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aUniversité de technologie de Compiègne, CNRS
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Abstract

Evidential likelihood-based inference is a new approach to statistical inference in which the
relative likelihood function is interpreted as a possibility distribution. By expressing new
data as a function of the parameter and a random variable with known probability distri-
bution, one then defines a random fuzzy set and an associated predictive belief function
representing uncertain knowledge about future observations. In this paper, this approach
is applied to binomial and multinomial regression. In the binomial case, the predictive be-
lief function can be computed by numerically integrating the possibility distribution of the
posterior probability. In the multinomial case, the solution is obtained by a combination of
constrained nonlinear optimization and Monte Carlo simulation. In both cases, computa-
tions can be considerably simplified using a normal approximation to the relative likelihood.
Numerical experiments show that decision rules based on predictive belief functions make
it possible to reach lower error rates for different rejection rates, as compared to decisions
based on posterior probabilities.

Keywords: Dempster-Shafer theory, evidence theory, possibility distribution, statistical
inference, classification, machine learning.

1. Introduction

The Dempster-Shafer (DS) theory of belief functions, introduced by Dempster [7] and
Shafer [48], is a generalization of Bayesian reasoning making it possible to represent and
reason with weak evidence that could not be adequately represented by probability distri-
butions [14]. The two main features of DS theory are (1) the use of belief functions for
representing evidence, and (2) a mechanism for combining independent items of evidence,
known as Dempster’s rule of combination [20].

In machine learning, DS theory has been applied to clustering [1, 18], classification
[10, 34] and partially supervised learning [45, 22]. In classification, an important direction of
research has been to design evidential classifiers quantifying classification uncertainty using
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belief functions [12, 51]. Thanks to the great flexibility of DS theory, evidential classifiers are
able to distinguish between aleatory uncertainty, arising from the random data generation
mechanism on the one hand, and epistemic uncertainty due to insufficient data on the other
hand.

Logistic regression is one of the most widely used classification techniques [33]. It is
based on a discriminative model representing the logarithms of probability ratios for differ-
ent classes as linear combinations of predictors, resulting in a linear classifier. The coeffi-
cients are fitted by likelihood maximization using the Newton-Raphson algorithm. One of
the main reasons for the popularity of logistic regression is that it produces interpretable
results; in particular, the contribution of each individual predictor can be assessed by test-
ing the significance of the corresponding coefficient. However, a logistic regression classifier
computes point estimates of posterior class probabilities without accounting for epistemic
uncertainty. Alternatively, Bayesian logistic regression assumes a prior probability distri-
bution on the regression coefficients, and computes the posterior distribution using Markov
Chain Monte Carlo techniques [31]. The predictive posterior class probabilities then account
for both random and epistemic uncertainty. However, a drawback of Bayesian inference is
its reliance on precise prior probabilities, an unreasonable assumption in case of complete
ignorance [48, 52].

In this paper, we investigate another approach to logistic regression based on the theory
of belief functions, called evidential logistic regression. This approach is based on our recent
work on statistical inference using epistemic random fuzzy sets [17, 19, 24]. As we will see,
our evidential approach boils down to the Bayesian approach when prior probabilities are
provided, but it can be used in the absence of prior information, or with weaker forms of
prior information. Our study extends previous work by Xu et al. [54] and Minary et al.
[42], which was limited to binary logistic regression. Specifically, the contributions of the
present paper are the following:

1. We show that the amount of computation in evidential binomial regression can be
reduced using a normal approximation to the relative likelihood function;

2. We extend the method to multinomial classification using both exact and approximate
calculations using, again, a normal approximation to the relative likelihood function;

3. Using numerical experiments, we show that the predictive belief functions computed
by evidential logistic regression have better predictive performance (as measured by
error-reject curves) than the estimated posterior probabilities computed by classical
logistic regression.

We can remark that the approach investigated in this paper differs from that presented
in [16], in which we showed that the operations performed in logistic regression and in the
softmax layer of neural network classifiers can be interpreted as the combination of elemen-
tary Dempster-Shafer mass functions resulting in a latent belief function. This previous
analysis did not consider sampling or epistemic uncertainty, which is our main focus here.
A brief comparison between the two approaches will be presented in Section 5.3.

The rest of the paper is organized as follows. The necessary background about possibility
theory, random fuzzy sets and evidential likelihood-based inference is first recalled in Section
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2. Binomial and multinomial logistic regression are then addressed, respectively, in Sections
3 and 4. Experimental results are reported in Section 5. Finally, Section 6 summarizes the
main findings of the paper and opens up some perspectives.

2. Background

In this section, we briefly introduce the theoretical background needed to understand the
rest of the paper. Basic notions about possibility theory and epistemic random fuzzy sets
(RFSs) are first recalled, respectively, in Sections 2.1 and 2.2. Evidential likelihood-based
inference is then summarized in Section 2.3.

2.1. Fuzzy sets and possibility theory

Possibility theory, initiated by Zadeh in [57], is a formalism for uncertain reasoning
based on the representation of partial information about variables of interest by flexible
constraints (see [21] for a recent account). It is intimately related to the notion of fuzzy set

[55]. Formally, a fuzzy subset of a set Θ can be identified to a mapping F̃ : Θ→ [0, 1]. Each

number F̃ (θ) is interpreted as a “degree of membership” of element θ in F̃ , seen as a set with

unsharp boundaries. The height of F̃ is its supremum; it is denoted by hgt(F̃ ) = supθ∈Θ F̃ (θ).

If hgt(F̃ ) = 1, F̃ is said to be normal. For any α ∈ [0, 1], the α-cut of F̃ is the set

αF̃ = {θ ∈ Θ : F̃ (θ) ≥ α}.

Extension principle. Let f be a mapping from Θ to some set Λ. Zadeh’s extension principle
[56] makes it possible to extend f to fuzzy subsets of Θ. The image by f of a fuzzy subset

F̃ of Θ is the fuzzy subset f(F̃ ) of Λ defined by

f(F̃ )(λ) = sup
{θ∈Θ:f(θ)=λ}

F̃ (θ). (1)

If a variable θ taking values in Θ is constrained by F̃ , f(θ) is, thus, constrained by f(F̃ ).

Possibility and necessity measures. Let θ be a variable taking values in Θ. Assume that we
receive a piece of evidence telling us that “θ is F̃”, where F̃ is a normal fuzzy subset of Θ.
This evidence induces a possibility measure ΠF̃ from 2Θ to [0, 1] defined by

ΠF̃ (B) = sup
θ∈B

F̃ (θ), (2)

for allB ⊆ Θ. The number ΠF̃ (B) is interpreted as the degree of possibility that θ ∈ B, given

that θ is F̃ [57]. The corresponding possibility distribution is the mapping πF̃ : Θ → [0, 1]
defined by

πF̃ (θ) = ΠF̃ ({θ}) = F̃ (θ).

It is identical to F̃ : the degree of possibility that θ = θ given the flexible constraint “θ is
F̃” is equal to the degree of membership of θ to fuzzy set F̃ . The dual necessity measure is
defined as

NF̃ (B) = 1− ΠF̃ (Bc) = inf
θ 6∈B

[
1− F̃ (θ)

]
, (3)
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where Bc denotes the complement of B in Θ. It is easy to show that NF̃ is completely
monotone and is, thus a belief function, while ΠF̃ is the dual plausibility function [28].

Conjunctive combination of possibility distributions. Assume that we receive two indepen-
dent pieces of information telling us that “θ is F̃” and “θ is G̃”, where F̃ and G̃ are two
fuzzy subsets of Θ. The conjunctive combination of these two pieces of evidence requires
some notion of intersection between fuzzy sets. As reviewed in [27], the intersection opera-
tion can be extended to fuzzy sets using triangular norms (or t-norms for short). The most
common choices are the minimum and product t-norms originally proposed by Zadeh [55].

Given a t-norm >, the corresponding normalized intersection of two fuzzy subsets F̃ and G̃
of Θ such that supθ′ F̃ (θ′)>G̃(θ′) > 0 is the normal fuzzy subset

(F̃ ∩∗> G̃)(θ) =
F̃ (θ)>G̃(θ)

supθ′ F̃ (θ′)>G̃(θ′)
. (4)

The product is the only t-norm for which this operation is associative [23]. The normalized
product-intersection operator will be denoted by �.

Gaussian fuzzy numbers and vectors. A Gaussian fuzzy vector (GFV) is a normal fuzzy

subset F̃ of Rp (with p ≥ 1) such that

F̃ (x) = exp

(
−1

2
(x−m)TH(x−m)

)
for all x ∈ Rp, where m ∈ Rp is the mode of F̃ , and H ∈ Rp×p is a symmetric and positive
semidefinite precision matrix. We write F̃ ∼ GFV(m,H). It can easily be shown [43] that
the family of GFVs is closed under the normalized product intersection. More precisely,
assuming H1 +H2 to be positive definite, we have

GFV(m1,H1) � GFV(m2,H2) = GFV(m12,H12)

with m12 = (H1 +H2)−1(H1m1 +H2m2) and H12 = H1 +H2. When p = 1, a GFV boils
down to a Gaussian fuzzy number (GFN) and we write GFN(m,h) with m ∈ R and h ≥ 0.

The following proposition states that the image of a GFV by a linear mapping is still a
GFV. This result will be used extensively in Sections 3 and 4.

Proposition 1. Let β ∈ Rp be a p-dimensional real vector constrained by a possibility
distribution β̃ ∼ GFV(m,H) with mode m ∈ Rp and positive definite precision matrix H ∈
Rp×p. Let U ∈ Rq×p be a real matrix of rank q ≤ p, and Z = Uβ ∈ Rq. The possibility
distribution Z̃ of Z verifies

Z̃ ∼ GFV
(
Um, (UH−1UT )−1

)
.

Furthermore, the most plausible value of β subject to the constraint Uβ = z is

β∗ = m+H−1UT (UH−1UT )−1(z −Um).
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Proof. See Appendix A.

Proposition 1 makes it possible, in particular, to compute marginals of GFVs. Let
m = (m1,m2), where m1 and m2 are two subvectors of m of respective lengths r and s, with
p = r + s, and consider the corresponding block decomposition of H :

H =

(
H11 H12

H21 H22

)
.

We can write m1 = Um and H11 = UHUT , where U is the matrix of size r × p

U =
(
Idr 0r×s

)
,

where Idr is the identity matrix of size r × r, and 0r×s is the null matrix of size r × s.
Consider the block decomposition of H−1:

H−1 =

(
[H−1]11 [H−1]12

[H−1]21 [H−1]22

)
.

From Proposition 1, the marginal of GFV(m,H) with respect to the first r coordinates is the
GFV with mode m1 and precision matrix ([H−1]11)−1, which using formulas for the inverse
of a block matrix [43, p. 46] can be written as

([H−1]11)−1 = H11 −H12H
−1
22H21. (5)

This result was stated as Lemma 3 in [19].

2.2. Random fuzzy sets

General definitions. The theory of epistemic RFSs [17, 19] is an extension of DS and possi-
bility theories, in which evidence is represented by RFSs. Mathematically, a RFS is defined
as follows [5]. Let (Ω,ΣΩ, P ) be a probability space, (Θ,ΣΘ) a measurable space, and X̃
a mapping from Ω to the set [0, 1]Θ of fuzzy subsets of Θ. For any α ∈ [0, 1], we define

the mapping αX̃ from Ω to 2Θ as αX̃(ω) = α[X̃(ω)]. We say that X̃ is a RFS if, for any

α ∈ [0, 1], αX̃ is ΣΩ − ΣΘ strongly measurable, i.e., for any B ∈ ΣΘ,

{ω ∈ Ω : αX̃(ω) ∩B 6= ∅} ∈ ΣΩ.

Interpretation. In epistemic RFS theory, a RFS is a model of uncertain and fuzzy evidence,
in which Θ is a domain of an uncertain variable θ, and Ω is a set of possible interpretations
of a piece of evidence about θ. If ω ∈ Ω holds, θ is constrained by the possibility distribution
defined by fuzzy set X̃(ω). We do not know for sure which interpretation is the true one,
but our beliefs about the true interpretation are represented by probability measure P .
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Belief and plausibility functions. Assuming interpretation ω holds, the degree of possibility
that θ belongs to some set B ∈ ΣΘ can be calculated from (2) as

ΠX̃(ω)(B) = sup
θ∈B

X̃(ω)(θ),

and the degree of necessity of the same event is NX̃(ω)(B) = 1 − ΠX̃(ω)(B
c). Let BelX̃(B)

and PlX̃(B) denote, respectively, the expected necessity and the expected possibility of B:

BelX̃(B) =

∫
Ω

NX̃(ω)(B)dP (ω), (6a)

PlX̃(B) =

∫
Ω

ΠX̃(ω)(B)dP (ω) = 1−BelX̃(Bc). (6b)

The mappings B 7→ BelX̃(B) and B 7→ PlX̃(B), are, respectively, belief and plausibility
functions [58, 5].

Combination. The product-intersection rule for combining RFSs, introduced in [17] in the
discrete case and in [19] in the general case, is defined as follows. Let us consider two

probability spaces (Ωi,ΣΩi
, Pi), i = 1, 2 and two RFSs X̃i : Ωi → [0, 1]Θ, i = 1, 2 representing

independent pieces of evidence about variable θ taking values in Θ. We define a new
probability space as (Ω1×Ω2,ΣΩ1⊗ΣΩ2 , P12), where ⊗ denotes the tensor product of sigma-
algebras and P12 is the probability measure obtained by conditioning the product measure
P1 × P2 by the fuzzy set of consistent pairs of interpretations with membership function

Θ̃12(ω1, ω2) = sup
θ∈Θ

(
X̃1(ω1)(θ) · X̃2(ω2)(θ)

)
.

The mapping X̃1 ⊕ X̃2 : Ω1 × Ω2 → [0, 1]Θ such that

(X̃1 ⊕ X̃2)(ω1, ω2) = X̃1(ω1) � X̃2(ω2),

where � denotes the fuzzy set normalized product intersection (4) is called the orthogonal

sum of X̃1 and X̃2. The product-intersection operator ⊕ is commutative and associative. It
generalizes both Dempster’s rule for combining belief functions, and the normalized product
intersection of possibility measures.

It must be emphasized here that the product intersection ⊕ defines an operation on
RFSs, and not on belief functions [17, 19]. In particular, any fuzzy subset F̃ of Θ can be

associated with a constant RFS X̃F̃ such that X̃F̃ (ω) = F̃ for all ω ∈ Ω, or with a random
crisp (i.e., nonfuzzy) set X F̃ : Ω → 2Θ, where Ω is the interval [0, 1] equipped with the

uniform probability measure, such that X F̃ (ω) = ωF̃ for all ω ∈ Ω. Random set X F̃ is said
to be consonant as, for any (ω, ω′) ∈ Ω2, we have X F̃ (ω) ⊆ X F̃ (ω′) or X F̃ (ω′) ⊆ X F̃ (ω). It

is easy to see that X̃F̃ and X F̃ correspond to the same belief function, i.e., BelX̃
F̃

= BelX
F̃

.

Yet, given two fuzzy subsets F̃ and G̃ of Θ, X̃F̃ ⊕ X̃G̃ = X̃F̃�G̃ is different from X F̃ ⊕XG̃

(the former is still a consonant RFS, while the latter is a RS that is no longer consonant).
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2.3. Evidential likelihood-based inference

A theory of statistical inference based on epistemic RFSs was proposed in [17, 19], as
an improvement of a previous approach introduced in [13, 36, 37]. It is briefly summarized
here. We consider an observed random vector Y with probability density function (pdf)
fY |θ, where θ ∈ Θ is the unknown parameter1. The likelihood of any value θ of the parameter
after observing Y = y is

L(θ;y) = cfY |θ(y),

where c is an arbitrary positive constant. Assuming that supθ L(θ;y) < +∞, we can define
the relative likelihood of θ as

πθ|y(θ) =
L(θ;y)

supθ′∈Θ L(θ′;y)
=
L(θ;y)

L(θ̂;y)
, (7)

where θ̂ is the maximum likelihood estimate (MLE) of θ. We interpret mapping πθ|y : Θ→
[0, 1] as a possibility distribution over Θ or, equivalently, as the fuzzy set of likely values of θ
after observing Y = y. It is, thus, a representation of the information about θ provided by
observation y. For any A ⊆ Θ, the degrees of plausibility and belief and that θ ∈ A after
observing y can be computed, respectively, as

Plθ|y(A) = sup
θ∈A

πθ|y(θ) and Belθ|y(A) = 1− Plπθ|y(Ac). (8)

This representation was justified in [13] and [17] as the least committed solution verifying
the following two requirements:

R1: Compatibility with Bayesian inference: let P0 be a prior probability measure on Θ; then,
P0 ⊕ πθ|y = Pθ|y, where ⊕ is the product-intersection operator recalled in Section 2.2,
and Pθ|y the Bayesian posterior probability measure on Θ;

R2: Combination of independent observations: let y and y′ be independent observations;
then, πθ|y ⊕ πθ|y′ = πθ|y,y′ .

Requirement R1 implies that our approach is an extension of Bayesian inference, in which
prior information no longer needs to be assumed. We can also remark that weaker forms
of prior information than considered in Bayesian inference such as, for instance, a priori
possibility distributions can easily be accommodated in our approach, as will be shown
below. Requirement R2 ensures that πθ|y captures all the information about the parameter
provided by y: after computing function πθ|y, we do not need to store the original data y;
if a new independent observation y′ is made, combining πθ|y with πθ|y′ using the product-
intersection operator gives us the same result as the one obtained by concatenating the two

1We use boldface character θ for the unknown parameter, and θ for an arbitrary value of θ.
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observations2. A brief comparison with other evidential approaches to statistical inference,
in particular Inferential Models [3][39][40][41] is presented in Appendix B

Normal approximation. Assuming lnπθ|y(θ) to be twice differentiable, a tractable approx-
imation of function πθ|y(θ) can often be obtained by computing a Taylor expansion of its

logarithm about the MLE θ̂ up to the second order [50]:

ln πθ|y(θ) = lnπθ|y(θ̂) + (θ − θ̂)T
∂ ln πθ|y(θ)

∂θ

∣∣∣∣
θ=θ̂

+

1

2
(θ − θ̂)T

∂2 ln πθ|y(θ)

∂θ∂θT

∣∣∣∣
θ=θ̂

(θ − θ̂) + · · ·

The first term on the right-hand side of the above equation is zero by definition, and the
second term is zero in the usual case where θ̂ is a stationary point of πθ|y. Neglecting the
remaining terms of the Taylor expansion, we get the following approximation

πθ|y(θ) ≈ exp

[
−1

2
(θ − θ̂)TI(θ̂)(θ − θ̂)

]
, (9)

where I(θ̂) is the observed information matrix defined as

I(θ̂) = −
∂2 lnπθ|y
∂θ∂θT

∣∣∣∣
θ=θ̂

= −∂
2 lnL(θ;y)

∂θ∂θT

∣∣∣∣
θ=θ̂

.

As noted in [50], this approximation is usually well verified when Y = (Y1, . . . , Yn) is an
independent sample and n is large.

Prior information. As mentioned above, combination of the likelihood-based possibility dis-
tribution (7) with a Bayesian prior using the product-intersection rule yields the Bayesian
posterior. However, prior knowledge, when available, is usually vague and, in most cases,
there does not seem to be any compelling reason to represent it by a probability distribution.
In the robust Bayes approach, prior information is represented by a set of probability dis-
tributions, an approach also advocated by Martin [39] in the context of Inferential Models.
In [24], I proposed to encode prior knowledge as a RFS, a very general model encompassing
Bayesian, possibilistic and vacuous priors as special cases. In particular, a constant RFS,
i.e., a possibility distribution is often a simple and convenient model of weak prior infor-
mation [26]. Let πθ|prior be a prior possibility distribution on θ. Combining it with the
likelihood-based possibility distribution (7) yields the posterior possibility distribution

πθ|y,prior = πθ|y � πθ|prior,

2In earlier work [13, 36, 37], the relative likelihood was interpreted as the contour function of a consonant
belief function. However, the combination by Dempster’s rule of the consonant belief functions induced
by two independent samples is not equal to the consonant belief function induced by the union of the two
samples, a contradiction that was remarked in [13]. The possibilistic interpretation of the relative likelihood
resolves this contradiction.
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which can be computed as

πθ|y,prior =
L(θ;y)πθ|prior(θ)

supθ′∈Θ L(θ′;y)πθ|prior(θ′)
=

L(θ;y)πθ|prior(θ)

L(θ̂′;y)πθ|prior(θ̂′)
,

where θ̂′ is a maximizer of L(·;y)πθ|prior. As before, a normal approximation of πθ|y,prior can

be obtained by computing a second-order Taylor series expansion of ln πθ|y,prior about θ̂′.
Alternatively, if the prior possibility distribution is itself Gaussian, i.e., if it is of the form

πθ|prior(θ) = exp

[
−1

2
(θ − θ0)TH0(θ − θ0)

]
,

it can be combined with the normal approximation (9), resulting in the following approxi-
mation:

πθ|y,prior(θ) ≈ exp

[
−1

2
(θ − θ̂1)T [H0 + I(θ̂)](θ − θ̂1)

]
,

with
θ̂1 = [H0 + I(θ̂)]−1

(
H0θ0 + I(θ̂)θ̂

)
.

In practice, situations in which the data analyst has true and reliable prior knowledge are
rather rare. For this reason, no prior knowledge will be assumed in the developments below.
The special case of regularization will be briefly addressed in Section 3.1.

Prediction. Let us now consider a prediction problem, where we want to predict the value
of a new Ynew with sample space Y , whose distribution also depends on θ. We can always
define a random variable Y ∗ with the same distribution as that of Ynew, such that

Y ∗ = ϕ(θ, U), (10)

where U is a pivotal random variable with known distribution and sample space U , and ϕ
is a mapping from Θ × U to Y [37]. We call (10) a ϕ-equation. After observing the data
y, our knowledge about θ is represented by the possibility distribution πθ|y. By Zadeh’s
extension principle (1), our knowledge of Ynew conditionally on U = u is, thus, represented
by the possibility distribution πYnew|y,u = ϕ(πθ|y, u) defined as

πYnew|y,u(y) = sup
{θ∈Θ:ϕ(θ,u)=y}

πθ|y(θ) (11)

for all y ∈ Y . The mapping

Ỹ : [0, 1] → [0, 1]Y

u 7→ πYnew|y,u

is, then, a RFS representing statistical evidence about Ynew. The corresponding predictive
belief function BelỸ and the dual plausibility function PlỸ can be computed by (6).

We can remark that, if we draw θ from its posterior distribution f(θ|y) and Y ∗ using
the ϕ-equation (10), the distribution of Y ∗ given y is identical to the Bayesian predictive
distribution of Ynew given y. Indeed,

f(y∗|y) =

∫
f(y∗|θ)f(θ|y)dθ =

∫
f(y|θ)f(θ|y)dθ = f(y|y).

9



Example 1. Assume that Y = (Y1, . . . , Yn) is an independent and identically distributed
(iid) sample from the Bernoulli distribution B(θ). The fuzzy set of likely values of θ after
observing Y = y is

πθ|y(θ) =

(
θ

θ̂

)nθ̂ (
1− θ
1− θ̂

)n(1−θ̂)

,

where θ̂ = n−1
∑n

i=1 yi is the MLE of θ. Now, let Ynew ∼ B(θ), independent from Y ; it has
the same distribution as

Y ∗ = ϕ(θ, U) =

{
1 if U ≤ θ

0 otherwise,
(12)

where U is a random variable with a standard uniform distribution. For U = u, the possibility
distribution πYnew|y,u defined on Y = {0, 1} is

πYnew|y,u(1) = sup
{θ∈[0,1]:ϕ(θ,u)=1}

πθ|y(θ) =

{
1 if u ≤ θ̂

πθ|y(u) otherwise,

and

πYnew|y,u(0) = sup
{θ∈[0,1]:ϕ(θ,u)=0}

πθ|y =

{
1 if u ≥ θ̂

πθ|y(u) otherwise.

The plausibility function of the RFS Ỹ : u 7→ Ỹ (u) = πYnew|y,u can be computed using (6b)
as

PlỸ ({1}) = E[Ỹ (U)(1)] (13a)

= E[Ỹ (U)(1)|U ≤ θ̂] P (U ≤ θ̂) + E[Ỹ (U)(1)|U > θ̂] P (U > θ̂) (13b)

= 1× θ̂ +

∫ 1

θ̂
πθ|y(u)du

1− θ̂
× (1− θ̂) (13c)

= θ̂ +

∫ 1

θ̂

πθ|y(u)du, (13d)

and

PlỸ ({0}) = E[Ỹ (U)(0)] (14a)

= E[Ỹ (U)(0)|U ≤ θ̂] P (U ≤ θ̂) + E[Ỹ (U)(0)|U > θ̂] P (U > θ̂) (14b)

=

∫ θ̂
0
πθ|y(u)du

θ̂
× θ̂ + 1× (1− θ̂) (14c)

= 1− θ̂ +

∫ θ̂

0

πθ|y(u)du. (14d)
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The corresponding predictive mass function mỸ is

mỸ ({0}) = 1− PlỸ ({1}) = 1− θ̂ −
∫ 1

θ̂

πθ|y(u)du (15a)

mỸ ({1}) = 1− PlỸ ({0}) = θ̂ −
∫ θ̂

0

πθ|y(u)du (15b)

mỸ ({0, 1}) = 1−mỸ ({0})−mỸ ({1}) =

∫ 1

0

πθ|y(u)du. (15c)

3. Binomial logistic regression

In this section, we apply the general theory recalled in Section 2.3 to binomial logistic
regression. The results reported in [54] (using the consonant interpretation of the relative
likelihood) are recovered, and some new results are presented. Estimation of coefficients and
posterior probabilities are first addressed, respectively, in Sections 3.1 and 3.2. Prediction
is then dealt with in Section 3.3.

3.1. Estimation of coefficients

Model. Let us consider a binary classification problem in which the task is to predict a
binary response Y ∈ {0, 1} from p features Xj, j = 1, . . . p. Let X = (1, X1, . . . , Xp) denote
the extended feature vector of dimension p + 1. The conditional probability that Y = 1
given X = x, denoted by θ(x; β), is assumed to be of the following form,

θ(x; β) = FL(βTx), (16)

where FL(z) = [1 + exp(−z)]−1 is the cumulative distribution function (cdf) of the stan-
dard logistic distribution function, and β = (β0, β1, . . . , βp) ∈ Rp is a vector of unknown
coefficients. We note that other cdfs can be used instead of FL. For instance, choosing the
standard normal cdf Φ gives us the probit regression model. The approach studied in this
paper for the case of the widely-used binomial logistic model can easily be transferred to
the probit and other models.

Estimation of β. Given n independent observations y = (y1, . . . , yn) of Y with corresponding
feature vectors xi, . . . , xn, the conditional likelihood is

L(β) =
n∏
i=1

θ(xi; β)yi [1− θ(xi; β)]1−yi . (17)

Let β̂ be the MLE of β found by maximizing (17) using an iterative nonlinear optimization
algorithm. The possibility distribution of β is given by

πβ|y(β) =
L(β;y)

L(β̂;y)
. (18)

11



The observed information matrix can be written as

I(β̂) = XTV X,

where X is the n× (p+ 1) matrix in which each row i contains feature vector xi, and V is

a n × n diagonal matrix with general element θ̂i(1 − θ̂i), where θ̂i = θ(xi; β̂) (see [33, page
38]). The normal approximation (9) gives us

πβ|y(β) ≈ exp

(
−1

2
(β − β̂)TI(β̂)(β − β̂)

)
. (19)

The possibility distribution β̃ is, thus approximated by a GFV with mode β̂ and precision
matrix I(β̂), which we denote by πβ|y ∼ GFV(β̂,I(β̂)).

Marginalization. For interpretation, it is often useful to examine the possibility distribution
of individual coefficients, or groups of coefficients βJ = (βj)j∈J for J ⊂ {0, . . . , p}. For
instance, hypotheses such as βj = 0 or βJ = 0 can be assessed by computing their degree of
possibility, an alternative to frequentist tests of significance [37]. To compute the marginal
possibility πβJ |y(βJ), we need to solve the following nonlinear optimization problem:

πβJ |y(βJ) = max
βJ

πβ|y(β), (20)

where βJ denotes the subvector of β with components in J removed. Using the normal
approximation (19) and the expression (5) for the marginal precision matrix of a GRV, we
obtain the following normal approximation of πβJ |y(βJ):

πβJ |y(βJ) ≈ exp

(
−1

2
(βJ − β̂J)T (IJ,J − IJ,JI−1

J,J
IJ,J)(βJ − β̂J)

)
, (21)

where IJ,J is the submatrix of I(β̂) obtained by selecting the rows i ∈ J and leaving out the
columns j 6∈ J , and the other notations IJ,J , IJ,J and IJ,J have similar obvious meanings.
Furthermore, as shown in [19, Appendix J], the vector β∗

J
maximizing (19) with βJ fixed is

β∗
J

= β̂J − I−1

J,J
IJ,J(βJ − β̂J).

This value can be used as a starting point when solving optimization problem (20).

Example 2. As a first example, let us consider the CHDAGE dataset used in [33, Chapter 1]
and available in the R package aplore3 [2]. The dataset contains the age in years (age), and
presence or absence of evidence of significant coronary heart disease (chd) for 100 subjects in
a hypothetical study of risk factors for heart disease (see Figure 1). In this case, the model is
chd = β0 + β1age. The exact and approximate possibility distributions on β = (β0, β1)T are
shown in Figure 2. The marginal possibility distributions of β0 and β1 are shown in Figure
3. We can see that the normal approximation is quite accurate around the MLE, with larger
errors occurring farther away from the MLE.
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Figure 1: Jitter stripchart of the CHDAGE dataset.
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Figure 2: Contours are levels 0.1, 0.3, 0.5, 0.7 and 0.9 of the possibility distribution β̃ for the CHDAGE dataset
(black solid lines), and normal approximation (red broken lines).
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Figure 3: Marginal possibility distributions of β0 and β1 for the CHDAGE dataset (black solid lines), and
normal approximations (red broken lines).

Regularization. Regularization is sometimes used with logistic regression to prevent over-
fitting [32]. For instance, L2 regularized logistic regression is based on maximizing the
penalized log-likelihood

`(R)(β) = lnL(β)− ξ

2

p∑
j=1

β2
j , (22)

where ξ > 0 is a hyperparameter. Denoting by β̂(R) the estimate of β found by maximizing
(22), the possibility distribution of β can then be defined as

π
(R)
β|y (β) =

exp[`(R)(β;y)]

exp[`(R)(β̂(R);y)]
∝ πβ|y(β)π0(β), (23)

with

π0(β) = exp

(
−1

2
βTΞβ

)
,

where Ξ is the (p+ 1)× (p+ 1) diagonal matrix with diagonal terms (0, ξ, . . . , ξ). Function
π0 can be seen as a normal prior possibility distribution on β. Similary, L1 regularization
corresponds to the combination of the likelihood-based possibility distribution with a Laplace
possibilistic prior. We note that this correspondance is purely formal: the penalization term
in (22) usually does not encode true prior knowledge, and coefficient ξ is typically determined
from the data using, e.g., cross-validation. Regularized logistic regression will no longer be
mentioned in the rest of this paper. In Section 5, soft targets as proposed in [44] will be
used to prevent overfitting by implicit regularization.
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3.2. Estimation of posterior probabilities

Let us now assume that we observe a new feature vector X = x. The possibility distri-
bution of the posterior probability θ(x) of Y = 1 given X = x can be computed by applying
the extension principle to (16) and (18); we get

πθ(x)|y(θ) = sup
{β:θ=[1+exp(−βT x)]−1}

πβ|y(β). (24)

Each value πθ(x)|y(θ) can, thus, be found by maximizing (18) subject to the constraint
θ = FL(βTx), which can be equivalently written as

β0 = logit(θ)−
p∑
j=1

βjxj (25)

with

logit(θ) = F−1
L (θ) = ln

θ

1− θ
.

Substituting β0 with the right-hand side of (25) in (18), we transform the constrained
nonlinear optimization problem into an unconstrained one, which is the method proposed
in [54].

Normal approximation. Alternatively, using the normal approximation (19) allows us to
obtain an approximate closed-form expression for πθ(x)|y(θ). Using Proposition 1 with (19)
and U = xT , we can see that the possibility distribution of z = xTβ is, approximately,

πz|y ∼ GFN
(
xT β̂, (xT [I(β̂)]−1x)−1

)
.

The possibility distribution of θ(x) can, thus, be approximated using the extension principle
by

πθ(x)|y(θ) = sup
{z∈R:θ=[1+exp(−z)]−1}

πz|y(z)

= πz|y(logit(θ))

≈ exp

(
−1

2
(xT [I(β̂)]−1x)−1(logit(θ)− xT β̂)2

)
. (26)

Furthermore, from Proposition 1, the value of β maximizing (19) subject to xTβ = logit(θ)
is

β∗ = β̂ + [I(β̂)]−1x(xT [I(β̂)]−1x)−1(logit(θ)− xT β̂).

This value can be used as a starting point in the optimization to compute the exact value
of πθ(x)|y(θ).

Example 3. Continuing Example 2, Figure 4 shows the exact and approximate possibility
distributions of θ(age) with age ∈ {20, 50, 70} for the CHDAGE dataset. The normal approxi-

mation is quite accurate, specially when the MLE θ̂(x) is not too close to 0 or 1.
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Figure 4: Possibility distributions of θ(age) with age = 20 (a), age = 50 (b) and age = 70 (c) for the CHDAGE

dataset (black solid lines), and normal approximations (red broken lines).

Table 1: Predictive mass functions for three values of age (Example 4).

Exact Approximate

age m
Ỹ (x)

({0}) m
Ỹ (x)

({1}) m
Ỹ (x)

({0, 1}) m
Ỹ (x)

({0}) m
Ỹ (x)

({1}) m
Ỹ (x)

({0, 1})
20 0.904 0.0201 0.0764 0.898 0.0209 0.0814
50 0.363 0.481 0.155 0.366 0.480 0.155
70 0.0393 0.841 0.120 0.0405 0.835 0.125

3.3. Prediction

Let us now consider the problem of quantifying the uncertainty on the response Y for a
given x. As this response is random, this is a prediction problem. Given X = x, Y has a
Bernoulli distribution B(θ(x)): consequently, the expressions derived in Example 1 are still
valid, replacing θ by θ(x). From (15), the expression of the predictive mass function is

mỸ (x)({0}) = 1− θ̂(x)−
∫ 1

θ̂(x)

πθ(x)|y(u)du (27a)

mỸ (x)({1}) = θ̂(x)−
∫ θ̂(x)

0

πθ(x)|y(u)du (27b)

mỸ (x)({0, 1}) =

∫ 1

0

πθ(x)|y(u)du. (27c)

These expressions were already obtained in [54]. The integrals in (27) can be computed by
numerical integration, using either the exact possibility distribution πθ(x)|y, or its approxi-
mate expression (26).
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Figure 5: Predictive mass functions plotted against age for the CHDAGE dataset. Masses assigned to {0}, {1}
and {0, 1} are plotted, respectively, in black, red and blue. The exact and approximate values are plotted,
respectively, as solid and broken lines.

Example 4. Table 1 shows exact and approximate values of predictive mass functions mỸ (x)

for the CHDAGE dataset and age ∈ {20, 50, 70}. The masses are plotted against age in Figure
5. We can remark that the normal approximations are quite accurate.

4. Multinomial logistic regression

In this section, we consider the extension to multinomial logistic regression of the method-
ology described in Section 3. The estimation of coefficients and posterior probabilities will
first be addressed, respectively, in Sections 4.1 and 4.2. The prediction problem will then
be tackled in Section 4.3.

4.1. Estimation of coefficients

We consider a classification problem in which the response Y is a categorical variable
taking values in Y = {1, . . . , K} with K ≥ 3. Let ΨS denote the softmax transformation
from RK−1 to the simplex SK of K-dimensional probability vectors, defined as

ψS(z2, . . . , zK) =

[
1

1 +
∑K

k=2 exp(zk)
,

exp(z2)

1 +
∑K

k=1 exp(zk)
, . . . ,

exp(zK)

1 +
∑K

k=2 exp(zk)
,

]T
.

Let θk(x; β) denote the conditional probability that Y = k given X = x, where, as before,
X denotes the extended feature vector. The vector of conditional probabilities is assumed
to be given by

(θ1(x; β), . . . , θK(x; β)) = ψS(βT2 x, . . . , β
T
Kx),
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where βk ∈ Rp+1 is a vector of coefficients specific to class k, and β = (βT2 , . . . , β
T
K)T ∈

R(K−1)(p+1) is the vector of all parameters in the model. The conditional likelihood can then
be written as

L(β) =
n∏
i=1

K∏
k=1

θk(xi; β)yik , (28)

where yik = 1 if yi = k, and yik = 0 otherwise. As in the binomial case, the MLE β̂ of β
can be found by maximizing (28) using an iterative nonlinear optimization algorithm, and
the possibility distribution πβ|y of β is given by (18).

The observed information matrix is now [33, page 272]:

I(β̂) = X˜TV˜X˜,

with X˜ the n(K − 1)× (p+ 1)(K − 1) block matrix

X˜ = IdK−1 ⊗X,

where IdK−1 is the identity matrix of size (K − 1) × (K − 1), ⊗ denotes the Kronecker
product, and V˜ is the n(K − 1)× n(K − 1) block matrix

V˜ =


V 1,1 V 1,2 · · · V 1,(K−1)

V 2,1 V 2,2 · · · V 2,(K−1)
...

...
. . .

...
V (K−1),1 V (K−1),2 · · · V (K−1),(K−1)

 ,

where each submatrix V kl is an n× n diagonal matrix, the i-th diagonal element of V kk is
θ̂ki(1 − θ̂ki) with θ̂ki = θk(xi, β̂) and the i-th diagonal element of V kl with k 6= l is −θ̂kiθ̂li.
The normal approximation formulas given in Section 3.1, in particular (19) for the possibility
distribution of β and (21) for marginal possibility distributions, are unchanged.

4.2. Estimation of posterior probabilities

As before, we will first consider the estimation of conditional class probabilities for a given
feature vector x, before addressing the problem of predicting the multinomial response Y in
Section 4.3.

For a test vector x, let θ(x) = (θ1(x), . . . , θK(x)) denote the vector of conditional class
probabilities. The possibility distribution πθ(x)|y can be obtained from the possibility distri-
bution πβ|y of β using the extension principle,

πθ(x)|y(θ) = sup
{β:θ=ψS(xT β2,...,xT βK)}

πβ|y(β) (29a)

= sup
{β:ψ−1

S (θ)=(xT β2,...,xT βK)}
πβ|y(β), (29b)

where the inverse of the softmax transformation is

ψ−1
S (θ) =

[
ln
θ2

θ1

, . . . , ln
θK
θ1

]T
.
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The possibility degree πθ(x)|y(θ) can, thus, be computed by maximizing πβ|y(β) subject to
K − 1 linear equality constraints

xTβk = ln
θk
θ1

, k = 2, . . . , K. (30)

From each constraint (30), we get

βk0 = ln

(
θk
θ1

)
−

p∑
j=1

xjβkj. (31)

Replacing each βk0 for k = 2, . . . , K by the right-hand side of (31) in the expression of
πβ|y(β) transforms the constrained optimization problem into an unconstrained one.

Normal approximation. An approximate closed-form expression for πθ(x)|y(θ) can be ob-
tained from the normal approximation (19) of πβ|y as follows. Let z = (xTβ2, . . . , x

TβK).
We can write z = Uxβ, where Ux is matrix of size (K − 1)× (K − 1)(p+ 1) defined as

Ux = IdK−1 ⊗ xt.

Applying Proposition 1 to (19) with U = Ux, we obtain the approximate possibility distri-
bution of z as

πz|y ∼ GFV
(
Uxβ̂, (Ux[I(β̂)]−1UT

x )−1
)
.

The possibility distribution of θ(x) can, thus, be approximated by

πθ(x)|y(θ) = sup
{z:θ=ψS(z)}

πz|y(z)

= πz|y(ψ−1
S (θ))

≈ exp

(
−1

2
(ψ−1

S (θ)−Uxβ̂)T (Ux[I(β̂)]−1UT
x )−1(ψ−1

S (θ)−Uxβ̂)

)
. (32)

From Proposition 1, the corresponding value of β is

β∗ = β̂ + [I(β̂)]−1UT
x (Ux[I(β̂)]−1UT

x )−1(ψ−1
S (θ)−Uxβ̂).

This value can be used as a starting point to solve the constrained optimization problem
(29).

Example 5. The Wine dataset [25] contains the results of a chemical analysis of n = 178
wines grown in the same region in Italy but derived from three different cultivars. Here, we
used only the first two features to allow easy display of the data in feature space (see Figure
6). Figure 7 shows contours of the exact and approximate possibility distributions πθ(x)|y in
the three-dimensional probability simplex for two different values of x. As we can see, the
normal approximation (32) is quite accurate.
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Figure 6: The Wine dataset in the space defined by the first two features.

(0,0,1)

(1,0,0) (0,1,0)

(0,0,1)

(1,0,0) (0,1,0)

(a)

(0,0,1)

(1,0,0) (0,1,0)

(0,0,1)

(1,0,0) (0,1,0)

(b)

Figure 7: Contours at levels 0.1, 0.3, 0.5, 0.7 and 0.9 of possibility distributions πθ(x)|y for x = (0.1,−0.5)
(a) and x = (−0.35,−0.47) (b) for the Wine dataset (blues solid lines), and normal approximations (red
broken lines).
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Figure 8: Regions Sk(θ) (a) and Rk(u) (b) in the three-dimensional simplex.

4.3. Prediction

ϕ-equation. To quantify the uncertainty on the random response Y for a given x, we need
a ϕ-equation similar to (12). Such an equation was proposed by Dempster in [6] (see also
[35] for a more recent description). Let U be a random vector having a uniform distribution
in the probability simplex SK . Denote by v1, . . . , vK the K vertices of SK such that v1 =
(1, 0, . . . , 0), v2 = (0, 1, 0, . . . , 0), . . . , vK = (0, . . . , 0, 1). For each θ ∈ SK , let Sk(θ) be the
“subsimplex” obtained as the polytope with the same vertices as SK except that vertex vk
is replaced by θ (see Figure 8a). It can be checked that P (U ∈ Sk) = θk. Consequently, the
random variable Y ∗ defined by

Y ∗ = ϕ(θ, U) =
K∑
k=1

k · I(U ∈ Sk(θ)), (33)

where I(·) denotes the indicator function, has the same distribution as Y . Regions Sk(θ)
can be characterized by the following proposition [6].

Proposition 2. For any k ∈ Y, θ ∈ SK and u ∈ SK,

u ∈ Sk(θ)⇔ ∀l ∈ Y ,
ul
uk
≥ θl
θk
. (34)

Conversely, for any u ∈ SK and k ∈ Y , we denote by Rk(u) the set of probability vectors
θ such that u ∈ Sk(θ) (see Figure 8b). The regions Rk(u) are also characterized by (34),
where u is now held constant and θ varies.
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Predictive belief functions. For fixed U = u, (33) allows us to compute the possibility dis-
tribution πY |y,x,u on Y from the possibility distribution πθ(x)|y on θ(x) using the extension
principle, as

πY |y,x,u(y) = sup
{θ∈Θ:ϕ(θ,u)=y}

πθ(x)|y(θ) = sup
θ∈Ry(u)

πθ(x)|y(θ) (35)

for any y ∈ Y . Taking into account the randomness of U , the mapping

Ỹ (x) : [0, 1] → [0, 1]Y

u 7→ πY |y,x,u

is a RFS. The corresponding predictive plausibility and belief functions are defined, respec-
tively, as

PlỸ (x)(A) = EU
[
max
y∈A

πY |y,x,U(y)

]
and BelỸ (x)(A) = 1− EU

[
max
y 6∈A

πY |y,x,U(y)

]
for all A ⊆ Y . These functions can be approximated by Monte Carlo simulation, drawing N
independent realizations u1, . . . , uN of U and computing the possibility distributions πY |y,x,ui
for each i. We then have

PlỸ (x)(A) ≈ 1

N

N∑
i=1

max
y∈A

πY |y,x,ui(y), BelỸ (x)(A) ≈ 1− 1

N

N∑
i=1

max
y 6∈A

πY |y,x,ui(y). (36)

We note that, for large K, we may not need to compute the whole belief and plausibility
functions, depending on the chosen decision rule [15]. For instance, in many cases, it may
be sufficient to compute the belief or the plausibility of singletons. (See Section 5.1 below).

Exact computation of πY |y,x,u(y). To compute πY |y,x,u(y), we can proceed as follows. From
(29), πθ(x)|y(θ) can be computed by maximizing πβ|y(β) subject to

xTβk = ln
θk
θ1

, k = 2, . . . , K.

Now, from Proposition 2, for k > 1,

θ ∈ Rk(u)⇔ ∀l ∈ Y , θl
θk
≤ ul
uk

⇔ ∀l ∈ Y , ln
θl
θ1

− ln
θk
θ1

≤ ln
ul
uk
.

Consequently, πY |y,x,u(1) can be computed by solving the nonlinear optimization problem

max
β

πβ|y(β) (37a)

subject to

xTβl ≤ ln
ul
u1

, l = 2, . . . , K, (37b)
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and πY |y,x,u(k) for k > 1 can be computed by maximizing (37a) subject to

−xTβk ≤ ln
u1

uk
(37c)

xT (βl − βk) ≤ ln
ul
uk
, l ∈ {2, . . . , K} \ {k}. (37d)

We note that, trivially, πY |y,x,u(k) = 1 iff θ̂(x) = ψS(xT β̂2, . . . , x
T β̂K) ∈ Rk. We, thus,

need to solve only K − 1 constrained optimization problems.

Approximate computation of πY |y,x,u(y). Using the normal approximation (32), an approxi-
mation of πY |y,x,u(k) can be obtained by minimizing the quadratic function

(z −Uxβ̂)T (Ux[I(β̂)]−1UT
x )−1(z −Uxβ̂) (38a)

subject to linear constraints

zl ≤ ln
ul
u1

, l = 2, . . . , K, (38b)

for k = 1 and

−zk ≤ ln
u1

uk
(38c)

zl − zk ≤ ln
ul
uk
, l ∈ {2, . . . , K} \ {k} (38d)

for k > 1. These are quadratic optimization problems, which can be solved very efficiently.
Furthermore, the dimension of z is K − 1, whereas the dimension of β is (p+ 1)(K − 1).

Example 6. Figure 9 illustrates the result of the optimization for the Wine dataset, with x =
(−0.186,−0.659) and θ̂(x) = (0.211, 0.590, 0.199). In Figure 9a, u = (0.164, 0.536, 0.300)

and θ̂(x) ∈ R1(u). Consequently, πY |y,x,u(1) = 1. The inner and outer blue solid curves are
contours of πθ(x)|y corresponding to the solutions of Problem (37) for, respectively, k = 2
and k = 3. We get πY |y,x,u(2) = 0.929 and πY |y,x,u(3) = 0.245. The broken red curves
are the contours of the approximation of πθ(x)|y corresponding to the solutions of quadratic
optimization problem (38); we get the approximations πY |y,x,u(2) ≈ 0.928 and πY |y,x,u(3) ≈
0.264. Figure 9b corresponds to u = (0.444, 0.499, 0.057). As θ̂(x) ∈ R3(ui), πY |y,x,u(3) = 1.
The solution of Problem (37) gives us πY |y,x,u(1) = 5.48×10−5 and πY |y,x,u(2) = 3.13×10−2;
the approximate solutions are πY |y,x,u(1) ≈ 5.35× 10−5 and πY |y,x,u(2) ≈ 1.88× 10−2.

Table 2 reports the exact and approximate predictive plausibility, belief and mass func-
tions computed using (36) with N = 5000 and the solutions of problems (37) or (38). Figure
10 displays a scatter plot of exact versus approximate mean predicted masses for 50 vectors xi
randomly chosen from the Wine dataset, confirming the very good quality of the approxima-
tion. Figures 11 and 12 show, respectively, contour plots of the plausibility of the singletons
and the masses assigned to each of the seven nonempty focal sets, for the approximate pre-
dictive belief functions.
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Figure 9: Solution of constrained optimization problems for the calculation of πY |y,x,u(k), for two different
values of u (see details in text). The solid blue curves are exact contours of possibility distributions πθ(x)|y,
while the broken red curves are based on the normal approximation of πβ|y(β).

Table 2: Exact and approximate predictive plausibility, belief and mass functions for the Wine dataset with
x = (−0.186,−0.659) (Example 6).

A {1} {2} {1,2} {3} {1,3} {2,3} {1,2,3}
PlỸ (x)(A) 0.313 0.701 0.867 0.292 0.5359 0.8580 1

Exact BelỸ (x)(A) 0.142 0.464 0.708 0.133 0.2993 0.6865 1

mỸ (x)(A) 0.142 0.464 0.102 0.133 0.0244 0.0895 0.0449

PlỸ (x)(A) 0.317 0.697 0.866 0.293 0.5398 0.8557 1

Approx. BelỸ (x)(A) 0.144 0.460 0.707 0.134 0.3033 0.6826 1

mỸ (x)(A) 0.144 0.460 0.102 0.134 0.0249 0.0883 0.0462
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Figure 10: Exact versus approximate predicted masses for 50 instances randomly chosen from the Wine

dataset.
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Figure 11: Contour plots of the plausibility of singletons for the Wine dataset.
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dataset.
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5. Numerical experiments

In this section, we describe some experiments aiming to determine whether the predictive
belief functions obtained by evidential logistic regression, as explained in Sections 3 and 4,
are more informative, in some sense, than the probabilistic outputs of conventional logistic
regression. This could be done using, at least, two approaches. The first one is to combine the
outputs of evidential and probabilistic classifiers with those of other classifiers and compare
the accuracies of the predictions; this approach was used in [54] and [42] to demonstrate the
advantages of evidential calibration of single or multiple binary SVM classifiers, as compared
to other calibration methods. Another approach, which will be adopted here, is to consider
decision rules with rejection, and to compare error rates for various rejection rates obtained
with predictive belief functions on the one hand, and estimated posterior probabilities on
the other hand. As a given rejection rate is achieved by comparing the maximum degree
belief or plausibility to some threshold, the error-reject curve, by considering all possible
thresholds, characterizes the “information content” of the predictive belief function better
than the error rate without rejection alone3. The datasets and the experimental settings will
first be described in Section 5.1. The results will then be presented and discussed in Section
5.2. Finally, a comparison with the evidence-based predictive belief functions introduced in
[16] is sketched in Section 5.3.

5.1. Data and experimental settings

Datasets. We considered two simulated datasets and six real datasets as summarized in
Table 3. The Pima Indians Diabetes dataset can be retrieved from Kaggle4. The other
real datasets are available from the UCI Machine Learning repository5. The dimensions of
the iono and sonar datasets were reduced, respectively, to 15 and 20 by principal component
analysis. For the glass dataset, we considered only the three classes with the largest numbers
of observations. For the vowel and letter datasets, we considered only the first six classes to
reduce computation time.

The two-class simulated data were composed of 1000 observations generated from 10-
dimensional normal distributions with means µ1 = (0, . . . , 0)T , µ2 = (1, . . . , 1)T , covari-
ance matrices Σ1 = Id10, Σ2 = 3Id10, and equal prior probabilities. The simul4 data
were generated from a mixture of four Gaussian distributions with means µ1 = (0, . . . , 0)T ,
µ2 = (0.5, . . . , 0.5)T , µ3 = (0, 0.5, . . . , 0, 0.5)T , µ4 = (0.5, 0, , . . . , 0.5, 0)T , covariance matrices
Σ1 = 0.5Id20, Σ2 = Id20, Σ3 = 2Id20, Σ4 = 3Id20 and equal prior probabilities.

As the likelihood function becomes more and more concentrated around the true value
of the parameter as the sample size increases, the difference between decisions made from
estimated posterior probabilities on the one hand, and predictive belief functions on the
other hand, is likely to be more pronounced in the case of small sample size. For each
dataset, we thus randomly drew a small subsample and used the rest of the data for testing.

3A similar approach was used in [46] to evaluate the performance of evidential choquistic regression.
4https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database/.
5https://archive.ics.uci.edu.
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Table 3: Characteristics of the datasets.

Full name Short name # observations # classes # features
2-class simulated data simul2 1000 2 10
Pima Indians Diabetes pima 768 2 8
Ionosphere ionosphere 351 2 33
Sonar, Mines vs. Rocks sonar 208 2 60
4-class simulated data simul4 300 4 20
Vowel recognition vowel 540 6 10
Glass identification glass 175 3 10
Letter identification letter 600 6 16

The learning process was repeated N = 50 times with different random training sets, and
the error-reject curves were averaged.

Decision rules. Another important issue is the choice of a decision rule. Decision rules for
classification with rejection in the Dempster-Shafer setting were studied in [11] and the more
general problem of partial classification was recently addressed in [38]. Here, the loss was
assumed to be 0 for correct classification, 1 for misclassification, and λ ∈ [0, 1] for rejection.
By varying λ, different reject rates and associated error rates can be obtained and an error-
reject curve can be plotted. Based on the predictive belief function, four decision rules with
rejection were considered [11]:

1. The pessimistic rule minimizing the upper expected loss; according to this rule, an
observation x is rejected if the maximum degree of belief is less than 1− λ, otherwise
it is assigned to the class with the larger degree of belief;

2. The optimistic rule minimizing the lower expected loss: an observation x is rejected if
the maximum plausibility is less than 1− λ, otherwise it is assigned to the class with
the larger plausibility;

3. The pignistic rule [49], based on the pignistic probability distribution defined as

betp(k) =
∑
∅6=A⊆Y

I(k ∈ A)
m(A)

|A|
, k = 1, . . . , K.

An observation x is assigned to the class with the maximum pignistic probability if
maxk betp(k) ≥ 1− λ, otherwise it is rejected;

4. The normalized-plausibility rule [4], based on the normalized plausibility

plp(k) =
pl(k)∑K
l=1 pl(l)

, k = 1, . . . , K.

An observation x is assigned to the class with the maximum plausibility if maxk plp(k) ≥
1− λ, otherwise it is rejected.
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The error-reject curves obtained with these evidential decision rules were compared to those
obtained with the “plug-in probabilistic rule” based on estimated posterior probabilities
θ̂(x).

Computation of predictive belief functions. The predictive belief functions were computed as
explained in Section 3.3 and 4.3 using approximate possibility distributions of θ(x) (26) and
(32). To avoid overfitting as well as numerical problems when maximizing the likelihood,
the responses yi were replaced by “soft targets” using Laplace smoothing, as proposed in
[44]. Specifically, in the binomial case, yi was replaced, in the expression of the conditional
likelihood (17), by ti defined as

ti =

{
n1+1
n1+2

if yi = 1,
1

n0+2
if yi = 0,

where n0 and n1 denote the number of observations from classes 0 and 1 in the training set.
In the multinomial case, yik was replaced, in the expression of the conditional likelihood
(28), by tik defined as

tik =

{
nk+1
nk+K

if yi = k,
1

nk+K
otherwise,

where nk denotes the number of observations in class k.

5.2. Results

We hereafter discuss the results for binary and multi-class classification tasks separately.

Binary classification. The error-reject curves for the binary classification tasks are shown in
Figures 13 and 14. For each of the four two-class datasets, we plot the error-reject curves
for plug-in probabilistic, pessimistic and optimistic decision rules, for training sets of sizes
n = 30 and n = 100. The error-reject curves for the pignistic and normalized-plausibility
rules are not shown, because they are almost exactly identical to those of the pessimistic
rule. We can see that the pessimistic rule (as well as the pignistic and normalized-plausibility
rules) perform better than the plug-in probabilistic rule. The difference is particularly large
in the case of the ionosphere dataset (Figures 14a-14b), and it is more pronounced for n = 30
than for n = 100, as expected. In contrast, the optimistic decision rule performs worse than
the plug-in probabilistic rule.

Multi-class classification. The error-reject curves for the multi-class classification tasks are
shown in Figure 15. To avoid cluttering the graphs, we do not show the curves for the
optimistic rule (which is always above the other curves) and for the normalized-plausibility
rule, which always performs worse than the pignistic rule. For each of the vowel and letter
datasets, we considered two learning tasks: classifying the first three classes (Figures 15c
and 15e) and classifying all six classes (Figures 15d and 15f). We can see that the pessimistic
rule has the best performance for the simul4 and glass datasets, as well as for the vowel and
letter datasets with three classes. In contrast, the pignistic rule has the best performance for
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Figure 13: Error-reject curves for the simul2 and pima datasets, with n = 30 and n = 100 learning samples.
The solid black, dashed blue and dotted red curves correspond, respectively, to the plug-in probabilistic,
pessimistic and optimistic decision rules.
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Figure 14: Error-reject curves for the ionosphere and sonar datasets, with n = 30 and n = 100 learn-
ing samples. The solid black, dashed blue and dotted red curves correspond, respectively, to the plug-in
probabilistic, pessimistic and optimistic decision rules.
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the vowel and letter datasets with six classes. The poor performance of the pessimistic rule
with a larger number of classes can be explained by the fact that it uses only the masses
assigned to the singletons, whereas the pignistic rule uses the whole mass functions.

All in all, these results show that the (approximate) predictive belief functions can be
used to make decisions with lower rates for given rejection rates, as compared to the es-
timated posterior probabilities. This can be explained by the fact that the approximate
predictive belief functions are computed using not only the estimated coefficients β̂, but
also the observed information matrix I(β̂). The experimental results presented here show
that the method to compute predictive belief functions introduced in Section 3 and 4 makes
effective use of this additional information. In the next section, we briefly discuss the differ-
ences between the likelihood-based predictive belief functions studied in this paper and the
latent belief functions introduced in [16], and we present some comparative results.

5.3. Comparison with latent belief functions

In [16], we showed that binomial and multinomial logistic regression can be interpreted as
combining feature-based simple mass functions by Dempster’s rule, resulting in a latent belief
function, whose normalized plausibilities are the output posterior probabilities. The latent
belief function has more degrees of freedom than the plug-in output probability distribution,
but it is only based on the estimated coefficients β̂, as opposed to the likelihood-based
belief function, which depends on the whole likelihood function (or only on the MLE and
the observed information for the normal approximation). The latter belief function thus
contains more information and can be expected to allow for more accurate decisions (at the
cost of a significantly higher computational complexity). This hypothesis was confirmed
experimentally for the datasets considered in this paper. For instance, Figure 16 shows the
error-reject curves corresponding to the estimated posterior probabilities and to the latent
belief functions with the pessimistic, optimistic and pignistic rules, for the simul2, ionosphere,
simul4 and glass datasets. As can be seen from these results, the latent belief functions do not
allow one to make better decisions than those based on the estimated posterior probabilities.

6. Conclusions

The likelihood-based approach to statistical inference introduced in [17, 19] treats the
relative likelihood function as a possibility distribution in the parameter space. By expressing
new data as a function of the parameter and a random variable with known probability
distribution, one then defines a random fuzzy set and an associated predictive belief function
representing uncertain knowledge about future observations. This approach yields the same
results as Bayesian inference in the special case where prior knowledge about the parameter is
given in the form of a probability distribution, but it does not require such prior information.

In this paper, we have applied this method of inference to binomial and multinomial lo-
gistic regression by first computing the possibility distribution of posterior class probabilities
using Zadeh’s extension principle. In the binomial case, degrees of belief and plausibility
about the class of a new observation are then obtained by numerical integration of this pos-
sibility distribution, yielding the same solution as that described in [54]. In the multinomial
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Figure 15: Error-reject curves for the simul4, glass, vowel (with three and six classes) and letter (with three
and six classes) datasets. The solid black, dashed blue, dotted red curves correspond, respectively, to the
plug-in probabilistic, pessimistic and pignistic decision rules.
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Figure 16: Error-reject curves for the simul2, ionosphere, simul4 and glass datasets. The solid black, dashed
blue, dotted red and solid red curves correspond, respectively, to the plug-in probabilistic, pessimistic,
optimistic and pignistic decision rules.
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case, the calculations are more involved as they are based on a combination of nonlinear
constrained optimization and Monte-Carlo simulation. In both cases, the computations can
be considerably simplified using a normal approximation of the relative likelihood function,
which has been shown to be usually quite accurate even for small sample sizes.

The predictive belief functions computed using this approach depend not only on the
MLEs of the coefficients, but also on the whole likelihood function, or on the observed
information if the normal approximation of the relative likelihood is used. Consequently,
they are more informative than the plug-in posterior probability estimates. This was verified
experimentally by showing that evidential decision rules based on these predictive belief
functions achieve lower error rates for different reject rates, as compared to the decision
rules based on estimated posterior probabilities or even the latent belief functions studied
in [16].

Whereas logistic regression can only perform linear classification, it is at the basis of sev-
eral nonlinear classification models such as kernel logistic regression [47], multi-layer neural
networks [30] or choquistic regression [29]. An evidential version of binomial choquistic re-
gression was already proposed in [46]. The method of inference demonstrated in this paper
will be extended to other models in future work.
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Appendix A. Proof of Proposition 1

From Zadeh’s extension principle,

Z̃(z) = sup{β̃(β) : Uβ = z}.

Consequently, we need to solve the following constrained minimization problem,

min
β

(β −m)TH(β −m)

subject to Uβ = z. The Lagrange function is

L(β, λ) = (β −m)TH(β −m)− (Uβ − z)Tλ,
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where λ ∈ Rq is a q-dimensional vector of Lagrange multipliers. Its gradient w.r.t. β is

∂L
∂β

= 2H(β −m)−UTλ.

Setting ∂L
∂β

= 0 gives us

β∗ = m+
1

2
H−1UTλ. (A.1)

From Uβ∗ = z, we get

Um+
1

2
UH−1UTλ = z,

or
UH−1UTλ = 2(z −Um).

Now, as H is positive definite, rank(UH−1UT ) = rank(U) = q (See [43, p. 51]), hence
UH−1UT is regular. Consequently, we have

λ = 2(UH−1UT )−1(z −Um). (A.2)

From (A.1) and (A.2), we get

β∗ = m+H−1UT (UH−1UT )−1(z −Um).

Finally, we obtain Z̃(z) as

Z̃(z) = exp

(
−1

2
(β∗ −m)TH(β∗ −m)

)
= exp

(
−1

2
(z −Um)T (UH−1UT )−1UH−1HH−1UT (UH−1UT )−1(z −Um)

)
= exp

(
−1

2
(z −Um)T (UH−1UT )−1(z −Um)

)
.

Appendix B. Related work

In this section, we briefly compare evidential likelihood-based inference recalled in Section
2.3 to other methods for quantifying uncertainty in statistical inference using belief functions.
The first such method was introduced by Dempster [8][9]. Dempster’s approach starts with
a ϕ-equation such as (10), and a probability distribution PU of U ∈ U. Having observed
Y = y, Dempster assumes that the analyst “continues to believe” that the uncertainty on
U is quantified by PU , and considers the random set U → Γy(U) = {θ ∈ Θ : y = ϕ(θ, U)},
which defines the following belief function on θ:

Bely(A) = PU (∅ 6= Γy(U) ⊆ A) (B.1)

for any measurable A ⊆ Θ. This belief function satisfies Requirements R1 and R2 stated in
Section 2.3 but, as shown in [13], it is more committed (in some sense) than the likelihood-
based belief function (8). The calculation of degrees of belief using (B.1) also poses severe
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technically difficulties except for very simple statistical models, a limitation that has hin-
dered the application of Dempster’s approach until now.

In [41], Martin and Liu argue against the “continue to believe” assumption and proposed
to predict U , after observing y, by a predictive random set U → S(U), where S is a
strongly measurable mapping from U to 2U. They consider the multi-valued mapping U →
ΓSy =

⋃
v∈S(U) Γy(v), and they design the predictive random set S in such a way that the

belief function A → BelSy (A) = PU
(
∅ 6= ΓSy(U) ⊆ A

)
is “valid”, in the sense that, for all

measurable A ⊆ Θ and all α ∈ (0, 1),

sup
θ 6∈A

PY |θ(Bel
S
Y (A) ≥ α) ≤ α. (B.2)

Martin and Liu call this method for constructing a belief function BelSY an Inferential Model
(IM). In recent work [40], Martin proposes another IM construction that consists in trans-
forming the relative likelihood (7) into another possibility distribution π′θ|y defined as

π′θ|y(θ) = PY |θ
(
πθ|Y (θ) ≤ πθ|y(θ)

)
.

As shown in [40], π′θ|y verifies the following “strong validity” property,

∀α ∈ [0, 1], sup
θ∈Θ

PY |θ
(
π′θ|Y (θ) ≤ α

)
≤ α, (B.3)

which implies that the corresponding necessity measure (a belief function) verifies the validity
property (B.2). An in-depth discussion of this method can be found in [3].

Possibility distribution π′θ|y does not satisfy requirements R1 and R2: in particular, a
“valid” possibility distribution computed from two independent samples cannot be obtained
by combining the valid possibility distributions from each of the two samples using a for-
mal rule such as the product-intersection operator. Conversely, the pure likelihood-based
possibility distribution πθ|y does not verify property (B.3) in general, even asymptotically.
Indeed, from Wilks’ theorem [53], we know that, for a independent sample Y = (Y1, . . . , Yn)
of size n, under some regularity conditions, −2 lnπθ|Y (θ0) converges in distribution to a chi
square distribution with p degrees of freedom, where θ0 is the true value of the parameter
and p is the dimension of θ; consequently,

lim
n→∞

PY |θ
(
πθ|y(θ) ≤ α

)
= 1− Fχ2

p
(−2 lnα).

For any α ∈ (0, 1), 1 − Fχ2
p
(−2 lnα) ≤ α if p ≤ 2, but 1 − Fχ2

p
(−2 lnα) > α if p > 2.

However, as shown in [37], the belief function Belθ|y computed from πθ|y by (8) is consistent
in the sense that, under mild conditions, for any neighborhood N of θ0, Belθ|y(N )→ 1 and
Belθ|y(N c)→ 0 almost surely under the law determined by θ0.

Possibility distributions πθ|y and π′θ|y thus meet different requirements: π′θ|y is frequency-

calibrated in the sense of (B.3), which makes it a powerful tool for computing exact con-
fidence regions and designing efficient testing procedures. In contrast, πθ|y verifies require-
mentsR1 andR2 and, as such, it can be argued to be more suitable for uncertain reasoning; in
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particular, it can be directly combined with possibility measures representing other indepen-
dent statistical evidence or prior information (in that sense, it is a complete representation of
statistical evidence). The choice between these two solutions depends on how much impor-
tance one attaches to frequentist properties versus a simple calculus for uncertain reasoning
by evidence aggregation as originally envisioned by Dempster [8] and Shafer [48]. This choice
problem may ultimately be somewhat analogous to the frequentist-Bayesian dilemma, i.e.,
long-run frequentist properties versus a simple and well-founded mechanism for combining
data with probabilistic prior knowledge.
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