in the master
equation [22].

B. Optical Bloch equations

Finding the solution to Eq. (4) requires to solve a sys-
tem of nine equations. For our purpose, we need to com-
pute the excited-state populations ρaa, ρbb and ρcc, as
well as the coherences ρab and ρba. The coherences will
allow us to compute the expectation of the dipole mo-
ment operators associated to transition ab. Since the
density operator is Hermitian and satisfies the condition
ρaa +ρbb +ρcc = 1, we can reduce the problem to a set of
three equations. As we assume the external electric field
to be quasi-resonant with transition ab, we can use the
rotating wave approximation (|ω − ωab| � ωab) and the
slowly-varying envelope approximation (γab � ωab) [2].
This leads to the optical Bloch equations [1, 8, 21]:

d ρbb
d t

= −(Γba + Γbc)ρbb + 2 Im
[
ρab Ω(+)(t)

]
, (5)

d ρcc
d t

= −Γcaρcc + Γbcρbb , (6)

d ρba
d t

= −γab
2
ρba − iωabρba + i(ρbb − ρaa)Ω(+)(t) , (7)

where we have introduced the time-dependent Rabi fre-
quency Ω(t) = −[dab ·E(t)]/~, and its positive frequency
component defined with the following convention:

Ω(+)(t) =

∫ +∞

0

Ω(ω)e−iωt dω . (8)

The time-dependent Rabi frequency characterizes the
coupling strength between the three-level emitter and
the electric field. In the absence of an external field,
Ω(+)(t) = 0 and the system spontaneously decays to-
wards its lower energy state |a〉 due to the damping rates
of populations and coherences. In contrast, in the pres-
ence of an electric field, the terms in Ω(+)(t) couple the
equations driving the populations and the coherences.
In particular, Eq. (5) shows that the evolution of the
excited-state population depends on the phase difference
between the coherences (related to the dipole moment op-
erators) and the time-dependent Rabi frequency (related
to the external field). In order to compute the polariz-
ability associated with the transition ab, we need to solve
the coupled Bloch equations and find the expression of
the coherences ρab and ρba.

C. Polarizability

Assuming an excitation by a stationnary external field,
we focus on the steady-state behavior of the coupled
emitter-field system. In this regime, the solution of the
optical Bloch equations can be found analytically. Solv-
ing Eqs. (5)-(7) in the frequency domain yields

ρba(ω) = − Ω(+)(ω)

ωab − ω − iγab/2

(
1

1 + s

)
, (9)

where s is the saturation parameter given by

s =
2(2Γca + Γbc)

Γca(Γba + Γbc)

∫ +∞

−∞
Im

[
|Ω(+)(ω′)|2

ωab − ω′ − iγab/2

]
dω′ .

(10)
Equation (9) can be used to compute the expectation
value of the dipole moment operator defined as d =
Tr(ρ̂ D̂). More precisely, in order to define a polarizabil-
ity matching the classical convention for monochromatic
fields with a time dependence exp(−iωt), we will need
the positive frequency part of the expectation value that
is given by d(+)(ω) = ρba(ω)dab. For weak exciting field
we can neglect saturation effects (s� 1), and we obtain

d(+)(ω) =
1

~

(
1

ωab − ω − iγab/2

)
[dab ·E(+)(ω)]dab .

(11)
By definition of the polarizability αab(ω), we also have

d(+)(ω) = αab(ω)ε0 E
(+)(ω) . (12)

These two equations readily lead to the following expres-
sion of the polarizability characterizing the excitation of
the three-level emitter:

αab(ω) =
3πc3

ω3
ab

Γsp
ba

ωab − ω − iγab/2
u⊗ u . (13)

In this expression, we have introduced the unit vector
u characterizing the orientation of the transition dipole,
such that dab = dabu, and ⊗ denotes the tensor product.
We have also introduced the spontaneous emission rate
(or Einstein A coefficient) [2]

Γsp
ba =

ω3
abd

2
ab

3πε0~c3
. (14)

Note that very often Γba ≥ Γsp
ba since additional non-

radiative processes can contribute to the decay of the
excited-state |b〉 towards the ground state |a〉. From the
expression of the polarizability αab(ω) = αab(ω)u ⊗ u,
we can deduce the expressions of the extinction and
scattering cross-sections σe(ω) = (ω/c) Im [αab(ω)] and
σs(ω) = [ω4

0/(6πc
4)] |αab(ω)|2 [23]. For quasi-resonant

excitation (ω ' ωab), we have

σe(ω) =
3πc2

2ω2
ab

γabΓ
sp
ba

(ωab − ω)2 + γ2ab/4
, (15)
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σs(ω) =
3πc2

2ω2
ab

(Γsp
ba)

2

(ωab − ω)2 + γ2ab/4
. (16)

Note that when the damping rate of the coherences equals
the spontaneous emission rate (γab = Γsp

ba), the extinction
cross-section equals the scattering cross-section. In this
limit, light is scattered without absorption.

III. FIELD RESPONSE: GREEN’S FUNCTION

While the electrodynamic response of a dipole emitter
(or scatterer) is described by its polarizability, the lin-
ear response of the environment is conveniently described
using the electric Green’s function G (also denoted by
field susceptibility). The tensor (electric) Green function
is defined as the solution of the vector Helmoltz equa-
tion [5, 24]

∇×∇×G(r, r′, ω)− ω2

c2
ε(r, ω) G(r, r′, ω) = δ(r− r′)I ,

(17)
satisfying the outgoing condition when |r−r′| → ∞ (one
also refers to it as the retarded Green function). In this
equation, δ(...) is the Dirac delta function, I the unit
tensor and ε(r, ω) is the space and frequency-dependent
dielectric function of the medium. Physically, the Green
function connects a monochromatic electric dipole source
d(ω) located at a position r′ to the radiated electric field
at a position r in the medium through the relation [25]

E(r, ω) = µ0ω
2G(r, r′, ω)d(ω) . (18)

Note that this relation holds both for classical dipoles and
fields, and for quantum operators (the Green function is
the same in classical and quantum electrodynamics). The
Green function contains the electrodynamic response of
the environment, and can be used to relate one or several
dipole sources to the electric field in arbitrary geometries
such as a cavity, an antenna, an interface supporting sur-
face plasmons or a more complex medium, that can all
be treated formally on the same footing. It will be con-
venient to decompose the Green function as follows:

G(r, r′, ω) = G0(r, r′, ω) + S(r, r′, ω) , (19)

where G0 is the free-space Green function and S is the
change in the Green function due to the structured envi-
ronment. Given the response of the dipole emitter (po-
larizability) and of the environment (Green function), we
will now see that the coupling between them can be stud-
ied formally based on a picture borrowed from scattering
theory [26, 27].

IV. DIPOLE EMITTER INTERACTING WITH
AN ENVIRONMENT

In this section, we consider a two-level dipole emit-
ter located at a position rs, with a fixed orientation

of its transition dipole (defined by unit vector u), and
characterized by its free-space polarizability α0(ω) =
α0(ω)u⊗ u, with

α0(ω) =
3πc3

ω3
0

Γ0

ω0 − ω − iγ0/2
. (20)

In this expression we assume ω ' ω0, and we can use
γ0 ≥ Γ0 to account for non-radiative dephasing processes.
We stress that this expression of the polarizability can
also describe classical resonant scatterers [28].

A. Coupling equation

The response of the dipole emitter to an external field
can be understood as a two-step scattering process. First,
the emitter is excited by the field Eexc generated by
scattering of the incident field Einc by the environment.
Second, the emitter is excited by its own field scattered
back by the environment. These two processes are repre-
sented schematically in Fig. 2. With these two processes

Einc(!)

↵0(!)

Einc(!)

Eexc(!)

=

+

FIG. 2: Representation of the two scattering processes in-
volved in the electrodynamic interaction between a dipole
emitter and a structured environment.

in mind, the induced dipole can be written as

d(+)(ω) =α0(ω)ε0 E
(+)
exc(rs, ω)

+ α0(ω)k20 S(rs, rs, ω)d(+)(ω) ,
(21)

where k0 = ω/c. Note that the interaction with the en-
vironment is described by the modification of the Green
function S = G−G0 since the interaction of the emitter
with itself through the vacuum field is already included
in α0(ω). We can also define the dressed polarizability
α(ω) such that

d(+)(ω) = α(ω)ε0 E
(+)
exc(rs, ω) . (22)

From Eqs. (21) and (22), we obtain

α(ω)−1 = α0(ω)−1 − k20 S(rs, rs, ω) , (23)

which gives a general expression of the dressed polariz-
ability. Eigenmodes of the coupled system can be defined
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as poles in α(ω), or zeros of α(ω)−1. This leads to the
following general coupling equation:

ω2

c2
S(rs, rs, ω)α0(ω) = I . (24)

Projecting on the direction u of the dipole, this can be
rewritten as

ω2

c2
[u · S(rs, rs, ω)u]α0(ω) = 1 , (25)

which is a scalar equation. The solutions of this coupling
equation, considered as an implicit equation in ω, define
the eigenfrequencies of the coupled system. For a two-
level system, introducing (20) into (25), we find that the
complex eigenfrequencies $p are solution of

S($p) = ω0 −$p − iγ0/2 , (26)

where we use the notation

S(ω) =
3πcΓ0

ω0
[u · S(r0, r0, ω)u] . (27)

Note that we can use ω = ω0 in prefactors since we al-
ready assumed ω ' ω0 in Eq. (20). Solving Eq. (26)
allows one to find the complex eigenfrequencies $p =
ωp − iγp/2, defining the central frequencies ωp and the
linewidth γp of the eigenmodes for the coupled emitter-
field system [3]. This leads to a simple description of
different interaction regimes and their main features.

B. Weak coupling

Let us first consider the situation in which the environ-
ment has a smooth frequency dependence at the scale of
the emitter linewidth γ0. We can assume S(ω) ' S(ω0),
and the solution to Eq. (26) simply becomes

$p = ω0 −
i

2
γ0 − S(ω0) . (28)

Both the resonance frequency and the linewidth of the
emitter are affected by the coupling, and are respectively
given by

ωp = ω0 − Re [S(ω0)] , (29)

γp = γ0 + 2 Im [S(ω0)] . (30)

We can see that the coupling induces a (classical) fre-
quency shift δω = ωp − ω0 that scales with the real
part of the Green function due to the environment. The
linewidth is also modified, the change scaling with the
imaginary part of the Green function. In the absence of
non-radiative dephasing processes (γ0 = Γ0), the change
in the linewidth (or, equivalently, in the spontaneous de-
cay rate) can be rewritten as

γp
Γ0

= 1 +
2 Im [S(ω0)]

Γ0
. (31)

Introducing the partial (or projected) local density
of states (LDOS), which is defined by ρu(r, ω) =
2ω/(πc2) Im [u ·G(r, r, ω)u] [25], we find

γp
Γ0

=
ρu(rs, ω)

ρu,0(rs, ω)
, (32)

where ρu,0(r0, ω) = ω2/(3π2c3) is the partial LDOS
in vacuum. We recover the well-known fact that in
the weak-coupling regime, the spontaneous decay rate is
modified according to the change in the LDOS, which is
known as the Purcell effect (the original paper by Purcell
considers the particular case of a single mode cavity with
weak losses [7], the change in the LDOS being given in
this case by the so-called Purcell factor).

C. Strong coupling

We now assume that the emitter is coupled to an envi-
ronment exhibiting sharp resonances, and is resonant (or
quasi-resonant) with a specific mode so that we can re-
strict the problem to the interaction with a single mode.
Assuming |ω − ωm| � ωm and γm � ωm, where ωm and
γm are respectively the central frequency and linewidth
of the mode, we can use the following single-mode expan-
sion of the Green function

G(r, r′, ω) =
c2

2ωm

em(r)⊗ e∗m(r′)

ωm − ω − iγm/2
, (33)

where em(r) is the normalized complex amplitude of the
mode [25]. The change in the Green function S can be
deduced from Eq. (33) by subtracting the contribution of
the vacuum Green function G0 (only the imaginary part
has to be subtracted, since the singular real part of G0

is not included in expression Eq. (33). For a discussion
of this point see [29, 30]). This leads to

S(ω) =
FmΓ0γm/4

ωm − ω − iγm/2
− iΓ0/2 , (34)

where we have introduced the Purcell factor of the mode
defined by [25]

Fm =
6πc3

ω2
mγm

|em(rs) · u|2 . (35)

Note that in this definition, the factor |em(rs) · u|2,
whose inverse defines the mode volume, depends on the
emitter location and orientation (the Purcell factor is of-
ten defined using the maximum value of |em(rs) · u|−2, a
convention that we do not use here). Introducing Eq. (34)
into the coupling equation (26), we find that the complex
eigenfrequencies $p of the coupled system must satisfy

1 =
FmΓ0γm/4

(ω0 −$p − iγ0/2)(ωm −$p − iγm/2)

− iΓ0/2

ω0 −$p − iγ0/2
.

(36)
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Solving this second-order equation, we obtain two solu-
tions $+

p and $−p given by

$±p =
$′0 +$m

2
±

√(
$m −$′0

2

)2

+ g2 , (37)

where g =
√
FmΓ0γm/4 is the coupling constant, $m =

ωm − iγm/2 is the complex frequency of the mode, and
$′0 = ω0 − i(γ0 − Γ0)/2 characterizes the emitter. For
4g2 � |$m − $′0|2, developing the square-root term to
first order, we would find two slightly modified eigen-
modes (compared to the decoupled emitter and field
mode), with a small frequency shift and a broadening,
thus recovering the features of the weak coupling regime.
In contrast, for 4g2 � |$m −$′0|2 corresponding to the
strong coupling regime, the central frequency and the
linewidth of the eigenmodes become

ω±p =
ω0 + ωm

2
±
√
FmΓ0γm

4
, (38)

γ±p =
(γ0 − Γ0) + γm

2
. (39)

Equation (38) shows the appearance of two new eigen-
modes of the strongly coupled system, with resonance fre-
quencies splitted around the average resonance frequency
of the uncoupled systems. Frequency splitting is a fea-
ture of the strong coupling regime, which can be exper-
imentally observed when the splitting is larger than the
linewidth of the new eigenmodes. Note that the strong
coupling condition 4g2 � |$m −$′0|2 often ensures that
the frequency splitting can be experimentally observed,
but is not always sufficient (for instance when$m ∼ $′0).

For the sake of illustration, let us consider a dipole
emitter characterized by a central frequency ω0 =
2370 meV, a radiative linewidth Γ0 = 0.004 meV and
a total linewidth γ0 = 140 meV (this values are typical
of a fluorescent molecule at room temperature). We as-
sume the emitter to be coupled to a single-mode cavity
characterized by ωm = 2220 meV and γm = 40 meV. By
increasing the Purcell factor Fm of the cavity, we can
follow the evolution of the eigenfrequencies in the com-
plex plane, as shown in Fig. 3(a). Both the frequency
splitting and the change in the linewidth are observed.
The dependence of the frequency splitting on the Pur-
cell factor (that changes the coupling constant) is shown
in Fig. 3(b). In this example, the critical Purcell factor,
which separates the weak and strong coupling regimes, is
on the order of 105 .

V. TWO EMITTERS IN A STRUCTURED
MEDIUM

In this section we describe the interaction between two
dipole emitters in a environment, and discuss strong and

-0.2 -0.1 0 0.1 0.2

(
p
-

0
)/

0

-0.05

0

0.05

(
p
-

0
)/

0

(a)
Emitter

Field

10
0

10
5

F
m

-0.2

0

0.2

(
p
-

0
)/

0

(b)

FIG. 3: (a) Evolution of the eigenfrequencies of the coupled
system in the complex plane when increasing the Purcell fac-
tor Fm of the cavity. (b) Normalized frequency shift of the
two eigenmodes versus the Purcell factor Fm. Error bars rep-
resent intervals bounded by ωp ± γp/2.

weak coupling regimes. In the weak coupling regime, we
show that the formalism encompasses the process of irre-
versible energy transfer between a donor and an acceptor.

A. Coupling equation

We consider two dipole emitters located in an arbitrary
medium, and excited by an external field. The emit-
ters are characterized by their free-space polarizability
αi(ω) = αi(ω)ui ⊗ ui, the unit vector ui defining the
fixed orientation of the transition dipole, with

αi(ω) =
3πc3

ω3
0

Γi

ωi − ω − iγi/2
for i = 1, 2 . (40)

Since we are considering the quasi-resonant regime with
ω ' ω1 ' ω2, we use the average resonance frequency
ω0 = (ω1 +ω2)/2 in all prefactors. We also introduce the
following notations:

Sii(ω) =
3πcΓi

ω0
[ui · S(ri, ri, ω)ui] , (41)

Gij(ω) =
3πc
√

ΓiΓj

ω0
[ui ·G(ri, rj , ω)uj ] . (42)

While Sii(ω) describes the influence of each emitter on
itself through the environment, Gij(ω) describes the in-
teraction between them. Following the scattering pic-
ture used in section IV, the relation between the induced
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dipoles d1 = d1u1 and d2 = d2u2 in each emitter and
the excitation field are conveniently expressed in a matrix
form MX = Y where

X =

(
d
(+)
1 (ω)

d
(+)
2 (ω)

)
, (43)

Y =

(
α01(ω)ε0u1 ·E(+)

exc(r1, ω)

α02(ω)ε0u2 ·E(+)
exc(r2, ω)

)
, (44)

M =

1−
S11(ω)

ω1 − ω − iγ1/2
−

G12(ω)

ω1 − ω − iγ1/2

−
G21(ω)

ω2 − ω − iγ2/2
1−

S22(ω)

ω2 − ω − iγ2/2

 .

(45)
Note that reciprocity imposes that the Green function
satisfies G12(ω) = G21(ω). The eigenfrequencies of the
coupled system are found by solving det[M(ω)] = 0. This
leads to the following equation satisfied by the complex
eigenfrequencies $p:

0 =1− S11($p)

ω1 −$p − iγ1/2
− S22($p)

ω2 −$p − iγ2/2

+
S11($p)S22($p)− G212($p)

(ω1 −$p − iγ1/2)(ω2 −$p − iγ2/2)
.

(46)

This equation is a convenient starting point to discuss
different interaction regimes.

B. Weak coupling to the environment

If the medium has a smooth dependence on frequency
(no resonance), we can write Sii(ω) ' Sii(ω0) and
Gii(ω) ' Gii(ω0). The two eigenfrequencies solutions of
Eq. (46) are then given by

$±p =
$1 +$2

2
±

√(
$2 −$1

2

)2

+ G12(ω0)2 , (47)

where we have introduced $i = ωi − iγi/2 − Sii(ω0),
that corresponds to the eigenfrequency of each emit-
ter considered alone in the environment (see Eq. (28)).
For strong dipole-dipole coupling between the emitters
(4G12(ω0)2 � |$2 −$1|2) the central frequency and the
linewidth of the two eigenmodes become

ω±p =
ω1 + ω2

2
− Re

[
S11(ω0) + S22(ω0)

2

]
± Re [G12(ω0)] ,

(48)

γ±p =
γ1 + γ2

2
+ 2 Im

[
S11(ω0) + S22(ω0)

2

]
∓ 2 Im [G12(ω0)] .

(49)

We observe two eigenmodes characterized by a frequency
splitting that scales with Re[G12(ω0)], i.e. with the
strength of the electrodynamic coupling between the two
dipoles. This is a feature of a strong coupling regime
between the emitters. The linewidths show the appear-
ance of both a broadened (or superradiant) mode and a
narrowed (or subradiant) mode.

To get orders of magnitude, let us take the example
of two emitters in free space, with the same parameters
as in the previous section, that are typical for fluores-
cent molecules at room temperature (central frequency
ω1 = ω2 = 2370 meV, radiative linewidth Γ1 = Γ2 =
0.004 meV and total linewidth γ1 = γ2 = 140 meV). Let
us assume that the transition dipoles are oriented along
the z-axis, and separated by a distance d along a per-
pendicular direction (the x-axis). In these conditions,
the critical distance for the observation of a frequency
splitting is 3 nm, and the change in the linewidth is neg-
ligible (see Fig. 4). For d � 3 nm, the emitters can
be considered independent. Also note that the condition
4G12(ω0)2 � |$2 − $1|2, which we used to define the
strong dipole-dipole interaction regime, is not sufficient
for the observation of the frequency splitting (that has
to be larger than the linewidth).
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FIG. 4: (a) Evolution of the eigenfrequencies in the complex
plane when decreasing the distance d between the emitters in
free space. (b) Normalized frequency shift of the two eigen-
modes versus the distance d. Error bars represent intervals
bounded by ωp ± γp/2.

C. Weak dipole-dipole interaction

On top of the assumption of weak coupling to the envi-
ronment, we now assume that the two emitters are weakly
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coupled to each other (4G12(ω0)2 � |$2 − $1|2). In
this limit, we can perform a first-order expansion of the
square-root in Eq. (47), yielding

$±p =
$1 +$2 ± ($2 −$1)

2
± G12(ω0)2

$2 −$1
. (50)

We see that the eigenmode + (resp. −) correponds to
the modifications in frequency and linewidth of emitter
2 (resp. 1). It is interesting to show that this expres-
sion can describe irreversible energy transfer between
two emitters (usually referred to as donor and accep-
tor), that at short distance is known as Förster resonant
energy transfer (FRET) [31]. FRET has been widely
used in biology as a mechanism to detect molecular in-
teraction [32]. Short-distance energy transfer is also in-
volved in the process of photosynthesis [33]. To compute
the eigenfrequencies in this regime, we need to specify
the polarizability models for emitter 1 (donor) and emit-
ter 2 (acceptor). We shall assume that the donor is an
ideal two-level atom (with γ1 = Γ1), while the accep-
tor is a three level system, with a large excited-state
decay rate towards the auxiliary radiative level (as in
a florescent molecule). This means that the condition
γ2 � (Γ1,Γ2, 2 Im [S11(ω0)] , 2 Im [S22(ω0)]) is assumed
to be satisfied. Note that, as described in section II, the
polarizability α2(ω) describes the excitation of emitter 2
only (subsequent fluorescent emission at a different fre-
quency is implicit). We also assume ω1 = ω2 = ω0, mean-
ing that the emission frequency of the donor matches the
absorption frequency of the acceptor. Under these con-
ditions, the linewidth of the eigenmodes of the coupled
system are

γ+p = γ2 , (51)

γ−p = γ1 + 2 Im [S11(ω0)] +
4 Re

[
G12(ω0)2

]
γ2

. (52)

As expected, eigenmode + (corresponding to emitter 2
or acceptor) has a negligible broadening due the cou-
pling to both the donor and the environment (this fol-
lows directly from the condition of a large γ2). More
interestingly, the linewidth associated to eigenmode −
(corresponding to emitter 1 or donor) is modified by the
surrounding medium (second term in the right-hand side
in Eq. (52)) and by the presence of the acceptor (third
term in the right-hand side in Eq. (52) which will be de-
noted by Γinter). We can observe that the presence of the
acceptor can either increase or decrease the linewidth of
the donor, depending on the sign of Re

[
G12(ω0)2

]
. This

can be understood as the result of changes in the relative
phase between the induced dipole in the donor and the
field backscattered by the acceptor at the donor position,
as in the process giving rise to oscillations in the fluores-
cence lifetime of an emitter in front of a reflective inter-
face [34]. For distances much smaller than the wavelength
λ0 = 2πc/ω0, we can assume Re[G12(ω0)2] ' |G12(ω0)|2

(this can be easily verified in free space, as long as the
interdistance d < λ0/4). This means that at short dis-
tance the linewidth of the donor is always increased by
the presence of the acceptor. Moreover, from Eqs. (15)
and (16), one can deduce the on-resonance expressions of
the extinction and scattering cross-sections σe(ω0) and
σs(ω0), which are respectively

σe(ω0) =
6πc2

ω2
0

Γ2

γ2
, (53)

σs(ω0) =
6πc2

ω2
0

(
Γ2

γ2

)2

. (54)

In the regime γ2 � Γ2, the scattering cross-section is
negligible, and we can assume that the absorption cross-
section σa(ω0) equals the extinction cross-section. Then,
the last term in the right-hand side in Eq. (52), usually
referred to as the energy transfer rate Γet, can be written

Γet = 6π Γ1σa(ω0) |u1 ·G(r1, r2, ω0)u2|2 , (55)

where we have used Eq. (42). This expression takes the
usual form of the energy transfer rate in dipole-dipole
interaction [35] (see also [36, 37] for a full QED treat-
ment). The main difference between Γet and Γinter is
that the latter includes a back-action from the acceptor
to the donor due to scattering, that disappears in the
energy transfer regime. In free space, the Green function
at short distance can be taken in the quasi-static limit,
and follows the scaling u1 ·G0(r1, r2, ω0)u2 ∼ |r1 − r2|3.
The free-space energy transfer rate therefore scales as
Γet ∼ |r1 − r2|6, which is a feature of FRET, as initially
derived by Förster [31]. In more complex geometry, in-
serting the appropriate Green function into Eq. (55) al-
lows one to compute the change in the FRET rate due
to the environment (see for example [18, 38]).

As a didactic example, let us consider a donor (two-
level system) with emission frequency ω1 = 2370 meV
and radiative linewidth γ1 = Γ1 = 0.004 meV, and an ac-
ceptor (three-level molecule) with absorption frequency
ω2 = ω1 and total linewidth γ2 = 140 meV. We show
in Fig. 5 the energy transfer rate Γet, calculated using
Eq. (55), versus the distance d between donor and accep-
tor. For comparison, we also display the change in the
donor linewidth due to the acceptor that includes the
scattering back-action (Γinter). We see that both expres-
sions coincide for d < 100 nm. Note that for larger dis-
tances, the difference would remain difficult to observe
since the energy transfer efficiency is very low in this
regime (on the order of 10−6).

D. Strong dipole-field interaction

We now examine the regime of strong coupling of the
two emitters to a single electromagnetic mode. To pro-
ceed, we use the expansion of the Green function in
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FIG. 5: Solide line: Normalized modification in the donor
linewidth due to the presence of the acceptor Γinter/Γ1 ver-
sus the distance d between donor and acceptor. Dashed line:
Normalized energy transfer rate Γet/Γ1 calculated using ex-
pression (55).

Eq. (33). For convenience we introduce the Purcell factor
experienced by each emitter, defined by

Fi =
6πc3

ω2
mγm

|em(ri) · ui|2 for i = 1, 2 . (56)

It follows that

Sii(ω) =
FiΓiγm/4

ωm − ω − iγm/2
− iΓi/2 , (57)

Gij(ω)2 =
FiΓiFjΓjγ

2
m/16

(ωm − ω − iγm/2)2
. (58)

The eigenfrequencies of the coupled system can then be
found by inserting these expressions into Eq. (46), result-
ing in a third-order equation in the complex frequency$p

whose roots can be found analytically. Different behav-
iors can be observed depending on the relative values of
the two coupling constant g1 and g2, defined as

gi =

√
FiΓiγm

4
for i = 1, 2 . (59)

Indeed, if g1 and g2 are substantially different, the emit-
ter with the larger coupling dictates the features of two
splitted eigenmodes (resulting from strong coupling be-
tween this emitter and the field mode), while the third
eigenmode is associated to the other uncoupled emitter.
The situation is more complicated when g1 ∼ g2 since in
this case the features of the three eigenmodes depend on
both emitters. As an example, let us consider two emit-
ters with features matching those of fluorescent molecules
at room temperature, characterized by different resonant
frequencies (ω1 = 2370 meV and ω2 = 2070 meV), by a
radiative linewidth Γ1 = Γ2 = 0.004 meV and by a total
linewidth γ1 = γ2 = 140 meV. We assume the emitters
coupled to a single-mode cavity with ωm = 2220 meV
and γm = 40 meV. Moreover, we set the Purcell factor
seen by emitter 1 to F1 = 3 × 106 so that this emitter
is strongly coupled to the mode (see Fig. 3), while F2

is left as a free parameter allowing us to tune the cou-
pling strength of emitter 2. The behavior of the central
frequency ωp and linewidth γp of the three eigenmodes
is shown in Fig. 6. For F2 � F1, we observe the two
eigenfrequencies resulting from the strong coupling be-
tween the emitter 1 and the field mode, while the third
eigenfrequency is associated with the unperturbed emit-
ter 2. By increasing F2, this third eigenfrequency pro-
gressively changes to the free-space resonance frequency
of emitter 1. In the regime F2 � F1, two eigenfrequen-
cies characterizes strong coupling between emitter 2 and
the field emerge, while the third eigenfrequency is asso-
ciated to the unperturbed emitter 2. This behavior can
be interpreted as follows: The emitter with the largest
coupling constant strongly couples to the field mode, cre-
ating two frequency shifted new eigenmodes, leaving the
other emitter out of resonance.
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FIG. 6: (a) Evolution of the eigenfrequencies in the com-
plex plane when increasing the Purcell factor F2 of emitter 2.
(b) Normalized frequency shift of the three eigenmodes versus
the Purcell factor F2. Error bars represent intervals bounded
by ωp ± γp/2.

VI. GENERALIZATION: N IDENTICAL
DIPOLE EMITTERS IN MUTUAL

INTERACTION

The approach can be extended to N dipole emitters
coupled to a structured environment. In the simplest
situation, we can assume N identical emitters with a po-
larizability α0(ω) given by Eq. (20), all with the same
orientation of their transition dipole. We can also as-
sume that all emitters see the same environment, so
that Sii(ω) = S(ω) and Gij(ω) = G(ω). Finding the
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eigenfrequencies of the coupled system amounts to solve
det(M) = 0, where M is now a N×N matrix. This leads
to the following equation for the complex eigenfrequen-
cies $p: (

1− S($p)− G($p)

ω0 −$p − iγ0/2

)N−1

(60)

×
(

1− S($p) + (N − 1)G($p)

ω0 −$p − iγ0/2

)
= 0 . (61)

Whenever the surrounding medium can be considered as
weakly resonant, the N eigenfrequencies are given by

$−p = ω0 −
i

2
γ0 − S(ω0)− (N − 1)G(ω0) , (62)

$+
p = ω0 −

i

2
γ0 − S(ω0) + G(ω0) , (63)

where the the solution $+
p has a multipicity N − 1. In

contrast, if the surrounding medium is strongly reso-
nant, and the emitters are quasi-resonant with one spe-
cific eigenmode m of the field, we obtain a very dif-
ferent collective behavior. Using the notations $′0 =
ω0 − i(γ0 − Γ0)/2 and $m = ωm − iγm/2, and intro-
ducing the coupling constant g =

√
Γ0γmFm/4 with Fm

the Purcell factor of the mode, we find N + 1 eigenfre-
quencies given by

$±p =
$′0 +$m

2
±

√(
$m −$′0

2

)2

+Ng2 , (64)

$′p = $′0 , (65)

where the solution $′p has a multiplicity N − 1. The
eigenfrequencies given by Eq. (64) can be compared to
the solutions for one emitter strongly coupled to the field
given by Eq. (37). These solutions only differ by a mod-
ification of the coupling constant, and the coupling con-
stant for N identical emitters is simply

√
Ng, where g

is the coupling constant for one emitter. Interestingly,

the weak-coupling and strong-coupling situations lead to
very different results. In particular, when the environ-
ment is weakly resonant, the splitting in frequency and
the linewidth scale with N , as one would obtain with
the theory of Dicke superradiance in the weak-excitation
limit [17]. In contrast, when the environment is strongly
resonant, the splitting scales with

√
N and the linewidth

does not depend on N , in agreement with results ob-
tained with the Jaynes-Cumming Hamiltonian [39]. The
simple coupled-dipoles model introduced in this tutorial
therefore contains the main ingredients to describe col-
lective interactions between quantum emitters under ex-
ternal excitation.

VII. CONCLUSION

In summary, we have presented a semi-classical de-
scription of the interaction between one or several quan-
tum dipole emitters and a structured environment under
weak external excitation. The approach is based on a
self-consistent coupling equation resulting from a scat-
tering picture. This coupling equation serves as a start-
ing point to discuss many interaction regimes, covering
weak and strong-coupling between a single emitter and
the electromagnetic field, collective interactions between
several emitters leading for example to superradiance, as
well as energy transfer between two emitters. This sim-
ple approach provides both a unified description and an
intuitive understanding of the behavior of dipole emit-
ters in (nano)structured environments. It can also serve
as a foundation for more elaborate models, including an
explicit quantization of the electromagnetic field and/or
saturation effects in the emitter dynamics [2, 4, 16, 40].
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