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Abstract. The Quadratic Assignment Problem (QAP) is one of the
major domains in the field of evolutionary computation, and more widely
in combinatorial optimization. This paper studies the phase transition of
the QAP, which can be described as a dramatic change in the problem’s
computational complexity and satisfiability, within a narrow range of
the problem parameters. To approach this phenomenon, we introduce
a new QAP-SAT design of the initial problem based on submodularity
to capture its difficulty with new features. This decomposition is studied
experimentally using branch-and-bound and tabu search solvers. A phase
transition parameter is then proposed. The critical parameter of phase
transition satisfaction and that of the solving effort are shown to be
highly correlated for tabu search, thus allowing the prediction of difficult
instances.
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1 Introduction

The Quadratic Assignment Problem (QAP) has held major importance within
evolutionary computation research for decades [1–3, 31]. Given a matrix of flow
between abstract objects, and a distance between positions, the goal of QAP [19]
is to find an assignment of objects to positions in order to minimize the sum
of costs, i.e. the product of flow and distance, between all possible pairs of
objects. The QAP is often considered one of the most difficult problems in the
NP-hard class with many applications [22]. Notice that Traveling Salesperson
Problem (TSP) is a special case of QAP with a dedicated flow matrix. In order
to understand and improve optimization algorithms design, a large number of
QAP instances with relevant properties have been proposed in the literature (see
more details in Section 2).

Coming from statistical physics, the notion of a phase transition is also an im-
portant property in combinatorial optimization and for decision problems. Phase
transition is a phenomenon related to the rapid change around a critical value
of an order parameter of the probability that a random instance is satisfiable.
From the seminal work on SAT problems [7], this property has been shown in
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a large number of decision and combinatorial problems [4, 17] (TSP, constraint
problems, etc.). The phase transition is also associated with problem difficulty
which also changes around the point of the phase transition. Indeed, problem in-
stances defined around the critical value of phase transition between feasible and
unfeasible are often considered as the most challenging, and the most interesting
instances to solve. However, except for highly generic assignment problems [5]
different from classical QAP, or special cases of QAP such as TSP [15], to our
best knowledge no phase transition properties have been shown for QAP. One
objective of this work is to show a phase transition in the ”pure” QAP problem.
To show the phase transition phenomenon, we propose new QAP instances with
tunable difficulty: the QAP-SAT, based on submodularity (clauses) similar to
the notion of a clause in SAT problem.
. Phase transition, and problem difficulty. Phase transition is a phenomenon
that appears in randomly generated instances of intractable decision problems.
It links the computational complexity to the satisfiability of the instances, such
that a sudden change in the satisfiability happens in a narrow range of the
instance parameters, summarized by an order parameter. The passage from eas-
ily solvable satisfiable problem instances to easily checked unsatisfiable problem
instances can be seen. At the transition between both regions, where the order
parameter crosses the critical value, hard random instances can be found. As this
critical value has been shown to be independent of the solving algorithms, hard
and easy instances can thus be located with precision, and subsequently used for
fair benchmarking, algorithm selection, and configuration. The first applications
on NP-complete problems date back to [7]. From this point, phase transition has
been observed on most of the famously known NP-complete problems, such as
the satisfiability problem [7, 14, 24], the traveling salesman problem [7, 15], the
graph coloring problem [7], the 0-1 knapsack problem [37], the minimum vertex
cover problem [36], and so on.
. Another way of characterizing the inherent structure of the search space is
fitness landscape analysis: this provides a number of features. These landscape
metrics happen to be valuable for gaining insight into the performance of al-
gorithms on a given problem instance, thus relating to problem difficulty. We
discuss landscape analysis for QAP in Section 2.3. For a general introduction
to the topic of phase transition and problem difficulty, see [21, 28]. It should
be also mentioned that phase transition on random combinatorial optimization
problems can be seen through the prism of statistical physics of disordered sys-
tems [4,17]. Models such as the spin glass model are used to exhibit the change
in behavior of the problem satisfiability, for example, [25] for K-SAT.
. The remaining of the paper is as follows. Section 2 presents the QAP, its
formulation, famous benchmark datasets, and its problem features. Section 3
introduces the QAP-SAT decomposition. The experimental study is detailed in
Section 4. Section 5 concludes the paper.
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2 Quadratic Assignment Problems

2.1 Definition of QAP

The Quadratic Assignment Problem (QAP) [19] is a minimization assignment
problem where the search space Sn is the symmetric group of dimension n, i.e.
the set of permutations of size n. The QAP fitness function is defined as follows:

∀σ ∈ Sn, QA,B(σ) =

n∑
i=1

n∑
j=1

AijBσiσj

where A, and B are square matrices of real numbers of dimension n×n. Usually,
A is called a flow matrix. Aij represents the flow (cost) between two abstract
objects i, and j. B matrix is called distance matrix. Bij represents the distance
(cost) between positions i, and j. The objective function has a quadratic form:
this is the sum for possible couples of objects i, and j of the assignment cost
defined as the product of flow by distance.

As such, usually Aij , and Bij are positive real numbers. The matrix B could,
in fact, represent a distance matrix (triangular inequality is fulfilled), but this
is not necessary. Likewise, the matrix B could be symmetric, but this is not
necessary in the general case. Here, we will only consider that the self distance
Bii is equal to 0 for all i ∈ [n]. As a consequence, Aii can be considered as equal
to 0 for all i ∈ [n].

2.2 QAP benchmark

QAP has a lot of applications in real world [9]. As a consequence, a lot of bench-
mark instances have been proposed to understand problem difficulty, or to design
more efficient optimization algorithms according to the features of QAP [22].
The most well-known benchmark of QAP problems is the QAPLib [6]. QAPLib
is a collection of instances with real-world problems usually of small size, and
larger artificial ones generated with specific properties. The most used artificial
instances are probably the two series of Taillard instances (Taia, and Taib) [32].
In the uniform instances (Taia), the distance matrix is a Euclidean distance
matrix between random points in a circle, and the flow matrix is random ma-
trix with integer randomly selected between two bounds. The real-like instances
(Taib) are inspired from some real world problems and mimic some of their prop-
erties. The distance matrix is also an Euclidean matrix but where the points are
clustered, and the values of the flow matrix are exponentially distributed. In-
deed, a lot of entries of the flow matrix are equal to zero. It is well demonstrated
that uniform instances are more challenging than real-like instances [34].

Other instances have been proposed. The Taie and Dre series of instances
were specifically designed to be difficult for metaheuristics [11]. Additionally,
Stützle et al. generated instances which vary two instance parameters system-
atically; these are related to flow dominance and sparsity [30]. A special case of
QAP which is polynomially solveable [20] has been also proposed in order to test
”black-box” algorithms. Designing relevant QAP instances and understanding
their properties has a lot of interest because doing so can facilitate the testing
and improvement of optimization algorithms.
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2.3 Features and Problem Difficulty in QAP

Instances of the QAP were first characterised by the notion of flow dominance
[35], which measures imbalance in the A and B matrices. A very high dominance
value would be obtained if there is a substantial distance between comparatively
few locations, or if there is a high degree of flow between only a few facilities.
Measurement of sparsity for the two matrices has also been used in the literature
[29]: this is the number of zero-entries as a proportion of the n2.

The QAP has served as one of the main testbeds for fitness landscape analysis
of combinatorial spaces and several measures have been shown to be linked to
search difficulty in some way. The correlation length — which captures how far
apart solutions with related fitness are — and the fitness-distance correlation
— the connection between distance and fitness among local optima — were
related to the performance of memetic search algorithms for QAP [23]. A set
of measurements including some from information theory were computed from
walks on QAP landscapes and used to aid in algorithm decisions [26]. Another
study focused considered whether landscape measures might be linked to the
nature of the instance specification (distance and flow matrices) [33], finding
that autocorrelation and the size of plateaus were affected by the number of
similar values in the matrices. The local optima space of QAP instances has also
been studied [10].

Fourier decomposition has been applied to the QAP: a branch-and-bound
approach which operates in the Fourier space [18] has been proposed. Elementary
landscape decomposition has also been leveraged [8]; this proved that the QAP,
through the prism of the pairwise swap neighbourhood, can be represented as
the combination of exactly three elemental landscapes.

3 Definition of QAP-SAT

3.1 Generic QAP-SAT

The idea of QAP-SAT is to define the fitness function as a sum of easy QAP
problems, called clauses, which depend only on a few variables. QAP-SAT fol-
lows the principle of the MAX-SAT problem, which is defined as the sum of
the satisfaction of each clause, where clauses are easy low dimensional pseudo-
boolean problems. In QAP-SAT, we say that a clause is satisfied when a can-
didate solution of the problem reaches the lower bound of the clause. Although
there are similarities, a difference to the MAX-SAT space of functions is that
the set of functions for QAPs is not a vector space [12]. In general, the sum
of two QAP problems defined on Sn is not a QAP problem on Sn. The QAP
space has a bi-linear property: for any matrices A,A′, B,B′ of dimension n× n,
QA+A′,B+B′ = QA,B+QA,B′+QA′,B+QA′,B′ . The linear property between QAP
problems is preserved when the same distance matrix B is shared. For any dis-
tance matrix B, for any positive integer m, and any square matrices A1, . . . Am:
Q∑m

α=1 Aα,B
=

∑m
α=1QAα,B . In the following, we define a clause for QAP by

defining a clause both for flow matrix A, and distance matrix B.
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a-clause. A matrix A of dimension n × n is an a-clause of size k > 0 when
∀i ∈ [n] Aii = 0, and it exists a subset VA ⊂ [n] of size k such that: ∀(i, j) ∈ V 2

A,
i 6= j, Aij > 0, and ∀(i, j) 6∈ V 2

A, Aij = 0. The left two matrices in Figure 1 form
an example of a-clause.

QAP-SAT clause. A QAP problem QA,B is a clause of size k for the matrix
B iff A is an a-clause of size k.

When the flow matrix A is an a-clause of size k, the computation of the
corresponding clause QA,B is reduced to the sum of the k(k−1) non-zero terms:
∀σ ∈ Sn, QA,B(σ) =

∑
(i,j)∈V 2

A,i6=j
AijBσiσj In this case, a lower bound lb(QA,B)

of the QA,B is: `
∑

(i,j)∈V 2
A,i6=j

Aij where ` = min{Bij : (i, j) ∈ [n]2}. For example

for the matrix A3, this lower bound for QA3,B is equal to 10. A b-clause for the
distance matrix is defined to ensure that the previous lower bound can be reached
for a clause problem QA,B . In this work, without losing generality, the minimum
non-zero value of the distance matrix is fixed to 1. This value can be fixed to an
arbitrary positive value. In this case, all values would be scaled to the selected
non-zero minimum.

b-clause. A matrix B of dimension n × n is a b-clause of size k > 0 when
∀i ∈ [n] Bii = 0, and there exists a set VB ⊂ [n] of size k such that: ∀(i, j) ∈ V 2

B ,
i 6= j, Bij = 1, and ∀(i, j) 6∈ V 2

B , Bij = m where m > 1 is the largest possible
distance of the problem.

As a consequence, when Ak is an a-clause of size k, and Bk is a b-clause of
size k, the minimum of the clause QAk,Bk is the lower bound lb(QAk,Bk). More
generally, a clause QA,B is said satisfied iff the minimum of QA,B is equal to
the lower bound lb(QA,B) =

∑
(i,j)∈V 2

A,i6=j
Aij . The QAP-SAT problem is an

aggregation of a-clauses and b-clauses. Let us define the aggregation principle of
b-clauses. As for the Hadamard product, let us define the matrix B�B′ by taking
the minimum element by element: ∀(i, j) ∈ [n]2, (B � B′)ij = min{Bij , B′ij}.
Notice that � is an associative operator. We say that a distance matrix B is
composed ofm1 b-clauses, withm1 > 0, when it existsm1 b-clauses B1, . . . , Bm1 ,
and a matrix C with ∀i 6= j, Cij > 1, and ∀i, Cii = 0, such that B = B1 �B2 �
. . .�Bm1

� C.
QAP-SAT. The QAP problem QA,B is a QAP-SAT problem with m a-

clauses, and m1 b-clauses when the matrix B is composed of m1 b-clauses, and
it exists m clauses QA1,B , . . . , QAm,B for the same matrix B such that QA,B is
the sum of those m clauses: QA,B =

∑m
α=1QAα,B . A QAP-SAT problem QA,B

is satisfied when all clauses are satisfied, i.e. when all clauses reach the lower
bound: minQA,B =

∑m
α=1 lb(QAα,B).

3.2 Random QAP-k-SAT

When all clauses (a-clauses and b-clauses) have the same size k > 0, the QAP-
SAT is denoted QAP-k-SAT. The random QAP-k-SAT is designed with the same
principle of the classical random k-SAT problem. The k variables of each clause
are randomly and independently selected. The random QAP-k-SAT is defined
by 4 basic parameters. The problem size n, the size of the clause k, the number
m of a-clauses, and the number m1 of b-clauses.
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A3 =


0 0 0 0 0
0 0 1 0 2
0 2 0 0 1
0 0 0 0 0
0 3 1 0 0

A(3) =

0 1 2
2 0 1
3 1 0

 B3 =


0 1 m m 1
1 0 m m 1
m m 0 m m
m m m 0 m
1 1 m m 0

B(3) =

0 1 1
1 0 1
1 1 0

 B =


0 1 2 4 1
1 0 4 2 1
3 8 0 5 3
3 6 7 0 2
1 1 2 5 0



Fig. 1: For problem dimension n = 5, examples of a-clause and b-clause of size
k = 3 with VA = {2, 3, 5}, and VB = {1, 2, 5}. A(3), and B(3) are sub-matrix with
variables of VA, and VB . Distance matrix B composed of m1 = 1 b-clause com-
plementary to matrix B3.

For each a-clause, k different variables are randomly selected. In this work,
the size of clauses is set to k = 3. It is possible to create any random sub-matrix
of size k for a-clause. However, in this work for simplicity (same lower bound for
example), the a-clauses are based on the same sub-matrix A(3). Only the order
of variables is randomly swapped. For each b-clause, k different variables are also
randomly selected. Notice that the minimal b-clause is symmetric (see matrix
B(3)), no need to swap randomly the variables. Several choices can be made
to create the complementary matrix C of distances which have non-minimal
values. Of course a basic choice would be to create random integer numbers
between 2 and a maximal value. However, in this work, we prefer a slightly more
sophisticated choice. All values of C are integer values higher or equal than 2.
They are selected in order to have geometric distribution of values. Let nd be
the number of values equal to d in the matrix B: nd = ]{Bij = d : (i, j) ∈ [n]2},
and pd the respective proportion in the matrix: pd = nd/(n(n − 1)). For d > 1,
the proportion pd is set in order to have approximately pd = pd1 (to the precision

of integer values for nd). Indeed, we set nd = max{1, dp1(n(n−1)−
∑d−1
δ=1 nδ)e}.

Then, the position of values is randomly distributed in B on available positions in
the matrix. As a consequence, the matrix B is not necessary symmetric. Figure 1
is an example of distance matrix. Python code for the generator of QAP-SAT
instances, and the instances used in this work are available on the repository:
https://gitlab.com/verel/qap-sat.

4 Experimental analysis

4.1 Experimental design

Instance Generation In this work, we generate small and medium size instances
of QAP-SAT from the dimension n = 8 to the dimension n = 19. The instance
parameters are given in Table 1 to generate a factorial design. 50 instances for
each parameter triplet (n,m1,m) have been generated. Thus, for dimension n
lower than 17, 18, 000 instances are generated for problem dimension. To reduce
the computation time, for problem dimensions 18 and 19, we reduce the number
of instances to 6, 000. In total, 192, 000 instances have been analyzed. Small size

https://gitlab.com/verel/qap-sat
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Table 1: Parameter settings of the random QAP-3-SAT instances. The sets cor-
responds to parameters for dimensions n = 18, 19.
Name Description Values

n Problem dimension {8, 9, . . . , 17} {18, 19}
k Size of clause 3

m1 Number of b-clauses (distance matrix) {3, 6, 9, . . . , 27} {3, 9, 15, . . . , 57}
m Number of a-clauses (flow matrix) {1, 2, 3, . . . , 40} {1, 3, 9, 15, . . . , 57, 63}

instances can be fully enumerated until dimension n ≤ 13, then we use a branch
and bound algorithm to compute global minima (see next paragraph).

Branch and Bound algorithm. An exact algorithm is required to find the
global minimum of each instance, in particular for medium size instances with
dimension larger than 14. First, we test a classical Cplex algorithm with a stan-
dard linear transformation of QAP, provided by [27]1, but the computation time
is too long for our experimental scenario. For instance, the average computation
time for the small dimension n = 10, across all m and m1 values is equal to 50.6
seconds. Indeed, this first experiment – not detailed in this paper for the sake of
brevity – is an indication that the QAP-SAT instances can be difficult to solve.

Several Branch and Bound (B&B) algorithms have been proposed to solve
QAP from the seminal works based on Gilmore-Lawler bound [16]. In this work,
we use a recent and efficient B&B algorithm proposed by Fujii et al. [13] for which
the MATLAB code is available2. The algorithm is based on the Lagrangian dou-
bly non-negative relaxation and Newton-bracketing. Please refer to the original
article for details. The goal of this work is not to compare the efficiency of B&B
algorithms for solving QAP-SAT instances, but to find the global minimum and
estimate the computation time to find it as a possible measure of difficulty.

Robust Taboo Search. We use Taillard’s implementation in C of his robust
taboo search (ROTS) algorithm for the QAP [31]3; this is considered a com-
petitive metaheuristic for the domain. The neighbourhood is a random pairwise
swap in the permutation, and parameters are kept as those provided in the code:
tabu duration is 8n; aspiration is set at 5n2; and runs terminate when the global
optimum is found or after 1000 solutions have been visited by the search. The
global optimum has been computed for all considered instances; proportional
success rate is therefore computed as a metric of performance. We compute the
mean for this metric over 30 runs per instance.

4.2 Phase transition of satisfaction probability

A phase transition in combinatorial optimization is characterized by a rapid
change between satisfied and non satisfied instances according to a phase param-
eter. Figure 2 shows the proportion of satisfied instances for which the minimum

1 https://github.com/afcsilva/PMITS-for-QAPVar
2
https://sites.google.com/site/masakazukojima1/softwares-developed/newtbracket?pli=1

3 http://mistic.heig-vd.ch/taillard/codes.dir/tabou_qap2.c

https://github.com/afcsilva/PMITS-for-QAPVar
https://sites.google.com/site/masakazukojima1/softwares-developed/newtbracket?pli=1
http://mistic.heig-vd.ch/taillard/codes.dir/tabou_qap2.c
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is the lower bound i.e. all clauses of the problem are satisfied with the minimal
possible value. As expected, when the number a-clauses m — the number of
clauses for the flow matrix — is small, the probability to have an instance sat-
isfied is nearly equal to 1. This probability drops very quickly around a critical
value denoted mc. When the number m of a-clauses is much larger than the
number of b-clauses m1 — the number of clauses for the distance matrix —
none of the instances are satisfied. The only exception is for small dimension
n = 8, 9 for which a large number of b-clauses m1 gives a full distance matrix of
1, and then all solutions are global optima. In general, this curve seems to de-
scribe a sigmoidal shape dropping quickly around a critical value mc. Indeed, for
a given problem dimension, the critical value mc increases with the number m1

of b-clauses. For instance, for problem dimension n = 10, mc is around 8 when
m1 = 9, and around 15 when m1 = 21. But as problem dimension increases, the
variation of mc according to m1 is smaller. More details are given in the next
section 4.3.
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Fig. 2: Proportion of satisfied instances, for which the minimal values is the lower
bound, according to the number of a-clauses m. Facet: problem dimension n.

4.3 Estimation of the phase transition parameter

The proportion of satisfied instances (see Fig. 2) seems to follow a logistic func-
tion as a function of the number of a-clauses m. If it is true, it is possible to
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estimate the parameters of the logistic model, and compute the center of sym-
metry which correspond to inflection point of the logistic model. This center is
the critical value of m at the phase transition. First, to estimate the parameters
of the logistic regression, we use logit transform: if p follows a logistic model,
then logit(p) = log( p

1−p ) follows a linear model, and inversely. If the regression

model is logit(p) = β0 + β1m, the abscissa of the center of the logistic model is
mc = −β0/β1.
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Fig. 3: Critical parameter mc according to the number of b-clauses m1 (left),
and problem dimension n (right).

The critical value mc of the logistic model is estimated by the regression of
the logit model. Figure 3 shows the critical value mc of the number of clauses
according to the number of minimal b-clauses, and the problem dimension n.
Those critical parameters have been estimated using the logit regression. The R2

values of the regression, which is not presented here to save space, are high. On
the 110 possible instance parameters, the average R2 is 0.9417, and 98 instances
have R2 above 0.9. The worst values of R2 (minimum is 0.801) are obtained for
the smallest problem dimensions where the probability of satisfaction does not
reach exactly 0 for large m.

Except for small values of n = 8 and 9, the critical value mc as a function
of b-clauses m1 tends to be linear. Table 2 gives the estimated parameter values
for a linear model mc = β0 + β1m1 + ε. For n higher than 11, the adjusted R2

regression quality is high: larger than 0.98. The origin ordinate of the regression
is close to 0, and the slope of the regression decreases with problem dimension
n. At first, this suggests a linear dependency between critical value mc and m1

when n is ”large” compared to m1. Notice that the slope of the linear regression
decreases with problem dimension n. From the right side of Figure 3, for a given
value m1, the critical value mc seems not always depend linearly on problem
dimension n. Only for values small of b-clauses m1 ≤ 9, the critical value seems
to be independent of problem dimension.
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Table 2: Estimated parameter values of the regression model mc = β0+β1m1+ε.
n origin β0 slope β1 adj. R2

8 -4.09305 1.258099 0.9702023
9 -1.960525 0.9022615 0.9679433

10 -1.290005 0.8273129 0.9797667
11 -0.5588647 0.7006147 0.9843299
12 -0.01016369 0.6367813 0.9872014
13 0.7395489 0.5280727 0.9923386

n origin β0 slope β1 adj. R2

14 0.4362908 0.4840685 0.9877075
15 0.4972105 0.458738 0.9861831
16 0.8578043 0.3977207 0.988515
17 1.104765 0.3881437 0.9974293
18 0.3636075 0.454062 0.9813189
19 -0.6242743 0.4427259 0.97458

From the first observations, we can try to explain the critical value mc as a
function of both m1, and n: close to linear model as a function of m1, but with
a slope decreasing slowly with problem dimension. Moreover, from inspiration
of SAT problem for which the phase transition parameter is the ratio between
number of clauses and problem dimension, we run the following regression model:

mc = knα1mα2
1 + ε

where k is a real constant value, and α1, α2 are exponents for variables n,
and m1, and ε is the noise of the regression model. The parameters of the
model can be estimated with a multi-linear regression on the logarithm of mc:
log(mc) = log(k) + α1 log(n) + α2 log(m1). We estimate the parameters using
the values of log(mc) for problem dimension below 17. The adjusted R2 of this
regression is R2 = 0.947 which gives an R2 coefficient on the value mc (with-
out log transformation) of R2 = 0.898. The parameters of the regression are:
α1 = −0.75999, and α2 = 0.90365, and log(k) = 1.65453. As expected from the
previous linear regression, the exponent α2 for m1 is close to the value 1, and the
exponent α1 for n is negative between −1/

√
n, and −1/n approximately. As n

increases, the slope of the linear relation between mc, and m1 decreases. When
we test this model on instances with n ≥ 18, the R2 is higher, equal to 0.923,
which corroborates to the robustness of the model even if more data or a theo-
retical proof could help to validate it further. So, we hypothesise that m

nα1m
α2
1

is

the phase parameter of QAP-3-SAT. To check this hypothesis, Figure 4 shows
the proportion of satisfied instances as a function of this phase parameter. For all
problem dimensions, and numbers of b-clauses, the probability to have satisfied
instances drops very quickly around the same value k.

4.4 Performance of optimization algorithms

Branch and Bound. In the previous section, the Branch and Bound (B&B) algo-
rithm was used to find the global minimum. In this section, it is used to estimate
the computational effort to find the global minimum. Notice that the B&B al-
gorithm is used in an optimization scenario to find and to prove global minima,
and not in the decision scenario to decide only if a QAP-SAT instance is satis-
fied. The Figure 5 shows the average computation time (in seconds) of the B&B
algorithm across instances sharing the same parameters. For fair comparison,
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Fig. 4: Probability of satisfied instances according to the phase transition pa-
rameter m

nα1m
α2
1

across all instances. k = exp(1.65453) ≈ 5.23.

the algorithm is run on the same computer configuration (Dell HPE DL385 with
512Go RAM, 2 processors AMD-EPYC Milan with 256M cache, and 48 cores at
frequency 2.3Ghz each) for all instances. The computation time increases by a
larger factor when the problem dimension increases. For a given problem dimen-
sion n, the computation time drops from few seconds for instances with low-m,
to high value after a threshold value m. Indeed, the computation time seems to
follow a sigmoidal shape with the number of clause m. Around a critical value
of m, the computation time increases fast.

We analyze the relation between the critical parameter mc of satisfaction
phase transition and the potential critical parameter of B&B computation time.
First, we compute a regression using sigmoid function of average computation
time: t(m) = L

1+e−r(m−mt)
where L is the maximal value, r the rate of increases,

and mt the inflection of the sigmoid i.e. the critical parameter. Contrary to the
previous section, due to noise of the computation time logit transformation can
not be used to estimate the parameters. As we know the range of parameters,
we use a basic grid search to estimate the regression parameters minimizing the
mean square error. Except for n = 10 for which the variance of computation
time is high and not stable, the R2 coefficients of the regression are high —
over 0.925 — with a median equal to 0.969. This result tends to show that the
computation time of B&B follows a sigmoidal shape like in the phase transition.
Figure 7 (left) shows the relation between critical parameter mc of the satisfac-
tion phase transition and the critical parameter of B&B computation time. For
a given problem dimension, the relation is nearly linear. The average compu-
tation time depends on the phase transition parameter. However, the variance
of the computation time critical parameter mt depends also on the problem di-
mension. For the same critical parameter mc, the value of mt increases with
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problem dimension, and the range of variation with mc gets smaller as problem
dimension increases. Indeed, we notice that the average of the maximum time
L across m1 value for a given problem dimension n is approximately given by
γ(2.043+0.476(n−8)). To prove that a candidate solution is a global minimum,
B&B needs to cross a large part of the search anyway.
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Fig. 5: Average computation time of B&B algorithm to find the global minimum.
Problem dimensions n = 10-17.

Robust Taboo Search. Figure 6 presents the success rate of ROTS for all
considered instances. There is a very high negative correlation between success
rate, and number of evaluations to reach global minimum (ρ = −0.9999). So
only the success rate is analyzed in the following. In the Figure, instances are
split into facets according to problem dimension, n, and split by m1 as individual
lines. The horizontal axis is number of clauses in the instance, m. It follows that
a single line in one of the plots represents, for all instances of the specified size
and m1, the mean ROTS success rate.

Notice from Figure 6 that the success rate decreases with increasing m for all
problem dimensions. This effect is much stronger for larger problem sizes, how-
ever. From surveying individual facets it can be observed that lower values of m1

are associated with lower success rates, although the disparities between low-m1

and high-m1 instances becomes substantially less for higher problem dimensions
(compare, for example, the facet for problem size 8 with that of size 16). For low
values of m1, there is a steep decrease in success rate at approximately m = 5.
For larger m1, the drop in success rate happens at a larger m, and for smaller
problem sizes there is not a dramatic vertical drop for them. For problem sizes
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Fig. 6: Success rate with varying number of clauses, M , for Robust Taboo Search.
Problem dimensions n = 8-19.

at 14 or greater, however, instances with all values of m1 experience a steep drop
in success rate between m being 5 and approximately 21.

We also analyze the relation between the critical parameter mc of satisfaction
phase transition, and the success rate of tabu search. Like for B&B we obtain
the estimate of a sigmoid model for success rate as a function of the number
of clauses m using a basic grid search minimizing mean square error. Except
for very small values of b-clauses m1, R2 coefficients are high — always over
0.9436 with median equals to 0.9972. In contrast to B&B, the correlation with
the critical parameter of satisfaction phase transition is very high: ρ = 0.9904.
The R2 of the linear regression is R2 = 0.9811. The slope of the linear relation
is 0.542. This result shows that the difficulty to solve a QAP-SAT instance for
tabu search is highly dependent on the position of the instance against the phase
transition parameter. Recall that the tabu search stops when the global minimum
is found; maybe the B&B needs some additional time (which could depend on
the problem dimension) to prove that the solution is the global minimum.

5 Discussion and future work

In this work, QAP-SAT instances are designed using a submodularity princi-
ple by defining low-dimensional easy problems called ”clauses” to solve jointly
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Fig. 7: Relation between critical parameter mc of satisfaction transition, and
critical parameter mt for B&B average computation time (left), for taboo search
success rate (right)

like in SAT problems. Each flow and distance matrix is composed of basic sub-
matrices, and the agreement between sub-matrices in the flow and distance ma-
trices sharply tunes the difficulty of the instance. Although limited to medium
size instances with problem dimension up to 19, the large experimental analysis
shows that the QAP-SAT problem shows a phase transition according to number
of clauses in the matrices and the problem dimension. Supported by those first
experiments, we suggest an order phase parameter that explains the phase tran-
sition. Moreover, the problem performance of the Branch & Bound algorithm
and robust taboo search are correlated with phase transition.

This initial work raises many open questions. First, it is now possible to test
optimization algorithms using QAP-SAT instances as a benchmark, including
large size instances, and compare QAP-SAT against existing QAP benchmarks
to stress the difference between them. Moreover, the modular design of QAP-
SAT with clauses motivates the decomposition of existing real-world QAP in-
stances into easy sub-problems. Additionally, it could inspire the definition of
new properties and metrics on each matrix, and also jointly between matrices.
More broadly, it would be relevant to analyse the fitness landscape to understand
the phase transition and problem difficulty in QAP-SAT. From the theoretical
side, a proof using existing mathematical techniques is required to support the
proposed phase transition parameter based on experiments. In this work, sub-
problems of dimension 3 (QAP-3-SAT) have been studied using a specific shape
for a-clauses, and b-clauses, but future works could extend the analysis to a
broader class of clauses, or to relax the satisfiability condition of a clause, and
the impact on phase transition parameters. Such extended analysis is likely to
be a new field of questions for QAP-related structural properties and problem
difficulty.
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