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How did they design this game? Swish: complexity and

unplayable positions

Antoine Dailly∗ Pascal Lafourcade Gaël Marcadet

Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne,
Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France

Abstract

Swish is a competitive pattern recognition card-based game, in which players are trying to find a
valid cards superposition from a set of cards, called a “swish”. By the nature of the game, one may
expect to easily recover the logic of the Swish’s designers. However, even with a reverse engineering
of Swish, no justification appears to explain the number of cards, of duplicates, but also under
which circumstances no player can find a swish. In this work, we formally investigate Swish. In the
commercial version of the game, we observe that there exist large sets of cards with no swish, and
find a construction to generate large sets of cards without swish. More importantly, in the general
case with larger cards, we prove that Swish is NP-complete.

1 Introduction

Swish is a pattern recognition card game designed in 2011 by Zvi Shalem and Gali Shimoni and published
by the company ThinkFun [20]. It works as the famous game SET [4, 6, 13], each player having to find a
swish among the 16 cards present on the table before their opponents do. Swish includes 60 transparent
cards where each card contains one points and one circle, coming in four colors. Players simultaneously
try to create a swish by spotting two or more cards that can be laid on top of one another in some manner
so that every point fits in a circle of the same color as we can see in Figure 1 (no two points or circles
can meet). Create a swish, and you claim the cards used, with new cards then being laid out. Whoever
claims the most cards wins the game.

To play this game, it is important to note that the cards are transparent and can be rotated or flipped
through vertical axial symmetry, horizontal axial symmetry or central symmetry, as described in Figure 2
where one card card be rotated or flipped in three other positions.

1.1 Swish cards

There are 60 transparent cards in the commercial version of Swish. Those cards are made up of three
columns and four rows, they are obtained by placing a point in each of the four possible positions
(accounting for symmetries), and then a circle in each of the other possible positions. For the points
in the left column, the circle can be in 11 positions. For the points in the middle column, due to axial
symmetry, the circle can be in 7 positions. Note that this only generates 36 cards, but there are 24 cards
which are duplicated, reaching a total of 60 cards.

∗This author was supported by the International Research Center ”Innovation Transportation and Production Systems”
of the I-SITE CAP 20-25 and by the ANR project GRALMECO (ANR-21-CE48-0004).

1



Figure 1: Swish examples: on the first line a Swish with 2 cards on the left, and a 3 cards Swish. On
the second line a 4 cards Swish and on the last line a 5 cards Swish.

Figure 2: Example of flipping and rotating a card.

Same color cards First, we have all cards where the circle and the point are of the same color, which
appear twice in the deck (16 cards). These cards exist in double in order to form swish of size 2.

We then have cards where the point and the circle are of different colors.
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12 blue point cards We give all bicolored with a single blue point. The cards on the first row appear
twice in the deck (8 cards) and the ones on the second row appear once (4 cards) for a total of 12 cards.

12 orange point cards We give all bicolored with a single orange point. The cards on the first row
appear twice in the deck (8 cards) and the ones in the second row appear once (4 cards) for a total of 12
cards.

10 purple point cards We give all bicolored with a single purple point. The cards on the first row
appear twice in the deck (8 cards) and the ones in the second row appear once (2 cards) for a total of 10
cards.
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10 green point cards We give all bicolored with a single green point. The cards on the first row
appear twice in the deck (8 cards) and the ones in the second row appear once (2 cards) for a total of 10
cards.

Note that the colors represent the position of a point or a circle (blue is for a corner, green for the
middle column and the top and bottom rows, purple for the middle column and the middle rows, orange
for the middle rows and the left and right columns), so they are here to help the player. The game can be
played with single-colored cards. In the rest of the paper, we will not use colors and rely on the positions
of the symbols.

1.2 Generalizing Swish

Since the board game Swish is played on cards of height 4 and width 3, it is trivial to find a large
swish among a given set of cards with a brute-force algorithm (even though it can be difficult for human
players). Hence, we propose a generalization of Swish in order to explore the computational complexity
of the game. Creating general version of games is a standard way of studying their complexity outside of
the often small and thus solvable standard positions, as this was done for SET itself [6, 13], and other
commercial games such as Othello [12], Scrabble [14], Hanabi [2], Kingdomino [16], Backgammon [21],
The Crew [18]; but also for already complex games such as Hex [9], Chess [10], Go [15, 19, 22] or Shogi [1].
For more results on the complexity of games, either combinatorial or commercial, and either standard or
generalized, we refer the reader to [3, 5, 7, 11].

The generalized version of Swish is played on cards of height h and width w. Cards can have one
or several symbols, which can be points or circles. For a given card C, we denote by C[a][b] the spot in
row a and column b. Other than that, the generalized version is played the exact same way as the board
game version: from a set C of cards, the players try to create a swish, that is, a subset S ⊆ C such that
every card is in the same orientation, every point meets a circle, every circle meets a point, and no two
points or two circles meet. The cards can still be flipped or rotated, which can also be seen as applying
axial (vertical or horizontal) or central symmetry.

Since the cards are drawn from the deck at random, the players cannot anticipate what is going to
come next. Hence, we will assume that they will try to maximize their given score at each round of the
game. Thus, the question that we ask is the following: given a set of cards, can we find a swish that is
as large as possible? This optimization question leads to the following decision problem:

Swish
Instance: A set C of cards, an integer k.
Question: Is there a swish S ⊆ C such that |S| ≥ k?

1.3 Contributions and outline

Our results are twofold. First, in Section 2, we study the computational complexity of Swish. We first
study the most basic case of Swish, that is, if there is only one symbol per card. We then prove that
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Swish is NP-complete in the general case, even with as few as three symbols per card. The proof uses
an intermediary step through a more constrained variant of Swish.

Theorem 1. Swish is NP-complete, even if there are at most three symbols per card.

This leaves only the case of two symbols per card open. Then, in the same line as [4], we study in
Section 3 how many cards there can be in a no-swish position, that is, a set that does not contain any
swish. Note that, for the base game, the rules are to play with a set of 16 cards at a time, implying that
this is enough to guarantee finding a swish, but we found a no-swish position of 28 cards. Furthermore,
we construct no-swish positions for the generalized version of Swish with a very high fraction (depending
on the parity of the width and length, roughly half in the worst case) of the total possible cards.

2 The computational complexity of Swish

We first prove the following result, which covers the most basic case for Swish:

Theorem 2. Swish can be solved in polynomial time if there is one symbol per card.

Proof. The algorithm is as follows. First, associate the cards by duplicates. Two cards are duplicates if,
after applying an axial or a central symmetry to one of them, they are identical. For any set of duplicates
of size more than 4, remove duplicate cards until there are exactly 4 of them (this is because no more
than 4 duplicates can be used in the same swish). Then, construct the compatibility graph G: each card
C is a vertex, and there is an edge CiCj if (wlog) there is a point in Ci[a] and a circle in Cj [a]. Now,
we just have to find a maximum-size matching M of G; if |M | ≥ k, then we answer YES, otherwise, we
answer NO. Note that this only works since each card has exactly one symbol: once a card has been
paired with another card, it cannot be paired with another card, except through flipping or rotating it if
it has a duplicate.

The algorithm clearly is polynomial-time, since trimming the duplicates can be done in linear time
through a hash table, constructing the compatibility graph takes polynomial time, and the maximum
matching is polynomial-time solvable [8].

We now focus on the NP-hardness of the generalized version of Swish. We are interested in minimizing
the number of symbols per card, to get closer to the commercial version of Swish. In order to prove
Theorem 1, we are going to go through three intermediary lemmas. First, we are going to prove that
a more constrained variant, Simple-Swish, is NP-complete, even with at most four symbols per card.
Then, we are going to show how to adapt the reduction in order to have the cards have at most three
symbols. Finally, we are going to reduce Simple-Swish to Swish.

The game Simple-Swish is a restricted variant of Swish. The rules are exactly the same, except
that we fix a top and a left side for the cards, and that we can neither flip nor rotate them (hence, it is
forbidden to apply symmetry to cards). This gives us the following decision problem:

Simple-Swish
Instance: A set C of cards, an integer k.
Question: Is there a simple-swish S ⊆ C such that |S| ≥ k?

Lemma 3. Simple-Swish is NP-complete, even if there are at most four symbols per card.

Proof. We will reduce from Max-(2,3)-SAT, a restriction of the classical MAX-SAT problem, which
was proved NP-complete in [17].

Max-(2,3)-SAT
Instance: A formula ϕ in CNF such that every clause is of size 2 and every variable appears in at most 3
clauses, an integer k.
Question: Is there an assignment of the variables such that at least k clauses are verified?
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Let ϕ be a Max-(2,3)-SAT formula with n variables x1, . . . , xn and m clauses c1, . . . , cm, and assume
that the variables are ordered within a clause (so each clause has a first variable and a second variable).
We will create a set C of cards the following way. Each card has height h = max(m,n) and width w = 6
(note that we can assume h≫ 6).

• For every variable xi, create the following cards:

– A card Xi with a point in Xi[i][1] and a circle in Xi[i][3];

– A card Xi with a point in Xi[i][2] and a circle in Xi[i][3].

Those two cards are called the variable cards, which represent the assignment of the variable xi.

• For each variable xi that appears in clauses cj1 , cj2 and cj3 , for each subset J ⊆ {j1, j2, j3} (including
the empty set), create a card Xi,J with a point in Xi,J [i][3] and circles in Xi,J [j][3] for each j ∈ J .

Those eight cards are called the linkage cards, which represent which clause(s) the variable xi

satisfies.

• For each variable xi that appears positively in clauses cj for j ∈ J (we may have J = ∅), create a
card Xi,c with a circle in Xi,c[i][1] and points in Xi,c[j][4] for each j ∈ J such that xi is the first
variable of cj and in Xi,c[i][5] for each j ∈ J such that xi is the second variable of cj .

For each variable xi that appears negatively in clauses cj for j ∈ J (we may have J = ∅), create a
card Xi,c with a circle in Xi,c[i][1] and points in Xi,c[j][4] for each j ∈ J such that xi is the first
variable of cj and in Xi,c[i][5] for each j ∈ J such that xi is the second variable of cj .

Those two cards are called the satisfying cards, which represent the fact that the assignment of the
variable satisfies some clauses it is in.

• For each clause cj , create three cards C1
j , C2

j and C1,2
j with a point in C1

j [j][6], C2
j [j][6] and C1,2

j [j][6],

and circles in C1
j [j][4], C2

j [j][5], C1,2
j [j][4] and C1,2

j [j][5].

Those three cards are called the clause cards, which represent the fact that the clause cj is satisfied
by its first, second or both variables.

The set C contains every variable, clause, linkage and satisfying card as described above, so 12n+ 3m
cards in total. All those cards have at most four symbols. This reduction is depicted on Figure 3. Let
ℓ = 3n+ k. We claim that there is an assignment of the variables satisfying at least k clauses of ϕ if and
only if there is a simple-swish on C of size at least ℓ. Note that the reduction is clearly polynomial.

(⇒) Assume that there is an assignment of the variables satisfying at least k clauses of ϕ. We construct
the following simple-swish S:

• For every variable xi which is assigned as True, add the variable card Xi and the satisfying card
Xi,c to S;

• For every variable xi which is assigned as False, add the variable card Xi and the satisfying card
Xi,c to S;

• For every variable xi, denote by J the set of indices of clauses that are satisfied by the assignment
of xi (we may have J = ∅), and add the linkage card Xi,J to S;

• For every clause cj satisfied by the assignment, add the clause card C1
j (resp. C2

j , C1,2
j ) to S if cj

is satisfied by its first (resp. second, both) variable.

It is clear that S is a simple-swish. First, two points and circles cannot meet. Then, every point meets
a circle and every circle meets a point: the point of each variable card meets the circle of the associated
satisfying card, the circle of each variable card meets the point of the associated linkage card, the point
of each satisfying card meets the circles of each clause card that are satisfied by the given variable, and
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the point of each satisfied clause card meets the circle of one of the linkage cards of one of the variables
satisfying it. Furthermore, S contains exactly one variable, one linkage and one satisfying card for each
variable, as well as one clause card for each satisfied clause, and hence |S| ≥ 3n + k = ℓ.

(⇐) Assume that there is a simple-swish S of size at least ℓ. Due to the construction of the cards,
S can contain at most one variable card, one linkage card and one satisfying card for each variable, as
well as at most one clause card for each clause. Hence, there are at least k clause cards in S. For each
variable xi, if Xi ∈ S assign xi as True and if Xi ∈ S assign xi as False (if none of Xi, Xi is in S, then
assign xi as True by default). Now, every clause card Cj ∈ S can only be there if some variable card Xi

(resp. Xi) such that xi ∈ cj (resp. xi ∈ cj). This implies that, for every clause card Cj ∈ S, at least one
of the two variables in cj will be assigned in such a way that cj will be satisfied. Hence, at least k clauses
of ϕ will be satisfied.

Lemma 4. Simple-Swish is NP-complete, even if there are at most three symbols per card.

Proof. Assume that there are n Simple-Swish cards of height h and width w with at most four symbols
per card. We will create 4n cards with at most three symbols per card. Those cards will be of height
h + n and width w (note that we can assume h ̸= w and h + n ̸= w).

For each card Ci with symbols on Ci[j1][k1], Ci[j2][k2], Ci[j3][k3] and Ci[j4][k4] (including no symbol),
create the four following cards:

• C1
i with a point in C1

i [h + i][1], and C1
i [j1][k1] = Ci[j1][k1];

• C2
i with a circle in C2

i [h + i][1], a point in C2
i [h + i][2], and C2

i [j2][k2] = Ci[j2][k2];

• C3
i with a circle in C3

i [h + i][2], a point in C3
i [h + i][3], and C3

i [j3][k3] = Ci[j3][k3];

• C4
i with a circle in C4

i [h + i][3], and C4
i [j4][k4] = Ci[j4][k4].

For (C, k) an instance of Simple-Swish, create a set C ′ of cards as described above, and let (C ′, 4k) be
a new instance of Simple-Swish. Clearly, there is a simple-swish of size at least k in C if and only if
there is a simple-swish of size at least 4k in C ′, and each card in C ′ has at most three symbols.

Observation 5. The reduction of Lemma 4 can start from cards with at most n symbols, where n is a
constant integer.

We are now ready to prove our main result:

Theorem 1. Swish is NP-complete, even if there are at most three symbols per card.

Proof. We will reduce from Simple-Swish. Let (C, k) be a Simple-Swish position, with C containing
cards of height h and width w with at most three symbols per card. We create the set C ′ as follows. For
every card Ci ∈ C, add to C ′ four cards C1

i , C2
i , C3

i and C4
i of height 2h and width 2w (the construction

assumes that h ̸= w; if h = w, we can adapt it by adding an empty buffer column in the middle of
C1

i , C2
i , C3

i and C4
i ). Set C1

i [a][b] = Ci[a][b] for a ≤ h and b ≤ w, and no other symbol on C1
i . Set

C2
i [a][w+1−b] = Ci[a][b] for a ≤ h and b ≤ w, and no other symbol on C2

i . Set C3
i [h+1−a][b] = Ci[a][b]

for a ≤ h and b ≤ w, and no other symbol on C3
i . Set C4

i [h + 1− a][w + 1− b] = Ci[a][b] for a ≤ h and
b ≤ w, and no other symbol on C4

i . In other words, each of the four cards is divided in four parts, C1
i

contains Ci in the top left, C2
i contains the vertical axial symmetry of Ci in the top right, C3

i contains
the horizontal axial symmetry of Ci in the bottom left, and C4

i contains the central symmetry of Ci in
the bottom right. We now prove that there is a simple-swish of size at least k in C if and only if there is
a swish of size at least 4k in C ′.

(⇒) Let S be a simple-swish of size at least k in C. We construct S′ by taking, for every card Ci ∈ S,
the four cards C1

i , C2
i , C3

i and C4
i . By leaving them in their original position, we obtain a swish of size

at least 4k in C.
(⇐) Let S′ be a swish of size at least 4k in C ′. First, we can assume that every card in S′ is in its

original position. Indeed, using symmetry or a rotation on a card Cj
i ∈ C ′ changes it to another card of

7



• •

Variable cards for x1

• •

Variable cards for x2

• • •

Clause cards for c1

• • •

Clause cards for c2

• • •

Clause cards for c3

•
•

•

Satisfying cards for x1

•
•

•

Satisfying cards for x2

• • • • •
. . . . . .

Five of the eight linkage cards for x1

• • • • •. . . . . .

Five of the eight linkage cards for x2

Figure 3: An example of the reduction of Lemma 3, with c1 = (x1 ∨ x2), c2 = (x2 ∨ x1), c3 = (x1 ∨ x2).
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Figure 4: Example of a swish of 3 cards, with explicit compatibility using ordinary directed graph.

C ′ (for instance, using vertical axial symmetry on C2
i gives C4

i ). However, when there are two identical
cards in a set, only one of them can be used in a swish without using symmetries or rotation. Hence, if a
card in S′ was used after a symmetry or a rotation, then, we can replace it in S′ by the equivalent card
with no symmetry or rotation.

Now, there are 4k cards in S′, all in their original positions (i.e., no symmetry or rotation was applied
to any card). Hence, S′ can be subdivided in four subsets S′

1, S′
2, S′

3 and S′
4, such that S′

j = {Sj
i | S

j
i ∈ S′}.

Each of the S′
j ’s is a swish, since the cards in each subset do not interact with each other by construction.

By the pigeonhole principle, at least one of the sets S′
j is of size at least k. Let S = {Si | Sj

i ∈ S′
j}, S is

a swish of size at least k in C.

3 Swish has large unplayable positions

In Swish, an unplayable position, or no-swish position, is a set of cards where no swish exists. Large
no-swish positions are particularly interesting for Swish, since other games tend to not have them (in
particular, it is well-known that the commercial version of SET has no unplayable position). In this
section, we will be studying no-swish positions for both the commercial and the generalized version of
Swish. We thus focus on cards with exactly two symbols (one circle and one point). Furthermore, for
simplification, we assume that no card appears twice (accounting for its possible configurations) in the
generalized version.

Finding the largest unplayable position for the generalized version is hard, since there are many
possible combinations. However, finding the largest no-swish position for the commercial version of the
game, containing 60 cards (described in the introduction) is a more achievable challenge. We will present
the largest no-swish position of the commercial version of Swish, before presenting a construction of
a large no-swish position for the generalized version, of which a commercial no-swish position that we
found (removing duplicates) is a direct application.

Note that our analysis holds for rectangular cards, that is, cards where the height and width differ.
Indeed, if the height and width are the same, then there are four more operations that can be applied to
change the configuration of the card, which changes the game.

3.1 Commercial no-swish

First of all, we need to give an algorithmic-friendly representation of Swish, including cards, rotations
but also handling the definition of compatibility between two cards, at the heart of a swish. By the
nature of the game, two cards are said to be compatible if the point of the first card meets the circle of
the second card. Observe that the compatibility between two cards, generalized to all the cards in Swish,
is very close to a directed graph structure, the nodes of the graph being the cards and the arcs being
the compatibility between the cards. Following this idea of graph structure to represent compatibility
between cards, a swish essentially corresponds to a cycle in the graph, as depicted in Figure 4.

At this point, the definition of a swish becomes clearer: A swish is a cycle of length 2 or higher in
a graph (that will be constructed from the compatibility relation), each node of the cycle representing
the card involved in the swish, and each arc of the cycle corresponding to the compatibility between two

9



consecutive cards. Such a cycle C can be written formally as the set of traversed nodes or cards c1, . . . , cn,
where for each couple of cards ci and ci+1, there is a directed arc between ci and ci+1 (with cn+1 = c1).

However, this seemingly intuitive graph structure is not sufficient. Recall that in Swish, a card
contains four possible configurations as depicted in Figure 2, and since all four configurations of the card
are modeled as a single node, then a cycle may represent a false swish: let c1, c2, c3 be three cards where
c1 and c2 are compatible with respect to some configuration r1 and r2, whereas c2 and c3 are compatible
with respect to some configuration r′2 and r3 with r2 different from r′2. Clearly, the cards c1, c2, c3 do
not constitute a swish since a swish is composed of a set of cards and a single configuration for each
card composing the swish. Hence, c1 either matches c2 using configuration r2 or c2 matches c3 using
configuration r′2, but both statement cannot be achieved using the same configuration for c2.

To fix this issue, we rely on directed hypergraph, rather than ordinary directed graph, as depicted in
Figure 5. This has the following two major modifications: first, four nodes are used to represent each
card, one node for each configuration of the card. For the sake of clarity, such a node representing the
configuration of a card is called a configuration node. Second, a hyper-node of the hypergraph represents
a card including all its configuration nodes. Said differently, an hyper-node corresponds to a set of exactly
four configuration nodes. We are now ready to focus on the formal hypergraph-based representation of
Swish.

Formalization of swish. In Swish, a card ci is defined by the position of the point and the cir-
cle, and a card has four possible configurations, denoted by {ri,1, ri,2, ri,3, ri,4}. Remark that among
these configuration nodes, one of them is isomorphic to ci. In order to be agnostic of the card rep-
resentation, we denote by D the domain in which a configuration node ri,j is represented. To obtain
information on the compatibility between configuration nodes, we define a Match : D×D 7→ {true, false}
algorithm allowing us to identify if two configuration nodes ri,j and ri′,j′ match, meaning that the point
in ri,j meets the circle in ri′,j′ . Obviously, the exact definition of the Match algorithm highly depends
on the representation of the configuration node space D. We also define two configuration node ma-
nipulation algorithms FlipLeft : D 7→ D and FlipUp : D 7→ D, allowing respectively to apply axial
symmetries to a configuration node on the left-side and on the up-side, respectively. Observe that the
set of four configuration nodes {ri,1, ri,2, ri,3, ri,4} derived from the same card ci, can be rewritten as
{ri,1,FlipLeft(ri,1),FlipUp(ri,1),FlipLeft(FlipUp(ri,1))} with ri,1 = ci.

We define a Swish-focused hypergraph G = (V, E ,m) as follow:

• The set V ⊆ D corresponds to the set of configuration nodes ri,j associated to the j-th configuration
of the card ci.

• The set E ⊆ V ×V corresponds to the set of compatibility between configuration nodes, where each
e ∈ E , described as the couple (ri,j , ri′,j′) ∈ V × V, must be read as the point of the j-th rotation
of the card ci meets the circle of the j′-th rotation of the card ci′ .

• An additional mapping function m : V 7→ N which maps a configuration node ri,t to an identifier in
N. We implement m such that for a configuration node ri,j , the mapping function m outputs i. We
rely on this mapping function to identify if two configuration nodes ri,j and ri′,j′ are representing
the same card, by testing whether m(ri,j) = m(ri′,j′).

Transposing a set of cards C = {c1, . . . , cn} into a Swish-focused hypergraph can be achieved as
follow: for each card ci ∈ C, denote all four possible configurations of ci by ri,1, ri,2, ri,3 and ri,4. The
set of arcs E of the hypergraph can easily be computed by adding, for two configuration nodes ri,j and
ri′,j′ , the arc (ri,j , ri′,j′) in E if Match(ri,j , ri′,j′) returns true. The mapping function is used in our
representation to limit the use of each card at most once, by restricting the evaluation of m(ri,j) for every
configuration node ri,j ∈ V to return i. Observe that at most four configuration nodes can produce the
same identifier i ∈ N, since a card as at most four possible configurations. These configuration nodes
associated with the same identifier compose what we call a hypernode. In the following, we denote by
ConstructHGraph the algorithm which, from a given set of cards C, outputs the associated Swish-focused
hypergraph G = (V, E ,m), working as explained above. By construction, the ConstructHGraph algorithm
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Hyper-node

1

1

1

2

2

2

3

3

3

4

4

4

Figure 5: Example of a Swish-focused hypergraph containing 3 cards. Four possible swishs (identified
by numbers on the arcs) are represented.

has an asymptotic complexity of O(|C|2), since we have to execute the Match algorithm for every distinct
configuration nodes ri,j and ri′,j′ .

Finding a swish in such hypergraph remains very similar to searching a cycle in an ordinary graph:
in a cycle with nodes r1,j1 , . . . , rn,jn , the point of each configuration node ri,ji has to meet the circle
in ri+1,ji+1

, which can be checked by testing Match(ri,ji , ri+1,ji+1
). The only one additional constraint

is that the set of configuration nodes r1,j1 , . . . , rn,jn contained in the cycle has to respect the condition
that for all i, i′ ∈ {1, . . . , n} with i ̸= i′, we have m(ri,ji) ̸= m(ri′,ji′ ), ensuring the cycle to traverse each
hyper-node at most once and hence preventing the use of the same card several times.

Computation of large no-swish positions. Thanks to the ConstructHGraph algorithm, we are able
to define the NoSwishSet algorithm which, given a set of cards C = {c1, . . . , cn}, outputs a subset C′ ⊆ C
where C′ contains no swish of any length. Following the hypergraph modelization, deciding if a given set
of cards does not contain any swish can be trivially formalized as HasNoSwish(C) = ¬HasSwish(C), which
must be read as “check if the given set of cards contains a swish and return the negation of the result”. To
verify if a set of cards C contains a swish, the set of cards will be encoded as a Swish-focused hypergraph,
since the behavior of HasSwish is to decide if there exists some cycle in the hypergraph visiting at most
once (and possibly not) each hypernode. In the following, we denote by FindCycle the algorithm which,
given a Swish-focused hypergraph G = (V, E ,m) and a starting configuration node ri,j ∈ V used to start
the cycle search, outputs a cycle C respecting the above conditions, or ⊥ if no cycle can be found.

Let us explain the internal behavior of HasSwish, taking as an input a set of cards C. First, the
algorithm constructs the Swish-focused hypergraph G ← ConstructHGraph(C) where G = (V, E ,m).
Then, since we do not know in advance a configuration node being in a cycle (if one exists), we have to
test every configuration node of the G as the starting point for a cycle, leading to repeat the FindCycle
algorithm |V| times. If, for every configuration node, no cycle can be found, then it is clear that no swish
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exists and hence HasSwish returns ⊥. Otherwise, one cycle has been found and we end the algorithm by
returning ⊤. The asymptotic complexity of HasSwish is O(|V|2 + |V| · (|V|+ |E|)) = O(|V|2 + |V| · |E|).

Since HasNoSwish simply negates the output of HasSwish, then the HasNoSwish algorithm has a
quadratic asymptotic complexity. However, our problem is not limited to find a swish, but rather to
find a subset C′ of the set C such that C′ does not contain any swish. Since we are working on the
commercial version of Swish, which has 60 cards in total, we can use the naive approach consisting of
checking for each possible subset C′ of C if it contains a swish, and exclude this subset if it is the case.
This exhaustive search is implemented in practice by using divide-and-conquer: a recursive algorithm
taking as parameters a current set of cards C and the set of remaining cards R, first extracts from R a
card c and calls itself a first time with the parameters C ∪ {c} and R \ {c}, and a second time with the
parameters C and R\{c}. When the set R is empty, then the algorithm runs HasNoSwish(C) and returns
the set {C} if it does not contain any swish, and returns ⊥ otherwise.

Furthermore, we are able to optimize the no-swish set search using the following heuristic: suppose
that C is a set of cards such that HasNoSwish(C) fails, meaning that C contains a swish. Then, for any set
of cards C′, the execution of HasNoSwish(C ∪ C′) also fails. This remark holds since adding a card in the
set of cards C is the same as inserting new configuration nodes and arcs in the hypergraph. As a result,
possibly one or more swish are created, but certainly do not delete any exisiting swish (i.e., cycle) from
the hypergraph. We take advantage of this remark to prune the recursive call tree, by checking during
the recursion if C contains a swish, and halt the recursion if a swish is detected.

Results. With our algorithm, we have obtained a largest no-swish position containing 28 cards, which
is close to half the number of cards in the commercial version of Swish. This no-swish position is depicted
in Figure 6. Note that it contains duplicates.

Figure 6: No-swish set of cards.

3.2 Generalized no-swish

We begin by focusing on rectangular cards. The basis of our method consists in dividing the cards in four
quarters. For one quarter, we fix a point in some position. We then lock its four symmetric positions in
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the other quarters. This defines a ”cross” in the middle of the card, cornered by the four locks. We then
generate one card by position in this cross, with a circle in each. Finally, we add one circle on two of the
three locks, generating two more cards. For the odd width and height cases, we also have to manage the
middle row and column independently. We will, for each possible parity of height and width, give the
total number of cards; then explain our strategy to create a large no-swish set, and compute the ratio
between those two numbers.

Subdivision of the cards into quarters. We assume that the cards are rectangular. Each card is
divided in four quarters, each of size hw. If h or w is odd, then, there is an additional row or column
in-between the quarters. The top left quarter is denoted by Q1, the top right by Q2, the bottom left by
Q3 and the bottom right by Q4. Note that there is a bijection between the coordinates (a, b) in Q1 and
the set {1, . . . , hw}, with i = (a− 1)w + b.

Even-even cards. Assume first that the cards have width 2w and height 2h. The set T containing all
possible cards has size:

|T | =
hw∑
i=1

(4hw − 1) = 4(hw)2 − hw.

We construct the following set S of cards. For each i ∈ {1, . . . , hw} with i = (a− 1)w + b, we create the
4(hw − i) + 2 following cards, all with a point in C[a][b]:

• For each j ∈ {i+ 1, . . . , hw} with j = (c− 1)w+ d, we create four cards, one with a circle in C[c][d]
(so in Q1), one with a circle in C[c][2w + 1− d] (so in Q2), one with a circle in C[2h + 1− c][d] (so
in Q3), and one with a circle in C[2h + 1− c][2w + 1− d] (so in Q4);

• We create two additional cards, one with a circle in C[c][2w + 1 − d] and one with a circle in
C[2h + 1− a][d].

It is easy to see that S is a no-swish set. Indeed, to create a swish using a card created at step i =
(a− 1)w+ b, one cannot use any card created at step i′ > i, since none of them has a circle in (a, b), even
using the symmetries. Furthermore, there is no swish using only cards created at step i, since there are
only three of them meeting in (a, b) after some symmetries, but they do not form a swish, and thus leave
an uncovered point in (a, b). Hence, a swish using such a card would need to use cards from some step
i′ < i, but doing so will again leave an uncovered point, which will need to be covered using a card from
some step i′′ < i′, and so on until we reach step 1, for which no card can cover the point in the corner.

The construction of S is depicted on Figure 7. Let us now evaluate its size:

|S| =
hw∑
i=1

(4(hw − i) + 2) = 2(hw)2.

Hence, the ratio |S|
|T | tends to 1

2 when h and w tend to infinity, so we constructed a no-swish set containing

roughly half of the possible cards.

No-swish positions for the generalized version of Swish

Even-odd cards. Assume now that the cards have width 2w + 1 and height 2h. The set T containing
all possible cards has size:

|T | =
hw∑
i=1

(2h(2w + 1)− 1) +

h∑
i=1

(2hw + 2h− 1) = 2h2(2w2 + 2w + 1)− h(w + 1).

Note that this coincides with the described cards of the commercial version of Swish.
We construct the following set S of cards. For each i ∈ {1, . . . , hw} with i = (a− 1)w + b, we create

the 4(hw − i) + 2(h + 1− i) + 2 following cards, all with a point in C[a][b]:

13



h

w

Q1 Q2

Q3 Q4

• +

+ x

Figure 7: Construction of a no-swish set for even-even cards. We place a point in the dotted position,
and one card for each possible circle in the area filled with lines, as well as two cards with circles in the
two positions with a +. We repeat this for every position in Q1.

• For each j ∈ {i+ 1, . . . , hw} with j = (c− 1)w+ d, we create four cards, one with a circle in C[c][d]
(so in Q1), one with a circle in C[c][2w + 2− d] (so in Q2), one with a circle in C[2h + 1− c][d] (so
in Q3), and one with a circle in C[2h + 1− c][2w + 2− d] (so in Q4);

• For each j ∈ {a, . . . , h}, we create two cards, one with a circle in C[j][w + 1] and one with a circle
in C[2h + 1− j][w + 1] (so both circles are in the middle column);

• We create two additional cards, one with a circle in C[c][2w + 2 − d] and one with a circle in
C[2h + 1− a][d].

Furthermore, for each i ∈ {1, . . . , h}, we create the 2(hw − wi) + 2(h− i) + 1 following cards, all with a
point in C[i][w + 1]:

• For each j ∈ {i + 1, . . . , h} and k ∈ {1, . . . , w}, we create two cards, one with a circle in C[j][k] (so
in Q1) and one with a circle in C[2h + 1− j][k] (so in Q3);

• For each j ∈ {i + 1, . . . , h}, we create two cards, one with a circle in C[j][w + 1] and one with a
circle in C[2h + 1− k][w + 1] (so both circles are in the middle column);

• We create one additional card with a circle in C[2h + 1− i][w + 1].

Again, it is easy to see that S is a no-swish set (the proof follows the same arguments as above).
The construction of S is depicted on Figure 8. Let us now evaluate its size:

|S| =
hw∑
i=1

(4(hw − i) + 2(h + 1− i) + 2) +

h∑
i=1

(2(hw − wi) + 2(h− i) + 1) = h2(w2 + 3w + 1).

Note that, by using h = 2 and w = 1, we obtain |S| = 20, which corresponds to the optimal no-swish
position found by the NoSwishSet algorithm on the commercial version of Swish (excluding duplicates).

Hence, the ratio |S|
|T | tends to 1

4 when h and w tend to infinity, so we constructed a no-swish set containing

roughly a quarter of the possible cards.
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(a) We place a point in the dotted position, and
one card for each possible circle in the area filled
with lines, as well as two cards with circles in the
two positions with a +. We repeat this for every
position in Q1.

h

w

Q1 Q2

Q3 Q4

•

+

(b) We place a point in the dotted position, and
one card for each possible circle in the area filled
with lines, as well as one card with a circle in the
position with a +. We repeat this for every position
in the first half of the middle column.

Figure 8: Construction of a no-swish set for even-odd cards. There are two sub-constructions.

Odd-odd cards. Assume finally that the cards have width 2w + 1 and height 2h + 1. The set T
containing all possible cards has size:

|T | =

hw∑
i=1

((2h + 1)(2w + 1)− 1) +

h∑
i=1

((2h + 1)w + 2h) +

w∑
i=1

(h(2w + 1) + 2w) + wh + w + h

= 4(hw)2 + hw(4w + 4h + 3) + h(2h + 1) + w(2w + 1).

We construct the following set S of cards. For each i ∈ {1, . . . , hw} with i = (a− 1)w + b, we create
the 4(hw − i) + 2(h + 1− i) + 2w + 3 following cards, all with a point in C[a][b]:

• For each j ∈ {i+ 1, . . . , hw} with j = (c− 1)w+ d, we create four cards, one with a circle in C[c][d]
(so in Q1), one with a circle in C[c][2w + 2− d] (so in Q2), one with a circle in C[2h + 2− c][d] (so
in Q3), and one with a circle in C[2h + 2− c][2w + 2− d] (so in Q4);

• For each j ∈ {a, . . . , h}, we create two cards, one with a circle in C[j][w + 1] and one with a circle
in C[2h + 2− j][w + 1] (so both circles are in the middle column);

• For each j ∈ {1, . . . , 2w + 1}, we create one card with a circle in C[h + 1][j] (so the circle is in the
middle row);

• We create two additional cards, one with a circle in C[c][2w + 2 − d] and one with a circle in
C[2h + 2− a][d].

Furthermore, for each i ∈ {1, . . . , h}, we create the 2(hw−wi) + 2(h− i) +w+ 2 following cards, all with
a point in C[i][w + 1]:

• For each j ∈ {i + 1, . . . , h} and k ∈ {1, . . . , w}, we create two cards, one with a circle in C[j][k] (so
in Q1) and one with a circle in C[2h + 2− j][k] (so in Q3);

• For each j ∈ {i + 1, . . . , h}, we create two cards, one with a circle in C[j][w + 1] and one with a
circle in C[2h + 2− k][w + 1] (so both circles are in the middle column);

15



h

w

Q1 Q2

Q3 Q4

• +

+ x

(a) We place a point in the dot-
ted position, and one card for each
possible circle in the area filled
with lines, as well as two cards
with circles in the two positions
with a +. We repeat this for ev-
ery position in Q1.

h

w

Q1 Q2

Q3 Q4

•

+

(b) We place a point in the dot-
ted position, and one card for each
possible circle in the area filled
with lines, as well as one card with
a circle in the position with a +.
We repeat this for every position
in the first half of the middle col-
umn.

h

w

Q1 Q2

Q3 Q4

• +

(c) We place a point in the dot-
ted position, and one card for each
possible circle in the area filled
with lines, as well as one card with
a circle in the position with a +.
We repeat this for every position
in the first half of the middle row.

Figure 9: Construction of a no-swish set for odd-odd cards. There are three sub-constructions.

• For each j ∈ {1, . . . , w + 1}, we create one card with a circle in C[h + 1][j] (so the circle is in the
middle row);

• We create one additional card with a circle in C[2h + 2− i][w + 1].

Finally, for each i ∈ {1, . . . , w}, we create the 2(w− i) + 2 following cards, all with a point in C[h+ 1][i]:

• For each j ∈ {i + 1, w}, we wreate two cards, one with a circle in C[h + 1][j] and one with a circle
in C[h + 1][2h + 2− j] (so both circles are in the middle row);

• We create two additional cards, one with a circle in C[h + 1][2w + 2 − i] and one with a circle in
C[h + 1][w + 1].

Again, using the same argument as above, S is a no-swish set.
The construction of S is depicted on Figure 9. Let us now evaluate its size:

|S| =

hw∑
i=1

(4(hw − i) + 2(h + 1− i) + 2w + 3)

+

h∑
i=1

(2(hw − wi) + 2(h− i) + w + 2) +

w∑
i=1

(2(w − i) + 2)

= hw(hw + 3h + 2w + 2) + h(h + 1) + w(w + 1).

Hence, the ratio |S|
|T | tends to 1

4 when h and w tend to infinity, so we constructed a no-swish set containing

roughly a quarter of the possible cards.
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3.3 Large no-swish positions

In the above subsection, we presented how to construct large no-swish positions for the general version
of Swish with rectangular cards, up to half the total number of cards for the even-even case. Note that
the even-odd construction does give a set of the maximum possible size for the commercial version, as
found with the NoSwishSet algorithm. However, we only know that those positions are maximal (i.e.,
adding any card creates a swish), not whether they are of maximum size. Since they do contain a very
high ratio of all possible cards, we conjecture that our method is optimal, in that no no-swish set of a
size highest than the ones we construct can exist.

4 Conclusion & Open Problems

In this work, we initiated a study of Swish and showed interesting properties. First, by studying Swish
with cards of arbitrary size with three symbols, we proved that the complexity of finding a swish is NP-
complete. Then, we proposed two distinct algorithms to find large no-swish positions: an exponential
algorithm to find the largest set of commercial cards (i.e., cards of original game Swish), finding a large
set of 28 cards, but also a polynomial-time algorithm to construct a set of arbitrarily sized, rectangular
cards having two symbols, returning almost half of the possible set of cards.

Some questions remains unanswered, that we leave as open problems. The complexity of solving
Swish, being shown to be polynomial for cards of one symbol and NP-complete for cards with three
symbols, remains unclear for cards having 2 symbols. In addition, the optimality of the returned no-
swish positions using our algorithm for the generalized Swish has not been proven and it remains open
whether or not it is possible to find a larger no-swish set. As an independent topic of interest, we still
hardly understand how the game has been constructed, in particular the motivation to duplicate some
cards and not others.
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