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REVERSE INEQUALITIES FOR QUASI-RIESZ TRANSFORM ON THE

VICSEK CABLE SYSTEM

BAPTISTE DEVYVER AND EMMANUEL RUSS
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Abstract. This work is devoted to the study of so-called “reverse Riesz” inequalities
and suitable variants in the context of some fractal-like cable systems. It was already
proved by L. Chen, T. Coulhon, J. Feneuil and the second author that, in the Vicsek

cable system, the inequality
∥∥∥∆1/2f

∥∥∥
p
≲ ∥∇f∥p is false for all p ∈ [1, 2). Following a

recent joint paper by the two authors and M. Yang, we examine the validity of “reverse
quasi-Riesz” inequalities, of the form

∥∥∆γe−∆f
∥∥
p
≲ ∥∇f∥p, in the (unbounded) Vicsek

cable system, for p ∈ (1,+∞) and γ > 0. These reverse inequalities are strongly related
to the problem of Lp boundedness of the operators ∇e−∆∆−ε, the so-called “quasi-Riesz
transforms” (at infinity), introduced by L. Chen in her PhD thesis. Our main result
is an almost complete characterization of the sets of γ ∈ (0, 1) and p ∈ (1,+∞) such
that the reverse quasi-Riesz inequality holds in the Vicsek cable system. It remains an
open question to investigate reverse quasi-Riesz inequalities for other cable systems, or
for manifolds built out of these.

1. Introduction

Throughout the paper, if A(f) and B(f) are two nonnegative quantities defined for all
f belonging to a set E, the notation A(f) ≲ B(f) means that there exists C > 0 such
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that A(f) ≤ CB(f) for all f ∈ E, while A(f) ≃ B(f) means that A(f) ≲ B(f) and
B(f) ≲ A(f).
Let M be a complete noncompact Riemannian manifold. Denote by m the Riemannian
measure, by ∇ the Riemannian gradient and by ∆ = −div(∇·) the (non-negative) Laplace-
Beltrami operator. In this work, we consider the following three inequalities for p ∈ (1,∞)
(where the Lp-norms are computed with respect to the measure µ):

||∆1/2u||p ≲ ||∇u||p ≲ ||∆1/2u||p, ∀u ∈ C∞
0 (M), (Ep)

||∇u||p ≲ ||∆1/2u||p, ∀u ∈ C∞
0 (M), (Rp)

||∆1/2u||p ≲ ||∇u||p, ∀u ∈ C∞
0 (M). (RRp)

It follows easily from the Green formula and the self-adjointness of ∆ that

||∇u||22 = (∆u, u) = ||∆1/2||22, ∀u ∈ C∞
0 (M).

Consequently, (Ep) holds for p = 2 on any complete Riemannian manifold. The inequality

(Rp) is equivalent to the Lp-boundedness of the Riesz transform R = ∇∆−1/2. For this
reason, the inequality (RRp) is called a “reverse Riesz” Lp inequality. A well-known du-
ality argument, originally introduced in [3], shows that (Rp) implies (RRq) for q = p′ the
conjugate exponent, but the converse implication does not hold. In order to present the
known results concerning (RRp), we need to introduce some notations. We say that the
measure m is doubling provided

m(B(x, 2r)) ≤ Cm(B(x, r)), ∀x ∈ M, ∀r > 0. (D)

Let p ∈ [1,∞), we say that the scaled Lp Poincaré inequality for balls holds, if for any ball
B = B(x0, r) ⊂ M , one has

ˆ
B
|f − fB|p dm ≤ Crp

ˆ
B
|∇f |p dm, ∀f ∈ C∞(B), (Pp)

where fB = 1
m(B)

´
B

´
B f dm. It has been shown in [1] that if (D) and (Pq) hold for some

q ∈ [1, 2), then (RRp) holds for all p ∈ (q, 2). This result has been recently generalized by
the two authors ([13, Theorem 1.4]): instead of (Pp) for all balls, it is enough to assume it
for all remote balls, that is balls which are far enough from a fixed reference point in M .

In this work, we wish to consider reverse Riesz inequalities in a fractal-like setting. In her
thesis [7], L. Chen has initiated the study of “quasi-Riesz” transforms, on manifolds whose
heat kernel satisfy sub-Gaussian estimates for large times. Examples of such manifolds
include manifolds which are built by fattening a graph with a fractal-like structure, such as
the Vicsek graph. Later, in [6], the authors have remarked that on such manifolds, certain
reverse (quasi-)Riesz inequalities cannot hold. In particular, in the case of the Vicsek
manifold, it is shown in [6] that even when a natural scaled L1 Poincaré inequality on all
balls holds (with a scaling which is not r but is instead related naturally to the geometry



of the manifold), the inequality (RRp) is false for all p ∈ (1, 2). It thus appears that
in fractal-like situations, the link between scaled Poincaré inequalities and reverse Riesz
transforms is not clear. Our purpose in this work is to shed some light on this question, by
investigating in details the case of the Vicsek cable system, a cable system built naturally
from the Vicsek graph. More precisely, we will consider variants of (RRp) where the power
1
2 of ∆ is replaced by other exponents related to the geometry of the cable system and to
the parameter β (the walk dimension) which appears in heat kernel estimates.

1.1. The setting. Let us now introduce more precisely the setting. The following pre-
sentation is borrowed from [11]. Let (X, d,m, E ,F) be an unbounded metric measure
Dirichlet (MMD) space. Recall that (X, d) is a locally compact separable unbounded
metric space, m is a positive Radon measure on X with full support and (E ,F) is a
strongly local regular Dirichlet form on L2(X;m). For all x ∈ X and all r ∈ (0,+∞),
let B(x, r) = {y ∈ X : d(x, y) < r} be the open ball with center x and radius r and set
V (x, r) := m(B(x, r)). Denote by ∆ be the generator of the Dirichlet form (E ,F), by
(Pt)t>0 the corresponding heat semigroup and by pt the associated heat kernel. We also
assume that the Dirichlet form admits a “carré du champ” Γ, which allows us to consider
the length of the gradient |∇u| := Γ(u) for suitable functions u.
Say that X satisfies the doubling volume property if there exists C > 0 such that, for all
x ∈ X and all r > 0,

V (x, 2r) ≤ CV (x, r). (D)

Let β ≥ 2, and let

Ψ(r) = r21(0,1)(r) + rβ1[1,+∞)(r).

Say that X satisfies the sub-Gaussian heat kernel estimate with exponent β if the heat
kernel pt(x, y) satisfies the following estimate: there exist C1, C2 > 0 such that, for all
x, y ∈ X \ N (where N is a properly exceptional set) and all t > 0,

pt(x, y) ≤
1

V (x,Ψ−1(C1t))
exp (−Υ(C2d(x, y), t)) , (UHK(Ψ))

where

Υ(R, t) = sup
s>0

(
R

s
− t

Ψ(s)

)
≃


R2

t , t < R(
R

t1/β

) β
β−1

, t ≥ R

As a consequence of (UHK(Ψ)) and elementary estimates (see e.g. [11, p.9-10]), the heat
kernel satisfies the following upper-estimate:

pt(x, y) ≤


C

V (x,
√
t)

exp

(
−c

d2(x, y)

t

)
, 0 < t < 1,

C

V (x, t1/β)
exp

(
−c

(
dβ(x, y)

t

)1/(β−1)
)
, t ≥ 1,

(UEβ)



The estimates (UHK(Ψ)) and (UEβ) occur, in particular, on some fractal type manifolds
or cable systems (see [6, Appendix] and [11]). It was established in [6, Theorem 1.2] that,
under the assumptions (D) and (UEβ), (Rp) holds for all p ∈ (1, 2]. As a consequence of
duality, (RRp) holds for all p ∈ [2,∞). In the particular case of the Vicsek manifold ([6,
Section 5]) shows that, under assumptions (D) and (UEβ), (RRp) is false for all p > 2,
which entails that (Rp) holds for no p ∈ (1, 2).

However, considering cable systems instead of Riemannian manifolds, we gave in [11]
sufficient conditions ensuring, in the presence of (D) and (UEβ), the Lp-boundedness of
variants of the Riesz transforms (called “quasi-Riesz transforms” at infinity) for some values
of p ∈ (2,∞). Namely, let X be an unbounded cable system, d be the metric on X and m
be the measure on X. Assume that

1

C
Φ(r) ≤ V (x, r) ≤ CΦ(r) for any x ∈ X, for any r ∈ (0,+∞), (Vs)

where, for some α ∈ [2, β + 1],

Φ(r) = r1(0,1)(r) + rα1[1,+∞)(r).

Assume that pt satisfies (UEβ). Assume also a “generalized” reverse Hölder inequality for
the gradient of harmonic functions in balls, namely there exists CH ∈ (0,+∞) such that,
for all balls B with radius r and all functions u harmonic in 2B,

∥∇u∥L∞(B) ≤ CH
Φ(r)

Ψ(r)
−
ˆ
2B

u, (1.1)

where

Ψ(r) = r1(0,1)(r) + rβ1[1,+∞)(r).

Under these assumptions, [11, Theorem 1.4] states that the “quasi-Riesz transform” (at

infinity) ∇e−∆∆−ε is Lp-bounded for all p ∈ (1,∞) and all ε ∈
(
0, 1− α

β

)
. Let us mention

that the motivation for introducing the extra term e−∆ in the quasi-Riesz transform is to
somehow neutralize the effect due to high frequencies in the spectrum of ∆. See L. Chen’s
PhD thesis [7] for additional details on the quasi-Riesz transform at infinity (in particular
Theorem 1.5 therein).

1.2. The Vicsek cable system. Let us recall how the Vicsek cable system is defined,
following the presentation in [11, Section 3]. Let N ≥ 2 be an integer. In RN , let p1 =

(0, . . . , 0), . . . , p2N be the vertices of the cube [0, 2√
N
]N ⊆ RN , let p2N+1 = 1

2N

∑2N

i=1 pi =

( 1√
N
, . . . , 1√

N
). Let fi(x) = 1

3x + 2
3pi, x ∈ RN , i = 1, . . . , 2N , 2N + 1. Then the N -

dimensional Vicsek set is the unique non-empty compact set K in RN satisfying K =

∪2N+1
i=1 fi(K).

Let V0 = {p1, . . . , p2N , p2N+1} and Vn+1 = ∪2N+1
i=1 fi(Vn) for any n ≥ 0. Then {Vn}n≥0 is

an increasing sequence of finite subsets of K and the closure of ∪n≥0Vn is K.

For any n ≥ 0, let V (n) = 3nVn = {3nv : v ∈ Vn}, see Figure 1 for V (0), V (1) and V (2)

for N = 2. Then
{
V (n)

}
n≥0

is an increasing sequence of finite sets. Let V = ∪n≥0V
(n) and



(a) V (0) (b) V (1) (c) V (2)

Figure 1. V (0), V (1) and V (2) for N = 2

E = {{p, q} : p, q ∈ V, |p − q| = 1}, then (V,E) is an infinite, locally bounded, connected
graph, the corresponding unbounded cable system is called the N -dimensional Vicsek cable
system. Each closed (open) cable is a(n) closed (open) interval in RN and the cable system
X is defined as

X =
⋃

p,q∈V
|p−q|=1

[p, q] ⊆ RN ,

here [p, q] denotes the closed interval with endpoints p, q ∈ RN . Let m be the unique
positive Radon measure on X satisfying m([a, b]) = |a − b| for all a; b ∈ X belonging
to the same closed cable. It was proved in ([4, Equation (4.14)]) that (Vs) holds with
α = log(2N + 1)/ log 3.
The Dirichlet form on X is defined by

E(u, u) =
∑

{p,q}∈E

ˆ
(p,q)

|∇u|2 dm,

where ∇u denotes the one-dimensional gradient of u in each open cable (p, q). Note that
∇u is actually well-defined everywhere, except at the vertices points; but since m(V ) = 0,
it follows that ∇u is defined almost everywhere. Then, by definition, for any p ∈ [1,+∞],

||∇u||Lp(X,m) := ||∇u||Lp(X\V,m).

Definition 1.1. For any n ≥ 0, we say that a subset W of X is an n-skeleton if W is a
translation of the intersection of the closed convex hull of V (n) and X. It is obvious that
the closed convex hull of W is a cube, we say that the 2N vertices of the cube are the
boundary points of the skeleton and the center of the cube is the center of the skeleton.

1.3. Statements of our results. The following general but simple lemma shows that the
boundedness of the quasi-Riesz transform becomes stronger when the value of ε decreases:

Lemma 1.2. Let (X, d,m, E ,F) be a MMD space with a “carré du champ”. Let ε ∈ (0, 1)
and p ∈ (1,+∞) be such that the quasi-Riesz transform ∇e−∆∆−ε is bounded on Lp. Then,
for every 0 < s ≤ ε, the quasi-Riesz transform ∇e−∆∆−s is bounded on Lp as well.

As a corollary of Lemma 1.2 and of the results of [6], one gets:



Corollary 1.3. Let (X, d,m, E ,F) be a cable system. Assume the volume growth condition
(Vs) and the heat kernel sub-Gaussian estimate (UEβ). Then, for every ε ∈ (0, 12 ] and

p ∈ (1, 2], the quasi-Riesz transform ∇e−∆∆−ε is bounded on Lp.

As for the usual Riesz transform, by a duality argument, the Lp-boundedness of the
quasi-Riesz transform implies a “reverse inequality”:

Lemma 1.4. Let ε ∈ (0, 1), p ∈ (1,∞) and p′ be such that 1
p + 1

p′ = 1. Then the Lp′-

boundedness of ∇e−∆∆−ε implies the following reverse inequality:∥∥∆1−εe−∆f
∥∥
p
≲ ∥∇f∥p .

This motivates us to introduce the following reverse quasi-Riesz inequalities: if γ > 0,
consider the inequality ∥∥∆γe−∆f

∥∥
p
≲ ∥∇f∥p . (RRp,γ)

Corollary 1.3 and Lemma 1.4 immediately yield:

Corollary 1.5. Let (X, d,m, E ,F) be an unbounded cable system. Assume the volume
growth condition (Vs) and the heat kernel sub-Gaussian estimate (UEβ). Then, for any

p ∈ [2,∞] and γ ∈ [12 , 1), the reverse quasi-Riesz inequality (RRp,γ) holds.

Question 1.6. Given the results of Lemma 1.2 and Lemma 1.4, it is reasonable to expect
that (RRp,γ) becomes stronger when γ decreases. However, so far we have been unable to
prove this in full generality. We leave this as an interesting open question.

Lemma 1.4 and [11, Theorem 1.4] imply at once that, if (X, d,m, E ,F) is an unbounded
cable system such that (Vs), (UEβ) and (1.1) hold, then, for all p ∈ (1,∞) and all γ ∈ (αβ , 1),

(RRp,γ) holds. It is an open problem in [11] to establish the Lp-boundedess of the quasi-
Riesz transform ∇∆−εe−∆ at the threshold ε = 1− α

β , so Lemma 1.4 does not easily imply

any reverse inequality for the Vicsek cable system if γ = α
β . Likewise, nothing seems to be

known concerning the case γ < α
β . On the other hand, for p = 2 one can easily prove the

following universal result, valid in any MMD space:

Lemma 1.7. Let (X, d,m, E ,F) be a MMD space with a “carré du champ”. Let ε ∈ (0, 1).
The quasi-Riesz transform ∇e−∆∆−ε is bounded on L2, if and only if ε ∈ (0, 12 ]. Also, if
this is the case then the reverse inequality (RR2,1−ε) holds, and∥∥∆1−εe−∆f

∥∥
2
≲ ∥∇f∥2 ≲ ||∆εe−∆f ||2. (E2,ε)

Note that for the Vicsek cable system, β = α+ 1 and α > 1, so that 1− α
β = 1

α+1 < 1
2 .

Hence, there is a “gap” between the results for p = 2 and for p ̸= 2: namely, for p = 2,
(RR2,γ) holds for γ ∈

[
1
2 , 1
]
, while nothing is known about the validity of (RRp,γ) for

γ ∈ [12 ,
α
β ] and p ̸= 2. As has been mentioned previously in the introduction, in the case of

manifolds with heat kernel Gaussian estimates and satisfying scaled Poincaré inequalities
for geodesic balls, reverse Riesz inequalities have been investigated in [1] and more recently



in [13]; however, there are some real difficulties in adapting their arguments to the sub-
Gaussian situation: for instance, the proofs in these papers use in a crucial way the fact
that the scaling in the Poincaré inequalities (Pp) is exactly rp, r being the radius of the
ball (in particular to establish a Calderón-Zygmund decomposition for Sobolev spaces).
This behaviour is false even for the special case of the Vicsek cable system: in fact, in this
case the correct scaling is rα+p−1, see [7, Section 5]. Let us also mention that Poincaré
inequalities have recently been investigated in some fractal situations in [5]. The purpose
of this article is to elucidate part of this problem: here we focus on the Vicsek cable system
itself and we characterize in an almost optimal way the set of parameters γ and p such
that the reverse quasi-Riesz inequality (RRp,γ) holds. The main result of this paper writes
as follows:

Theorem 1.8. Consider the Vicsek cable system. Let γ ∈ (0, 1) and p ∈ (1,+∞). Define
p∗ = p∗(γ) as follows:

p∗ =


α−1

γ(α+1)−1 if γ ∈ ( 1
α+1 ,

α
α+1),

+∞ if γ ≤ 1
α+1 ,

1 if γ ≥ α
α+1 .

Then, the reverse inequality (RRp,γ) holds whenever γ ∈ [12 , 1) and p > p∗, and is false
whenever γ ∈ (0, 1) and p < p∗.

Remark 1.9. It is of course an interesting open problem to determine if (RRp,γ) holds
at the threshold p = p∗ if p∗ > 1. The answer is unclear at the moment. Likewise, it
would be interesting to know whether (RRp,γ) holds for p > p∗ and γ < 1

2 ; our method
does not allow us to conclude in this case but we conjecture that the result still holds. A
related open question concerns the boundedness of the quasi-Riesz transform: is ∇e−∆∆−ε

bounded on Lp for ε ∈
(
0, α

α+1

]
and 1 < p < (p∗(1−ε))′ = α−1

ε(α+1)−1? Note that by duality

this would imply (RRp,γ), γ = 1− ε for p > p∗(γ), hence it would recover part of the result
of Theorem 1.8.

Remark 1.10. It was established in [2, Theorem 1.4] that, when the underlying space
satisfies the doubling volume property and the scaled Lp0 Poincaré inequalities (with the

standard scaling), then, for p < q, homogeneous Sobolev spaces Ẇ 1,p and Ẇ 1,q interpolate
by the real interpolation method. It is stated as an open question in [2, Section 1, p.
237] whether this interpolation result for homogeneous Sobolev spaces still holds without
the Poincaré inequality hypothesis; here, we see that the Vicsek cable system provides an
example of a space for which the interpolation result of [2] is not applicable. Indeed, if the
conclusion of [2, Theorem 1.4] was true in this case, then from Lemma 1.7, Theorem 1.8
and equation (2.18), one would conclude that (RRp,γ) holds for every p ∈ (1,∞) and every
γ ∈ (12 ,

α
α+1). However, the result of Theorem 1.8 tells us that this is not the case.

Finally, we point out that the behaviour of the quasi-Riesz transforms and the reverse
inequalities are quite different in a Gaussian context; in this direction, one has the following
result:



Proposition 1.11. Assume that M is a Riemannian manifold satisfying (D) as well as
a Gaussian pointwise upper bound for the heat kernel. Assume moreover V (o, r) ≃ rD

for all r ≥ 1 and some o ∈ M . Then, for all γ ∈
(
0, 12
)
and all p ∈ (1,∞), the reverse

inequality (RRp,γ) is false.

Remark 1.12. Assume that M is a Riemannian manifold fulfilling the hypotheses of
Proposition 1.11; assume moreover that the Riesz transform ∇∆−1/2 on M is bounded on
Lp for every p ∈ (1,+∞). Then, Lemma 1.2 and Proposition 1.11 imply that the quasi-
Riesz transform ∇e−∆∆−ε is bounded on Lp (resp. the reverse inequality (RRp,γ) holds),
if and only if ε ∈

(
0, 12
]
(resp. γ ∈

[
1
2 , 1
)
) and p ∈ (1,+∞). This is quite different from

the conjectural picture for reverse quasi-Riesz inequalities described in Remark 1.9 for the
Vicsek cable system.

Idea of the proof of Theorem 1.8: we first prove a suitable Poincaré inequality for
skeletons in the Vicsek cable system (see Lemma 2.6). This is the main ingredient at
the technical level, and the main novelty of this paper. Then, we show that it implies a
modified Calderón-Zygmund decomposition in Sobolev spaces (Lemma 2.15). Once this
is done, we follow the approach of P. Auscher and T. Coulhon in [1] and prove a weak
reverse quasi-Riesz inequality (Lemma 2.16). The positive result in Theorem 1.8 follows
by interpolation arguments. The negative result in Theorem 1.8 is proved by contradiction
extending arguments from [6]: more precisely, the contradiction is obtained by combining
Nash inequality and the assumed reverse quasi-Riesz inequality.

2. Lp reverse quasi-Riesz inequalities in the Vicsek cable system

2.1. Some elementary facts about “quasi-Riesz” inequalities.

Proof of Lemma 1.2. Let 0 < s < ε, and write

∇e−∆∆−s = c

ˆ ∞

0
∇e−(t+1)∆ dt

t1−s
.

The boundedness of the quasi-Riesz transform ∇e−∆∆−ε on Lp, together with the Lp-
analyticity of the heat semi-group, imply that

||∇e−(t+1)∆||p→p ≲ (1 + t)−ε,

so the integral

ˆ ∞

0
||∇e−(t+1)∆||p→p

dt

t1−s

converges.
□



Proof of Lemma 1.4. To prove (RRp,γ), let h ∈ Lp′∩Dp′(∆) such that ∥∆εh∥Lp′ ≤ 1. Then∣∣⟨∆1−εe−∆f,∆εh⟩
∣∣ =

∣∣⟨f,∆e−∆h⟩
∣∣

=
∣∣⟨∇f,∇e−∆h⟩

∣∣
≤ ∥∇f∥p

∥∥∇e−∆h
∥∥
p′

≲ ∥∇f∥p ∥∆
εh∥p′

≤ ∥∇f∥p .

Since the semigroup generated by ∆ is self-adjoint on L2(X) and is a contraction on
Lr(X) for all r ∈ [1,+∞], so is the semigroup generated by ∆ε ([14, Proposition 13.1]).
Therefore, [12, Lemma 1] entails that, for all q ∈ (1,∞), {∆εh; h ∈ Lq(X) ∩ Dq(∆)} is
dense in Lq(X). This and the previous calculation prove that (RRp,γ) holds.

□

Thanks to Lemma 1.4 and [11, Theorem 1.4] (which relies on the gradient heat kernel
estimate obtained in this paper), we obtain:

Corollary 2.1. On the Vicsek cable system, the reverse inequalities (RRp,γ) holds for any
p ∈ (1,+∞) and γ ∈ (αβ , 1).

Proof of Lemma 1.7. Let us first assume that 0 < ε ≤ 1
2 , and let us prove (RRp,γ) for

p = 2. The case ε = 1
2 follows from the facts that e−∆ is bounded on L2 and the Riesz

transform ∇∆−1/2 is bounded –in fact, an isometry– on L2 (this latter fact comes from
the definition of the Laplacian and its relationship to the quadratic form). In the case
ε < 1

2 , Lemma 1.2 shows that the quasi-Riesz transform ∇e−∆∆−ε is bounded on L2. The
reverse inequalities follow directly from the boundedness of the quasi-Riesz transforms and
Lemma 1.4.

Conversely, assume that the quasi-Riesz transform ∇e−∆∆−ε is bounded on L2 for some
ε > 0. Equivalently, assume the inequality

||∇e−∆f ||2 ≲ ||∆εf ||2
for every f in the domain of the quadratic form associated to ∆. By the Green formula,

||∇e−∆f ||2 = ||∆1/2e−∆f ||2,
hence

||∆1/2e−∆f ||2 ≲ ||∆εf ||2.
Using the Spectral Theorem, this implies the following inequality for all x ≥ 0:

√
xe−x ≲ xε.

Looking at the behaviour for x → 0, we conclude that ε ≤ 1
2 .

□



Another result, proved with arguments similar to previous ones, and that will be useful
later, is the following boundedness result for “small times”:

Lemma 2.2. Consider the Vicsek cable system; let p ∈ (1,+∞), and denote q = p′. Let
γ ∈ (0, 1). For r > 0, denote

Tr =

ˆ r

0

∂

∂t
e−(t+1)∆ dt

tγ
.

Let r0 > 0. Then, there exists a constant C = C(r0, p) > 0 such that, for every 0 ≤ r ≤ r0,

||Trf ||p ≤ C||∇f ||p, f ∈ C∞
0 (X). (2.1)

Remark 2.3. As the proof shows, the result of Lemma 2.2 holds for more general MMD
spaces, under the assumption that sub-gaussian heat kernel gradient estimates for small
times hold.

Proof. Introduce the following conjugate operator:

Qr :=

ˆ r

0
e−(t+1)∆ dt

tγ
.

By the gradient heat kernel for small times on the Vicsek cable system (see [11, Theorem
1.1]), one has

||∇e−(t+1)∆||q→q ≤ C, ∀t ≤ r0.

This implies that there is a constant C > 0 such that

||∇Qr||q→q ≤ C, ∀r ≤ r0.

Note that

Tr = ∆

ˆ r

0
e−(t+1)∆ dt

tγ
= ∆Qr = Qr∆.

Let g ∈ Lq, then one has

⟨Trf, g⟩ = ⟨f,∆Qrg⟩
= ⟨∇f,∇Qrg⟩
≤ ||∇f ||p · ||∇Qrg||q
≤ C||∇f ||p · ||g||q.

This implies by Lp − Lq duality that

||Trf ||p ≤ C||∇f ||p,
hence the result.

□



2.2. More on the Vicsek cable system. In this subsection, we collect a few facts about
the Vicsek cable system, which will be useful for the rest of the paper. For n ∈ N, denote
by Vn the set of all n-skeletons in X. The construction of the Vicsek cable system entails
the following facts:

• X is a tree, i.e. does not contain any closed loop. As a consequence, if x ∈ X and
A ⊂ X is closed, and L = d(x,A), then there is a unique geodesic γ : [0, L] → X
such that γ(0) = x, γ(L) ∈ A.

• Let n ∈ N, then

X =
⋃

Vn∈Vn

Vn.

• Any n-skeleton is a ball of radius 3n, whose volume is equal to 4× 5n.
• Let n ∈ N and let Vn be an n-skeleton. Then, there exists a unique (n+1)-skeleton
Vn+1 such that Vn ⊂ Vn+1. The unique (n + 1)-skeleton Vn+1 will be called the
skeleton “daughter” of the skeleton Vn, and Vn will be called one of the 5 “parents”
of Vn+1.

• Let V and W be two skeletons such that V ∩ W ̸= ∅. Then, either V ⊂ W , or
W ⊂ V , or V ∩W consists precisely of one point, which is one of the four boundary
points of both V and W .

We will use the following simple lemma on balls in the Vicsek cable system, which is based
on the particular structure of the cable system and the fact that n-skeletons have diameters
equal to 2 · 3n :

Lemma 2.4. Let x ∈ X, r > 0 and n ∈ N∗.

(i) if r > 2 · 3n then there exists an n-skeleton inside the ball B(x, r).

(ii) if r ≤ 2 · 3n then the ball B(x, r) is contained inside some (n+ 1)-skeleton.

Consequently, if r > 2, then letting n = ⌊log3
(
r
2

)
⌋, the ball B(x, r) contains an n-skeleton

Vn such that diam(Vn) ≃ r and m(Vn) ≃ rα.

Definition 2.5. Let V be a skeleton of X.

(1) Denote by diag(V ) the union of the two great diagonals of V , which are the diagonals
of the closed convex hull of V .

(2) For p ∈ V \ diag(V ), we will denote π(p) be the “projection” of p onto the diag-
onals of V , more precisely π(p) is the unique vertex point in diag(V ) achieving
dist(p,diag(V )). The uniqueness of π(p) comes from the first remark above (X is
a tree). For p ∈ diag(V ), we simply let π(p) = p.

(3) We say that a function φ : V → R is radial, if for any p ∈ V ,

φ(p) = φ ◦ π(p).

This alternative notion of “radial” function will turn out to be better suited to the
particular structure of the Vicsek cable system, than the usual notion of radial functions.



2.3. A Poincaré inequality for skeletons. The key technical point for the proof of
Theorem 1.8 is a Poincaré inequality on skeletons, contained in the following lemma:

Lemma 2.6. Let q ∈ [1,+∞). There exists a constant C = C(q) > 0 such that the
following holds: for every n ∈ N∗, every n-skeleton Vn ∈ Vn and every f ∈ C∞(Vn),
denoting

cn(f) :=
1

m(diag(Vn))

ˆ
diag(Vn)

f dm,

then one has

ˆ
Vn

|f − cn(f)|q dm ≤ Cm(Vn)
1+ q−1

α

ˆ
Vn

|∇f |q dm (2.2)

and

ˆ
diag(Vn)

|f − cn(f)|q dm ≤ Cdiam(Vn)
q

ˆ
Vn

|∇f |q dm. (2.3)

Remark 2.7. In fact, as the proof shows, it is possible to show the stronger inequality:

ˆ
diag(Vn)

|f − cn(f)|q dm ≤ Cdiam(Vn)
q

ˆ
diag(Vn)

|∇f |q dm.

However, the inequality (2.3) will suffice for the purposes of this article.

Remark 2.8. It is important to notice that one can substract the same constant cn both
in (2.2) and in (2.3)!

Proof. Notice that without loss of generality, we can –and will– assume that cn(f) = 0.
Since by assumption cn(f) = 0 and f is continuous, there exists z ∈ diag(Vn) such that
f(z) = 0. We introduce some notations. Denote by (πi)i=1,··· ,k, where k = 2diam(Vn)− 1,
the vertices points of Vn that lie on the diagonals diag(Vn). The unique shortest path
joining two points p and s in the cable system will be denoted [p, s]. For i = 1, · · · , k, we
let Γi denote the set of points p in Vn \diag(Vn) such that π(p) = πi. With these notations
settled, we start the proof of (2.2). For p, s ∈ Vn, we have by Hölder,

|f(p)− f(s)|q ≤

(ˆ
[p,s]

|∇f | dm

)q

(2.4)

≤ m([p, s])q−1

ˆ
[p,s]

|∇f |q dm (2.5)

≤ m([p, s])q−1

ˆ
Vn

|∇f |q dm (2.6)

≤ diam(Vn)
q−1

ˆ
Vn

|∇f |q dm. (2.7)



First, choosing s = z, and integrating the above inequality in p ∈ diag(Vn) yields

ˆ
diag(Vn)

|f(p)|q dm(p) ≤ m(diag(Vn))× diam(Vn)
q−1

ˆ
Vn

|∇f |q dm, (2.8)

which, given that m(diag(Vn)) × diam(Vn)
q−1 = 2diam(Vn)

q and recalling that cn = 0,
implies (2.3) with constant C = 2.

On the other hand, if π(p) = πi then by (2.7),

|f(p)− f(πi)|q ≤ diam(Vn)
q−1

ˆ
Vn

|∇f |q dm,

therefore by integration, for every i = 1, · · · , k,

ˆ
Γi

|f(p)− f(πi)|q dm(p) ≤ m(Γi)× diam(Vn)
q−1

ˆ
Vn

|∇f |q dm.

Since Γi∩Γj = ∅ for i ̸= j, and ∪iΓi = Vn\diag(Vn), by summing the preceeding inequality
over all i = 1, · · · , k, we get

ˆ
Vn\diag(Vn)

|f(p)− f(π(p))|q dm(p) ≤ m(Vn)× diam(Vn)
q−1

ˆ
Vn

|∇f |q dm.

Consequently, the inequality (a+ b)q ≤ 2q−1(aq + bq) for all a, b ≥ 0 yields

ˆ
Vn\diag(Vn)

|f(p)|q dm(p) ≲
k∑

i=1

m(Γi)|f(πi)|q +
ˆ
Vn\diag(Vn)

|f(p)− f(π(p))|q dm(p)

≲
k∑

i=1

m(Γi)|f(πi)|q +m(Vn)× diam(Vn)
q−1

ˆ
Vn

|∇f |q dm.

Using (2.8), and the trivial inequality m(diag(Vn)) ≤ m(Vn), we get

ˆ
Vn

|f(p)|q dm(p) ≲
k∑

i=1

m(Γi)|f(πi)|q +m(Vn)× diam(Vn)
q−1

ˆ
Vn

|∇f |q dm.

Since f(z) = 0, we now estimate

k∑
i=1

m(Γi)|f(πi)|q ≲
k∑

i=1

m(Γi)|f(πi)− f(z)|q

≤

(
k∑

i=1

m(Γi)

)
diam(Vn)

q−1

ˆ
Vn

|∇f |q dm

= m(Vn)× diam(Vn)
q−1

ˆ
Vn

|∇f |q dm,



where (2.7) has been used to pass from the first to the second line. Thus, one gets

ˆ
Vn

|f(p)|q dm(p) ≲ m(Vn)× diam(Vn)
q−1

ˆ
Vn

|∇f |q dm.

Now we notice that diam(Vn)
α ≃ m(Vn) (see Lemma 2.4), so the above inequality implies

ˆ
Vn

|f(p)|q dm(p) ≲ m(Vn)
1+ q−1

α

ˆ
Vn

|∇f |q dm.

This is precisely (2.2).
□

2.4. Extension of Poincaré inequalities to more general subsets of X. The above
proof actually works for much more general subsets of X than skeletons. To explain this,
we first introduce a few definitions.

Definition 2.9. Let Γ ⊂ X be a closed set.

(1) Since X is a tree, there is a well-defined “projection map” πΓ : X → Γ, generalizing
Definition 2.5; explicitly, πΓ(p) is defined to be the unique point of Γ achieving
d(p,Γ).

(2) Let Y ⊂ X. Say that Y is geodesically convex if and only if, for any two points
x and y in Y , the (unique) geodesic between x and y lies inside Y . We note that
since X is a tree, a subset Y of X is connected, if and only if it is geodesically
convex.

(3) Let A ⊂ X be a connected subset, such that Γ ⊂ Ā; for p ∈ Γ a vertex point, we let

ΓA
p := {q ∈ A \ Γ ; πΓ(q) = p}.

Roughly speaking, the set ΓA
p is the union of all the “branches” emanating from p

in A. Since A is connected, for every p vertex in Γ, the set ΓA
p ⊂ A is connected,

hence geodesically convex.
(4) Let A ⊂ X be connected. The closed set Γ is called a soul of A if the following

conditions are satisfied:
(a) Γ ⊂ Ā.
(b) Γ is geodesically convex.
Note that, as a consequence of the uniqueness of the projection onto Γ, i.e. the
fact that πΓ is well-defined, the sets ΓA

p , for p vertex in Γ, which are not empty are
disjoint.

Skeletons are examples of sets admitting a soul: take for Γ the union of the two diagonals.
The following remark will be useful:

Lemma 2.10. Let B ⊂ A ⊂ X be two connected sets, and let Γ ⊂ A be a soul for A.
Assume that B ∩ Γ ̸= ∅. Then, B ∩ Γ is a soul for B, and πΓ(B) = Γ ∩B.

Proof. Since the intersection of two geodesically convex sets is still geodesically convex,
and since B and Γ are geodesically convex, we deduce that B ∩ Γ is geodesically convex,



and in turn that B ∩ Γ is geodesically convex, too. Fix z ∈ Γ ∩ B, and let x ∈ B. Recall
that πΓ denotes the “projection” onto Γ in A. Let y = πΓ(x). We claim that y ∈ B.
Indeed, the segment [z, x] lies inside B by convexity, and by uniqueness of y there must be
that y ∈ [z, x]. Therefore, one deduces that πΓ(B) = Γ ∩B.

□

We can now state the following extension of Lemma 2.6, the proof of which is analogous
to the one of Lemma 2.6:

Lemma 2.11. Let A ⊂ X be connected, and q ∈ [1,+∞). Assume that one can find a
soul Γ of A, such that πΓ(A) = Γ ∩A, and such that for some constant c > 0,

c−1m(Γ) ≤ diam(A) ≤ cm(A)
1
α .

Denote, for every f ∈ C∞(A),

(f) :=
1

m(Γ)

ˆ
Γ
f(p) dm(p).

Then, there is a constant C = C(c, q) > 0 such that

ˆ
A
|f − c(f)|q dm ≤ Cm(Vn)

1+ q−1
α

ˆ
A
|∇f |q dm (2.9)

and

ˆ
Γ
|f − c(f)|q dm ≤ Cdiam(Vn)

q

ˆ
A
|∇f |q dm. (2.10)

It will be important for what follows to be able to construct simple souls for sets which
are finite unions of skeletons. The setting is the following: take a connected set A ⊂ X
which can be written as a finite union:

A =

ℓ⋃
k=1

Wk,

where the Wk’s are pairwise distinct n-skeletons, Since the skeletons Wk are pairwise dis-
tinct, they have disjoint interior. Consider Γ to be the closed set, consisting of the union
of the diagonals of the skeletons Wk, namely (see figure 2):

Γ :=

ℓ⋃
k=1

diag(Wk).

Since A is connected, Γ is geodesically convex. It follows that Γ is a soul for A.
Let us record this simple fact as a lemma for future use:



Figure 2. The set A with its soul Γ (in red)

Lemma 2.12. Let A ⊂ X be a connected subset of X, which can be written as

A =
ℓ⋃

k=1

Wk,

where the Wk’s are pairwise distinct n-skeletons. Consider Γ to be the closed set, consisting
of the union of the diagonals of the skeletons Wj. Then, Γ is a soul for A.

Finally, we consider the following setting: we let A ⊂ X be open and connected, and we
assume that there is a covering

A =
⋃
i∈N

Bi,

where each Bi is a ball Bi = B(xi, ri) with ri > 8. Furthermore, we assume that:

(a) the covering is locally finite: there is a constant N ∈ N∗ such that for every ball
Bi, the set Ji of j’s such that Bi ∩Bj ̸= ∅ is finite, and |Ji| ≤ N .



(b) there is a constant c ≥ 1 such that for any two intersecting balls Bi and Bj , there
holds:

c−1rj ≤ ri ≤ crj .

We intend to construct for any i ∈ N a special soul Γi for Bi; these souls will then be called
the souls adapted to the covering.

The procedure is as follows: fix a ball Bi of the covering; given property (b) of the
covering and thanks to Lemma 2.4, one can find ni ∈ N depending only on ri and on c,
such that Bi, as well as every ball Bj , j ∈ Ji, contains an ni-skeleton Wj , and such that
moreover, for some constant C > 0 depending only on c,

C−1m(Bj) ≤ m(Wj) ≤ Cm(Bj), C−1diam(Wj) ≤ rj ≤ Cdiam(Wj).

Explicitly, one may take

ni = max
(
⌊log3

( ri
8c

)
⌋, 0
)
.

As will prove useful later, choosing this particular value of ni, one sees that it can moreover
be assumed that the diameter of the ni-skeletons Wj satisfies:

diam(Wj) = 2 · 3ni <
ri
4
.

Furthermore, the ball Bi can be covered by a finite number M ∈ N∗ of ni-skeletons (which
includes in particular the skeleton Wi), where M depends only on ni. Let S be the union
of all these ni-skeletons intersecting Bi, so that Bi ⊂ S, and let Γ be the union of the
diagonals of all these ni-skeletons.

According to Lemma 2.12, Γ is a soul for S. Since Bi contains at least one such ni-
skeleton, namely Wi, it follows that Bi ∩ Γ ̸= ∅, and Lemma 2.10 implies that Γ ∩Bi is a
soul for Bi, and πΓ(Bi) = Γ∩Bi. We let Γi := Γ ∩Bi. Note that Γi contains diag(W )∩Bi

for W any ni-skeleton intersecting Bi. See figure 3 for an illustration of this construction.

Actually, we will also need a “second-order” variant of this construction, in which the
number ni is replaced by ki ≤ ni defined as follows: ki ∈ N∗ is such that any ball Bℓ

having non-empty intersection with one of the balls Bj , j ∈ Ji, contains a ki-skeleton (in
particular, this must apply to Bi itself). As before, one may take explicitly

ki = max
(
⌊log3

( ri
8c2

)
⌋, 0
)
.

Following the same steps as above, we get a soul Γ̃ for the set S̃, defined as the union of
all the ki-skeletons having non-empty intersection with Bi. Intersecting with Bi, we get a
soul Γ̃i for Bi, and πΓ̃(Bi) = Γ̃ ∩ Bi. As an illustration, if one takes the example of figure

3, then because of the smaller ball Bℓ, the soul Γ̃i of Bi consists of all the edges inside Bi.
This is indeed a soul which is finer than Γi.



Figure 3. The construction of the soul Γi (in red) in Bi

The hypotheses of Lemma 2.11 are satisfied for Bi and any one of its souls Γi or Γ̃i,
hence the following Poincaré inequalities hold true, in which Γ denotes either Γi or Γ̃i: for
every f ∈ C∞(Bi), one has

ˆ
Bi

|f − ci(f)|q dm ≤ C rα+q−1
i

ˆ
Bi

|∇f |q dm (2.11)

and

ˆ
Γ
|f − ci(f)|q dm ≤ C rqi

ˆ
Bi

|∇f |q dm. (2.12)

where ci(f) is a shorthand for 1
m(Γ)

´
Γ f dm, Γ = Γi or Γ̃i.

2.5. A partition of unity associated with a covering by balls. Now we come to the
construction of an adapted partition of unity, associated to a covering. Here, we allow the
covering to contain small balls. We thus assume that Ω is an open set which writes

Ω =
⋃
i∈I

Bi,



where the Bi are balls, and I ⊂ Z; we assume that for all i ∈ I, i ≥ 0 (resp. i < 0),
the ball Bi has radius > 8 (resp. ≤ 8), and that moreover the balls 1

2Bi still cover Ω.
Furthermore, we assume as before that the covering is locally finite, and two intersecting
balls have comparable radii. We start with a definition, extending Definition 2.5:

Definition 2.13. Let A ⊂ X and Γ be a soul for A. A function f : A → R is called
Γ-radial, if for every p ∈ A,

f(p) = f ◦ πΓ(p).

For i ∈ I, i ≥ 0, we denote by Γi and Γ̃i the souls of Bi which have been constructed by
the previously described procedure. For i ≥ 0, we first construct functions ηi which enjoy
the following properties:

(i) ηi is equal to 1 on 1
2Bi, and has compact support inside Bi,

(ii) 0 ≤ ηi ≤ 1,
(iii) ||∇ηi||∞ ≲ 1

ri
,

(iv) ηi is Γi-radial, and as a consequence ∇ηi has support lying inside Γi.

For this, fix a smooth function φ : R+ → [0, 1], which is equal to 1 around 0, has compact
support inside [0, 1] and satisfies 0 ≤ φ ≤ 1. Remember that by construction, Γi is the
intersection of Bi with the union of all the diagonals of ni-skeletons (the integer ni being
chosen appropriately, depending on the size of the balls Bj which intersect Bi). Consider
the union Λ of all ni-skeletons which intersect 1

2Bi. By definition, if p ∈ Λ is a vertex,

then the branch (Γi)
Bi
p , lies inside the (unique, if the branch is non-empty) ni-skeleton

containing p; in particular, it lies in Λ. Therefore, if x ∈ Bi \Λ, then πΓi(x) /∈ Λ. Also, by
the choice of ni made in the construction of Γi , the diameter of an ni-skeleton is 2·3ni < ri

4 ,

so there holds that Λ ⊂ 3
4Bi. One then lets

ηi(x) =

{
1, x ∈ Λ

φ
(
d(πΓi

(x),Λ)

(ri/8)

)
, x ∈ Bi \ Λ

By definition, ηi is a Γi-radial function, so (iv) holds. Note that, for any x lying in one of
the ni-skeletons intersecting Bi, the distance between πΓi(x) and x is less or equal to half
of the diameter of the ni-skeleton containing x, which (by the choice of ni) is <

ri
8 . Since

d(Bc
i ,Λ) ≥

ri
4 , it follows that

d(πΓi(B
c
i ),Λ) ≥

ri
4
− ri

8
=

ri
8
.

By the fact that φ(t) = 0 for t ≥ 1, this implies that ηi(x) = 0 for all x /∈ Bi, hence ηi has
compact support inside Bi. Properties (i) and (ii) of ηi now follow right away from the
assumptions on φ.

For (iii), since Λ ⊂ 3
4Bi, one has

||∇ηi||∞ ≤ 8

ri
||φ′||∞



This concludes the proof of (i), (ii), (iii) and (iv) for ηi.
We now turn to the definition of ηi for i < 0. In this case, we let

ηi(x) =

{
1, x ∈ 1

2Bi,

φ
(
2d(x, 1

2
Bi)

ri

)
, x ∈ Bi \ 1

2Bi.

Then, ηi satisfy the properties (i), (ii), (iii) above. This concludes the definition of ηi for
all i ∈ I ∩ Z. Define the function η on Ω by

η :=
∑
i∈I

ηi

(the sum being in fact finite at every point due to the local finiteness of the covering).
Since ηi is equal to 1 on 1

2Bi and the balls 1
2Bi still cover Ω, it follows that η ≥ 1 on Ω.

We are now ready to define our partition of unity; for i ∈ I, we let

χi :=
ηi
η
.

Clearly, χi has compact support inside Bi, 0 ≤ χi ≤ 1, and
∑

i∈I χi = 1 in Ω. Moreover,
one has

∇χi =
∇ηi
η

−
∑
j∈I

ηi∇ηj
η2

(note that in the second sum, there is only a finite number of j such that ηi∇ηj ̸= 0,
namely the j’s for which the ball Bj intersect the ball Bi). The gradient estimates for ηj ,
the fact that intersecting balls of the covering have comparable radii, as well as the fact
that η ≥ 1, readily imply that

||∇χi||∞ ≲
1

ri
.

Let J ⊂ I ∩ N denote the set of indices i such that the ball Bi has radius ri ≥ 9c (c being
the constant appearing in the hypothesis that two intersecting balls of the covering have
comparable radii); then, for every i ∈ J , the ball Bi only intersects balls Bj with radius

rj > 8. For i ∈ J , ∇χi has support inside Γi ∪
(⋃

j∈I Bi ∩ Γj

)
. But this set is a subset of

Γ̃i. Hence, the following proposition:

Proposition 2.14. There is a partition of unity (χi)i∈I associated with the covering (Bi)i∈I
of Ω, with the following properties:

• for every i ∈ I, ||∇χi||∞ ≲ 1
ri
.

• for every i ∈ J , the support of ∇χi lies inside Γ̃i.



2.6. A Calderón-Zygmund decomposition. In this section, we explain how we can get
a Calderón-Zygmund decomposition in Sobolev spaces, adapted to the Vicsek setting, the
proof of which relies on the Poincaré inequalities (2.11) and (2.12). The statement is as
follows:

Lemma 2.15. Let X be the Vicsek cable system, and q ∈ [1,+∞). Then, there exists a
constant C > 0 depending only on the doubling constant, and r0 > 0 with the following
properties: for all u ∈ C∞

0 (X) and all λ > 0, there exists a denumerable collection of open
balls (Bi)i∈I with radius ri, a denumerable collection of C1 functions (bi)i∈I and a Lipschitz
function g such that:

(1) u = g +
∑
i∈I

bi a.e.,

(2) The support of g is included in supp(u), and |∇g(x)| ≲ λ, for a.e. x.
(3) The support of bi is included in Bi,ˆ

Bi

|bi|q dm ≲ max(rα+q−1
i , rqi )

ˆ
Bi

|∇u|q dm

and ˆ
Bi

|∇bi|q ≲
ˆ
Bi

|∇u|q dm ≲ λqm(Bi).

(4)
∑
i∈I

m(Bi) ≲
1

λq

ˆ
|∇u|q.

(5) There is a finite upper bound N for the number of balls Bi that have a non-empty
intersection.

(6) The following inequality holds:

||∇g||q ≲ ||∇u||q.
(7) There is a constant c ≥ 1, such that for every i, j ∈ I with Bi∩Bj ̸= ∅, the following

inequality holds:

c−1rj ≤ ri ≤ crj .

Proof. Let λ > 0. Consider

Ω = {x ∈ X ; (M |∇u|q)1/q (x) > λ}
where M denotes the uncentered Hardy-Littlewood maximal function, and let F = X \Ω.
Let us first prove that condition (Vs) implies that Ω is a bounded open set. For this, let
x0 ∈ X and R > 0 be such that the support of u is included in B(x0, R). Let K > 1 be
such that

1

Φ
(
(K−1)R

2

) ˆ
X
|∇u(z)|q dm(z) ≤ λ. (2.13)



We claim that Ω ⊂ B(x0,KR). Indeed, let x ∈ X such that d(x0, x) ≥ KR and B be a
ball of riadus r containing x. If B ∩B(x0, R) = ∅, then

´
B |∇u(z)|q dm(z) = 0. Otherwise,

KR ≤ d(x0, x) ≤ R+ 2r,

hence r ≥ (K−1)R
2 , which implies that

1

m(B)

ˆ
B
|∇u(z)|q dm(z) ≤ 1

Φ
(
(K−1)R

2

) ˆ
X
|∇u(z)|q dm(z) ≤ λ.

Therefore, x /∈ Ω, which proves the claim, and consequently we have proved that Ω is
indeed a bounded set.
We are going to build a Whitney-type covering of Ω with some additional properties. For
x ∈ Ω, we let B̄x = B(x, 1

30d(x, F )), B̃x := 5B̄x and Bx := 2B̃x = 10B̄x; note that Bx ⊂ Ω.
We thus get a covering

Ω =
⋃
x∈Ω

B̄x.

According to the Vitali covering lemma, one can find a disjoint countable subfamily
(B̄xi)i∈N such that

Ω =
⋃
i∈N

5B̄xi =
⋃
i∈N

B̃xi .

Note that since Bxi = 2B̃xi ⊂ Ω for all i ∈ N, one has also that

Ω =
⋃
i∈N

Bxi .

We now rename Bi the ball Bxi . These balls enjoy a certain number of properties that
we now list: first, by construction, the balls (12Bi)i≥0, as well as the balls (Bi)i≥0, form a

covering of Ω by open balls. Also, the fact that the balls 1
10Bi are disjoint, together with

the fact that the measure is doubling, implies that point (5) of the Calderón-Zygmund
decomposition is satisfied both for the covering (Bi)i≥0, and for the covering (12Bi)i≥0.
Moreover, for every i ≥ 0, 10Bi ∩F ̸= ∅. Since any point of such a ball Bk = B(xk, rk) lies
at a distance ≃ rk from F , it follows that if Bi∩Bj ̸= ∅, then ri ≃ rj . This is precisely point
(7) of the Calderón-Zygmund decomposition. The same is true (for the same reasons) for
the balls (12Bi)i≥0. These facts will be all the properties of the coverings that will be used
in the sequel, and the particular way they have been constructed can now be forgotten by
the reader. Relabelling everything, and denoting by I ⊂ Z the set of all the new labels,
one can assume that the labelling is done in such a way that every ball Bi for i ∈ I, i ≥ 0
(resp., i < 0) has radius > 8 (resp., ≤ 8), and call J ⊂ I ∩N the set of balls Bi which have
radius ≥ 9c2, so that for i ∈ J , the ball Bi only intersects balls Bj which have radius > 8,
and moreover Bj itself intersects only balls which have themselves radius > 8.

We now turn to the construction of the functions bi. For that, recall that according
to Proposition 2.14, one can find a special partition of unity (χi)i∈I associated with the



covering Ω =
⋃

i∈I Bi. For i ∈ J , call Ji the set of j’s such that Bi ∩ Bj ̸= ∅, and
let Ki the set of k’s such that there exists j ∈ Ji for which Bj ∩ Bk ̸= ∅. Recall that

for every i ∈ J , we have constructed souls Γ̃i of Bi, which are adapted to the covering
Bi ∪ (∪k∈Ki

Bk) ∪ (∪j∈JiBj) of Bi (note that by definition of J , every ball in this covering
has radius > 8). We now let

bi = (u− ci)χi, ,

where, for i ∈ I \ J ,

ci =
1

m(Bi)

ˆ
Bi

u dm,

while for i ∈ J ,

ci =
1

m(Γ̃i)

ˆ
Γ̃i

u dm.

According to the Poincaré inequality for balls with small (≤ 9c2) radii on the Vicsek cable

system and (2.11) for Γ = Γ̃i, one has for every i ∈ I,

ˆ
Bi

|bi|q dm ≲ max(rα+q−1
i , rqi )

ˆ
Bi

|∇u|q dm.

Since

∇bi = (∇u) · χi + (u− ci)(∇χi),

using on the one hand for i ∈ I \ J Poincaré inequality for balls with small radii on the

Vicsek cable system , and on the other hand for i ∈ J inequality (2.12) for Γ = Γ̃i together

with the fact that ∇χi has support on Γ̃i, one concludes that

ˆ
Bi

|∇bi|q dm ≲
ˆ
Bi

|∇u|q dm.

Since
´
10Bi

|∇u|q dm ≤ λqV (10Bi) because 10Bi ∩ F ̸= ∅ and by definition of the maximal
function, one deduces from doubling that

ˆ
Bi

|∇u|q dm ≲ λqV (Bi),

which implies property (3). The property (4) follows from (5) and the fact that according
to the weak (1,1) type of M ,

m(Ω) ≲
1

λq

ˆ
X
|∇u|q dm.

One shows as in [1, Proposition 1.1] that the series
∑

i∈I bi converges in L1
loc. We define



g := u−
∑
i∈I

bi,

which is thus a well-defined function in L1
loc. From this point on, we complete the proof

following the arguments in [13, Section 4].
□

2.7. Reverse quasi-Riesz inequalities: the positive result. We are now ready for
the proof of Theorem 1.8 in the positive case p > p∗, following the approach laid out in [1].
Thus, we assume that γ ∈ [12 , 1). Recall that p

∗ is defined by

p∗ =


α−1

γ(α+1)−1 if γ ∈ ( 1
α+1 ,

α
α+1),

+∞ if γ ≤ 1
α+1 ,

1 if γ ≥ α
α+1 .

We use the following resolution of e−∆∆γ :

e−∆∆γ = c

ˆ ∞

0

∂

∂t
e−(t+1)∆ dt

tγ
.

In what follows, we will not write down the constant c anymore. According to Lemma 2.2,
if we denote

T =

ˆ 1

0

∂

∂t
e−(t+1)∆ dt

tγ
,

then for every p ∈ (1,∞),

||Tf ||p ≲ ||∇f ||p, f ∈ C∞
0 (X).

Hence, letting

Rγ =

ˆ ∞

1

∂

∂t
e−(t+1)∆ dt

tγ
,

in order to prove Theorem 1.8 it is enough to show that

||Rγf ||p ≲ ||∇f ||p, f ∈ C∞
0 (X). (2.14)

We first prove the following weak type (q, q) estimate:

Lemma 2.16. Let q ∈ [1, 2), and assume that q ≥ p∗. Then, there exists a constant C > 0
such that, for every f ∈ C∞

0 (X) and every λ > 0, one has

m ({|Rγf | > λ}) ≤ C

λq

ˆ
X
|∇f |q dm. (2.15)



Proof. Recall the Calderón-Zygmund decomposition in Sobolev spaces from Lemma 2.15,
and decompose f = g +

∑
i∈I bi accordingly. One has

m ({|Rγf | > 2λ}) ≤ m ({|Rγg| > λ}) +m

({∣∣∣∣∣Rγ

(∑
i∈I

bi

)∣∣∣∣∣ > λ

})
=: A+B.

We first treat the term A: we have by the Chebyshev inequality

m ({|Rγg| > λ}) = m
(
{|Rγg|2 > λ2}

)
≤ 1

λ2

ˆ
X
|Rγg|2 dm.

According to Lemma 1.7 (since ε = 1− γ ≤ 1
2) and Lemma 2.2, one has

||Rγg||2 ≲ ||∇g||2.
But as a consequence of the Calderón-Zygmund decomposition, ||∇g||∞ ≲ λ and

´
X |∇g|q dm ≲´

X |∇f |q dm, hence

m
(
{|Rγg|2 > λ2}

)
≲

1

λq

ˆ
X
|∇f |q dm.

We now turn to estimate the term B = m
({∣∣Rγ

(∑
i∈I bi

)∣∣ > λ
})

. Let J ⊂ I denotes the
set of indices j ∈ I for which the ball Bj has radius rj > 1. For i ∈ I \ J , write

Rγbi =

ˆ ∞

1

∂

∂t
e−(t+1)∆bi

dt

tγ

=: U0bi,

while for i ∈ J , write

Rγbi =

ˆ rβi

1

∂

∂t
e−(t+1)∆bi

dt

tγ
+

ˆ ∞

rβi

∂

∂t
e−(t+1)∆bi

dt

tγ

= Tibi + Uibi.

The two lemmas below (Lemmas 2.17 and 2.18) imply that∑
i∈I

||Rγbi||qLq(X\4Bi)
≲
∑
i∈I\J

||bi||qq +
∑
i∈J

1

rqβγi

||bi||qq.

The sum
∑

i∈I\J ||bi||
q
q is easily estimated, thanks to the properties of the functions bi:

indeed, one has for i ∈ I \ J ,

||bi||q ≲ ri||∇f ||Lq(Bi) ≤ r0||∇f ||Lq(Bi).

Since the balls Bi have the finite intersection property,



∑
i∈I\J

||bi||qq ≲ ||∇f ||qq.

Finally,

m

({∣∣∣∣∣Rγ

(∑
i∈I

bi

)∣∣∣∣∣ > λ

})
≤ m

(
(X \

⋃
i∈I

4Bi) ∩

{∣∣∣∣∣Rγ

(∑
i∈I

bi

)∣∣∣∣∣ > λ

})
+m

(⋃
i∈I

4Bi

)

≲ m

((
X \

⋃
i∈I

4Bi

)
∩

{∣∣∣∣∣Rγ

(∑
i∈I

bi

)∣∣∣∣∣ > λ

})
+
∑
i∈I

m(Bi)

≲ m

((
X \

⋃
i∈I

4Bi

)
∩

{∣∣∣∣∣Rγ

(∑
i∈I

bi

)∣∣∣∣∣ > λ

})
+ λ−q

ˆ
X
|∇f |q dm

≲ λ−q
∑
i∈I

||Rγbi||qLq(X\4Bi)
+ λ−q

ˆ
X
|∇f |q dm

≲
1

λq

(ˆ
X
|∇f |q dm+

∑
i∈J

1

rqβγi

ˆ
Bi

|bi|q dm

)
.

Property (4) in Lemma 2.15 yields, for all i ∈ J ,ˆ
Bi

|bi|q dm ≲ rα+q−1
i

ˆ
Bi

|∇f |q dm.

Elementary computations, using the fact that β = α + 1, show that the condition q ≥ p∗

is equivalent to

α+ q − 1 ≤ qβγ.

Hence, we get for all i ∈ J ,

1

rqβγi

ˆ
Bi

|bi|q dm ≲
ˆ
Bi

|∇f |q dm,

and given the finite intersection property of the balls Bi, we arrive to

m

({∣∣∣∣∣Rγ

(∑
i∈I

bi

)∣∣∣∣∣ > λ

})
≲

1

λq

ˆ
X
|∇f |q dm.

This completes the proof of Lemma 2.16.
□

The following two lemmas have been used in the proof of Lemma 2.16:



Lemma 2.17. For every i ∈ J ,

||Tibi||Lq(X\4Bi) ≲
1

rβγi
∥bi∥q .

Lemma 2.18. For every i ∈ I \ J ,

||U0bi||q ≲ ||bi||q,
and for every i ∈ J ,

||Uibi||q ≲
1

rβγi
||bi||q.

Before we prove these two results, recall that the subgaussian estimate for the heat kernel
on X implies, by [10, Theorem 4], the following pointwise bounds for the time derivative
of the heat kernel:∣∣∣∣ ∂∂tpt(x, y)

∣∣∣∣ ≤


C1

tV (x,
√
t)
exp

(
−C2

d(x,y)2

t

)
, if t ∈ (0, 1),

C1

tV (x,t1/β)
exp

(
−C2

(
d(x,y)

t1/β

) β
β−1

)
, if t ∈ [1,+∞).

(2.16)

Proof of Lemma 2.17. Let i ∈ J , and t ∈ (1, rβi ). Note that X \ 4Bi =
⋃

j≥2C
j
i where, for

all j ≥ 2, Cj
i := 2j+1Bi \ 2jBi. Denote also by xi the center of Bi. We start by estimating∣∣ ∂

∂te
−(t+1)∆bi

∣∣ pointwise on Cj
i , j ≥ 2. So, let j ≥ 2. Notice that (Vs) implies that for

every z ∈ Bi,

V (xi, (t+ 1)1/β)

V (z, (t+ 1)1/β)
=

V (xi, (t+ 1)1/β)

V (xi, ri)
· V (xi, ri)

V (z, ri)
· V (z, ri)

V (z, (t+ 1)1/β)

≲

(
ri

(t+ 1)1/β

)α

(where we have used that V (xi,(t+1)β)
V (xi,ri)

≲ 1 because (t+ 1)β ≲ ri). Bearing in mind that bi

has support in Bi and using (2.16), one obtains, for all x ∈ Cj
i ,

∣∣∣∣ ∂∂te−(t+1)∆bi(x)

∣∣∣∣ ≲
1

t+ 1

(
ri

(t+ 1)1/β

)α

e
−c

(
2jri

(t+1)1/β

) β
β−1

V (xi, ri)

V (xi, (t+ 1)1/β)

 
Bi

|bi(z)| dm(z)

≲
1

t+ 1

(
ri

(t+ 1)1/β

)2α

e
−c

(
2jri

(t+1)1/β

) β
β−1 ( 

Bi

|bi(z)|q dm(z)

)1/q

=
1

rβi

(
ri

(t+ 1)1/β

)2α+β

e
−c

(
2jri

(t+1)1/β

) β
β−1 ( 

Bi

|bi(z)|q dm(z)

)1/q

,



where in the second line we have used (Vs) and Hölder’s inequality. As a consequence,∥∥∥∥ ∂∂t e−(t+1)∆bi

∥∥∥∥
Lq(Cj

i )

≤ m(Cj
i )

1/q

∥∥∥∥ ∂∂t e−(t+1)∆bi

∥∥∥∥
L∞(Cj

i )

≲ m(2j+1Bi)
1/q 1

rβi

(
ri

(t+ 1)1/β

)2α+β

e
−c

(
2jri

(t+1)1/β

) β
β−1 ( 

Bi

|bi(z)|q dm(z)

)1/q

≲ 2jα/q
1

rβi

(
ri

(t+ 1)1/β

)2α+β

e
−c

(
2jri

(t+1)1/β

) β
β−1 (ˆ

Bi

|bi(z)|q dm(z)

)1/q

≲ 2jα/q
1

r
β(1−γ)
i

(
ri

(t+ 1)1/β

)2α+β

e
−c

(
2jri

(t+1)1/β

) β
β−1

(ˆ
Bi

(
|bi(z)|
rβγi

)q

dm(z)

)1/q

.

Now we estimate

I =

ˆ rβi

0

(
ri

(t+ 1)1/β

)2α+β

e
−c

(
2jri

(t+1)1/β

) β
β−1

dt

tγ
.

We make the change of variable s = 2jri
t1/β

, so ds
s = − 1

β
dt
t hence

I = β(2jri)
β(1−γ)

ˆ ∞

2j

 ri((
2jri
s

)β
+ 1

)1/β


2α+β

exp

−c

 2jri((
2jri
s

)β
+ 1

)1/β


β/β−1

 ds

s1+β(1−γ)
.

The elementary inequality

x2α+βe−c′(2jx)β/β−1 ≤ C, ∀j ≥ 2, ∀x ≥ 0,

with c′ = c
2 , and x = ri((

2jri
s

)β

+1

)1/β entails that

I ≲ (2jri)
β(1−γ)

ˆ ∞

2j
exp

−c′

 2jri((
2jri
s

)β
+ 1

)1/β


β/β−1

 ds

s1+β(1−γ)
.

Given our assumption that ri ≥ r0, observe that for s ≥ 2j ,(
2jri
s

)β

+ 1 ≤ rβi + 1 ≲ rβi ,



so that one can estimate the exponential factor in the integrand by

e−c′2
jβ

β−1
,

therefore

I ≲ r
β(1−γ)
i e−c′2

jβ
β−1

ˆ ∞

2j

(
2j

s

)β(1−γ)
ds

s

≲ r
β(1−γ)
i e−c′2

jβ
β−1

ˆ ∞

1

du

u1+β(1−γ)

≲ r
β(1−γ)
i e−c′2

jβ
β−1

.

Finally, one obtains that

∥Tibi∥Lq(Cj
i )

≲ 2jα/qe−c′2
jβ

β−1

(ˆ
Bi

(
|bi(z)|
rβγi

)q

dm(z)

)1/q

,

hence summing over j ≥ 2,

∥Tibi∥Lq(X\4Bi)
≲

(ˆ
Bi

(
|bi(z)|
rβγi

)q

dm(z)

)1/q

.

□

Proof of Lemma 2.18. We first assume that i ∈ I \ J . We write

U0bi =

ˆ ∞

1
t∆e−t∆

(
bi
tγ

)
dt

t
=

ˆ ∞

0
t∆e−t∆bt

dt

t
,

with

bt =
bi
tγ
1t≥1.

Let g ∈ Lq′ with 1
q + 1

q′ = 1, then since q′ ∈ (1,+∞), Littlewood-Paley-Stein estimates

([15, Chapter 4, Theorem 10]) yield



∣∣∣∣ˆ
X
(U0bi)g

∣∣∣∣ =

∣∣∣∣ˆ ∞

0
⟨t∆e−t∆bt, g⟩

dt

t

∣∣∣∣
=

∣∣∣∣ˆ ∞

0
⟨bt, t∆e−t∆g⟩dt

t

∣∣∣∣
≤

∥∥∥∥∥
(ˆ ∞

0
|bt|2

dt

t

)1/2
∥∥∥∥∥
q

∥∥∥∥∥
(ˆ ∞

0
|t∆e−t∆g|2dt

t

)1/2
∥∥∥∥∥
q′

≲

∥∥∥∥∥
(ˆ ∞

0
|bt|2

dt

t

)1/2
∥∥∥∥∥
q

||g||q′ .

It is easily seen that ∥∥∥∥∥
(ˆ ∞

0
|bt|2

dt

t

)1/2
∥∥∥∥∥
q

≲ ||bi||q,

hence ∣∣∣∣ˆ
X
(U0bi)g

∣∣∣∣ ≲ ||bi||q||g||q′ .

Taking the sup over all g ∈ Lq′(X) with ∥g∥q′ ≤ 1, we get

||U0bi||q ≲ ||bi||q.

The proof for i ∈ J is similar, in this case one has

bt =
bi
tγ
1
t≥rβi

,

which leads to the estimate ∥∥∥∥∥
(ˆ ∞

0
|bt|2

dt

t

)1/2
∥∥∥∥∥
q

≲
1

rβγi
||bi||q.

The rest of the argument is identical to the case i ∈ I \ J .
□

End of the proof of Theorem 1.8, in the case p > p∗: we conclude by an interpolation ar-
gument similar to the one from [13, Lemma 3.4], relying on Lemma 2.16 applied with
q = p∗.

□



2.8. Reverse quasi-Riesz inequalities: negative results.

Proof of Theorem 1.8, in the case p < p∗. We first assume that γ > 1
β . As in [6, Section

5], we start from the Nash inequality

∥f∥
1+ 2γp

(p−1)α′
p ≲ ∥f∥

2γp
(p−1)α′
1 ∥∆γf∥p (2.17)

with α′ := 2α
α+1 , whenever ∥f∥p ≤ ∥f∥1. The Nash inequality (2.17) holds for any γ > 0,

thanks to the sub-Gaussian upper-bound of the heat kernel for large times (see [8, Theorem

1]). With the notations of [11], we write X as the increasing union of V (n), n ∈ N. Let

U0 = U1 = U2 = U3 = V (1). By definition, for all k ∈ N, each V (k+1) is the union of V (k)

and of 4 additional translated copies of V (k). Call U4k+i, i = 0, · · · , 3 the collection of
these four copies, enumerated such that U4k is the central copy and U4k+3 the upper right
copy. See figure 4.

Let n ∈ N; let z0 be the center of V (n), and {zi}i=1,··· ,4 its four boundary points. Define

a function gn on X and supported in V (n) in the following way: gn(z0) = 1, gn(zi) = 0

for all i = 1, · · · , 4, and gn is harmonic at every other point of V (n). So, thanks to the
description of harmonic functions on the Vicsek cable system (see [11, Section 3]), gn is

constant on the branches emanating from the two diagonals of V (n), and linear on the four
half-diagonals of V (n). This function gn is analogous to the one from [6, Section 5]. Notice
then that gn ≥ 2

3 in U4n. Also, there is a positive constant c, independant of n, such that

e−∆1U4n ≥ c in Dn.

Indeed, whenever d(x, y) ≤ 1,

p1(x, y) ≥ c

V (x, 1)
exp

(
−Cd(x, y)

β
β−1

)
=

c

V (x, 1)
exp

(
−Cd(x, y)

α+1
α

)
≥ c′ > 0.

Let Dn = {x ∈ U4n ; d(x, (U4n)
c) ≥ 1}. Note that m(Dn) ≃ m(U4n) for n ≥ 1. As a

consequence of the above inequality, for all x ∈ Dn,

e−∆1U4n(x) =

ˆ
y∈U4n

p1(x, y)dm(y)

≥
ˆ
d(y,x)≤1

p1(x, y)dm(y)

≥ c′V (x, 1)

≥ c′′.



U4k+1

U4k

U4k+3U4k+2

V (k)

Figure 4. The sets U4k+j

Since gn ≥ c1U4n , it follows that∥∥e−∆gn
∥∥
p

≥ c
∥∥e−∆1U4n

∥∥
p

≥ cm(U4n)
1
p

≥ cm(V (n))
1
p .



We now argue by contradiction: assume that (RRp,γ) holds for some 1
β < γ < α

β and some

1 < p < α−1
γ(α+1)−1 . Observe that, if f ≥ 0 and ∥f∥p ≤ ∥f∥1, one has∥∥e−∆f

∥∥
p
≤ ∥f∥p ≤ ∥f∥1 =

∥∥e−∆f
∥∥
1
.

Moreover, since p > 1, and by definition of gn,

||gn||p ≤ m(V (n+1))1/p ≤ 2

3
m(V (n)) ≤ ||gn||1,

if n is large enough, as one can see from |V (n+1)|1/p ≃ 3n/p, |V (n)| ≃ 3n. So, the above
observation gives ||e−∆gn||p ≤ ||e−∆g||1, and we can use (2.17) with f := e−∆gn. Together
with (RRp,γ), it gives

∥f∥
1+ 2γp

(p−1)α′
p ≲ ∥f∥

2γp
(p−1)α′
1 ∥∆γf∥p ≲ ∥f∥

2γp
(p−1)α′
1 ||∇gn||p.

Using

||f ||1 ≤ ||gn||1 ≲ m(V (n)), ||f ||p ≥ cm(V (n))
1
p ,

and

||∇gn||pp ≃ 3−npdiam(V (n)) ≃ 3−n(p−1) ≃ m(V (n))−
p−1
α ,

and the fact that m(V (n)) → ∞ as n → ∞, by performing elementary computations with
the exponents we easily get a contradiction.

Finally, we treat the case γ ≤ 1
β by interpolation. We rely on the following interpolation

inequality (see [9, Proposition 32] for a proof): for every λ, µ, γ ≥ 0, 1 < p, q, r < +∞ and
0 < θ < 1, such that λ = θγ + (1− θ)µ, 1

r = θ
p + 1−θ

q ,

||∆λg||r ≤ ||∆γg||θp||∆µg||1−θ
q . (2.18)

Let 1 < p < +∞, we argue by contradiction and assume that (RRp,γ) holds. Let λ ∈
( 1
α+1 ,

α
β ) be close enough to 1

α+1 , such that

p <
α− 1

λ(α+ 1)− 1
. (2.19)

Let θ ∈ (0, 1), and define µ = λ−θγ
1−θ and q = r = p. If θ is close enough to 1, one has

µ ≥ α
β ≥ 1

2 , so (RRp,µ) holds by the positive results already established in Theorem 1.8.

Consequently, applying (2.18) to g = e−∆f , we get (RRp,λ), which contradicts the first part
of the proof, since condition (2.19) holds. Hence, (RRp,γ) does not hold. This completes
the proof of Theorem 1.8. □

Proof of Proposition 1.11: Start with the Nash inequality:

∥f∥
1+ 2γp

(p−1)D
p ≲ ∥f∥

2γp
(p−1)D

1 ∥∆γf∥p , (2.20)



for functions f satisfying ||f ||p ≤ ||f ||1. The approach is the same as in the proof of
Theorem 1.8. Assume by contradiction that (RRp,γ) holds for some γ < 1/2 and p ∈
(1,+∞). Here we consider a sequence of nonnegative functions gn which are equal to 1 on
B(o, n), to 0 on M \B(o, 2n) and satisfy |∇gn|(x) ≃ 1

n for x ∈ B(o, 74n)\B(o, 54n). A direct

computation using V (o, n) ≃ nD shows that for n large enough, one has ||gn||p ≤ ||gn||1,
hence as in the proof of Theorem 1.8 one has ||e−∆gn||p ≤ ||gn||p ≤ ||gn||1 = ||e−∆gn||1.
Therefore, applying (2.20) to fn := e−∆gn, by performing elementary computations with
the exponents we get a contradiction for n → +∞ if γ < 1

2 , given the validity of the
following estimates for n large enough:

||e−∆gn||p ≳ nD/p, ||e−∆gn||1 ≲ nD,

and

||∇gn||p ≲ n
D
p
−1

.

The above estimate of ||∇gn||p is easily obtained; for ||e−∆gn||1, we use the equality
||e−∆gn||1 = ||gn||1, which is easily seen to be ≲ nD. It remains to prove the estimate
for n large enough:

||e−∆gn||p ≳ nD/p (2.21)

Let A > 0, the heat kernel upper-bound implies that for every x ∈ M \B(o, 2(A+ 1)n),

|e−∆gn(x)| ≤ Ce−cd2(x,B(o,2n))

ˆ
B(o,2n)

gn

≤ C ′e−2cA2n2
nDe−cd2(x,B(o,2n))/2.

One take A large enough such that C ′e−2cA2n2
nD < 1 for all n. Fix such an A > 0, then

one obtains

|e−∆gn(x)| ≤ e−cd2(x,B(o,2n))/2.

Given the assumption on the volume growth of M , one obtains

ˆ
M\B(o,2(A+1)n)

|e−∆gn(x)| dx ≤ C,

for some constant C > 0 depending only on the implicit constants in the volume growth
of balls. We claim that

||e−∆gn||p ≥

(ˆ
B(o,2(A+1)n)

|e−∆gn(x)|p dx

)1/p

≳ nD/p,

which will conclude the argument. To see this, one has by Hölder,



(ˆ
B(o,2(A+1)n)

|e−∆gn(x)|p dx

)1/p

≥ n
D( 1

p
−1)

(ˆ
B(o,2(A+1)n)

|e−∆gn(x)| dx

)
.

But

ˆ
B(o,2(A+1)n)

|e−∆gn(x)| dx = ||e−∆gn||1 −
ˆ
M\B(o,2(A+1)n)

|e−∆gn(x)| dx

≥ C ′nD − C

≳ nD,

if n is large enough, hence(ˆ
B(o,2(A+1)n)

|e−∆gn(x)|p dx

)1/p

≳ nD/p,

which was to be shown.
□
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arXiv:2207.02949, 2022. 7
[6] L. Chen, T. Coulhon, J. Feneuil, and E. Russ. Riesz transform for 1 ≤ p ≤ 2 without Gaussian heat

kernel bound. J. Geom. Anal., 27(2):1489–1514, 2017. 2, 4, 5, 8, 31
[7] Li Chen. Quasi Riesz transforms, Hardy spaces and generalized sub-Gaussian heat kernel estimates.
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[14] R. L. Schilling, R. Song, and Z. Vondraček. Bernstein functions. Theory and applications, volume 37.
Berlin: de Gruyter, 2012. 9

[15] E. M. Stein. Topics in harmonic analysis related to the Littlewood-Paley theory, volume 63. Princeton
University Press, Princeton, NJ, 1970. 29

Baptiste Devyver, Institut Fourier - Université de Grenoble Alpes, France
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