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Abstract. In this paper, we propose a method for estimating trends in extreme spatio-
temporal processes using both information from marginal distributions and dependence
structure. We combine two statistical approaches of extreme value theory allowing on
the one hand to handle temporal and spatial non-stationarities via a tail trend function
with a spatio-temporal structure in the marginal distributions and by modelling on the
other hand the dependence structure by a latent stationary process using generalized `-
Pareto processes. This methodology for trend analysis of extreme events is applied to
precipitation data from Burkina Faso. We show that a significant increasing trend for the
50 and 100 years return levels in some parts of the country.
Keywords: Non-stationary POT, Generalized `-Pareto process, Space-time Extremes,
Dependence Modelling, Trends detection, Climate Change.

Résumé. Dans cet article, nous proposons une méthode pour estimer les tendances
dans les extrêmes de processus spatio-temporels en utilisant à la fois des informations
provenant des distributions marginales et de la structure de dépendance. Nous combi-
nons deux approches statistiques de la théorie des valeurs extrêmes permettant d’une part
de prendre en compte les non-stationnarités temporelles et spatiales via une fonction de
tendance de queue à structure spatio-temporelle dans les distributions marginales et en
modélisant d’autre part la dépendance spatiale à l’aide d’un processus stationnaire latent
en utilisant les processus `-Pareto généralisés. Cette méthodologie d’analyse des ten-
dances des événements extrêmes est appliquée aux données de précipitations du Burkina
Faso. Nous montrons que les niveaux de retour à 50 et 100 ans montrent une croissance
significative dans certaines zones du pays.
Mots-clés: POT non stationnaire, processus `-Pareto généralisé, extrêmes spatio-temporels,
dépendance spatiale, détection de tendance, changement climatique.
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1 Introduction
Climate extremes occur in a non stationary framework due to the action of climate change.
To study extremes in this framework, the Extreme value Theory initially designed for
independent or stationary processes must be extended. Several works focus on that topic,
some of them present transform a non-stationary time series into a stationary series for
which classical EVT can be applied ([1],[7]). A frequently alternative for addressing non-
stationarity in EVT models is to include covariates, mostly space and time, to the model
the parameters ([2],[11]). These approaches work marginally and do not take spatial
dependence into account. Recently some forms of non-stationary dependence structures,
have been studied by [8],[10], in the framework of spatial max-stable processes. Although
attractive, these spatial models are very computationally expensive for large dimensions.
And alternative for max-stable modelling is the modelling of threshold exceedances. The
spatial Peak Overs Threshold (POT) approach introduced in a stationary framework by
[6], and generalized by [5],[4] that have defined the family of generalized `-Pareto process
are good candidates for modelling the spatial dependence structure of extremes of spatio-
temporal processes.

In this paper we propose a methodology coupling two statistical approaches of EVT,
non-stationarity is handled in the marginal distributions via a trend function with spatio-
temporal structure([7]) while the spatial dependence structure is modelled using a func-
tional POT model([3, 4]) to obtain a flexible spatio-temporal method of threshold ex-
ceedances to assess presence of trends in the extremes. We aim at evaluating trend in
extreme precipitation in sub-Saharan Africa by these means, and we illustrate theses
evolution by representing non stationary high return levels over the area.

2 Methodology

2.1 Space-time trends modelling

Let X = {Xt(s), s ∈ S, t ∈ T} be a continuous non-stationary space-time stochastic pro-
cess with sample paths in the family of continuous functions C(S × T ) equipped with
the uniform norm ‖ . ‖∞, where S × T ⊂ Rd × R+ and C+(S × T ) its restriction to non-
negative functions deprived of the null function. In practice X is observed at each stations
s1, · · · , sm and at dates t = 1, · · · , n. Let Ft,s be the continuous univariate marginal dis-
tribution with a common right endpoint xF and Z = {Z(s), s ∈ S} an unobserved latent
stationary stochastic process with sample paths in C(S × T ) satisfying the proportional
tail condition such that

lim
x→xF

P (Xt(s) > x)

P (Z(s) > x)
= cθ

(
t

n
, s

)
,with,

1

m

m∑
j=1

∫ 1

0

cθ (u, sj) du = 1, u ∈ [0, 1] , (1)

2



where cθ : [0, 1]×S −→ ]0,∞[ is assumed to be a continuous and positive function depend-
ing on a parameter vector θ ∈ Θ ⊂ R, called tail trend function or skedasis function ([6, 7]).
The skedasis function describes the evolution of extreme events jointly in space and time.
Moreover we assume that the continuous marginal distributions FZ of the latent process
has the same right endpoint xF . FZ is in the maximum domain of attraction condition
for some constant γ ∈ R and appropriate real normalization constants aZ > 0, uZ ∈ R.
Thanks to equation(1) and the convergence of {Z(s), s ∈ S} exceedances to a GPD distri-
bution we deduce a pseudo-sample of {Zt(s)} from observations of {Xt(s), s ∈ S, t ∈ T}
in the following manner ([7]):

Ẑt(sj) =

{
ĉθ

(
t

n
, sj

)}−γ̂ [
Xt (sj)−

{
ĉθ
(
t
n
, sj
)}γ̂ − 1

γ̂
(âZ − γ̂ûZ)

]
, (2)

j = 1, · · · ,m ; t = 1, · · · , n,

where γ̂, âZ , ûZ and ĉθ are respectively consistent estimators of γ, aZ , uZ and cθ which we
will discuss later in the section (2.2).

The modelling is then focused on the evaluation of the extreme spatial dependence
structure in Z using functional POT([5],[3, 4]). In the multivariate and spatial framework
a threshold exceedance for a random function Z = {Z(s), s ∈ S} is defined by [5] to be
an event of the form {`(Z) > u} for some u ≥ 0, where ` : C(S) −→ R+ is a continuous
and homogeneous non-negative risk function. The risk function ` can be for instance
the maximum, minimum, average or value at a specific point s0 ∈ S. As in ([6]), we
assume that the stationary process Z is a general functional regular variation process.
Under minimal assumptions on the risk function and for n large enough, the conditional
distribution of `-exceedance for some threshold u ≥ 0 of the normalized process can be
approximated by a generalized `-Pareto process, i.e for some an and bn functions ([4])

P

{⌊
Z − bn
` (an)

⌋
∈ A | `

(
Z − bn
` (an)

)
≥ u

}
−→ P {W` ∈ A} , n −→∞, (3)

where W` is a non-degenerate stochastic process over S and belongs to the family of
generalized `-Pareto processes with tail index γ.

2.2 Statistical inference

Marginal parameters of the process γ and an of the latent stationary process Z can be
estimated by maximizing the independence log-likelihood taking ûZ = `(bn) = q1−α{`(Z)}
a high quantile of `(Z). Assuming the dates of exceeding the marginal thresholds ûZ form
a Poisson process, its density is the trend function parameter cθ which is estimated using
maximum likelihood method, assuming a parametric log-linear model as in ([9]).

The inference on the spatial dependence structure of the latent stationary process, is
driven by modelling the angular component of `-Pareto process ([5], [3]) by a log-Gaussian
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process with stationary increments within the framework of a Brown-Resnick model. The
parameters of the isotropic semi-variogram are estimated using the gradient scoring rule
method ([3]).

The non-stationary m-period return levels of the process X at each location xm(s) are
evaluated inverting the equation(2) from return levels calculated from Z, zm(s).

xm(s) = zm(s)ĉθ(tm, s)
γ̂ +

ĉθ(tm, s)
γ̂ − 1

γ̂
(âZ − γ̂ûZ) , s ∈ S, (4)

tm = 1 +
nxm

n
with nx the number of days in the year and n the size of the sample

observed. zm(s) are calculated at each site by extrapolating the marginal parameters on
the whole area.

3 Main Results
This study uses time series of daily precipitation measurements from 1957 to 2016 pro-
vided by ten synoptic stations extracted from the Burkina Faso climatological database.
These stations have been selected to ensure good spatial uniformity and representative-
ness of different climatic regimes and data quality. In order to limit the problems related
to seasonal rainfall cycles, on each station we worked from the sub-series corresponding
to rainy days that is the period from May to October. Figure (1) shows the estimated
trend function cθ by a log-linear model for the ten stations. The frequencies of extreme
precipitation are increasing in areas such as Ouahigouya, Bogande, Boromo, Gaoua, and
Po. On the other hand, at the Ouagadougou and Fada stations, extreme rainfall frequen-
cies tend to decrease (θ < 0). Figure (2) shows the non-stationary return levels xm(s)
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Figure 1: Local adjustment of evolution of the frequencies of extreme precipitation by a
log-linear model trend cθ.
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Figure 2: Trends of stationary and non-stationary return levels at reference stations
calculated with a log-linear tail trend function.

together with the stationary return levels zm(s) for six reference stations.
The map of non-stationary return level for a return period m = 50 and 100 years are

displayed in Figures (3). The extreme precipitation are likely to be observed on average
at least once every 50 years (resp. 100 years), will be particularly intense in the Sudanian
and Sudano-Sahelian zone and less intense in the Sahelian zone, with a potentially quite
strong spatial dependence within a radius of 200 km. The southwest and eastern region
of the country will be most affected by extreme precipitation.
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Figure 3: Maps of the non-stationary 50-years return levels(left) and 100-years return level
(right) obtained by extrapolating the information from the log-linear tail trend function
and the dependence structure.

4 Conclusion
In this study we proposed a new flexible methodology for trend detection in the extremes
capable of capturing marginal non-stationarities and the dependence structure between
margins using generalized `-Pareto processes. We calculated the non-stationary return
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levels of precipitation in Burkina Faso and exhibit some regions in which there may be a
significant increasing or decreasing of extreme precipitation.
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