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aUniv Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR T9406, F69622, Lyon, France

Abstract

Accurate computation of failure probability considering uncertain input parameters is very chal-

lenging within limited computational cost. An efficient surrogate model, referred to here as sparse

variational Bayesian inference based polynomial chaos expansion (SVB-PCE), is formulated in

this paper for reliability analysis. The sparsity in the polynomial basis terms is introduced by

the automatic relevance determination (ARD) algorithm and the coefficients corresponding to

the sparse polynomial bases are computed using the VB framework. The reliability analysis is

performed on four typical numerical problems using the SVB-PCE model. The failure probabil-

ity and the reliability index for all the examples are assessed accurately by the SVB-PCE model

using fewer number of model evaluations as compared to the state-of-art methods. Further, the

ARD enables to capture the most important terms in the polynomial bases which also reduces the

computational cost in assessing the failure probability.

Keywords: Sparse Polynomial chaos expansion, variational Bayesian inference, Automatic

relevance determination, Reliability analysis

1. Introduction

In most of the real life engineering problems, some inherent randomness are always present.

The need of probabilistic analysis arises from these uncertainties. Reliability analysis aims at

assessing the failure probability associated with the integral of the distribution over the failure

region. The failure probability (Pf ) is computed by integrating the joint probability distribution

function (PDF) (fx (x)) over all the random variables in the failure region of the limit state function

(g (x) ≤ 0) which is given by:

Pf = p (g (x) ≤ 0) =

∫
g(x)≤0

fx (x) dx (1)

where g (x) represents the limit state function (LSF) for the quantity of interest (QoI) of a problem.

One of the important aspects in the assessment of Pf is the evaluation of the LSF in the failure
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region. Monte Carlo simulation (MCS) is one of the useful methods for the computation of failure

probability for any type of problem more accurately. However, MCS requires a large number of

model evaluations for assessing an accurate Pf (especially for the low failure probability problems)

which limits the method in applying for a large scale engineering problem. Other sampling based

methods include subset simulation [1, 2], importance sampling [3, 4], line sampling [5], directional

simulation [6], Latin hypercube sampling (LHS) [7]. On the other hand, there are some approxi-

mation techniques (based on gradient) available in literature such as first order reliability method

(FORM) [8] and second order reliability method (SORM) [9]. These methods approximate the

boundary of the failure region (i.e. g (x) = 0) and a search process is used to identify the most

probable point (MPP). The failure probability of some linear and weakly nonlinear problems can

be computed using FORM and SORM. However, in many complex situations, these methods are

inaccurate due to highly nonlinear LSF and large number of uncertain parameters.

A distinct approach has been addressed in the literature to deal with the above-mentioned

issues, it is based on surrogate models. Surrogate models approximate the LSF more efficiently as

compared to the above-mentioned methods. Several surrogate models have been investigated in

last two decades for the reliability analysis which are polynomial chaos expansion (PCE) [10, 11],

Kriging [12], response surface method (RSM) [13, 14], support vector machine (SVM) [15], high

dimensional model representation (HDMR) [16], radial basis function (RBF) [17], neural network

[18] etc. PCE is one of the widely used surrogate models for reliability analysis. As a consequence,

PCE has been improved in many ways according to the problems. The PCE method, which was

developed initially only to account the Gaussian input random variables [19], was improved in [20]

to account the other types of random variables. Further, it was improved in [10] for reliability

analysis of high-dimensional problems. A different type of improvement has been proposed in [11]

for reliability analysis using PCE. Later, the efficiency of both the PCE and the Kriging has been

utilized in [21]. An active learning based PCE has also been used along with the PCE [22] recently.

The main issue with the PCE modelling is the curse of dimensionality. Different approaches

have been adopted by the researchers to address the issue of curse of dimensionality as discussed

previously. The important terms in the PCE model (the terms contributing to predict an accurate

stochastic response) were selected using least angle regression (LARS) [23] in [24]. Bayesian

approach has also been utilized for formulating an efficient PCE model. Bayesian compressed

sensing [25, 26] has been used in [27] to formulate a sparse PCE model for high-dimensional

problems. Further, a Kashyap information criterion based sparse Bayesian PCE model has been

developed in [28]. A sparse PCE model has been developed in [29] using subspace pursuit approach

[30]. Furthermore, D-optimal experimental design has been used to select the sample points

adaptively. Two greedy algorithm has been proposed in [31] to formulate sparse PCE model for

high-dimensional problems. An extensive review of the recently developed sparse PCE approaches
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can be found in [32].

The issue of curse of dimensionality is handled in this paper using a Bayesian inference [33,

34, 35]. A fully Bayesian model is formulated for the PCE using the variational Bayesian (VB)

inference [36, 37, 35]. Further, the sparsity in the PCE model terms is achieved through automatic

relevance determination (ARD) [37]. The main aim of this formulation is the development of a

fully sparse Bayesian PCE model for approximating the QoI in the failure region more accurately

using limited number of model evaluations.

The rest of the paper is organized as follows. The general outline for reliability analysis using

the PCE is explained in section 2. Then, the Bayesian formulation for the PCE is explained in

section 3 and the sparse VB based PCE is formulated in section 4 for reliability analysis. The

applicability of the proposed approach is illustrated through some numerical examples in section 5

and finally, the concluding remarks from the present study are discussed in section 6.

2. PCE for reliability analysis

PCE is investigated in a non-intrusive way in this paper. Usually, N number of model eval-

uations is required beforehand for the non-intrusive approach. Consider d-dimensional random

variable x = {x1, x2, . . . , xd} with N realizations in a matrix X = {x1,x2, . . . ,xd} ∈ RN×d and

the corresponding QoI are inscribed in a vector Y = {Y1, Y2, . . . , YN}T ∈ RN×1. The QoI is

expressed by the PCE in the following way:

Y (X) =

∞∑
i=1

aiΨ
(i) (X) (2)

where, Ψ(i) (X) is the i-th multivariate orthogonal polynomial basis function which is the com-

binations of the univariate orthogonal polynomial bases. A multivariate orthogonal polynomial

basis in terms of the univariate orthogonal polynomial bases is expressed as:

Ψ(i) (X) =

d∏
j=1

φ(i,j) (xj) (3)

where φ(i,j) (xj) is the i-th orthogonal polynomial basis function for the j-th random variable

xj . The univariate orthogonal polynomials for the different types of random variables can be

constructed according to the Askey scheme [38]. The types of polynomial for a variety of input

random variables are given in [20]. The multivariate orthogonal polynomials should satisfy the

condition of inner product between two polynomials:〈
Ψ(i)Ψ(j)

〉
=

∫
RX

Ψ(i) (X) Ψ(j) (X) fX (X) dX = h2
nδij (4)

where, δ is the Kronecker delta which is 1 for i = j and zeros for all the other cases. hn is a

constant which is 1 for the orthonormal polynomials. fX (X) is the joint PDF for all the input
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random variables, and considering all the variables independent, the joint PDF takes the form:

fX (X) =

d∏
i=1

fX (xi) (5)

The PCE as defined in Equation 2, must be truncated with some maximum degree P of

the orthogonal polynomials for the practical implementation. Therefore, the truncated PCE is

represented by:

Y (X) =

n∑
i=1

aiΨ
(i) (X) + εp

= Ψ (X)a+ εp

(6)

where, εp is the residual vector of the truncated PCE and the elements of the vector are assumed

to be Normally independent distributed with zero mean and precision ς−1. i in the expansion

represents the i-th polynomial basis in the truncated PCE. The total number of terms in the

polynomial can be found from all the possible combinations of the input random variables along

with the maximum degree of the polynomial P :

n =

d+ P

P

 =
(d+ P )!

d!P !
(7)

The multivariate orthogonal polynomial in Equation 6 is a matrix Ψ (X) ∈ RN×n and the

coefficient is a vector a ∈ Rn×1. The QoI is calculated initially at some predefined experimental

design (e.g. LHS, Sobol sequence) points which are Y (X) ∈ RN×1 in Equation 6. The only

unknown in the PCE formulation is the coefficient vector a.

The accuracy of the PCE modelling is greatly influenced by the computation of the PCE coef-

ficients. The coefficients are calculated by minimizing the residual error εp. Ordinary least square

(OLS) [39, 40] is one of the most popularly used techniques for computing the PCE coefficients.

The PCE coefficients are calculated using the OLS as follows:

a =
(
ΨTΨ

)−1
ΨTY (8)

In this paper, a distinct approach is proposed to compute the PCE coefficients by a VB inference

[41, 37].

3. Bayesian approximation for PCE

Bayesian inference has already been used efficiently in the machine learning domain [42, 43, 44].

Besides, it has also been successfully applied for the nonlinear system identification problems

[45, 46]. In this paper, the coefficients of the PCE model are computed for the reliability analysis

using a VB inference [41, 37, 33].
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3.1. Formulation of Bayesian inference for PCE

Recall the truncated form of the PCE as defined in Equation 6:

Y (X) = Ψ (X)a+ εp (9)

In Equation 9, the coefficient vector a is calculated through the Bayesian formulation. For the

Bayesian formulation in the present paper, all the notations are used without the functional terms

i.e. Yi = Y (Xi) ,Ψi = Ψ (Xi) ; i = 1, 2, . . . , N . Xi and Ψi represent the i-th row of X and Ψ

respectively. Therefore, having the QoI at N number of samples Y = {Y1, Y2, . . . , YN}T and the

polynomial basis matrix Ψ, the Bayesian model posterior is given by:

p (Θ|Y ) =
p (Y |Ψ,Θ) p (Θ)

p (Y )
(10)

In Equation 10, the Bayesian model parameter is represented by Θ and p (Y |Ψ,Θ) is the likelihood

function which is computed based on the distribution of the Bayesian model parameter and the

polynomial basis. p (Θ) is the prior distribution of the Bayesian model parameter. p (Y ) is the

marginal likelihood which is given by:

p (Y ) =

∫
p (Y |Ψ,Θ) p (Θ) dΘ (11)

To infer an accurate Bayesian model parameter, the posterior must be estimated having the

proper knowledge of the prior and the likelihood function. Given the orthogonal polynomials and

the QoI at the initial experimental design points, the likelihood function is given by:

p (Y |Ψ,a, ς) =

N∏
i=1

p (Yi|Ψi,a, ς) (12)

=

N∏
i=1

N
(
Yi|Ψia, ς

−1
)

(13)

=
( ς

2π

)N
2

exp

(
− ς

2

N∑
i=1

(Yi −Ψia)
2

)
(14)

In Equation 13, the likelihood function is estimated by the Gaussian distribution (N (•) in Equa-

tion 13) with mean Ψia and variance ς−1. To have the conjugacy and continuity in the formulation

[35], the prior is inferred by the joint Gaussian-gamma distribution [47]:

p (a, ς|α) = p (a|ς,α) p (ς) (15)

= N
(
a|0, (ςA)

−1
)

Gam (ς|A0, B0) (16)

= (2π)
−n

2 |A|
1
2
BA0

0

Γ (A0)
ς

n
2 +A0−1 exp

(
− ς

2

(
aTAa+ 2B0

))
(17)

where Gam (•) defines the PDF of the gamma distribution with the distribution parameters A0

and B0. In Equation 17, the prior is expressed with a double exponential form which defines
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Figure 1: Graphical model representing the dependencies between the Bayesian model parameters

the absolute continuity of the prior [47, 37]. The prior is further parameterized by a hyper-prior

α = {α1, α2, . . . , αn}T = diag (A). The determinant of A is given by:

|A| =
n∏
i=1

αi (18)

The exponential form of the Bayesian formulation is also maintained for the hyper-prior. There-

fore, the hyper-prior is expressed with an independent gamma distribution which is given by:

p (α) =

n∏
j=1

Gam (αj |C0, D0) (19)

=

n∏
j=1

DC0
0

Γ (C0)
αC0−1
j exp (−D0αj) (20)

where Γ (•) denotes the gamma function and C0, D0 are the parameters of the gamma distribution

for α. Incorporating all the model parameters, the posterior of the Bayesian formulation is given

by:

p (a, ς,α|Y ) =
p (Y |Ψ,a, ς) p (a|ς,α) p (ς) p (α)

p (Y )
(21)

Having the polynomial basis matrix Ψ ∈ RN×n and the QoI Y ∈ RN×1 at the N experimental

design points, the Bayesian model parameters Θ ∈ {a, ς,α} are inferred by the above-described

Bayesian formulation. A graphical model is shown in Figure 1 which represents the dependencies

between all the Bayesian model parameters. The main objective of this Bayesian formulation is

to infer an appropriate PCE coefficient a. However, the incorporation of the hyper-prior α in the

Bayesian formulation makes the problem intractable [35]. In this respect, the posterior is inferred

by approximating the marginal likelihood which can be carried out by random sampling methods

[48, 49]. However, to minimize the computational cost, a VB inference has been utilized in this

paper to approximately infer the marginal likelihood.
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3.2. Variational Bayesian inference

The posterior is approximated by inferring an approximate solution of the marginal likelihood

p (Y ) through a simple optimization technique [37] by VB inference. For the simplicity in formu-

lation, the marginal likelihood is considered here without the orthogonal polynomial basis matrix

Ψ. Recall the marginal likelihood from Equation 11:

p (Y ) =

∫
Θ

p (Y |Θ) p (Θ) dΘ (22)

An arbitrary variational distribution q (Θ) is considered for the approximation of the posterior

p (Θ|Y ). Further, a variational lower bound (VLB) can be constructed on the arbitrary variational

distribution q (Θ) [35] and the VLB is represented by:

L [q (Θ)] =

∫
Θ

q (Θ) ln
p (Y |Θ) p (Θ)

q (Θ)
dΘ (23)

=

∫
q (Θ) ln p (Y ,Θ) dΘ−

∫
q (Θ) ln q (Θ) dΘ (24)

According to the proper probability distribution, the integral of the variational distribution

with respect to the Bayesian model parameter is
∫

Θ
q (Θ) d Θ = 1. Consequently, the VLB is

depicted by:

L [q (Θ)] =

∫
Θ

q (Θ) ln
p (Θ|Y )

q (Θ)
dΘ + ln p (Y ) (25)

and finally, the log-marginal likelihood is given by:

ln p (Y ) = L [q (Θ)]−
∫

Θ

q (Θ) ln
p (Θ|Y )

q (Θ)
dΘ (26)

= L [q (Θ)] + KL (q (Θ) ‖ p (Θ|Y )) (27)

In Equation 27, the log-marginal likelihood is represented by the VLB and the Kullback-Leibler

(KL) divergence KL (•) from q to p.

The variational distribution is incorporated in the formulation such that an approximate so-

lution for the posterior is achieved by approximating the log-marginal likelihood through the

variational distribution q (Θ). The variational distribution can be inferred either by minimizing

the KL divergence [35, 50] or, by maximizing the VLB L with respect to q (Θ). One possible

solution for the variational distribution q (Θ) is q (Θ) = p (Θ|Y ) when the KL divergence is equal

to zero. A factorized distribution has been used to formulate the variational distribution [51, 52]

in this paper. The variational distribution is described in context of the factorized distribution in

the next section.

3.3. Factorized distribution based VB inference

To confine the distribution family for the variational distribution q (Θ), the variational distri-

bution of the Bayesian model parameters are separated using the factorized distribution. Using the
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factorized distribution, the parameters of the Bayesian model are constructed in a multiplicative

form [35]:

q (Θ) =

Np∏
i=1

q (Θi) (28)

where Np is the number of Bayesian model parameters in Θ. From the above-formulated Bayesian

model, we have three components of the model parameter i.e. Θ ∈ {a, ς,α}. Considering the joint

probability distribution, q (Θ) is subdivided into two components and Equation 28 is given by:

q (Θ) = q (a, ς) q (α) (29)

The Bayesian model parameters are divided intoNp = 2 parts for the present Bayesian formulation.

However, for the generalized formulation, the indicial notation as mentioned in Equation 28 will

be used in the forthcoming derivation.

For the computation of the variational distribution, the lower bound L is maximized with

respect to each component of the variational distribution independently, while the others are

fixed. According to the factorized distribution (see Equation 28), the VLB in Equation 24 is

formulated as:

L [q (Θ)] =

∫ Np∏
i=1

q (Θi)

ln p (Y ,Θ)−
Np∑
i=1

ln q (Θi)

 dΘ (30)

=

∫
q (Θj)

∫ ln p (Y ,Θ)
∏
i 6=j

q (Θi)dΘi

 dΘj

−
∫
q (Θj) ln q (Θj)dΘj + constant (31)

=

∫
q (Θj) ln p̃ (Y ,Θj)dΘj −

∫
q (Θj) ln q (Θj)dΘj + constant (32)

= −KL (q (Θj) ‖ p̃ (Y ,Θj)) + constant (33)

where
∑
i 6=j
∫
q (Θi) ln q (Θi) dΘi are inserted in the constant term. It should be noted that a new

probability distribution is defined in Equation 32 as p̃ (Y ,Θj) [35] which is given by:

ln p̃ (Y ,Θj) = Ei6=j [ln p (Y ,Θ)] (34)

where Ei 6=j [•] represents the expectation with respect to all the distribution q (Θi) for all i 6= j

which is a part in the first integral of Equation 31 i.e.

Ei6=j [ln p (Y ,Θ)] =

∫
ln p (Y ,Θ)

∏
i 6=j

q (Θi)dΘi (35)

The VLB in Equation 33 represents a negative KL divergence from q (Θj) to p̃ (Y ,Θj). The

variational distribution can also be inferred by minimizing the KL divergence which is ultimately
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maximizing the VLB. The minimum of the KL divergence occurs when q (Θj) = p̃ (Y ,Θj). There-

fore, the optimal solution for the j-th distribution (when the KL divergence is minimum for the

j-th distribution), keeping the others fix at q (Θi 6=j), is given by:

ln qk (Θj) = Ei 6=j [ln p (Y ,Θ)] (36)

where k in the subscript represents the number of iterations for the maximization of the VLB.

The optimization is performed using Equation 36 iteratively. The k-th VLB is computed using

all the updated parameters in the (k − 1)-th step. All the factors of q (Θi) are initialized to get

an accurate estimation for the q (Θj). The convergence of the VLB is guaranteed [53] because the

VLB is convex with respect to all the component of the variational distribution. The convergence

of the VLB can be followed through Equation 24 which is written more explicitly as:

L [q (Θ)] = EΘ [ln p (Y ,Θ)]− EΘ [ln q (Θ)] (37)

3.4. Factorized VB inference for PCE

In this section, the VB inference is formulated for the PCE using the factorized distribution.

We need to formulate two components q (a, ς) and q (α) separately for the PCE. Firstly, keeping

the q (α) fix, the variational distribution q (a, ς) is represented by Equation 36 as:

ln qk (a, ς) = ln p (Y |Ψ,a, ς) + Eα [ln p (a, ς|α)] (38)

where ln p (Y |Ψ,a, ς) and ln p (a, ς|α) can be directly substituted from Equation 14 and Equa-

tion 17 respectively. After substituting both the expressions in Equation 38 and taking all the

terms independent of a and ς in constant, Equation 38 is re-formulated as:

ln qk (a, ς) =

(
n

2
+A0 − 1 +

N

2

)
ln ς

− ς

2

(
aT

(
Eα [A] +

N∑
i=1

ΨT
i Ψi

)
a+

N∑
i=1

Y 2
i − 2

N∑
i=1

YiΨia+ 2B0

)
+ constant (39)

The choice of the type of distribution for the VB inference is solely dependent on the type

of distribution in the Bayesian formulation [35, 54]. Given the Gaussian distribution likelihood

function (refer Equation 13) and the Gaussian-gamma prior (refer Equation 16), the factorized

VB inference for qk (a, ς) is inferred using a conjugate Gaussian-gamma distribution which is given

by:

qk (a, ς) = N
(
a|ak, ς−1Vk

)
Gam (ς|Ak, Bk) (40)

Here Equation 40 can also be expressed similar to Equation 17. After representing similarly with

natural logarithm and by equating the coefficients of − ς
2a

Ta between Equation 40 and Equation 39
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(only expanding the Gaussian distribution), the inverse of Vk can be deduced as:

V −1
k =

N∑
i=1

ΨT
i Ψi + Eα [A] (41)

Similar to Vk, the updated PCE coefficients can be found by equating the coefficient of a, which

is given by:

ak = Vk

N∑
i=1

ΨT
i Yi (42)

The PCE coefficients are updated in each iteration by Equation 42 during the optimization

procedure. However, the parameters of the gamma distribution should also be updated in each

iteration to have an updated variational distribution qk (a, ς). Taking natural logarithm, the part

of gamma distribution in Equation 40 can be represented as:

ln qk (a, ς) = lnN
(
a|ak, ς−1Vk

)
− ς

2

(
N∑
i=1

Y 2
i + 2B0 − aTk V −1

k ak

)

+

(
A0 − 1 +

N

2

)
ln ς (43)

According to the formulation, ς follows gamma distribution with parameter Ak and Bk. Equat-

ing the coefficients of ς of Equation 43 with the PDF of the gamma distribution, Bk is given by:

−ςBk = − ς
2

(
N∑
i=1

Y 2
i + 2B0 − aTk V −1

k ak

)

Bk = B0 +
1

2

(
N∑
i=1

Y 2
i − aTk V −1

k ak

)
(44)

Similarly, another parameter of the Gamma distribution Ak is computed by comparing the coef-

ficients of ln ς:

Ak = A0 +
N

2
(45)

The variational distribution q (a, ς) is optimized by using Equation 41, 42, 44 and 45 in each

iteration for the optimization of the variational distribution q (Θ).

For the optimization of the variational distribution q (Θ), another part of the factorized distri-

bution q (α) must be maximized. Following Equation 36, the log-variational distribution for α is

given by:

ln qk (α) = ln p (α) + Ea,ς [ln p (a, ς|α)] (46)

=

n∑
j=1

(C0 − 1) lnαj −D0αj +
1

2
lnαj −

α

2
Ea,ς

[
ςa2
j

]
+ constant (47)

where p (α) and p (a, ς|α) are substituted from Equation 20 and Equation 17 respectively. The

terms independent of α are considered in the constant. The hyper-prior has already been for-

mulated in the Bayesian formulation by the gamma distribution. For the conjugacy in the VB
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formulation, the variational distribution for α is formulated by the gamma distribution which is

given by:

ln qk (α) =

n∑
j=1

ln Gam
(
αj |Ck, Dkj

)
(48)

By expanding the above-equation and comparing Equation 47 and 48, the two parameters of

the gamma distributions are found. Comparing the coefficients of lnαj and αj between the two

equations, the parameters of the gamma distribution are given by:

Ck = C0 +
1

2
(49)

Dkj = D0 +
1

2
Ea,ς

[
ςa2
j

]
(50)

The expectation parameter in Equation 41 and the expectation in Equation 50 are calculated via

standard moment of the corresponding distributions [35] which are given by:

Eα [A] = Ak (51)

Ea,ς
[
ςa2
j

]
= a2

kj

Ak
Bk

+ Vkjj (52)

where kjj in the subscript denotes the diagonal elements of the matrix V . The expression given in

Equation 51 is a matrix having only the diagonal terms which correspond each of the orthogonal

polynomial bases in PCE:

Eα [αj ] =
Ck
Dkj

(53)

All the diagonal elements of Eα [A] are calculated using Equation 53:

Eα [A] = diag (Eα [α]) (54)

In the above formulation of the variational distribution using the factorized distribution, the

parameters Ak and Ck are constants during the optimization procedure. Whereas, Bk and Dk are

dependent on the updated parameters of the previous iteration. For that reason, Bk and Dk are

initialized at their initial values B0 and D0 respectively. ak and Vk are initialized with the initial

given input as:

a0 =
(
ΨTΨ

)−1
ΨTY (55)

V0 = ΨTΨ (56)

The main aim of the above-mentioned formulation is to estimate an accurate coefficients for

the PCE model which is found at the end of the VB optimization process. The VB inference

has been formulated in accordance with the factorized distribution which does not required the

computation of the VLB. However, the convergence of the optimization is observed using the VLB
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only. The procedure of computing the VLB is described in Appendix A. A convergence criterion

is required to achieve the convergence of the VLB during the optimization process, which is given

by:
L [q (Θ)]k −L [q (Θ)]k−1

L [q (Θ)]k−1

× 100 ≤ TL (57)

where TL is a threshold value defined in percentage. The threshold is required to define initially

in percentage. The whole procedure of computing the PCE coefficients using the factorized VB

inference is given in Algorithm 1.

Algorithm 1 Pseudo-code for the factorized VB inference

1: procedure VB(Ψ,Y , A0, B0, C0, D0)

2: k = 0

3: Ak = A0 + N
2 . Refer Equation 45

4: Bk = B0

5: Ck = C0 + 1
2 . Refer Equation 49

6: Dk = D0

7: for i = 1 : n do

8: Eα [αj ] = Ck

Dkj
. Refer Equation 53

9: end for

10: Eα [A] = diag (Eα [α]) . Refer Equation 54

11: while
L [q(Θ)]k−L [q(Θ)]k−1

L [q(Θ)]k−1
× 100 > TL do . Refer Equation 57

12: k = k + 1

13: V −1
k =

∑N
i=1 ΨT

i Ψi + Eα [A] . Refer Equation 41

14: ak = Vk
∑N
i=1 ΨT

i Yi . Refer Equation 42

15: Bk = B0 + 1
2

(∑N
i=1 Y

2
i − aTk V

−1
k ak

)
. Refer Equation 44

16: for j = 1 : n do

17: Ea,ς
[
ςa2
j

]
= a2

kj
Ak

Bk
+ Vkjj . Refer Equation 52

18: Dkj = D0 + 1
2Ea,ς

[
ςa2
j

]
. Refer Equation 50

19: Eα [αj ]k = Ck

Dkj
. Refer Equation 53

20: end for

21: Eα [A]k = diag (Eα [α]) . Refer Equation 54

22: Update VLB L [q (Θ)]k . Refer Equation 76

23: end while

24: return a,L [q (Θ)] ,Eα [A]

25: end procedure

12



3.5. Sparse VB inference based PCE

The main issue with the PCE is that the computational cost is increased with the increase

of number of random variables, and the increase of the polynomial degree. The sparsity in the

PCE polynomials is introduced here by Automatic Relevance Determination (ARD) [55, 56, 57]

in accordance with the factorized VB inference. The usefulness of a polynomial basis is measured

using the ARD, and the VLB L is utilized to measure the most useful model for a specific problem.

The introduction of the sparsity is solely related to the formulation of the factorized VB

inference for the PCE model. The relation is established here with the hyper-prior α as introduced

in Equation 15. The standard moment of the hyper-priors Eα [A] has been calculated in the

previous section, and this quantity is directly related to the relevance of each of the polynomials.

Eα [A] is a diagonal matrix, and each of the diagonal terms corresponds to each of the orthogonal

polynomials. Therefore, after convergence of the VB inference for a full PCE model, n number

of hyper-priors for all the orthogonal polynomial are available and the inverse of that defines the

ARD values for the full PCE model [58, 46]:

ARDs = diag
(
Eα [A]

−1
)

(58)

where s in the superscript denotes the iteration number for the ARD value (see Algorithm 2).

After performing the VB inference on the full PCE model, the polynomials which have an ARD

value below a threshold are discarded. The threshold value is computed as:

lnT sARD = min (lnARDs) +
max (lnARDs)−min (lnARDs)

ρ
(59)

The threshold can be changed by tuning the resolution of the threshold ρ. The pruning of orthog-

onal polynomials is performed until only one term remains in the polynomial basis (i.e. n = 1).

At the end of the pruning procedure, several sets of polynomials along with the corresponding

VLB values are available: the final most suitable sparse set corresponds to the highest VLB value.

The final sparse polynomial basis is given by:

Ψsparse = Ψs∗ (60)

s∗ = ind
(

max
s

L (Θ)
s
)

(61)

where ind (•) is the index of the polynomial set having the maximum VLB value. The orthogonal

polynomial set which estimates a highest VLB value would assess the most accurate result. The

procedure of obtaining the most appropriate sparse PCE is shown in Algorithm 2.

Remark 1: The threshold for the construction of sparse PCE is obtained using natural

logarithm of the ARD in Equation 59. The main reason behind this formulation is that the

ARD value for a less relevant term may be very less as compared to the highly relevant term

and the chance of pruning a less relevant term (but relevant for the PCE) would be high. To
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appropriately detect the polynomial bases using the ARD value, natural logarithm is used in the

present formulation.

Remark 2: The pruning of number of polynomial bases per cycle (s) is fully dependent on

the tuning parameter ρ. Large number of polynomial bases are pruned with the low value of the

tuning parameter ρ which may leads to an inaccurate set for the estimation using the sparse PCE.

As a consequence, it is always safe to use a ‘high’ value for the tuning parameter ρ (ρ = 1000 is

used in this paper).

Algorithm 2 Pseudo-code for the SVB framework

1: procedure SVB(Ψ,Y , ρ)

2: s = 0

3: Ψ0 = Ψ

4: while n > 1 do . Perform iteration until 1 basis remains

5: s = s+ 1

6: (as,L [q (Θ)]
s
,Eα [A]

s
) = VB(Ψs−1,Y , A0, B0, C0, D0) . Refer Algorithm 1

7: ARDs = diag
(
Eα [A]

−1
)

. Refer Equation 58

8: Calculate lnT sARD . Refer Equation 59

9: Ψ− = ∅

10: for j = 1 : n do

11: if lnARDs ≤ lnT sARD then

12: Ψ− = Ψ− ∪Ψj

13: end if

14: end for

15: Ψs = Ψs−1 \Ψ−

16: n = card (Ψs)

17: end while

18: s∗ = ind (max L (Θ)
s
)

19: Ψsparse = Ψs∗

20: asparse = as
∗

21: indsparse = ind (card (Ψsparse)) . Get the index of final set

22: return asparse,Ψsparse, indsparse

23: end procedure

4. Sparse VB-PCE based reliability framework

Algorithm 1 and 2 are used here for reliability analysis. More specifically, the uncertain QoI

of a physical system is estimated using the sparse VB based PCE (SVB-PCE). The PDF of a
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QoI is computed here using the SVB-PCE surrogate model. Afterwards, the reliability analysis is

conducted by assessing the tail of the PDF of QoI. The procedure of the reliability analysis using

the SVB-PCE surrogate model is given in Algorithm 3.

The surrogate model is trained with some response QoI and the polynomial basis function at

the initial sample points. LHS is used for all the numerical examples to generate the initial sample

points.

As mentioned in section 3.4, some of the parameters in the factorized VB inference formulation

must be initialized to start Algorithm 1. The initial parameters of the distributions are chosen as

A0 = C0 = 1 × 10−2 and B0 = D0 = 1 × 10−4 to have an uninformative prior distribution [46].

To have a good converged results, the threshold of the VLB, TL is chosen as 0.001%.

The two previously outlined algorithms are utilized for the reliability analysis using the above-

mentioned initialized parameters. The proposed framework is shown in Algorithm 3. After getting

the sparse set of the PCE basis matrix and the corresponding coefficients, a MCS is performed

on the surrogate model with new samples using Equation 6, and the probability of failure (Pf ) is

computed just simply by calculating the number of samples exceeding the threshold value (τ) for

the QoI which is given by:

Pf =
card ((τ − Ynew) ≤ 0)

card (Ynew)
(62)

where card (•) is the number of elements satisfying the condition for the corresponding vector.

The reliability index is computed by:

β = −Φ−1 (Pf ) (63)

where Φ−1 is the inverse of the standard normal variate. Further, the predictive distribution

parameters are computed as described in Appendix B and 95% confidence interval (CI) of the

predicted probability of failure is also computed from the distribution parameters.

5. Numerical examples

The applicability of the proposed SVB-PCE model in the reliability analysis is examined in

this section through some numerical problems. More specifically, four problems are solved. Out

of the four, first one is a highly nonlinear test function, second one is a low failure probability

problem, and the last two examples are the structural engineering problems.

All the results assessed by the SVB-PCE model are compared with the sparse PCE [24] and the

full PCE model [20]. The sparse PCE model [24] is designated in this paper by LARS-PCE due to

the use of LARS algorithm [23] for selecting the important terms in the polynomial basis. In all

the numerical examples, the MCS result is taken as the reference. Additionally, the results for the

first and the last two examples are also compared with the results presented in [22]. The accuracy
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Algorithm 3 Algorithm for performing reliability analysis by the SVB-PCE model

1: procedure SVBPCE Reliability(d,N , Distribution type)

2: Initialize P, ρ, τ . Degree of PCE, resolution of SVB and threshold for the QoI

3: X = N samples for d dimension variables by LHS

4: Compute Y (X) . QoI at the N samples

5: Compute Ψ (X) . Orthogonal polynomial basis matrix

6: (asparse,Ψsparse, indsparse)=SVB(Ψ (X) ,Y (X) , ρ) . Refer Algorithm 2

7: Generate/load Xnew . New samples

8: Compute Ψ (Xnew, indsparse) . Sparse polynomial basis matrix

9: Ynew = Ψ (Xnew, indsparse)asparse . Estimate QoI at the new samples

10: Pf = card((τ−Ynew)≤0)
card(Ynew) . Compute failure probability

11: β = −Φ−1 (Pf ) . Compute reliability index

12: end procedure

and the efficiency of the proposed method are measured for all the examples. The efficiency is

measured through the initial number of model evaluations and through the number of effective

polynomial bases (nsparse). A surrogate model having less nsparse in the polynomial basis matrix

is depicted as the most efficient with same number of model evaluations.

5.1. A four branch series system [22]

This is a common benchmark problem for the reliability estimation which was proposed in [59].

The functional form of the series system is given by:

g (x) = min



3 + 0.1(x1 − x2)
2 − (x1+x2)√

2

3 + 0.1(x1 − x2)
2

+ (x1+x2)√
2

(x1 − x2) + 6√
2

(x2 − x1) + 6√
2


(64)

where x1 and x2 are the two random variables which are normally distributed with mean zero and

unit variance (i.e. xi ∈ N [0, 1]). Similar to [22], it is assumed that failure occurs when g (x) ≤ 0.

The failure probability and the reliability index are computed by the full-scale MCS using

N = 108 number of model evaluations which is taken as the reference solution for this problem.

The failure probability and the reliability index by the MCS are estimated as Pf = 4.46×10−3 and

β = 2.61, respectively. Further, the failure probability is computed by the SVB-PCE, LARS-PCE

and the full PCE model.

The evolution of the failure probability and the reliability index with different number of model

evaluations for all the surrogate models are presented in Figure 2 along with 95% CI fixing P = 2.

It is seen that the results by all the surrogates are converged to the reference result with the
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Figure 2: Evolution of failure probability and reliability index with the increase of the number of model evaluations

by different methods for the series system
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Figure 3: Evolution of failure probability and reliability index with the increase of polynomial degree by different

methods for the series system

increase of number of model evaluations. The convergence is noticeably rapid by the SVB-PCE

model.

It is evident from Figure 2 that N = 100 is sufficient to obtain a good accuracy by the SVB-

PCE model. Further, a study is performed by increasing the degree P keeping N = 100 for all

the surrogate models. The evolution of Pf and β with P is shown in Figure 3. It is seen that the

results predicted by the SVB-PCE model follow the MCS results, however the results by the PCE

model are diverged with the increase of polynomial degree. Almost same results are predicted by

the SVB-PCE model beyond P = 2 because the same terms are selected by the SVB approach

beyond P = 2. For the LARS-PCE model, the results with P = 4 and P = 5 are almost the same

because the same terms are selected for both degrees.

17



Table 1: Prediction of the failure probability and the reliability index for the series system by various methods

Method N Pf 95% CI (Pf ) β 95% CI (β) P nsparse

MCS 108 4.46× 10−3 − 2.61 − − −

PCE 160 4.50× 10−3 − 2.61 − 2 −

LARS-PCE 160 4.68× 10−3 − 2.60 − 2 3

A-bPCE [22] 167 4.63× 10−3 [4.5, 4.7]×10−3 2.60 [2.59, 2.61] 5 12

SVB-PCE 100 4.48× 10−3 [4.45, 4.51]×10−3 2.61 [2.61, 2.62] 2 3

An accurate result is obtained by the SVB-PCE model using lower (N = 100) number of model

evaluations as compared to the full PCE (N = 160) and LARS-PCE (N = 160) model. All the

results are presented in Table 1 along with the results from [22]. It is seen clearly that the SVB-

PCE model outperforms other surrogates in efficiency as it requires much less number of model

evaluations. Furthermore, a narrow 95% CI suggests a stable prediction by the SVB-PCE model.

Same number of sparse bases are noticed for the SVB-PCE and the LARS-PCE model, however,

the accuracy of the results are higher for the SVB-PCE model. The number of important bases

for A-bPCE model [22] is little higher due to the high degree polynomial.

5.2. A small failure probability problem [60]

A small failure probability problem is considered in this example. The functional form is given

by:

g (x) = 0.5 (x1 − 2)
2 − 1.5 (x2 − 5)

3 − 3 (65)

where x1 and x2 follow standard normal distribution. The failure occurs when g (x) ≤ 0. The

reference solution is obtained by the MCS approach using 107 number of model evaluations.

The reference failure probability and the reliability index are found as Pf = 2.84× 10−5 and

β = 4.0257, respectively.

The SVB-PCE, LARS-PCE and PCE models are used to predict the failure probability and

the reliability index. The evolution of Pf and β with the increase of polynomial degree is shown

in Figure 4 for N = 15. It is seen that the SVB-PCE model is predicted a good result only using

N = 15 and P = 3. The results by the SVB-PCE model beyond P = 3 is almost same because

the same terms are selected by the ARD algorithm beyond P = 3. Furthermore, the PCE model

is unable to predict a good result due to the less number of model evaluations as compared to the

number of terms. The LARS-PCE model is also predicted close to the MCS results using P = 6,

however the results predicted by the SVB-PCE model is more accurate. The CI is quite high at

the beginning, however it is very narrow when the results converge with the MCS results.

The results obtained by all surrogate models are listed in Table 2 along with the MCS results.
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Figure 4: Evolution of failure probability and reliability index with the increase of polynomial degree by different

methods for the small failure probability problem

Table 2: Prediction of the failure probability and the reliability index for the small failure probability problem by

various methods

Method N Pf 95% CI (Pf ) β 95% CI (β) P nsparse

MCS 107 2.84× 10−5 − 4.0257 − − −

PCE 15 8.85× 10−4 − 3.1263 − 7 −

LARS-PCE 15 1.63× 10−5 − 4.1545 − 6 6

SVB-PCE 15 2.84× 10−5 [2.67, 2.91]×10−5 4.0257 [4.02, 4.04] 3 6

For the PCE and the LARS-PCE models, the best obtained results are listed in the table. It

is noticed that the PCE model is predicted the worst results. The LARS-PCE model predicted

results are quite close to the MCS results, however, a more accurate result is predicted by the

SVB-PCE model only with P = 3. The 95% CI are also computed from the predictive distribution

parameters (Appendix B) for the SVB-PCE model. The CI is small, therefore the uncertainty in

the prediction is quite low for the SVB-PCE model.

5.3. A 23 bars truss problem [24]

To check the applicability of the SVB-PCE on structural engineering problems, a 2D truss is

taken in this example. The truss structure is shown in Figure 5.

The truss shown in Figure 5, is a simply supported two dimensional truss having 6 point loads

(P1, P2, . . . , P6) acting on it. All the loads are considered uncertain for this problem and follow the

Gumbel distribution. The Young’s modulus and the cross-sectional areas of all the members are

also considered uncertain and follow a Lognormal distribution. All the uncertain parameters of the

truss are given in Table 3 along with their mean and standard deviation. A1 and E1 correspond

19



Figure 5: Geometrical view of the 2D truss with all the loading conditions

Table 3: Description of random variables for the truss structure

Random variable Distribution Mean Standard deviation Unit

E1, E2 Lognormal 2.1× 1011 2.1× 1010 Pa

A1 Lognormal 2.0× 10−3 2.0× 10−4 m2

A2 Lognormal 1.0× 10−3 1.0× 10−4 m2

P1, P2, . . . , P6 Gumbel 5.0× 104 7.5× 103 N

to the black members, and A2 and E2 correspond to the red members in Figure 5.

The QoI for this problem is considered as the vertical deflection at the mid span of the truss

(v). For the reliability analysis, the threshold value of the vertical deflection is considered as

τv = 0.12m. The LSF for this problem is given by:

g (X) = τv − v (X) (66)

where g (X) ≤ 0 denotes the failure region.

The failure probability and the reliability index for this problem is computed by the full-scale

MCS using 106 number of model evaluations. Each of the model evaluations is performed in a

MATLAB based finite element framework.

For the computation of Pf and β by the full PCE, the LARS-PCE and the SVB-PCE, the

degree of the polynomial is taken as P = 2. As a consequence, the full PCE model consists of

n = 66 terms in the polynomial basis matrix.

The failure probability and the reliability index computed by all the methods are listed in

Table 4 along with the results reported in [22]. An accurate result is achieved by the SVB-PCE

model using much less number of model evaluations as compared to the other surrogate models.

As a result, a low computational cost is required for assessing the failure probability by the SVB-

PCE model. Along with this, only 30.30% terms in the polynomial basis are required for the

assessment of QoI by the SVB-PCE. On the other hand, LARS-PCE requires 63.64% terms in the
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Table 4: Prediction of the failure probability and the reliability index for the 2D truss by various methods

Method N Pf 95% CI (Pf ) β 95% CI (β) P nsparse

MCS 106 1.50× 10−3 − 2.97 − − −

PCE 180 1.47× 10−3 − 2.97 − 2 −

LARS-PCE 150 1.41× 10−3 − 2.98 − 2 42

A-bPCE [22] 129 1.48× 10−3 [1.43, 1.54]×10−3 2.97 [2.96, 2.98] 3 43

SVB-PCE 90 1.49× 10−3 [1.45, 1.54]×10−3 2.97 [2.96, 2.98] 2 20

Table 5: Details of the elements of the frame structure

Element Modulus of elasticity Moment of inertia Cross-sectional area

B1 E4 I10 A18

B2 E4 I11 A19

B3 E4 I12 A20

B4 E4 I13 A21

C1 E5 I6 A14

C2 E5 I7 A15

C3 E5 I8 A16

C4 E5 I9 A17

polynomial basis to assess Pf and β. A similar number of terms were also required by the A-bPCE

model [22]. Furthermore, the 95% CI for the SVB-PCE and A-bPCE models are very close to

each other. The level of uncertainty in the failure probability prediction is very low, however, the

SVB-PCE model is much efficient considering a lower number of model evaluations.

5.4. A multi-storied frame structure [61]

The fourth illustration is a two dimensional multi-storied frame structure. This example has

been investigated previously in several research articles [61, 10, 22]. The frame structure along

with all the loadings and dimensions are shown in Figure 6. The frame consists of four dif-

ferent types of beams (B1, . . . , B4) and four different types of columns (C1, . . . , C4). All the

beams and columns are marked in Figure 6 and the properties of all the elements are given

in Table 5. For the present frame structure, all the loads (P1, . . . , P3), modulus of elasticities

(E4, E5), moment of inertias (I6, . . . , I13) and cross-sectional areas (A14, . . . , A21) are considered

uncertain. A total 21 random variables are present in the system which can be represented as

X = {P1, . . . , P3, E4, E5, I6, . . . , I13, A14, . . . , A21}.

Along with these uncertainties, the random variables are correlated with each other. The
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Figure 6: Geometrical view of the multi-storied frame

correlation coefficients between the random variables are given below:

• The modulus of elasticities are highly correlated i.e. rE4,E5
= 0.9.

• The moment of inertia and the cross-sectional of the each element in Table 5 are also highly

correlated i.e. rIi,Ai = 0.95.

• The correlation coefficients between the other material properties are very low i.e. rIi,Aj
=

rIi,Ij = rAi,Aj
= 0.13.

• The correlation coefficients between all the other variables are zero.

The correlation coefficients for this example are more explicitly given in [62]. In the formulation

of the surrogate models, the correlated variables are modelled with the Gaussian copula [63] and

the random variables are casted as the independent random variables with respect to their marginal

probability distribution. The mean and standard deviation for all the random variables are listed

in Table 6.

1The Truncated Gaussian distributed variables are truncated in [0,∞], however, the means and the standard

deviations are given for the full Gaussian distributions
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Table 6: Description of the random variables for the frame structure

Random variable Distribution 1 Mean Standard deviation Unit

P1 Lognormal 133.454 40.04 kN

P2 Lognormal 88.97 35.59 kN

P3 Lognormal 71.175 28.47 kN

E4 Truncated Gaussian 2.1738× 107 1.9152× 106 kN m−2

E5 Truncated Gaussian 2.3796× 107 1.9152× 106 kN m−2

I6 Truncated Gaussian 8.1344× 10−3 1.0834× 10−3 m4

I7 Truncated Gaussian 1.1509× 10−2 1.2980× 10−3 m4

I8 Truncated Gaussian 2.1375× 10−2 2.5961× 10−3 m4

I9 Truncated Gaussian 2.5961× 10−2 3.0288× 10−3 m4

I10 Truncated Gaussian 1.0812× 10−2 2.5961× 10−3 m4

I11 Truncated Gaussian 1.4105× 10−2 3.4615× 10−3 m4

I12 Truncated Gaussian 2.3279× 10−2 5.6249× 10−3 m4

I13 Truncated Gaussian 2.5961× 10−2 6.4902× 10−3 m4

A14 Truncated Gaussian 3.1256× 10−1 5.5815× 10−2 m2

A15 Truncated Gaussian 3.7210× 10−1 7.4420× 10−2 m2

A16 Truncated Gaussian 5.0606× 10−1 9.3025× 10−2 m2

A17 Truncated Gaussian 5.5815× 10−1 1.1163× 10−1 m2

A18 Truncated Gaussian 2.5302× 10−1 9.3025× 10−2 m2

A19 Truncated Gaussian 2.9117× 10−1 1.0232× 10−1 m2

A20 Truncated Gaussian 3.7303× 10−1 1.2093× 10−1 m2

A21 Truncated Gaussian 4.1860× 10−1 1.9537× 10−1 m2
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Table 7: Prediction of the failure probability and the reliability index for the frame by various methods

Method N Pf 95% CI (Pf ) β 95% CI (β) P nsparse

MCS 105 1.51× 10−3 − 2.96 − − −

PCE 300 1.50× 10−3 − 2.97 − 2 −

LARS-PCE 300 1.54× 10−3 − 2.96 − 2 41

A-bPCE [22] 235 1.49× 10−3 [1.42, 1.62]×10−3 2.97 [2.94, 2.98] 2 30

SVB-PCE 200 1.52× 10−3 [1.39, 1.67]×10−3 2.96 [2.93, 2.99] 2 33

The QoI for this problem is the horizontal displacement at the top right corner of the frame (u)

(see Figure 6) and the threshold value for the displacement is given by τu = 0.05m. Consequently,

the LSF for the frame is given by:

g (X) = τu − u (X) (67)

The failure probability and the reliability index are computed by MCS using 105 model eval-

uations. The model evaluations are performed with a MATLAB based FEM code. Similar to the

previous examples, the results are assessed also by the full PCE, LARS-PCE and the SVB-PCE

surrogate model.

The maximum degree of the full PCE model is considered as P = 2. As a consequence, a

total n = 253 terms are found in the polynomial basis matrix for the full PCE model. The results

obtained by all surrogate models are given in Table 7 along with the results reported in [22]. The

failure probability and the reliability index are computed by the SVB-PCE model using N = 200

model evaluations. Whereas, the LARS-PCE and PCE require N = 300 model evaluations to

assess an accurate result. A little higher number of model evaluations were used in [22] by the

A-bPCE model as compared to the SVB-PCE model. Therefore, a fair reduction in the number of

model evaluations is noticed. At the same time, nsparse for the SVB-PCE model is also lower than

that for the LARS-PCE model, and it is little higher than the number of terms selected by the

A-bPCE model [22]. The efficiency is achieved in the two steps using the SVB-PCE model over

the other surrogates. The 95% CI is also obtained from the predictive distribution parameters.

It is observed that the CI for the SVB-PCE model is little higher than the A-bPCE model.

Nevertheless, the required number of model evaluations is much less for the SVB-PCE model as

compared to all other approaches reported in Table 7.

6. Conclusion

The computation of an accurate PDF for a QoI in the failure region is the most important

aspect in the reliability analysis of a system. Many attempts have been made in the past to
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estimate an accurate failure probability by different surrogate models [10, 12, 13, 15]. In this

paper, a surrogate model has been proposed by combining the PCE with the sparse variational

Bayesian (SVB) inference, which is called as SVB-PCE. The SVB framework is a combination

of VB inference and ARD algorithm. Few drawbacks of the PCE model have been addressed in

the SVB-PCE model. Mainly, the curse of dimensionality has been addressed using the ARD

algorithm. Along with this, the SVB-PCE requires much less number of model evaluations for

assessing an accurate failure probability.

The applicability of the SVB-PCE model has been illustrated through the reliability analysis

of four typical numerical examples. The failure probability and the reliability index have been

computed for all the examples using much less number of model evaluations by the SVB-PCE

model as compared to the LARS-PCE and the full PCE model. For three examples, the results

have also been compared with the results reported in [22] by the A-bPCE model. The required

number of model evaluations for the A-bPCE model was higher than the SVB-PCE model for the

three examples. Along with this, the SVB-PCE requires very few polynomial bases to assess an

accurate result.

Appendix A Computation of VLB

The VLB must be computed for monitoring the convergence of the variational distribution

q (Θ). The VLB is increased during the optimization procedure in each iteration [64]. Here, the

VLB is computed using the factorized distribution. The VLB as introduced in Equation 23, is

expressed by the factorized distribution:

L [q (a, ς,α)] =

∫∫∫
q (a, ς,α) ln

p (Y |Ψ,a, ς,α) p (a, ς|α) p (α)

q (a, ς,α)
dadςdα (68)

However, the VLB is estimated using Equation 37 by expanding the terms of the equation which

is given by:

L [q (Θ)] = EΘ [ln p (Y ,Θ)]− EΘ [ln q (Θ)] (69)

= Ea,ς [ln p (Y |Ψ,a, ς)] + Ea,ς,α [ln p (a, ς|α)] + Eα [ln p (α)]

− Ea,ς [ln q (a, ς)]− Eα [ln q (α)] (70)

The terms as shown in Equation 70 can be found by taking moments with respect to the

respective parameters. All the terms of Equation 70 can be found by taking the expectations over

the previous derivations. In this way, the first term in Equation 70 is given by taking expectation

of Equation 14 [35]:

Ea,ς [ln p (Y |Ψ,a, ς)] =
N

2
(ψ (Ak)− lnBk − ln 2π)

− 1

2

N∑
i=1

(
Ak
Bk

(Yi −Ψia)
2

+ ΨiVkΨ
T
i

)
(71)
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where ψ (•) is the Digamma function. Similarly, the second term is computed by taking the

expectation of Equation 17 [35] which is given by:

Ea,ς,α [ln p (a, ς|α)] =
n

2
(ψ (Ak)− lnBk + ψ (Ck)− ln 2π)−B0

Ak
Bk

− 1

2

n∑
j=1

(
lnDkj +

Ck
Dkj

(
Ak
Bk

a2
kj + Vkjj

))
− ln Γ (A0) +A0 lnB0 + (A0 − 1) (ψ (Ak)− lnBk) (72)

The rest of terms of Equation 70 are computed similarly by taking the expectations of Equation 20,

40 and 43 [35] and are given by:

Eα [ln p (α)] =− n (ln Γ (C0) + C0 lnD0)

+

n∑
j=1

(
(C0 − 1)

(
ψ (Ck)− lnDkj

)
−D0

Ck
Dkj

)
(73)

Ea,ς [ln qk (a, ς)] =
n

2
(ψ (Ak)− lnBk − ln 2π − 1)− 1

2
ln |Vk| − ln Γ (Ak)

+Ak lnBk + (Ak − 1) (ψ (Ak)− lnBk)−Ak (74)

Eα [ln qk (α)] =

n∑
j=1

(
(Ck − 1)ψ (Ck) + lnDkj

)
− n (ln Γ (Ck) + Ck) (75)

By substituting from Equation 71 to 75 in Equation 70, the VLB is given by:

L [q (Θ)] =− N

2
ln 2π +

1

2
ln |Vk| −B0

Ak
Bk
− 1

2

N∑
i=1

(
Ak
Bk

(Yi −Ψiak)
2

+ ΨiVkΨ
T
i

)
+ ln Γ (Ak)−Ak lnBk +Ak − ln Γ (A0) +A0 lnB0

−
n∑
j=1

(
Ck lnDkj

)
+ n

(
1

2
− ln Γ (C0) + C0 lnD0 + ln Γ (Ck)

)
(76)

Appendix B Prediction distribution

The predictive distribution at the new samples Xnew can be computed having the available

informations D ∈ {X,Y } [35]. Marginalizing over the parameters, the predictive distribution is

given by:

p (Ynew|Ψnew,D)=

∫∫∫
p (Ynew|Ψnew,a, ς) p (a, ς, ω|D) dadςdω (77)

≈
∫∫∫

p (Ynew|Ψnew,a, ς) q (a, ς) q (ω) dadςdω (78)

=

∫∫
N
(
Ynew|Ψnewak, ς

−1
)
N
(
a|ak, ς−1hk

)
Gam (ς|Ak, Bk) dadς (79)

=

∫
N
(
Ynew|Ψnewak, ς

−1
(
1 + ΨnewhkΨ

T
new

))
Gam (ς|Ak, Bk) dς (80)

= St (Ynew|µ,λ, ν) (81)
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where the predictive distribution is Student’s t-distribution (denoted by St) with the parameters

µ, λ and ν. After constructing the SVB-PCE model, the distribution parameters are computed

as:

µ = Ψnewa (82)

λ =
Ak
Bk

(
1 + ΨnewhkΨ

T
new

)−1
(83)

ν = 2Ak (84)

Furthermore, the standard deviation of the predictive distribution is computed as:

σ =

√
(1 + ΨnewhkΨT

new)
Bk

Ak − 1
(85)
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