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ABSTRACT
Cognitive load triggers the researchers’ interest in various fields.
In the context of education and training, maintaining an optimal
cognitive load is crucial to keep learners engaged, ensuring that the
content aligns with their skill levels. However, assessing cognitive
load is challenging. In the literature, several methods have been
proposed mainly through questionnaires, performance metrics and
physiological sensors.

In this paper, we propose an experiment in virtual reality where
four different tasks has been designed to stimulate different levels
of cognitive load. We compare three different ways of measuring
the cognitive load to estimate the validity of physiological mea-
sures. The findings suggest that, to some extent, the physiological
measures are well-suited for assessing cognitive load in the con-
text of this study. This research contributes valuable insights to
the ongoing exploration of effective cognitive load measurement
methodologies.
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1 INTRODUCTION
Cognitive load has been a focal point of extensive research across
various disciplines such as psychology, ergonomics, and computer
science. The foundation of cognitive load theory is rooted in the lim-
itations of working memory. When an individual engages in a task
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that requires mental effort, utilizing their working memory—such
as solving a problem or following instructions—it induce a load on
the working memory system [9].

The concept of cognitive load suggests that each task incurs a
specific cost, corresponding to the cognitive load it imposes on the
individual. As individuals navigate through various tasks, especially
in multitasking scenarios, they must allocate a portion of their cog-
nitive resources to each concurrent task. This allocation increases
the overall cognitive load experienced by the individual and can
potentially lead to cognitive overload. In situations of cognitive
overload, observable outcomes may include notable slowdowns
in task execution and, in some cases, the inability to successfully
complete one or more tasks [19].

Understanding cognitive load is crucial for designing effective in-
terfaces, educational materials, and work environments. By consid-
ering the cognitive load associated with different tasks, researchers
and practitioners can develop strategies to optimize cognitive re-
sources, enhance task performance, minimize the risk of cognitive
overload and propose interactive virtual environment.

1.1 Cognitive load measurement
Cognitive load measures are commonly categorized into two main
types: subjective and objective measures.

Subjective measures revolve around the user’s own perception
of task difficulty and the mental effort invested. These measures are
typically acquired through questionnaires such as the NASA Task
Load Index (NASA-TLX) developed by Hart and Staveland [6], the
Subjective Workload Assessment Technique (SWAT) introduced
by Reid and Nygren [14] and the Instantaneous Self-Assessment
(ISA) scale [20] proposed by Tattersall and Foord. These scales help
capture the user’s subjective experience of cognitive load and task
difficulty. However, self-reported measures have been criticized to
have potential biases [8] and cannot be used in real time to adapt a
virtual environment to the user’s need.

On the other hand, objective measures can be obtained through
performances [5] or physiological signals [7]. Performance mea-
sures gauge how effectively a user accomplishes a given task. These
can include traditional metrics such as reaction time to a stimuli [3]
or the number of errors performed while doing a task [2]. A sec-
ondary task is also often employed in dual-task paradigms [16] to
stimulate cognitive load and to gather additional objective mea-
sures. However performance measures are quite specific for a task,
and not all tasks are designed to collect such measures.

Physiological measures offer insights into cognitive load by mon-
itoring the user’s physiological responses. Research has demon-
strated that certain physiological indicators are reliable indicators
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of cognitive load. For instance, eye movements can reflect the reader
understanding [10], electrodermal activity can signal stress dur-
ing task execution [7], heart rate and heart rate variability may
also provide valuable information about cognitive workload [18].
Physiological-based cognitive load assessment has the advantage
to be done in real time and to be usable in various situations.

The integration of both subjective and objective measures in
cognitive load assessment provides a comprehensive understanding
of the user’s cognitive experience. Combining insights from users’
self-reported perceptions with physiological and performance data
will provide a more nuanced and holistic view of cognitive load.

1.2 Physiological-based measurement
Physiological responses are indicative of cognitive load [4]. Sev-
eral kind of signals have been investigated for measuring cogni-
tive load, especially: photoplethysmography (PPG) [11, 17], eletro-
cardiography (ECG) [15], electrodemal activity (EDA) [11], elec-
troencephalography (EEG) [15, 21], functional Near-Infrared Spec-
troscopy (fNIRS) [13], respiration [12], eye-tracking [11, 17], etc.

The most recent methods are usually based on machine learn-
ing algorithms trained on users physiological data while they are
engaged in tasks with varying levels of difficulty. For our experi-
ment we selected the method proposed by Siegl et al. [17], as their
cognitive load algorithm is accessible through an sdk1.

In the presented experiment, our goal is to validate the accuracy
and applicability of the cognitive workload measurements obtained
through this physiological model across various conditions. To
achieve this, we used an open-source platform [1] featuring four
virtual environments designed to elicit distinct levels of cognitive
load. Our hypothesis posits that the accuracy of the cognitive load
measurement should vary based on the task difficulty and exhibit
correlations with both subjective and objective measures.

2 METHOD AND MATERIALS
2.1 Participants
In this study, 19 voluntary participants, aged between 21 and 41
years old (mean = 23.9), were recruited. The sample comprised 10
females and 9 males, all with normal or corrected-to-normal vision.
Participants self-assessed their proficiency in new technologies on a
scale from 3/10 to 10/10 (mean = 6.79). Throughout the experiment,
participants were required to respond to audio stimuli. However,
the data from one participant were excluded from the analysis due
to that participant missing more than 50% of the audio reaction
test.

2.2 Material
We utilized the “HP Reverb G2 Omnicept Edition" headset to display
the environment in VR and to measure users’ cognitive load. The
machine learning system developed by Siegel et al. [17] predicts
cognitive load based on heart rate, eye position and openness, and
pupil diameter. To induce cognitive load, we employed an open-
source virtual environment [1]. Participants found themselves in
a minimalist virtual room with a prominently displayed numeric
keypad.

1https://developers.hp.com/omnicept/downloads

Figure 1: The virtual environment used for the experiment.
The numeric keypad is used to answer the mathematical
operation displayed in the top left panel. The top right panel
displays the current response of the user before validation.
The bottom left panels appeared only in the second scene. In
this panel a white line is moving in front of a gauge.

This virtual environment comprises two distinct scenes. In the
initial scene, two panels were presented on either side of the key-
pad. The top left panel showcased mathematical operations for
participants to solve, while the top right panel displayed the cur-
rent answer. In the second scene, the arrangement remained the
same, with an additional panel appearing beneath the mathemat-
ical operations. This extra panel featured a gauge with a moving
line, challenging participants to keep the line within a predefined
threshold (Figure 1). The NASA-TLX questionnaire was integrated
into the virtual environment between different tasks to assess the
participant’s cognitive load (Figure 2).

2.3 Procedure
Participants experienced four distinct conditions, with the initial
two (C1 and C2) occurring in the first scene, and the subsequent
two (C3 and C4) taking place in the second scene. At the beginning
of each scene, participants underwent a one-minute phase aimed
at familiarizing themselves with the virtual environment.

Figure 2: After each task, the NASA-TLX is displayed in the
virtual environment. The users can click on the interrogation
marks to display the questions related with each item.

https://developers.hp.com/omnicept/downloads
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The scenes followed a uniform structure: one condition lasting
3 minutes, a 2-minute break during which participants responded
to the NASA-TLX questionnaire, another 3-minute condition, and
a subsequent NASA-TLX questionnaire regarding the second con-
dition. After the first scene, participants were instructed to remove
the headset, allowing for a brief intermission before commencing
the second scene. The sequence of scenes was balanced among
participants.

2.4 Conditions and measures
Throughout each condition, participants were tasked with promptly
responding to audio stimuli by pressing a button on one controller
while simultaneously interacting with the virtual environment us-
ing the other controller. We will now detail each of the four condi-
tions.

(C1) In the first condition of the first scene, participants were
tasked with responding to "simple" calculations, involving the sum-
mation of two-digit numbers. To answer the calculations, they had
to use the right controller to point at different digits.

(C2) In the second condition of the first scene, participants faced
more challenging calculations, requiring the summation of three-
digit numbers randomly selected from the range of 100 to 200.

(C3) In the first condition of the second scene, participants were
instructed to control a moving line within a specified interval.
The line moved vertically, and pressing a button on the controller
changed its direction to prevent it from reaching a predefined zone
(Figure 1). No calculations were involved in this condition.

(C4) In the second condition of the second scene, participants
encountered a dual-task scenario. They were required to both main-
tain the line within the interval and respond to simple calculations
simultaneously.

Finaly, the cognitive load was assessed through four measures:
(1) the headset “cognitive load" score based on physiological sensors
varying between 1 (high cognitive load) and 0 (low cognitive load);
(2) the average response time to the audio stimuli; (3) the number
of correctly solved calculations; and (4) the NASA-TLX average
scores.

3 RESULTS
We conducted repeated measures ANOVA on the cognitive load
recorded by the headset in the four conditions. The ANOVA showed
that the effect of conditions on cognitive load is significant: 𝐹 (3, 51) =
39.012;𝑝 < .001 (Figure 3). Post hoc tests showed that cognitive
load is not significantly different between C1 and C2 (𝑝𝑏𝑜𝑛𝑓 = .200)
but it is significantly lower in C3 as compared to C2 (𝑝𝑏𝑜𝑛𝑓 < .001)
and significantly higher in C4 as compared to C1(𝑝𝑏𝑜𝑛𝑓 = .037).

The same repeated measures ANOVA was conducted on the
NASA-TLX scores. The ANOVA showed that the effects of con-
ditions on estimated cognitive load is also significant (𝐹 (3, 51) =
53.752;𝑝 < 0.001) (Figure 4). Post hoc tests revealed that only C2
and C4 are not significantly different with 𝛼 = .05 (𝑝𝑏𝑜𝑛𝑓 = .066).

Concerning audio response times, the data which lies beyond
±2.5 times the standard deviation from the mean, was considered
as outlier and excluded. Then we conducted repeated measures
ANOVA on the average response time. It showed a main effect of
conditions on response time (𝐹 (1.369, 23.265) = 12.794;𝑝 < .001)

Figure 3: Mean cognitive load measures based on physiolog-
ical measures provided by the headset, for each condition.
Error bars represent the 95% confidence intervals.

(Figure 5). Here, post hoc tests showed that response time is only
significantly higher in C4 (𝑝𝑏𝑜𝑛𝑓 < .01, for each comparison). We
applied the Greenhouse-Geisser correction on the data sample,
because the sphericity condition on this sample was not respected.

The last repeated measures ANOVA on successfully realized
calculations showed that the effect of conditions on realized calcu-
lations is significant (𝐹 (1.509, 25.657) = 15.181;𝑝 < .001). Post hoc
tests revealed that all conditions are significantly different when
using Bonferroni correction with 𝛼 = .05. The sphericity condition
was not respected so we also applied the Greenhouse-Geisser on
the sample.

In a second step, we calculated correlation between different mea-
sures in order to verify which measures were correlated with the
cognitive load measured from physiological data. Results showed
that the headset’s measure is positively correlated with audio re-
sponse time (𝑟 = .318;𝑝 = .007) and with NASA-TLX mean scores
(𝑟 = .538;𝑝 < .001). The number of realized calculations is not
correlated with cognitive load (𝑟 = −.156;𝑝 = .261).

We tested correlations between our own measures too. NASA-
TLX mean scores are correlated positively with audio response time
(𝑟 = .412;𝑝 < .001), and correlated negatively with realized calcula-
tion (𝑟 = (−0.512);𝑝 < .001). Response time and number of calcula-
tions realized are also correlated negatively (𝑟 = (−0.376);𝑝 = .005).

4 DISCUSSION
The ANOVA on the cognitive load provided by the headset revealed
significant differences between conditions. It means that the headset
is currently detecting cognitive load variations depending on the
task. Moreover, the results follow our expectation for the conditions
C1, C3 and C4. C3 is very simple and the cognitive load associated
with it is the lowest. C4 was designed to be the hardest with a dual
task, and the measured cognitive load is the highest. However, we
observed that for C1 and C2, the cognitive load is relatively similar.
We designed the experiment by expecting that C1 would be easier
than C2 but it might not be the case. If we check the other measures,
it is also not clear. The NASA-TLX average score is lower for C1
than C2 but the average response time is lower for C2 than C1. The
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Figure 4: Mean NASA-TLX scores for each condition. Error
bars represent 95% confidence intervals.

Figure 5: Mean response time for each condition. Error bars
represent 95% confidence intervals.

Figure 6: Mean number of calculations successfully realized
in each condition. No calculations are done in C3. Error bars
shows 95% confidence intervals.

number of successfully realized calculation is lower but it might
be simply due to the fact that there is one more digit to consider
and to input, which takes more time. But it does not necessarily
increase the participant’s cognitive load. Some participants even
related that, in C2 the calculation with three digits was easier for
them because the numbers were aligned on top of each other (and
not in a line as in C1). The conclusion is that the designs of C1
and C2 was not different enough to capture significant different
measures.

The ANOVA on Nasa-TLX mean scores revealed that subjective
evaluation of cognitive load is following our expectations. Partici-
pants felt more difficulties in C4, which was the hardest. In the same
way, mean scores are the lowest for C3. For the two first conditions,
we can see that mean scores are higher for C2 than for C1.

For the audio reaction time, the ANOVA showed that only C4 is
significantly different to the other conditions. The dual task scenario
clearly induces a cognitive overload which is consistent with the
design of the virtual environment. In a similar way to the headset
measures, C3 seems to be the easiest with the lowest response time,
C2 a little bit harder and C1 a little bit harder than C2. However
these differences are not significant.

The last ANOVA on successfully realized calculation showed
that in C4, the participants realized much less calculations than in
C1. In both conditions the participants have to calculate the sum
of double digit numbers, but in C4 an extra task was added which
reduce the performances of the participants. For C3, triple digit
calculation might not be much harder than the double one, but is
simply more time consuming.

To conclude, all ANOVAs showed that C4 is the hardest, C3 the
easiest. The unclear point concerns C1 and C2, which is probably
the result of an non significant task complexity difference. Concern-
ing correlations, nearly all the measures align with our expectations.
As cognitive load, as measured by the headset, increases, both reac-
tion time and NASA-TLX scores exhibit a corresponding increase.
Specifically, as tasks become more challenging and demand greater
cognitive resources, participants face increased difficulty during
execution, resulting in decreased performance. The correlation with
the number of completed calculations did not reach statistical sig-
nificance, but there is an observable trend in that direction. It may
be more meaningful in future studies to focus on measuring error
rates. In the present experiment, the same calculation was displayed
until a correct answer was provided; this make the assessment of
error rates less applicable.

5 CONCLUSION & FUTUREWORK
In conclusion, the physiological measures based on the headset
appear to be a relatively accurate indicator of cognitive load, given
the consistency and correlation observed with both subjective and
performance measures. The tasks, particularly C1, C3, and C4, were
effectively designed to induce variations in cognitive load. However,
results were less conclusive for C2, raising questions about the
design of C2.

For future investigations, it is crucial to introduce more substan-
tial differences in difficulty between each condition and mitigate
presentation bias. It is also important to test these measures in
different scenarios before firmly asserting the physiological data
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usability across various tasks. Nonetheless, this study serves as a
promising initial step towards that goal.
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