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Abstract

With the ultimate goal to predict plasmas heat and particle fluxes
in ITER operation, more efforts are required to deal with realistic
magnetic configurations and tokamak geometries. In an attempt to
achieve this goal, we propose an adaptive mesh refinement method
added to a fluid solver based on a high-order hybrid discontinuous
Galerkin (HDG) method. Based on unstructured meshes, this mag-
netic equilibrium free numerical scheme has shown promising and en-
couraging features to solve 2D/3D transport reduced Braginski fluid
equations. To improve its numerical efficiency, a mesh refinement based
on h-adpativity is investigated. We describe here an adaptive refine-
ment strategy on a reduced edge particle transport model based on
electron density and parallel momentum. This strategy is illustrated
in realistic tokamak wall geometry. Computations performed show
potential gains in the required number of degrees of freedom against
benchmark computations with uniform meshes, along with the poten-
tial to give an automated, goal-oriented, mesh generation technique for
edge transport simulations in 2D.

Spatial adaptivity; hybrid discontinuous galerkin; fusion; plasma physics;
h-refinement

1 Introduction

The control of heat fluxes onto the tokamak walls in high energy confine-
ment configurations, for both steady-state and transient regimes must be
addressed to successfully run future ITER experiments. Sustaining burning
plasmas in the core of the machine while achieving sufficient power spreading
on the dedicated wall components to keep the heat flux below the handling
capability of the materials imposes stringent, and conflicting constraints on

1



the tokamak operation. This leads to the design of experiments in ITER
being able to remove the bulk of the energy before it contacts the wall com-
ponents. The difficulty to get global experimental measurements in tokamak,
particularly with a nuclear environment in ITER, makes complementary nu-
merical simulations a valuable asset in interpreting experiments and adjust
the magnetic configuration and plasma parameters to the edge plasma condi-
tions. Thus, reliable numerical simulations are required in realistic tokamak
conditions to better understand how turbulence and transport drive the heat
and the particle from the core to the wall. However, the capability of current
solvers to perform such simulations is still acknowledged by the international
community as being largely insufficient. A strong scale-up of these simula-
tions is required for successful applications to a tokamak of unprecedented
size. In this framework, we have identified that high-order finite-element
methods have the potential to satisfy this objective to progress towards pre-
dictive plasma simulations of ITER. More precisely, we have implemented
a Hybrid Discontinuous Galerkin (HDG) method to solve 2D/3D transport
equations for a fluid Braginskii model in the whole vacuum chamber what-
ever the geometrical complexity, and eventually for non-steady magnetic
equilibrium [1], a critical point to model the discharge start-up phase. Due
to the capability of the solver we are able to handle structured, unstructured
and overall non-aligned meshes with the magnetic field. To improve the effi-
ciency of this solver and target ITER simulations, we present in this work an
adaptive mesh refinement method to dynamically re-adjust the mesh within
certain sensitive regions and locally decrease the error. This new feature
leads to an increase of accuracy of the solution and allows first solving prob-
lems with coarse meshes, that are then refined to capture large local gradients
usually found between edge and scrape-off layer (SOL), following specific er-
ror estimators of the output. These error estimators result in a spatial error
distribution, which is then used to drive the adaptive refinement strategy,
leading to a local mesh subdivision, that is the h-refinement. This allows to
consider the whole domain with edge and core with a mesh adaptively refined
in the areas of greater interest, such as the separatrix (or Last Closed Flux
Surface in limited plasmas) and the SOL while the parts that do not require
fine resolution of the solution are coarsened. The realization of the adaptive
part is made with Mmg, an open source software for simplicial remeshing
[2, 3], that is linked to the HDG main code. In this paper, we would like to
show the possibility to adapt the mesh iteratively on a reduced 2D model
for ion density n and particle flux Γ in the direction parallel to the magnetic
field, by following several error estimators strategies in order to demonstrate
the usefulness of an adaptive method. This simplified 2D model involves
the basic physical aspects that are required in the 3D transport analysis,
combined with a complete set of numerical tasks already findable in more
complex models. A particular effort is put into the identification of relevant
error estimators that can accommodate the fact that plasma properties, and
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therefore absolute errors, vary by several orders of magnitude between the
core and the wall. These estimators are then exploited to devise refinement
strategies that can adequately refine the mesh where required, typically in
the neighborhood of the separatrix and close to the wall, while reducing the
memory and computational cost of the simulation.

2 Physical Model

The standard way to investigate turbulence and transport in the plasma edge
under high-collisionality conditions [4], is a fluid model based on Braginskii
equations, associated with Bohm boundary conditions at the plasmaâĂŞwall
interface. We have considered both a circular geometry with limiter and real-
istic WEST tokamak geometry, both restricted to the edge and SOL regions.
The strong intensity of the magnetic field B leads to a specific flow direc-
tion, along which the governing equations are projected using differential
operators: ∇‖ = b · ∇ and ∇⊥ = ∇ − b∇‖ , where b = B

‖B‖ is the unitary vector
parallel to the magnetic field. Using simplified closures developed by Bragin-
skii, the two-dimensional fluid conservation equations for electrons and ions
can be derived. Under some hypotheses and ordering [4], a minimum system
involving the ion density n and parallel momentum Γ = nu can be consid-
ered. Then, considering the quasi-neutral limit (ne ≈ Zni) and neglecting
the electron inertia (me

mi
' O(10−3)), the system for an isothermal plasma is:

∂tn + ∇ · (nub) − ∇ · (D∇⊥n) = Sn (1)

∂t (nu) + ∇ · (nu2b) + ∇‖ (c2sn) − ∇ · (µ∇⊥nu) = SΓ (2)

The variable cs refers to the speed of sound while Sn and SΓ are the sources
that drive the particle and momentum flux, respectively. The effective dif-
fusion coefficients D and µ are taken into account for both collisional trans-
port and turbulence in the cross-field direction (described via a gradient
diffusion hypothesis). They are assumed to be uniform in the poloidal cross-
section. In this paper, they are also assumed to be equal, D = µ. The
non-dimensionalization used to obtain this system can be found in the ref-
erence [4]. The system under considerations is dissipative and yields no
instabilities and we have therefore considered the steady-state version of the
model presented for the whole set of simulations carried out and showed in
this paper.

2.1 Boundary conditions

The system is provided with appropriate boundary conditions modelling the
plasmaâĂŞwall interaction: at the wall, the density is left free, and the plas-
maâĂŞwall interaction is usually described by the Bohm boundary condition
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for the parallel velocity [4]. This imposes an outgoing sonic isothermal ve-
locity at the wall, such that:

u
cs
= M = ±1 (3)

where M is the Mach number. When the computational domain is restricted
to the plasma edge, boundary conditions are also required to model the
interaction with the core. In this case the dimensionless boundary conditions
on the inner boundary are both of the Dirichlet type, with n = 1 and Γ= 0.
To conclude this section, let us remark that this reduced model contains
two of the key numerical issues of more complete fluid edge models, that
is, taking account of the magnetic geometry complexity whilst appropriately
describing the wall with the adequate Bohm boundary conditions.

3 HDG and spatial adaptivity

3.1 Hybrid Discontinuous Galerkin

In order to solve the 2D model presented we use a specific high-order solver,
SOLEDGE3X-HDG, where the parallel flux is described as a compressible
isothermal gas flow, while transport processes in the perpendicular plane,
dominated by turbulence, are modelled as an effective diffusion[4]. It is
noteworthy that the greater cost of Discontinuous Galerkin methods comes
from the fact that the residuals inside one element depend on the states of
neighbouring elements. This can be explained by the coupling between the
degrees of freedom used to approximate an element-wise discontinuous high-
order polynomial solution that increases the memory requirements for the
solver. The hybridization of DG [5] modifies its discretization in order to
reduce its calculation and memory cost for a given mesh while exploiting its
high-order accuracy. It is possible to reduce the number of globally coupled
degrees of freedom (DOF) by decoupling element solution approximations
from each other, while the elemental DOFs are linked to the new face DOFs
through fluxes such as in the finite volume methods. Then we can define an
approximation of the solution, called the trace solution, which is defined on
the element borders. Thus, using a static condensation procedure the only
globally coupled DOFs are the face unknowns (trace solution). Then, it is
straightforward to see the gain in term of computational time and memory,
due to the fact that the number of face unknowns scales as pdim−1 compared
to the pdim scaling for elements. Going towards a more precise explanation of
the HDG scheme used, we can resume it in a two-step evaluation: the finite
element discretization to solve a local problem in each element, that is a weak
formulation of the main system written in conservative form. Setting up the
global problem is the following part of the HDG process. It lets us to solve
the trace solution for the conservative variables in the entire mesh. Imposing
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the continuity of the fluxes in the weak form, we derive the global problem
across the element borders. Once we obtain the trace solution, it is possible
to recover the elemental one in each element as a local post-process. The
time discretization is fully implicit and is performed using either a first-order
Backward Euler scheme or a second-order Gear scheme [4]. The non-linear
terms are linearized using a classic NewtonâĂŞRaphson method.

3.2 Spatial adaptivity

When the solutions of the problem are smooth, high-order discretization
methods become generally advantageous. On the other side, one of the main
difficulties resides in shocks and other singular features such as large local
gradients, where the approximation with high-order polynomials lose his ef-
ficiency. These features are usually found between edge and SOL around the
separatrix. More useful, for facing such characteristics, is spatial adaptivity
based on h-refinement, in which the mesh size is optimized by refining, locally
in space and dynamically in time, the regions with stiff gradients while keep-
ing a coarse mesh in flow regions where the solution is smooth. The main task
consists in properly balancing the high-order feature (p-refinement) and the
h-refinement, which is currently the area with largest commitment to achieve
the goal of highest precision with the minimum cost[5]. In the ITER size
simulations panorama, turbulent and strongly anisotropic edge plasmas are
good candidates to evaluate the efficiency of mesh adaptivity.

3.3 How to refine

The refinement strategy used here relies on the generation of a sequence of
meshes in order to iteratively reach the desired values of a quality indicator.
In order to perform the meshing part, we have chosen an open-source software
called Mmg [2, 3]. This library allows to implement an adaptation algorithm
in which the mesh is modified according to a prescribed element size map
that is created by setting the wanted edge sizes on each vertex of an existing
mesh. The question then is how to set the mesh size. In the HDG code,
a polynomial approximation of order p is used, and one then expects the
error to scale with mesh size h as hp+1 for sufficiently smooth solutions.
This property can then be exploited in the following manner: knowing the
element mesh sizes {h̃(n)

j } and having an estimate of the elemental errors
{ε̃(n)

j } on element j at iteration n of the refinement process, one can use a
Richardson extrapolation [7] to give a guess of the desired mesh size at the
next iteration, using the formula:

h(n+1)
target, j = exp

( ln (εtarget ) − ln (ε(n)
j )

p + 1
+ ln (h(n)

j )
)

(4)
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In the expression above, ε(n)
j is the nodal error obtain from the calculations

and h(n)
j is the element size map. These two variables, are calculated in the

vertices of the whole mesh [8] using the elemental areas {|Ωk |} as follows:

h j =

∑
i∈S j
|Ωi | h̃i∑

i∈S j
|Ωi |

; ε j =

∑
i∈S j
|Ωi |ε̃i∑

i∈S j
|Ωi |

(5)

in which Sj denotes the set of indices of elements having node j as a vertex.
The hypothesis is that εtarget is local, or rather elemental, and evolves

like the global error. Thus, we expect that the distribution of the error over
the whole mesh, which locally depends strongly on the size of each element,
can be made uniform by appropriate refinements. With this process we can
decrease or increase the mesh size at the same time, both realized locally and
isotropically. Indeed, in the whole procedure we can exploit both refinement
and coarsening where the error is larger or lower than expected, respectively.
In principle, the algorithm thus described can reach the desired accuracy
in one iteration. In practice however, setting the element size at the next
iteration as h(n+1)

j = h(n+1)
target, j can lead to an unsatisfactory convergence of

the algorithm, and it can be improved by using an alternative definition of
the desired element size:

h(n+1)
j =

√
h(n+1)
target, j · h

(n)
j (6)

The latter formula dampens the adaptation process and leads to smoother
convergence in our experience.

3.4 Error estimators

Output-based error estimators computed from solutions provide information
on its accuracy and at the same time can drive the mesh adaptation process in
the HDG discretization. The elemental error is estimated with the difference
between two different solutions f of the code obtained with two consecutive
orders p and p+1, exploiting the property of HDG method to obtain higher
accuracy with very efficient computations at higher orders:

ε f =‖ f p+1 − f p ‖L2 (7)

Then we have set three different error estimator parameters to insert into
the expression of a simple L2 norm weighted by the area of the respective
elements j and used to control and direct the adaptive procedure:

ε̃ f , j =
1

|Ω j |
· ‖ε f ‖L2 (Ω j ) =

1

|Ω j |

[ ∫
Ω j

( f p+1 − f p )2 dΩ
]1/2

(8)

where f is chosen between the density n, the flux Γ and the mach number
M. The control parameter used to stop the adaptive iteration process is the
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global error, calculated with the contributions from all the elements Ne in
the domain:

εglob =

√√√
Ne∑
i=1

‖ε f ‖
2
L2 (Ω j ) (9)

where f represents one the parameters chosen as said. The entire process is
set in this way: first, we set the target precision for the global error. Then,
we let the code going to convergence with the Newton-Raphson iterations
for the initial mesh. At this point it is needed a stopping criterion, so we
compare the global error obtained with the target set and if it is not included
in a 10% range, the adaptive part starts. Thus, we create a new mesh using
the element size map based on the hn+1

j which in turn is based on a specific
estimator as mentioned above. Eventually, the calculation with the HDG
code is repeated on the new mesh and this process is performed iteratively
until the stopping condition is satisfied.

4 Results

In the present work, all computations presented have been performed with
the polynomial order p = 5, which provides the best trade-off between accu-
racy and computing time. The results shown below refer to the geometry of
the tokamak WEST. After the evaluations of the three error estimators, we
came to the conclusion that the density-based one is the most reliable and
shows the most encouraging results compared with the the estimator based
on particle flux Γ or Mach number. Figure 1shows four consecutive stages

Figure 1: Sequence of consecutive refinements and coarsening (from left to
right) starting with a initial coarse mesh of uniform size. The error estimator
used to drive the process is based on the density n with the target error set
at 10−4.

of the refinement process outlined above. It indeed shows a non-uniform
refinement, which highlights specifically known sources of error which are
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the mesh singularities induced by the wall geometry and especially limiters.
These singularities are demanding as they often correspond to regions where
the Mach number switches sign across the magnetic surface crossing the cor-
ner as a result of the Bohm boundary conditions. The solution obtained
from the last mesh, where the convergence of the adaptive process based on
a target of precision of the global error set at 10−4 is reached, is shown in
Figure 2(top). One questionable aspect of the final mesh is that the resolu-
tion is relatively fine in the core compared to the SOL, although both density
and Mach number seem smooth in this region. This aspect is likely related
to the fact that density has larger values in the core. Another aspect worth
noticing comes from Figure 2 (bottom), where is evident how the evaluation
of the error globally becomes more uniform going through the various itera-
tions in respect with the global target precision (10−4) demanded from the
beginning.

Figure 2: Top: solution for the density and parallel velocity at the last
iteration of the adaptive process. Bottom: error map plots at the first and
last iteration. The error estimator used to drive the process is based on the
density n and it is projected on the higher order p + 1 = 6.

This last aspect notwithstanding, an interesting remark can be made on
the calculation time shown in Table 1. This Table shows estimated errors
resulting from computations with uniform meshes, as well as estimated errors
computed with adaptive refinement. It illustrates an evident gain in terms of

8



number of DOFs using the adaptive process: the adaptive refinement requires
at least twice fewer DOFs to reach the target precision 10−4, a precision that
even the most refined uniform mesh could not reach. It is worth noting that
the solution with the uniform mesh does not converge at the theoretically
expected rate for a p = 5 approximation, likely as a consequence that the
exact solution seems not to be arbitrarily smooth around corners in the wall
geometry. The adaptive results generally require fewer DOFs, as they show
strong refinement around the location of these supposed discontinuities in
order to provide a uniform decrease of error over the whole computational
domain, as illustrated in Figure 2 (bottom). Thus, they achieve a much
faster accuracy enhancement as shown between iterations 3 and 4 of the
refinement, where a 3-fold decrease of the estimated error is observed whilst
the number of elements is increased by a mere 23%. In the whole process
the cost of the adaptive part is negligible in respect with code calculations.
Finally, one can remark that the user input is limited: an initial mesh must
be provided, which will then be automatically adapted in order to reach the
estimated error level requested.

Table of results for p = 5 adaptive Table of results for p = 5 non adaptive
Iteration εglob nDOF Ne h εglob nDOF Ne

1 4.43·10−3 8148 388 0.1 4.44 · 10−3 8148 388
2 5.46·10−3 35133 1673 0.09 5.72 · 10−4 21819 1039
3 2.99·10−4 109263 5203 0.02 2.49 · 10−4 307692 14652
4 1.07·10−4 134757 6417

Table 1: Left: results for the polynomial order p = 5 for 4 refinement itera-
tions, showing the global error εglob , the number of degrees of freedom and
the number of element referring to the adaptive sequence of meshes towards
the convergence. Right: results for the polynomial order p = 5 three different
uniform meshes with decreasing mesh size.

5 Conclusions

This paper presents an adaptive mesh refinement for a reduced 2D model
for ion density n and particle flux Γ in the direction parallel to the magnetic
field. The strategy draws on the ease provided by HDG discretization to
provide local error estimates using order p and p + 1 computations on the
same mesh, which are then fed back into mesh generation library which
allows to design the mesh through the use of an element size map. The
map size is constructed by combining the error estimate with a Richardson
extrapolation that provides a guess for the local mesh size required for the
desired error level. This strategy has been shown to converge to required
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estimated error, whilst providing a significant improvement on the number
of DOFs to reach the target when compared to uniform mesh. This strategy
takes only simple inputs from the user, automatically adapting the mesh in
areas where it is needed. The results shown are preliminary, as they do not
cover a more complex edge model. The strategy has therefore to be tested
in more demanding situations, but it provides the basis of a user-friendly
manner of simulating plasma edge transport.
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