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Abstract—This work addresses the problem of latent space
quantization in neural audio coding. A covariance analysis of
latent space is performed on several pre-trained audio coding
models (Lyra V2, EnCodec, AudioDec). It is proposed to truncate
latent space dimension using a fixed linear transform. The
Karhunen-Loève transform (KLT) is applied on learned residual
vector quantization (RVQ) codebooks. The proposed method is
applied in a backward-compatible way to EnCodec, and we show
that quantization complexity and codebook storage are reduced
(by 43.4%), with no noticeable difference in subjective AB tests.

Index Terms—Neural audio coding, vector quantization, latent
space, Karhunen-Loève transform

I. INTRODUCTION

Over the past few years, a new generation of audio codecs
has emerged using neural networks. These methods target
various applications, such as voice/video calling [1], [2],
text-to-speech synthesis [3], or music generation from text
prompts [4], [5]. Neural audio coding has made significant
progress, in particular by leveraging development of generative
audio models [6]–[10], autoencoders with discretized latent
space [11], and advanced architectures based on generative
adversarial networks (GAN) [12], [13].

While some early codecs such as LPCNet [10] and Lyra
[1] demonstrated promising performance with real-time oper-
ation, we focus in this work on more recent codecs such as
SoundStream [14], Lyra V2 [2], EnCodec [15] and AudioDec
[16] which share similar principles with an autoencoder or
vocoder trained in a GAN framework. These codecs map the
input signal into latent space which is quantized by residual
vector quantization (RVQ). RVQ was introduced in [14] and
reused in [15], [16]. RVQ is a kind of multistage VQ [17]
with several stages of unstructured codebooks.

Computational complexity depends on codec operation
points, implementation platforms and optimizations, however
it was observed that recent neural audio codecs often require
more computation power than traditional codecs such as EVS
or Opus [14]. Regarding memory requirements, EVS uses
about 150 kWords of RAM, 150 kWords of (table) ROM, and
more than 100k program instructions [18]; in neural models
considered here, storage is significantly higher, with typically
from 10 to 50M model parameters with around 4M parameters
for RVQ codebooks. It is therefore of interest to consider

reducing complexity and memory requirements in neural audio
coding; one possible, hybrid, approach is to include classical
signal processing methods in neural models.

In this paper we investigate how to optimize RVQ for latent
space quantization; the proposed optimization is performed
in a post-training approach, i.e., based on learned codebooks
from pre-trained models. This approach avoids issues of
dataset dependence and allows optimizing existing models
in a way consistent with the underlying training, even with
no access to the actual training dataset. We observe that
there is a significant amount of correlation in latent space,
using available pre-trained codec implementations (Lyra V2,
EnCodec, AudioDec). To decorrelate latent vectors and reduce
the effective quantization dimension we use the Karhunen-
Loève transform (KLT) based on learned codebooks. KLT is
a well-known method used for decorrelation, the transform is
signal adaptive and typically based on a covariance analysis
[19].

Different studies have already considered the issue of latent
space dimensionality in neural audio models. There are lots
of techniques (e.g., PCA [20], t-SNE [21]) to visualize latent
space by dimensionality reduction into 2 or 3 dimensions;
however, this is usually meant for visualizing and interpreting
embeddings. The dimensionality of the latent bottleneck in
an autoencoder is a hyperparameter, which may be tuned
empirically by grid search [22]. A singular value decom-
position (SVD) on the latent space vectors of a variational
autoencoder (VAE) has been used in [23]. In the present work,
we also conduct a post-training analysis of the latent space,
however the purpose is not to control reconstruction fidelity vs.
compactness in music synthesis, but to reduce the complexity
and the storage of existing, pre-trained, neural audio codecs.
Alternatively, one may modify the neural model; for instance,
PCA autoencoder and information-ordered bottlenecks were
proposed in [24], [25] to organize latent space (in image
processing). An extra layer may be added to an autoencoder
[26], directly integrating the idea of reducing latent space
dimension by a ”projection” stage. However, such alternatives
go beyond the post-training optimization considered here.

The main contributions of this paper are listed below:
• We use learned RVQ codebooks to estimate the co-

variance matrix of the discretized latent representation



learned during training; we analyze the latent space
learned by the encoder and observe that there is a
significant amount of correlation;

• We propose a method to optimize RVQ by truncating
quantization dimension, and we evaluate in details the
proposed method for EnCodec.

This article is organized as follows. Section II reviews
the basic architecture of a neural audio codec. Section III
considers the analysis of the latent space. Section IV presents
a method to optimize RVQ. Finally, Section V evaluates the
proposed method before concluding in Section VI.

II. REVIEW OF NEURAL AUDIO CODING AND LATENT
SPACE QUANTIZATION

Fig. 1. Neural audio codec with RVQ (inference only).

In this work we focus on codecs using an autoencoder
architecture with GAN-based training. The training phase is
not covered here, more details can be found in [14]–[16].

In the inference phase, the codec comprises an encoder E
and a decoder D which are typically symmetrical, and mainly
composed of 1D causal convolution layers with residual blocks
to help the gradient flow through the network. Each audio
frame of L samples is fed to the encoder which produces a
d-dimensional latent vector z using strided convolutions and a
last convolution layer with d output channels. After quantiza-
tion, the decoder reconstructs a waveform from the quantized
version of the latent vector ẑ. Note that, in EnCodec, recursive
layers are also included to handle long-term dependencies.
As an example, EnCodec operates on mono audio sampled
at fs = 24 kHz with a frame length of L = 320 samples and
a latent space of dimension d = 128.

Neural audio codecs studied in this work are all based on the
same quantization method called Residual Vector Quantization
(RVQ) in [14], which can be seen as a form of multistage (or
cascaded) VQ [17]. As shown in Fig. 2, Q1 quantizes the input
latent vector e0 = z into q1 using codebook C1; the following
stages (Q2 to QN ) quantize the residual ei = ei−1−qi using
codebooks Ci. RVQ codebooks Ci are learned during training
following the procedure of [14]. This quantization method
allows for a variable bitrate by adapting the number N of
stages. For instance, in EnCodec, each VQ has a codebook
of 1024 codewords represented with B = 10 bits, and the
maximum number of stages is Nmax = 32, corresponding to
bitrates up to 24 kbps with 0.75 kbps steps.

Table I summarizes parameters for codecs considered in this
work. There is no available implementation for SoundStream
[14], this codec is listed for information, given that Lyra V2
is an optimized version of SoundStream.

TABLE I
PARAMETERS OF SEVERAL NEURAL AUDIO CODECS.

Codec fs (kHz) L d B bitrate (kbps) Nmax

SoundStream 24 320 256 10 3 – 18 24

Lyra V2 16 320 64 4 3.2, 6, 9.2 46
EnCodec 24 320 128 10 1.5, 3, 6, 12, 24 32
AudioDec 24 / 48 300∗ 64 10 6.4 / 12.8 8

∗ A frame length L of 320 is also available (not considered here).

III. LATENT SPACE ANALYSIS

A preliminary step in this work is to analyze the latent space
learned by the encoder and quantizer. The typical approach
to analyze the distribution of latent vectors generated by the
encoder would be to define an audio dataset (speech, music
or a mix of different audio contents) and collect vectors after
encoding. This implies that results could be dataset dependent,
with a potential mismatch compared to the training dataset
used for the pretrained model we want to optimize. We propose
in this work to use the learned codebooks which represent
the latent space distribution learned during the end-to-end
training. The benefit of this approach is that the analysis can be
applied in a post-training phase by relying only on pre-trained
codebooks.

To estimate the covariance matrix R ∈ Rd×d of the
discretized latent space, we form all combinations c

(i1)
1 +

c
(i2)
2 + · · · + c

(iNcov )
Ncov

where c
(ik)
k is the ik-th codeword of

codebook Ck and concatenate these vectors into a matrix used
to compute R, Ncov being the chosen number of codebooks
used for the estimation. The direct approach would be to
have Ncov = Nmax, however the number of combinations to
form is 1024Ncov for EnCodec and AudioDec and 16Ncov for
Lyra V2: it would be intractable is this case. The proposed
approach to estimate R is to use the first Ncov codebooks
that capture most of the information on the latent distribution;
for instance, one may set Ncov = 2 when B = 10 bits
(EnCodec, AudioDec), and Ncov = 5 when B = 4 bits (Lyra
V2). This information ”ordering”, i.e, the fact that the first
codebooks contain most of the information, can be justified by
the way RVQ is structured and trained. RVQ has a hierarchical
structure, being a cascade of VQ stages. As described in
[14], RVQ is learned using ”quantizer dropout”: for each
batch of training data, the number of stages effectively used
to quantize the batch of latent vectors is randomly drawn
between 1 and Nmax. Note that the covariance matrix R can
be approximately estimated with Ncov up to Nmax, assuming

Fig. 2. RVQ: Cascade of N Vector Quantizers Qi, each representing the
residual error of the preceding stage. The reconstructed vector is the sum of
decoded codewords.
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Fig. 3. Covariance matrix before and after KLT transformation.
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Fig. 4. Eigenvalues λi for EnCodec. In red: λi in dB. In blue: cumulative
sum of λi, in percentage of total sum.

uncorrelated codebook stages; we verified empirically that
results are not significantly affected using higher values of
Ncov , results in Section V show that limiting Ncov to a value
corresponding to a lower bitrate still gives satisfying results
even at higher bit rates.

The matrix R typically shows a large amount of correlation
between latent space vectors. Hence, we perform a Karhunen-
Loève transform (KLT), by diagonalizing R as R = UΛUT

where U is the eigenvector matrix and Λ = diag(λi) is the
diagonal matrix of eigenvalues. Decorrelated latent vectors are
then obtained using the eigenvector matrix: y = UTz′, where
z′ is the centered latent vector.

For EnCodec, the RVQ codebooks are retrieved from their
publicly available pre-trained model. Fig. 3 shows the co-
variance matrix before and after decorrelation using the KLT
(where Ncov = 2), and Fig. 4 shows eigenvalues in dB (sorted
in descending order). The cumulative sum of the eigenvalues
is also plotted to highlight their relative contribution. There
is a substantial drop of about 20 dB between 64 and 80
dimensions. This seems to indicate that, after decorrelation,
most of audio information seems to be essentially conveyed
within a subspace having a dimension between 64 and 80.
Results for Lyra V2 and AudioDec are presented in Section
V-A.

IV. OPTIMIZATION OF RVQ

We describe a method designed to reduce codebook storage
and computational complexity for RVQ. It leverages on the
concentration of useful information on a subset of the (trans-
formed) latent space components. Fig. 5 shows the principle
of the modified RVQ. For an audio signal frame x of length L,
the encoder E generates a latent vector z = E(x) ∈ Rd. The

Fig. 5. Proposed method to optimize RVQ.

KLT is applied on the centered vector z′ = z−µ to obtain the
vector y = UTz′ with decorrelated components. This vector is
then truncated to its first d̃ components, assuming eigenvalues
are sorted in descending order (as in Fig. 4). Eq. 1 summarizes
the processing, where [ · ]1:d̃ is the operator truncating to the
first d̃ components:

yd̃ =
[
UT(z− µ)

]
1:d̃

. (1)

This truncated vector is then quantized by RVQ with trans-
formed codebooks: ŷd̃ = RVQ(yd̃). The inverse process is
then applied, that is, padding with d− d̃ zeros, inverse rotation
ẑ′ = Uŷ and addition of the mean µ. This is summed up
by Eq. 2, where [ · |0d−d̃] is the operator padding d − d̃ null
components at the end of the vector:

ẑ = U
[
ŷd̃|0d−d̃

]
+ µ . (2)

Finally, the decoder D generates the reconstructed audio
x̂ = D(ẑ).

RVQ encoding and decoding needs to be adapted for d̃-
dimensional vectors having undergone the transformation of
Eq. 1. Thus, the original codebooks Ck go through the same
processing: KLT is applied and the codewords are truncated
to d̃ dimensions. Since the mean µ is subtracted to the latent
vector z, µ has also to be is subtracted to the first codebook C1.
The transformation to obtain new codebooks C̃k is summarized
in Eq. 3. {

C̃1 =
[
UT(C1 − µ)

]
1:d̃

C̃k =
[
UTCk

]
1:d̃

k = 2, . . . , Nmax

(3)

The proposed method does not require any extra bitrate as
the parameters µ and U are estimated offline and do not
change over time. The eigenvector matrix U and the mean
vector µ are pre-computed and stored, so that no additional
information needs to be sent to the decoder. In practice, µ is
the mean of codebook C1 (to be consistent with the definition
of C̃1 in Eq. 3) and U is computed using the first Ncov

codebooks C1 to CNcov .

V. EVALUATION AND RESULTS

A. Latent space analysis (Lyra V2, AudioDec)
We report additional results for the analysis described in

Section III for Lyra V2 [2], and AudioDec [16] in Fig. 6.
Results for EnCodec can be found in Section III.



For AudioDec, we used the pre-trained model
libritts_sym (24 kHz) [27] ; the number of codebooks
for covariance estimation is Ncov = 2, as for EnCodec.
The distribution of (sorted) eigenvalues indicates that the
transformed latent space for AudioDec could be truncated to
the essential dimension d̃ = 32.

We used the available C++ implementation of Lyra V2 [2]
to extract RVQ codebooks, with Ncov = 5. As shown in Fig. 6,
there is no clear drop in eigenvalues, contrary to EnCodec and
AudioDec. Truncation does not seem to be possible for Lyra
V2 and the essential dimension has to be kept to d̃ = d = 64.
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Fig. 6. Eigenvalues for Lyra V2 and AudioDec.

B. Choice of truncation (EnCodec)

To determine the truncation which leads to no audio degra-
dation, we used the ViSQOL metric [28] in audio mode on
a subset (around 25 mn) of VCTK [29] downsampled to 24
kHz. Objective tests were conducted at all EnCodec bitrates:
1.5, 3, 6, 12, and 24 kbps. The VCTK subset was created by
randomly selecting 4 audio files for each of the 106 talkers in
VCTK. We verified that the distribution of audio levels in this
subset followed the distribution of the entire VCTK dataset.

Fig. 7 shows the average ViSQOL score with truncations
from d̃ = 40 to 80 (with a step of 8); the original EnCodec (no
truncation) corresponds to d̃ = d = 128. The 95% confidence
interval was computed to check for any statistically significant
difference. For a truncation to d̃ = 80 or 72, objective audio
quality is the same as original EnCodec, whereas there is a
clear degradation of the ViSQOL score when d̃ ≤ 64. Based
on this preliminary analysis, we decided to conduct subjective
tests to verify whether there is any effective audio degradation
when truncating latent space to d̃ = 64 or 72 dimensions.
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Fig. 7. ViSQOL score (audio mode) for several truncations and bitrates with
EnCodec.

C. Audio quality validation for optimized RVQ (EnCodec)

We verify that the proposed RVQ optimization method
described in Section IV does not degrade quality after trunca-
tion of the transformed latent space. For this part EnCodec
was used with respectively d̃ = 64 or 72 (modified) and
d̃ = d = 128 (original). In other words, we compared decoded
signals when RVQ is kept unchanged or modified according
to Fig. 5.

AB tests (with reference) were conducted at all EnCodec
bitrates: 1.5, 3, 6, 12, and 24 kbps. In each test, 10 ”critical”
items (5 speech items + 5 music and mixed content items)
were preselected by searching worst-case items identified
by objective tests in two separate sets: VCTK subset de-
scribed in Section V-B and an internal music and mixed
content database obtained by normalizing 30 audio files at
three audio levels: -36, -26 and -16 dB LKFS [30]. The
worst-case items were identified using ViSQOL in audio
mode. The difference score was computed for each item as
∆S = [S(x, x̂mod)− S(x, x̂ori)] where S(·, ·) is the score
associated to the metric (ViSQOL), x is the uncoded audio,
x̂ori and x̂mod is the audio reconstructed by the original and
modified EnCodec, respectively.
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Fig. 8. AB test results: A = original EnCodec, B=modified EnCodec (d̃ = 64
or 72). Average score (over 10 items) is shown (with 95% confidence interval).

In total, 7 expert listeners conducted two sets of 5 subjective
AB tests – one set per truncation (d̃ = 64 and 72), one test
(comprising 10 critical items) per EnCodec bitrate. A 5-point
scale (from +2 to −2) was used for grading: 0 → A and
B are the same, ±1 → A (resp. B) is better than B (resp.
A), ±2 → A (resp. B) is much better than B (resp. A).
Test results are presented in Fig. 8; when the overall score
is above 0, A (original EnCodec) is better, and when it is
negative, B (modified EnCodec) is better. Overall there were
no noticeable differences or artifacts for modified EnCodec
with d̃ = 72; the same observation applies to average scores
over individual critical items (not shown in Fig. 8) for d̃ = 72,
scores were sometimes in favor of A and sometimes in favor
of B, therefore testers could not differentiate between the two
versions of EnCodec. However, for d̃ = 64, we can observe
that original EnCodec is significantly better at higher bitrates
(12 and 24 kbit/s); truncating at d̃ = 64 brings some audio
degradation that is noticeable, which is not the case when
truncating at d̃ = 72. This strengthen the observation made
with Fig. 7 to choose the dimension for truncation. Results
also indicate that estimating the covariance R using only the
first RVQ codebooks may be suboptimal for high bit rates;



still, when d̃ is sufficiently high, this shortcoming in covariance
estimation has no penalty.

D. Complexity and storage gain for optimized RVQ (EnCodec)
The RVQ optimization method described in Section IV can

reduce VQ (nearest neighbor search) complexity and codebook
storage.

For EnCodec, Nmax = 32 codebooks Ck are represented
with 32× 128× 1024 floats. The truncation to d̃ = 72 dimen-
sions instead of d = 128 reduces this number to 32×72×1024.
Note that the mean µ and the eigenvectors matrix U require
storing 128 + 128 × 128 additional floats. Overall, the gain
in storage for EnCodec is 43.4% when truncating to d̃ = 72.
When considering the entire neural codec, the encoder and
decoder consist of about 14.85M parameters (according to the
torchinfo library) while quantization codebooks are composed
of about 4.2M parameters. Thus, this approach reduces the
total model storage by 10%.

For computational complexity, two additions (+µ and −µ)
and two matrix multiplication (U and UT) are required,
together with truncation and padding operations. On the other
hand, nearest neighbor search in VQ encoding step is per-
formed on vectors of dimension d̃ = 72 instead of d = 128,
resulting in a gain in computational complexity for the quanti-
zation part. To be more accurate, we estimated the number of
floating-point operations needed in both cases (original and
modified EnCodec) considering comparisons, additions and
MAC (multiply-accumulate) operations. For a codebook with
n codewords of dimension δ, the nearest neighbor search for
one codebook is estimated by 2 × δ × n + (n − 1) and the
overhead added for the addition of means and the matrix
multiplications corresponds to 2 × (δ + δ × δ) operations.
By replacing δ with d and d̃ for the original and modified
EnCodec, respectively, the gain in complexity reaches 43.2%
when using all the codebooks (bitrate of 24 kbps), with a drop
to 37.3% when using two codebooks (bitrate of 1.5 kbps).

E. Verification of backward compatibility (EnCodec)
Objective and subjective test results reported in Sections

V-B and V-C evaluate symmetric cases: original encoder–
original decoder vs. modified encoder–modified decoder. One
key feature of the proposed method is to guarantee backward
compatibility, that is, the modified encoder and decoder are
compatible with their original counterparts. To verify this, we
conducted extra objective tests to evaluate cross-cases, where
the test dataset and metric are the same as in Section V-B and
truncation is d̃ = 72.

The results showed differences between the original En-
Codec and the cross-cases to be zero up to the third decimal,
with a maximum difference of 8.10−2 MOS-LQO among
all the tested items and at all bitrates. This validates that
modifications according to the proposed method are backward
compatible.

VI. CONCLUSION

In this work we used the KLT on learned codebooks to
decorrelate and reduce the dimension of latent vectors in

a post-training phase. This method can bring a significant
reduction in quantization complexity and codebook storage,
depending on the codec. Experimental results show that a
gain of about 43.4% can be obtained for EnCodec, with no
significant quality degradation. In future work we plan to
compare RVQ with alternative methods, including KLT-based
quantization derived from the proposed latent space analysis.
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