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ABSTRACT

The development of numerical solvers able to simulate compressible two-phase flows
is still a great challenge in computational fluid dynamics. The interaction between
acoustic waves and interfaces is of major concern for several engineering and biomedical
applications, among which atomization in combustion chambers, cavitation problems,
underwater explosions and bubble shock interactions. For instance, there are experimental
evidences that acoustic waves can have an important effect on the atomization process,
and this could have a great impact on combustion. However, usual approaches for DNS
of primary atomization are based on incompressible solvers and therefore are not able to
capture the propagation of acoustic waves and therefore cannot be used to simulate such
phenomena. The numerical problem associated with the simulation of compressible two-
phase flows is challenging, mostly because of the huge spatial variations of the speed of
sound and the corresponding low Mach number in the liquid phase. In the present work,
a numerical solver able to study subsonic compressible two-phase flows is presented. The
solver is based on a complete formulation of the Navier-Stokes equations with real fluid
equations of state, which are solved with a semi-implicit projection method. It is shown
that the solver can handle a large range of compressible subsonic flows, both for a single
phase or for two phases, as the flow induced by free convection, a bubble expansion in
isothermal or isentropic conditions, and interaction between acoustic waves and liquid-gas
interfaces. Eventually, attention will be given to the simulation of a water droplet in air,
under the excitation of a stationary acoustic wave. It is also shown that the solver exhibits
equivalent performances as an incompressible solver in configurations where compressible
effects have no effects.

1. Introduction

Numerical solvers for compressible flows, with an interface capturing or interface tracking approach, are mainly based on
fully explicit shock-capturing methods, and have been developed in the framework of high Mach number flows, in particular
for the study of the interaction between drops or bubbles and shock waves [17,53,9,19], or atomization with ultrasonics [44].
The major drawbacks of these explicit approaches are the stability condition associated with the acoustic propagation and
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the loss of accuracy in the low Mach number regime which can be particularly stringent in the liquid phase (due to the
high speed of sound). That makes these methodologies inefficient at low Mach numbers. To avoid the low Mach number
constraint associated with the liquid phase, mixed approaches, considering a compressible gas and incompressible liquid,
have been proposed (see for instance [7,8,1,26]). However, such approaches are limited to describe the interaction of a liquid
with acoustic waves since they do not allow the acoustic waves propagation in the liquid phase.

In recent years another class of methods, based on a semi-implicit compressible projection approach, have been devel-
oped for two-phase flows [24,20,42,18], which are derived from the single-phase formulations proposed by [57] and by [27].
The main idea is to split the equations in an advection and an acoustic part. The advection part is solved with an explicit
scheme while the acoustic part is solved with an implicit scheme with a projection method, thus removing the stringent
time step constraint associated with the propagation of acoustic waves. The methodology is also suitable to treat low Mach
number compressible flows since it is asymptotically preserving [24], that is the incompressible formulation is retrieved
when the Mach number goes to zero. This class of algorithms differs from another class of pressure-based solvers, SIMPLE
[39] and its variants (SIMPLEC, SIMPLER,...) [16,38], which require solving a nonlinear iterative system. Such algorithms are
beneficial for the computation of steady-state flows, but their use may not be the most efficient numerical strategy for
performing Direct Numerical Simulation of unsteady flows that require accurate time-scale solving.

The compressible projection method has attractive numerical properties for the simulation of two-phase flows at low
Mach number. However, formulations of this algorithm are usually isentropic, and no viscous and heat conduction effects
are taken into consideration, even though they are of great importance in most applications. Only a few number of works
present a formulation for two-phase compressible flows including non-isentropic effects [24,30,10]. In particular Jemison et
al. [24] presented an approach to include non-viscous terms, and later extended it to include heat conduction in [2]. Their
solver is based on a conservative variables formulation, and viscous effects are considered in the total energy equation.
However, while conserving the total energy, this approach fails in retrieving a pressure consistent with the equation of
state at each iteration, as yet demonstrated by [27]. A proper formulation of a compressible projection algorithm, using a
primitive variables formulation, considering non-isentropic effects in the conservation energy equation based on the pressure
variable, has never been proposed, and would be a significant step forward for this class of solvers in particular for the
study of heat transfer problems. Indeed, there are two major advantages to using a projection method based on a primitive
variables formulation, as presented in this work, rather than solvers based on a conservative variables formulation. Firstly,
the present primitive formulation guarantees that the pressure derived from the equation of state matches the pressure
computed by the semi-implicit pressure correction algorithm at each time step. Secondly, the formulation of the energy
equation as a pressure equation allows the heat conduction term to be treated with an implicit temporal scheme. On the
other hand, the disadvantage of a primitive variables formulation is the poor conservation of total energy, which can be
a problem when trying to describe supersonic flows. However, the focus of the present solver is restricted to subsonic
flows and future developments will allow the treatment of phase changes induced by pressure or temperature variations in
compressible flows at low Mach numbers. Note that the present algorithm is not positive preserving for the pressure, as the
one proposed in [40], and it does not prevent for negative pressure values. However, metastable thermodynamical states
involving negative pressure values can be observed in liquids, as in some cavitating flows. Such states can be modeled with
suitable equations of state (EoS) for which positive temperatures are associated to negative pressures, as for instance the
van der Waals EoS [21,13].

Another important point addressed in this paper concerns the equations of state (EoS). Previous studies were essentially
based on ideal fluid EoS, such as Tait EoS for the liquid phase and perfect gas EoS for the gaseous phase. In the present
work a cubic EoS will be considered. The solver benefits from such a generic EoS which allows the description of both gas
and liquid phases.

The present work describes the development of a fully compressible numerical solver for two-phase flows based on a
complete entropic (i.e. non-isentropic) formulation of the Navier-Stokes and energy conservation equations, accounting for
capillary effects and making use of a generic equation of state for both phases. The numerical tests proposed in this paper
will focus essentially on the van der Waals equation which is the simplest cubic EoS. However, the numerical framework
proposed is general enough to handle any EoS, provided the sound speed can be computed in both phases. As a sharp
representation of the interface and related jump conditions is performed, the definition of the density is still thermodynam-
ically consistent with the EoS on each side of the interface. Consequently, the overall solver is free of nonphysical sound
speed, that on another side can occur for solvers based on a diffuse interface representation, due to the spurious density
smoothing, as remarked in [35].

The solver is derived from the one developed for Euler equations by [20] and integrated in the home made code, DZVA.
The innovative splitting of the equations proposed in [20], to correctly handle capillary effects, is edited and extended to
the more complete system of equations which is considered here. As the proposed numerical solver is based on a primitive
formulation of the conservation equations, its applicability field is restricted to subsonic two-phase flows, without any other
assumptions on the Mach number while Ma < 1.

In the following, the mathematical formalism and the numerical algorithms are described. Then different validation test
cases are described and analyzed in order to verify several important characteristics of the solver: acoustic waves propaga-
tion, thermal and density field interaction, heat conduction in single and two-phase flows, interface acoustic interaction and
thermodynamic features.
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2. Mathematical formalism
2.1. Primitive conservation laws
A two-phase compressible flow can be described with the following form of the conservation equations written in

terms of the primitive variables, i.e. the density p and the velocity vector i, for the mass and momentum conservation,
respectively,

Dp -

—— +pV-u=0, 1
Dt+p (M)
Du V 1 oknd -

S ALY S "tz )
bt p p Y

where p is the pressure field, g is the gravity acceleration, and 7 the tensor of viscous constraints defined as,
S ~T 2 S
T=u(Vu+Vu )—g,uV-ul, 3)

which is valid for a compressible Newtonian fluid, with p the dynamic viscosity and I the identity matrix. The variables
o, k and 7 are related to interface properties and are named respectively the surface tension, the interface curvature
and the normal vector pointing towards the liquid phase and dr is a §-Dirac localized at the interface I'. An additional
equation will be added in the following to compute these variables. Moreover, unlike incompressible flows, such a system
of equations is not complete if compressible flows are considered (since p is no longer a constant but a variable) and
additional equations are required to close the system. In particular, as compressible flows involve a strong coupling between
thermal and dynamical effects, the conservation energy equation has to be added to the overall system. It is usual to express
this conservation law as an evolution equation for the internal energy e, such as,

De

pE:—pV«ﬁ—VfH—r@Vﬁ, (4)
or an equation evolution for the enthalpy, h=e + p/p,
Dh Dp - -
—=—-V. T Q Vu, 5
Por=Dpr VITTe® (5)

where q is the local heat flux defined, following the Fourier’s law, as
g=—kVT, (6)

with k the thermal conductivity and T the temperature. The last term of the conservation energy law is the thermal release
due to the viscous friction in the fluid domain. Finally, as the pairs of unknown variables (e, T) or (h, T) emerge from
the latter equations, two equations of state must be specified, respectively, for the internal energy or enthalpy, and for the
temperature. For example, if one considers a thermally perfect gas, the following relations hold to define the internal energy
or the enthalpy,

e(T) —eg=cy(T —To),  h(T) —ho=cp(T — Tp), (7

and a further equation of state from which the pressure field can be deduced,

p=pRT, (8)

where R is the gas constant (R ="R/W with R =8, 314 J/mol/K and W molecular weight of the species). This results in a
complete framework for the description of gas dynamics. Such solvers based on the above equations have enabled important
advances in the field of gas dynamics simulations to calculate both subsonic flows at intermediate Mach number (0.1 <
Ma < 1) and supersonic flows at high Mach number (Ma > 1). One should specify here, that a conservative formulation
of conservation laws have to be solved in the latter case to compute a correct shock wave speed. However, one of the
drawbacks of these solvers is to perform poorly at low Mach number, in regards to both stability and accuracy. Indeed, the
time step is limited by the acoustic wave propagation speed, if an explicit temporal integration has been chosen. This results
in a large difference between the stability time step constraint and the physical characteristic time of the flow at low Mach
number, and thus in an oversized number of temporal iterations. Moreover, accuracy issues have also been reported for that
kind of solver for which it can be demonstrated that the error depends on O (ﬁ) as detailed in [14], and thus increases
if the Mach number decreases. Some preconditioning techniques, as the one proposed in [54] may be used to alleviate this,
by introducing a modified artificial sound speed. However these issues become critical in the framework of compressible
two-phase flows for which a very low Mach number is generally observed in the liquid phase due to its high sound speed.
To prevent these issues, another type of compressible solvers, based on a pressure formulation of the energy conservation
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equation, have been developed for two-phase flows in the last decade [20,24,18]. As shown in [24], such solvers have the
nice property of preserving asymptotically the incompressible limit, since the pressure equation tends to the well-known
pressure Poisson equation of the incompressible projection method, in the limit of an infinite sound speed. However, these
solvers have never been rigorously generalized to flows for which entropic effects, such as heat conduction and viscous
friction, have to be considered. We propose hereafter a compressible two-phase flows solver with a energy conservation
equation based on an entropy/pressure formulation that will enable to account for these entropic effects.

To develop this formulation, we will adopt thermodynamic relations in order to express the above system in terms of p,
i and p as primitive variables. The pressure being expressed with the density and entropy p(p,s), its differential will be
developed as,

a
do=cdp+(7) as (©)
as 0
which allows to introduce explicitly the sound speed c defined from the following relation:

a_(9p
‘ _(ap)s. (10)

The Maxwell relation can be used in order to express the pressure derivative with respect to entropy,

ap as ap\ ip\ 2
(g)p (%)p (%)s__]’ - (E)p__(ﬁ) : (]1)
p
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From the first principle of thermodynamic (dh = Tds +dp/p) the thermodynamic derivatives of the enthalpy h with respect
to s and p are:

@), (@)
o/, o), p

Moreover the following equality holds,

oh oh oT oh Cp
AN (Y (AT (2 & (13)
ap p aoT p ap p ap p po
with « isobaric expansion coefficient (see Eq. (37)) and ¢, the specific heat at constant pressure. Combining Eqs. (12) and
(13) we obtain,

as as oh as c
i/, oh ), \ap/, /), Tp«x
Eventually, combining Eqs. (14), (11) and Eq. (9) we can express the total derivative of the pressure with the following

equation,

D D 2Ta D
bp _ 2Dp  pciTa Ds
Dt Dt cp Dt

(15)

It is noteworthy that this equation is an expression of the conservation energy principle, based on the pressure/entropy
variable, since the first law of thermodynamics has been used in Eq. (12) to derive this expression. Pointing out that the
entropy material derivative can be expressed as,

Ds —-V-G+tQ®Vi
Poe~ T
and the material derivative of p in Eq. (15) being expressed thanks to Eq. (1), we finally obtain the following form of the
conservation energy equation, expressed in terms of pressure,

: (16)

D . c*a - -

—p—i—pczv-u:—(t@Vu—V-q), (17)
Dt Cp

which in conjunction with Eq. (1) and (2) gives the following system of equations which is used as a basis in the present
work,
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In [52], the following equivalent expression of a pressure based energy conservation equation, has been proposed,

a—p-l—ﬁ-Vp+p62V-ﬁ:
at pevp

i —1(d
with g = 7 (3P)T'
However in the latter study, a fully explicit solver was used, which does not enable to alleviate the acoustical time step
constraint.

(T®Vi-V-q), (21)

2.2. Jump conditions across the interface

We now present the jump conditions that must be taken into account to maintain mass conservation, momentum con-
servation and energy conservation across the interface if two-phase flows are considered.

Capillary effects depend on o, the surface tension and «, the local interface curvature. They can be taken into account
with the surface tension force term in the right hand side of the momentum equation Eq. (19) or as a jump condition
when solving a Poisson or a Helmholtz equation for the pressure in the framework of incompressible solvers [25,29] or
compressible solvers [20,24], respectively.

The system of equations (18)-(20) describes the flow in each phase and at the interface the following set of jump
conditions must be verified,

[i]=0, (22)
[P]FZUK-FZ[M%} —%[MVﬁ]p, (23)

r
[—kVT -ii] . =0. (24)

In the above formalism, no mass transfer is considered between the phases: this means that no phase change is possible,
nor diffusion between the phases. Furthermore, thermodynamic equilibrium and zero entropy production at the interface
are assumed, which implies that the temperature is continuous across the interface ([T]r = 0) [22].

2.3. Equation of state for the gas and liquid phases

An important feature of compressible flows is the coupling between mechanical effects and thermal effects that can
be described through the resolution of Navier-Stokes equations with mass and energy conservation equations. However,
an equation of state (EoS) is required in order to close the system. In particular, one can remark that the local heat flux
computation requires the temperature field evaluation, which can be expressed as a function of the density and pressure
T(p, p) in Eq. (20), since both variables can be obtained by solving their corresponding evolution equations. Other relations
are mandatory in order to compute the sound speed c (defined by Eq. (10)), the isobaric coefficient o and the specific heat
at constant pressure cp. These relations must be deduced from an EoS which should be able to describe both the gas and
liquid states. The well-known perfect gas EoS, p = pRT, is appropriate to describe gaseous states at high temperature and
low pressure in a wide range, but does not hold for liquid states. On the other hand, liquid states can be described using
for instance the Tate EoS, that however is not valid for a gas. Among all existing EoS, a cubic EoS has the interest of being
able to describe both a gas state and a liquid state with a generic expression. In this type of equations, the density obeys a
cubic polynomial equation,

p®+ai1p* +azp +as =0, (25)

where ai, a; and as are parameters depending on the pressure, the temperature, species characteristics and the specific
cubic EoS. Among the well known cubic EoS are van der Waals, Peng-Robinson and Redlich-Soave-Kwong equations. In the
present work, the van der Waals EoS has been used and therefore in the following specific expressions obtained with the
van der Waals EoS will be given. However, the implementation presented in this paper is valid for any cubic EoS and can
be easily extended to be used with Peng-Robinson or Redlich-Soave-Kwong equations that should enable a more accurate
description of the liquid and gas states than the van der Waals equation, as pointed out in [41].
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Eq. (25) can be rewritten in the following form, where the relation between p, p and T appears explicitly,
_ PRT p2A

" 1—pB 14 pUB+ p2VB2

where U and V are integer constant values that depend on the selected EoS. It can be demonstrated that the parameters

A and B are functions of the critical temperature T. and critical pressure p. and that they are selected in order to verify
proper thermodynamic conditions. The values of the coefficients for the van der Waals EoS are,

p (26)

A 2TRTE 5 RTc

U=VvV=0 = , = . (27)
64 pc 8pc
The corresponding a; coefficients of Eq. (25) are,
1 (PB +RT) p
a=—-—, a=—-", a3 =——-:. 28
1 B 2 T 3 A5 (28)

Combining Eq. (27) and Eq. (26), the explicit expression of p as a function of p and T given by the van der Waals EoS is
obtained,
PRT 2
= — pTA. 29
P=1",8"" (29)
Similarly, the expression of T as a function of p and p is,

_(p+p*A)(1—pB)

= R .
In order to evaluate the density p for a given p and T the roots of the third order polynomial Eq. (25) have to be computed.
Moreover, if saturation conditions are reached, further thermodynamic equilibrium conditions have to be applied in order to
compute the vapor-liquid coexistence curve [31]. However, the present work only deals with phases of two distinct species,
diffusion at the interface is neglected and the operative conditions are in the limit of zero Jacob numbers (Ja— 0), that is
without phase change. For every test case that will be presented in this paper the thermodynamic conditions are chosen in
order to have a liquid phase and a vapor phase far from the two phase region coexistence conditions. With these hypothesis,
in each phase the density can be computed by solving Eq. (25) using for instance the Cardan method as demonstrated in
Appendix A. The sound speed, which is mandatory to compute several terms in Eq. (20), can be computed remarking that,

3 9 T [ap\?
=(50) =(30), * e (), 2
00 /s ap /) p<Cy \oT 0

Other expressions can be found to compute the sound speed but the previous one is well suited for the van der Waals EoS.
Indeed, from Eq. (29), the following thermodynamic derivatives can be easily computed,

T (30)

d RT B
ry 1+ —F ) ~2pa, (32)
op/r 1—pB 1—-pB
ad R
( p ) __PR_ (33)
aT 0 1—pB
Combining Eqgs. (32) and (31) the following complete expression of the sound speed from the van der Wall EoS is obtained,
RT R 1/2
c=—=\(1+—)—2pA . 34
<(1—pB)2< Cv) g ) By

The specific heat at constant volume c, is related to the c3 at low density, which only depends on the temperature, by
the relation:

T [(3%p
0_
CV—CV_/F <W)pd,o, (35)
0

which, for a cubic EoS, gives ¢, = 69. Constant values for 03 are considered in this work. To complete the thermodynamical
system defined in Eq. (20), the Mayer relation can be used to compute the specific heat at constant pressure ¢,

To2

CPZCV+W, (36)
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where o and 8 are the isobaric and isothermal expansion coefficients,

1 /0p 1 /0p
=——|—=) , =—|—) . 37
=), o=, &

As the van der Waals EoS does not allow to define a simple expression p(T, p), the following expressions are proposed
to determine more easily the coefficients o and 8,

),
),

3. Numerical solver

Most two-phase flows imply low-Mach number conditions, especially in the liquid phase. There is therefore significant
interest in developing a solver for compressible two-phase flows for which the terms responsible for acoustic wave prop-
agation are discretized with an implicit time scheme. An interesting property of the entropy-pressure based formulation,
previously presented, is the possibility to handle separately the acoustics terms and the convection terms. This approach dif-
fers from more classical formulations of the conservation energy equation, based on internal energy or enthalpy, for which
the eigenvalues of the Jacobian matrix must be computed to determine the characteristics variables of the hyperbolic sys-
tem. As a result, an implicit temporal discretization of the acoustical waves will be simplified with the proposed approach
since it will only result in a linear system to solve the pressure equation, whereas more classical approaches would require
to solve a non-linear system coupling all the equations.

3.1. Single phase semi-implicit compressible solver

In this subsection an algorithm that can be used to describe any single-phase subsonic flow, is presented. The algorithm
is suitable either for flows for which compressible effects or density variations can be significant or not, while maintaining
an unconditionally stable temporal discretization related to acoustical waves propagation. The following elementary first
order temporal discretization can be proposed for the whole system of equations,

n+1 _ ,n
% +V-(puw)"=0, (39)
unt1 _qyn W oo Vp”""] 1 I
ac POV E T T e o
n+1 _ pn . ca\" - -
P v P wp 4 (o) - it = (c_> (t"evi"-Vv.q"), (41)
p

which is implicit for the acoustical terms. By carrying out the velocity splitting hereafter, which is classical in the framework
of the projection method for the incompressible flow,
\v4 n+1
u =yt AP (42)
pn+1
the following 4 steps algorithm can be obtained for the whole system.
First, solve the density field,

P = p" — ALV - (pi)". (43)

Next, the intermediate velocity field u* and the intermediate pressure p* are updated,
1
% _ .n n =n n P

Ut =u —At(u Vil —WVJ —g), (44)

p*=p" — Atu" - Vp". (45)
Then, by injecting Eq. (42) in Eq. (41), one obtains the following Helmholtz equation for the pressure field,

pt1 - a\" - -
P — (pc®)" ALV - (W) =p* + At(pc®)'V - i + At (C—> (T"® Vi" -V .q"), (46)
p

which can be solved as a linear system for the pressure field and enables an implicit temporal discretization of the acoustical
waves. It is noteworthy, that the resulting matrix is not symmetric definite positive. Indeed, one can verify that if a spatially
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variable coefficient appears in front of the Laplacian, the matrix resulting from its spatial discretization is not symmetric.
The matrix symmetry can be easily retrieved by dividing all the terms of the previous equation by (pc?)". The following
equation is obtained,

n+1 \v4 n+1 *
P Ay (X2 =P
(pc?)" p! (pe2)n
which results in a symmetric definite positive linear system, if a centered scheme is applied to discretize the Laplace
operator. Finally, the velocity field accounting for pressure effects is updated with the following relation,

n
+Arv-a*+m<plc> (T"®Vi" - V") (47)
p

Vpﬂ-H

un-H =u* — At———.
pn+1

(48)
To understand the choice that has been made to consider (pc?)" instead (pc?)™t! in Eq. (47) it is useful to consider the
following equality:

p 1
top_ () 2(e)
— = —Dp . (49)
pce ot at at
In order to verify the best choice to write the discretized form of the left hand side of Eq. (49), a first order discretization
is operated over the right hand side:

1 n+1 n 1 n+1 1 n 1 n+1 n
(T (2N e ()T e (L 2 (e (50)
At |\ pc? pc? pc? pc? At \ (pc2)"  (pc2)"
where p"*t! is considered in the development of the second term. Similarly, if p" is considered instead of p"*! the following
equality is obtained:

1 n+1 n n+1 n n+1 n
N[("z) (%) -7 (5a) +p"(2)]=1( BT — ot ) 51
pc pc pc pc At \ (pc?) (pc?)
Therefore, Eqs. (50) and (51) demonstrate that considering (pc?)" in Eq. (47) corresponds to consider p"*! in the develop-
ment of the second term in the right hand side of Eq. (49) instead of p". Moreover, this choice for the temporal index of
1/(pc?) in Eq. (47) is consistent with the explicit nature of the terms multiplied by it in the right hand side, that is p* and
the non-isentropic terms. One interest of the overall formulation is to remove the time step constraint due to the acousti-
cal wave propagation since an implicit temporal discretization of the acoustic term is performed. This can be justified by
considering a one-dimensional linearized form of the pressure evolution equation Eq. (46) which is similar to an unsteady
convection-diffusion equation with a source term f,

dp _ op _ _3°p

—+a—=D_—+/, 52
ot 0x 9x2 ! (52)

where the pseudo-diffusion coefficient D = c? At depends on the sound speed and on the time step. Applying a fully explicit

temporal scheme and a standard centered finite difference scheme, the following sufficient stability conditions can be stated,

from von Neumann stability analysis, as detailed in [46],

2DAt a’At2  2DAt
<1 <

— , — < — 53
Ax? AxZ T Ax2 (53)
from which the following stability conditions can be deduced,
AX
At < ——, a<+2c, (54)
V2

which are valid if the Mach number Ma = a/c < +/2, as stated by the second condition. To the authors knowledge, a more
complete analysis involving higher Mach numbers is not available and is out of the scope of this paper that focuses only
on subsonic flows. This simplified analysis shows that an explicit temporal integration of Eq. (46) would require a stability
condition based on the acoustical time step, which is usual for standard explicit compressible solvers. On the other hand,
if a first order implicit temporal scheme is applied to the diffusion term and a first order explicit temporal scheme to the
convection term, as proposed in Eq. (46), it can be found that the stability condition is alleviated and becomes,

Ax
At<—. (55)
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This condition is much less stringent, especially in the low Mach number regime, than the time step Eq. (54) of the explicit
counterpart. This justifies briefly why the acoustic time step does not need to be imposed to ensure stability in the com-
putations carried out with the proposed solver. Another interesting property of this solver can be highlighted by remarking
in Eq. (46) that in the limits of ¢ — oo, u — 0, and k — 0, the pressure equation tends to the pressure equation for
incompressible flows in a classical projection method,

v n+1 V. u*
v. ()18 (56)
pn+l At

This means that, in the limits of low Mach number (Ma — 0), high Reynolds number (Re 3> 1) and high Peclet Number
(Pe > 1), the present numerical scheme will be asymptotically preserving relatively to the incompressible regime. The
interest of such a nice property will be demonstrated in the results section by a direct comparison between a standard
incompressible two-phase flows solver and the proposed compressible two-phase flows solver.

3.2. Implicit treatment of the thermal diffusion source term

In Eq. (47) the heat conduction is treated with an explicit temporal scheme and appears in the right hand side. The
thermal field T" is computed from the pressure p" and the density p" making use of the EoS Eq. (30). Another possibility
is to treat the heat conduction term in an implicit way by considering VT"*! instead of VT". Indeed we can express T"*!
as a function of p"*! which is known from the continuity equation propagation Eq. (43), and p™t! which is the unknown
of Eq. (47) making use of the EoS Eq. (30):

1— Bpn+1
an-H

which in the following will be written in a more compact way as:

n+1
ol

Tn+l _ n+1 + A

(1-Bp"™™), (57)

Tn-H — Cn+1pn+1 + Dﬂ+1 , (58)

where ("1 = (1 — Bp™*1)/(Rp™1) and D™ = Ap™1(1 — Bp"*1)/R are functions of p"*! only.
By replacing Eq. (58) in Eq. (47) (considering Eq. (6)) one gets the following equation where the heat conduction term is
treated with an implicit temporal scheme:

n+1 v n+1 n
P —AtZV-< b_ )—At(i) vV -kV (C"1p™1) = RHS, (59)
(pc2)" Pt PCp
k n
RHS = —2_ 1 AtV 3% + At <i) (x"® Vi" + V -kv (D)) . (60)
(pcdy" Py

Note that in Eq. (59) the thermal field does not appear explicitly anymore but through the two primitive variables p
and p. The present approach is made possible by the proposed formulation of the algorithm based on a primitive variables
formulation. Note that a linear relation between T and p in the EoS, as for Van der Waals and perfect gas EoS, is required
in order to maintain a linear system for the pressure equation. Being able to treat the temperature field with an implicit
scheme will have very beneficial consequences for future developments, including phase change problems which will be the
subject of future works.

3.3. Operator split formulation for reducing surface tension driven parasitic currents

In this section, the algorithm for a two-phase flow is presented. As pointed out in [20], spurious currents may occur
when adding directly the surface tension force as a jump on the pressure field when solving a Helmhotz-type equation, as
Eq. (47). In order to numerically solve the system of Eqgs. (18)-(20), while preventing from spurious velocities, a splitting of
the primitive variables and of the momentum equation is introduced, following the idea yet developed in [20]. The idea is
to isolate the effects of the capillary terms in one equation associated to an incompressible field, which is characterized by
a soleinodal velocity field. Eventually, if the following split is operated on the primitive variables,

P = po+ Pst, U=1g+ U, D =DPo+ Dst, (61)

where ug is the solenoidal part of the velocity field, we have V.iig =0 and o5 = const. For simplicity we will set ps = 0.
The above splitting is inserted into the system of Eqgs. (18)-(20) which is rewritten in Egs. (62)-(65),

a -
a_/;+v.(pu)=0, (62)
Al Vpo 1

— +i-Vi+—=—-V-1, (63)
ot P o
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T 0 P (64)

9 9 - - . - -

%—i— gst—|—u~Vp0+u-Vpsr+pc:2V-u0=C—[r®Vu—V-q]. (65)
P

The momentum equation Eq. (19) has been split into two equations: Eq. (64) which contains the capillary effects and the
soleinodal part of the velocity field iis, and Eq. (63) which contains the non soleinodal part of the velocity field iig and the
viscous terms.
A level set function ¢, defined as the signed distance from the interface (¢ > 0 in the liquid, ¢ < 0 in the gas and ¢ =0
at the interface), is introduced to describe the movement of the interface [37] with the following convection equation,
% -V =0, (66)
at
where iy is the interface velocity. A reinitialization algorithm, as proposed in [47], is used to ensure that the ¢-function
maintains the signed distance property at the interface, all along the computation. Both the normal vector 7i and the curva-
ture x can be evaluated from the level set function ¢ using Egs. (67),

n= Vo K=-V-n. (67)

Vel
3.4. Semi-implicit projection algorithm for two-phase flows

The system of Egs. (62)-(65) with Eq. (66) is discretized on a Cartesian staggered grid and in this section the temporal
numerical algorithm employed to locally solve it is reported step by step. We will indicate with the upper script n the time
index, and At is the time step.

1. The level set function is updated,

P =" — At - Vo' (68)
2. The density field is updated,

P = p" = ALV - (pi)". (69)

3. Since V.iig = 0, a projection method is applied and ps can be evaluated solving the linear system resulting from the
discretization of the following Poisson equation,

n+1 = n+1
v. (Vpst) _v. <mcn8p> . (70)
P 1Y

4. Predictions p* and up™ are evaluated considering only the convection effects for the pressure p, and also the viscous
and volumetric forces for the velocity,

p*=p"— At@"-vp"), (71)

e - an o - R 2 - -
up* = up" — At[@" - V") — V- (Vi + vy — guv -ugI — gl. (72)

pn+l

5. A projection method is also applied in order to calculate the rest of the pressure field pg. Specifically using Eq. (63) and
the ug evaluated in the previous step we have,

v n+1 v n+1
UM =k At <ﬂ> S VMt =V.uk - AV (ﬂ> . (73)
0 0 0 0

Y Y

Therefore, an Helmholtz equation for the pressure pg is found and pg“ is the solution of the following linear system,
n+1 v n+1 * _ N+l a n

(pO)Z _ APV (ﬁ) :%—Atv-ﬁmm(—) [t"® Vi" - v .3"]. (74)

(pc) (pc) PCp

6. Finally, the velocity field is corrected with the following step,

. R . \V/ n+1 \v/ n+1 *5 n+1
u”+1=u§‘t+u3—At ( pO) +< pst> _(O’K?‘l F) ) (75)
0 0 0
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A Ghost Fluid method is employed in order to handle the sharp jump across the interface [17,25,29,33,48]. Specifically, ghost
fields are defined for p and ps, and constant extrapolations are computed following the methodology described in [4]. For
what concerns spatial discretization, staggered grids are used for the velocity fields relative to the centered grid for the other
variables. Convective terms are evaluated with fifth order WENO Z schemes [5], other spatial derivatives are approximated
with standard second order centered schemes. One interesting feature of the proposed algorithm is to be compatible with
previous famous works in the community focusing on numerical solvers for two-phase incompressible flows. See for instance
[33,25,48] for more details on spatial schemes to handle jump conditions across the interface. The linear systems (70) and
(74) are solved with a Black-Box MultiGrid solver [15]. The temporal integration described previously is based on first order
IMplicit-EXplicit (IMEX) Euler scheme. This can be used as an elementary step to build a second order or third order Runge
Kutta scheme. However, if a standard explicit Runge-Kutta scheme is used, this will just improve stability, but not accuracy.
Indeed, a specific IMEX Runge Kutta scheme would be required, as those proposed in [3,6], for achieving higher order of
the temporal discretization. The development of such higher order temporal discretizations for the proposed compressible
projection method will be the object of future works.

3.5. Temporal stability condition

The viscous and diffusion terms are computed explicitly. Eventually, the time step At is limited by classical stability
conditions on convection, viscosity and surface tension, that is it has to respect the overall condition,
! ! + ! + ! (76)
At Atcony Aty Aty
where Aty, Atcony and At, come from the classical stability conditions on viscosity, convection and surface tension respec-
tively and are given by,

AX 1 pAx2 1 [max(p)Ax3
Atcony = ——=—, At == P , Aty == —(p) . (77)
/
max||u|| 2 u 2 o

More details on the numerical methodologies implemented and validated in the DZV.A code can be found in the following
references: [20,49-51,29,32,45,36,56,55]. Several validations of the numerical methods with experimental results can also
be found in the following references [12,11,28].

4. Test cases: validation and demonstration

Two single-phase test cases are carried out to verify two aspects: the correct propagation of acoustic waves and the abil-
ity of the solver to simulate compressible flows at low Mach numbers where thermal effects are of major importance, such
as free convection problems. Secondly, two-phase flow tests are carried out to verify the correct treatment of interfaces with
large deformations and the coupling between interface deformation and thermodynamic effects. Finally, a demonstration of
the coupling between acoustic waves and interface deformation will be presented.

4.1. Acoustic pulse propagation

The aim of this test case is to verify the ability of the solver in properly describe acoustic waves propagation. We
consider a non viscous and non conductive perfect gas: under these hypothesis the flow is isentropic. The domain is a
one-dimensional line, of length L =1 m with periodic boundary conditions. The base flow is at rest, up =0, the pressure is
po=1x10° Pa, the temperature is To = 300 K which for air corresponds to a density of pg =1.117 kg.m~3. The base flow
is initially perturbed by superimposing a p’ field with a Gaussian shape,

2
p = Apoe2(3), (78)

with ¥ =0.1 m and Apg =0.1pg for the present test case. Considering an acoustic wave traveling towards positive x, the
associated velocity perturbation field is,

/

P
poco’

where cg =347.12 m.s~" is the speed of sound corresponding to the base flow. Finally, the initial density field perturbation
is imposed considering the isentropic relation,

u (79)

1
/
;_ P

i=5. (80)

The initial solution is given by:
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Fig. 1. Pressure perturbation field at the initial position (thick solid line, IC) and after one period, at t = 7, for different time steps (based on a acoustic
CFLg).

p=po+p, u=u, p=p+p. (81)

The initial solution should theoretically be retrieved when the pulse, that should travel with a co speed, has browsed a
length L. The theoretical elapsed time is computed according to the following equation,

T=— (82)
Co
which gives 7 = 0.046 ms. The test case is performed with a first order temporal integration. First, a space convergence
analysis is carried and the simulation is done using either 128, 256, 512 or 1024 cells. An acoustic Courant-Friedrichs-Lewy
number, CFLg, is introduced,

CFL At
a=2¢Co Ax’
where At and Ax are the time step and the mesh cell size respectively. The solver is implicit and no restriction associated
with acoustic propagation is required in order to ensure stability, therefore the simulation can be carried out even with
CFLg >1. However, in order to properly observe the acoustic propagation, we expect that the time step should be small
enough. Therefore, a CFL, = 0.5 is considered for the convergence analysis. Results at t = t are shown in Fig. 1 for the
512 elements mesh, and compared with the initial condition (solid thick line) which is also the theoretical solution at
t = 7. Results for the other meshes are not reported because almost superimposed and differences between the curves are
less than 0.0001%. This demonstrates the independence of the results with respect to the grid resolution for the present
meshes. Therefore, all the other simulations are carried out with a 512 elements mesh. At t = 7 the pulse retrieves the
initial position, centered at x = 0, in agreement with the theory. This demonstrates that the solver correctly reproduces the
acoustic wave propagation at the correct speed.

A parametric study is then carried out, varying the time step accordingly to a variation of CFL, between 0.0625 and 8
and results at t = t are shown in Fig. 1. The computation is stable even for the CFL; > 1 thus demonstrating the expected
stable behavior (see Section 3.1). The pulse retrieves its initial position at t = 7 for CFLg < 1, and for CFL; > 1 a slight
shift of the position is observed with respect to the theoretical solution thus indicating that the propagation speed is
lower than the theoretical one. For every CFLg, the amplitude of the pulse is lower than the theoretical one but numerical
dissipation strongly increases for CFL; > 1 and decreases when CFL, decreases: the dissipation is 40% for CFL; =1 and 5%
for CFL, = 0.0625. As the order of convergence is around one, one could expect higher accuracy by introducing a higher
order IMEX temporal scheme, as the one proposed in [3]. This will be the object of future works.

This test case validates the proposed solver for the simulation of acoustic waves propagation, and shows the necessity to
use proper CFL, if the objective is to follow the acoustic waves evolution, even if the computation remains stable also for
CFLg> 1.

(83)

4.2. Natural convection in a square

The objective of the present test case is to test the ability of the solver in reproducing a flow induced by a temperature
gradient under the influence of the gravitational acceleration field. The test case of heat transfer by natural convection in an
enclosure presented by Le Quéré et al. [43] is considered. The domain is a square 2D cavity of side L, filled will air initially
at temperature To and pressure po (corresponding to a density pp), and is shown in Fig. 2(a). Bottom and up walls are
adiabatic, left and right walls are isotherm, at temperatures T,,, and T, respectively. The left wall is hotter than the right
wall (T > To > Ty), resulting in a horizontal temperature gradient. The gravity acceleration induces a upward movement
of hot air and downward movement of cold air.

It can be demonstrated that the present test case is defined by a couple of parameters: the Rayleigh number Ra and the
temperature ratio € defined by the following equations,
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Fig. 2. Natural convection test case. a) Computational domain and boundary conditions. b) Temperature field and streamlines in stationary conditions
(t =15 s for the grid 512*512). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1

Parameters for the natural convection test case T1 from [43].
To (K) po (Pa) Ra € Twh (K) Twe (K) Pr © (pPa.s)
600 101325 108 0.6 960 240 0.71 16.8

_p 8P T =Tl Twn—Tc

Ra 3 , = )
TOMO Twh + Twe

(84)

where Pr is the Prandtl number and 11 the dynamic viscosity at To. We consider the test case with Ra=10°, € = 0.6 and
constant thermophysical properties (constant viscosity p and thermal conductivity k), which is called T1 in the work of
Le Quéré et al. [43]. The ideal gas equation of state is used. The test case characteristics are summarized in Table 1. They
correspond to a cavity of side L =0,0460307 m.

Local and averaged Nusselt numbers, Nu and Nu, can be computed over the left and right walls:

L

Nu= %/Nu(y)dy. (85)
0

L aT
k

Nu= ——WFFk—,
k(Twh — Twe) 0%

When the steady state regime is eventually reached, Nu over the left and right walls become equal: Nuy, = Nu.. The static
pressure at steady state will be lower than the initial py because of the mechanical energy involved in the movement in
the cavity. The simulation is carried out with three different homogeneous grids, with 128 x 128, 256 x 256 and 512 x 512
elements. A snapshot of the temperature field superimposed with velocity iso-lines is shown in Fig. 2b) for the finer grid
at t=15 s. We observe the stratification of the temperature field and the re-circulation of the fluid induced by the ascension
of hot air and descent of cold air. Temporal evolutions of the average pressure and of the difference Nuj, — Nu, are shown
for the free mesh resolutions in Fig. 3 over 15 seconds. A convergence of the results is observed and the finer grid results
tend towards a stationary condition. In particular, after t =5 s the temporal variation of the results is very slow and the
difference between hot and cold Nu number is around 2.3 x 10~3 at t = 15 s. Quantitative results obtained with the finer
grid are in agreement with the reference provided by [43] as reported in Table 2, with differences smaller than 0.02% for
the ratio p/po and 0.12% for Nuc ;. The same simulations have been carried out considering an explicit or implicit treatment
of the heat conduction term in the energy equation. Results are almost superimposed with small differences only in the
transient phase (t <5 s), smaller than 0.003% for the Nu numbers and 0.0005% for the pressure, and no differences in the
stationary phase. Indeed the curves would appear as superimposed in Fig. 2 (where only the solutions obtained with an
explicit heat conduction term are reported). This demonstrates the correct implementation of the numerical implicit scheme
for the heat conduction term.

This section demonstrates that the semi-implicit compressible solver is well suited to handle free convection flows
without any assumptions on the Mach number. Moreover, in such configurations, the acoustic time step has not to be
imposed, since acoustic waves do not impact the flow.



A. Urbano, M. Bibal and S. Tanguy

1 1
128+128
- 256%256 - 128+128
095+ — s - 256%256
- Z o5l 512%512
S )
S, 09 =
Z
085 0r
0 5 t[s] 10 15 0 5 t[s] 10 15
a) b)

Fig. 3. Temporal evolution of the average pressure a) and the difference between cold and hot Nu numbers, b) for the three different grids.

Table 2

Natural convection test case results at t = 15 s: comparison
between present numerical results with a grid (512 x 512),
considering either an explicit or implicit treatment of the
heat conduction term, and the reference values from [43].

Reference Present
Nuy, 8.85978 8.86885
Nu, 8.85978 8.87113
p/po 0.856338 0.856515
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Fig. 4. Instantaneous snapshots of the interface obtained with compressible (left) and incompressible (middle) solvers and corresponding experimental
(right) images from [34].

4.3. Falling drop over a liquid layer

The aim of the present test case is to verify the ability of the solver to simulate two phase flows, featuring strong
interface deformations, at low Mach number. The falling of a liquid drop on a liquid layer is considered for this purpose and
the experimental configuration of Manzello and Yang [34] is taken as a reference. The computational domain is a cylinder
of height H =40 mm and radius R =40 mm (see Fig. 4). The bottom half of the domain is filled with water and the upper
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Fig. 5. Computational domain and boundary conditions for the test case of expansion of a bubble in an variable pressure environment.

half is filled with air (the interface is located at 20 mm from the bottom). The water density' is o = 1000 kg.m ™3 and the
dynamic viscosity is & = 89 p.Pa. The surface tension is o = 0.072 N.m~!, corresponding to water in air at 293.15 K. A free
boundary condition is imposed at the top of the domain to allow the fluid to leave and enter freely, while bottom and lateral
walls are adiabatic. Two dimensional axisymmetric simulations are carried out with a homogeneous mesh of 1024 x 1024
elements. A drop of water is initially placed near the interface with a velocity of v =2.1908 m/s, which corresponds to a
Weber number We = 123 (We = pvD/o), in order to reproduce the experimental conditions in terms of impact velocity
[34]. The simulation is carried out both with the compressible solver and with the incompressible solver of the DZV A code.
In terms of computational time, the simulation with the compressible solver takes twice as long as with the incompressible
one. Indeed, for the compressible solver the number of steps involved in the algorithm is increased because of three main
reasons: the Helmholtz-type equation for the pressure Eq. (47), the equation for the density field Eq. (69), and the equations
to compute the extrapolations for the ghost fields defined for p and pg (see section 3.4).

Numerical results obtained with the compressible solver are compared with the results obtained with the incompressible
solver and the experimental data in Fig. 4 where temporal snapshots at 5, 25, 45 and 65 ms after the drop impact are shown.

At t =5 ms, just after the drop impact, compressible and incompressible solvers give identical results that are in agree-
ment with the experiment. At t =25 ms, a crater is hollowing out and surface waves generated by the impact of the drop
are observed both in numerical and experimental images. At t =45 ms, a thick, high jet appears, from which droplets are
detached. It seems that there is a time phase shift in the droplet detachments between the incompressible, compressible
and experimental images and as a consequence the instantaneous number of droplets detached differs. However, these slight
differences could be partly explained by the chaotic nature of the atomization process. At t = 65 ms, the jet has fallen and
droplets are suspended both in the numerical and experimental cases, even thought the instantaneous observable droplets
suspended is different (three in the numerical results and one in the experiments). Comprehensively, this comparison shows
that the compressible and incompressible solvers provide results very close to the experiment and demonstrate the capa-
bility of the compressible solver in handling two phase flows with strong interface deformations in the low Mach number
regime.

4.4. Expansion of a bubble in a variable pressure environment

The objective of this test case is to verify the correct implementation of the thermodynamic models available in the
solver. In particular, the aim is to verify the coupling between density and pressure variations arising from the EoS. Two
different EoS are available: the perfect gas equation, suitable for low pressure and high temperature gas, and the van der
Waals, which is valid for both vapor and liquid phases over the entire domain of existence.

A bubble expansion in a liquid subjected to a variable pressure field is simulated. The simulation domain is shown in
Fig. 5: it is a cylinder of height L =4 mm and radius R =2 mm, with two open ends and a lateral adiabatic wall. A bubble
is initially placed at the center of the domain and the gravity acceleration field is artificially set to zero. The pressure in
the domain is changed in time by applying a time varying Dirichlet condition for the pressure at the open ends borders,
following the linear equation given by Eq. (86),

pzpi—uxt, (86)
ty

! The coefficients of the Van Der Waals EoS have been modified in order to obtain this value of o for p =1 atm and T =293.15 K. In fact, by default,
the Van Der Waals EoS for water in these conditions would give o) =494 kg.m‘3.
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Fig. 6. Non-dimensional specific volume as a function of the average pressure in the bubble, obtained with a ty =50 ms, with 3 different grids, and
comparison with the theoretical isentropic and isothermal transformations using a perfect gas EoS. Vapor: air. Liquid: water. a) Results over the entire
pressure range. b) Closer view.

where p; is the initial pressure, py the final pressure when t =t¢, ty being the final time of the simulation. When the
pressure decreases, the bubble volume should increase as a consequence of the density bubble decrease. By varying ty
and keeping the same initial and final pressure values, p; and py, the pressure variation speed is modified. Small ¢y will
induce rapid bubble expansions and large tf will induce slow bubble expansions. Analytically, the relation between the
pressure and the bubble volume can be expressed using an isothermal or an isentropic transformation relation. A very slow
expansion is expected to tend toward an isothermal transformation because a thermal equilibrium between the bubble and
the surrounding liquid will have time to be established. On the other hand, fast bubble expansions are expected to follow
an adiabatic transformation thus tending towards an isentropic transformation. Indeed, one can neglect the irreversibilies in
such cases of fast expanding bubbles since the flow is almost irrotational and the expansion is faster than the characteristic
time scale associated with thermal diffusion. Therefore, we expect a real expansion to evolve between the ideal isentropic
and isothermal transformations. The objective of the present test case will be to verify this behavior for two different
sub-cases:

e a low pressure case, for which the perfect gas EoS can be used to describe the vapor phase;
e a high pressure case, for which the perfect gas hypothesis does not hold and the van der Waals EoS is used for the
vapor phase.

In both cases, the van der Waals equation is required to describe the liquid density, which is almost constant. In the first
case, the density in the liquid will be around p; = 493.93 kg.m~3 which is the solution of the van der Waals EoS for water
at ambient pressure and temperature. In the second case the liquid density will be around p; = 200 kg.m~3, which is the
solution of the van der Waals EoS for methane in a liquid state. It is noteworthy that more accurate solutions for liquid
densities can be obtained by using more complex cubic EoS, as Peng-Robinson or Redlich-Soave-Kwong, for instance. This
will be the subject of future investigations.

4.4.1. Expansion at low pressure: perfect gas EoS description
Isothermal and isentropic transformations for a perfect gas can be expressed with the relations given by Eqs. (87) and
(88) between specific volume v and pressure p:

isotherm: v= % , (87)
Di vy
isentropic:  v=v; (E) , (88)

where subscript i refers to initial values, and y is the ratio between the specific heats. We are neglecting mass diffusion
through the interface, therefore the bubble constitutes a closed system with a constant mass that is conserved in time. As
a consequence, Eqs. (87) and (88) hold for the bubble volume. A bubble of air in liquid water is considered. Initial and
final pressures are p; =2 bar and py = 0.5 bar, and the initial temperature is T; =300 K. In these conditions, a perfect
gas EoS can be used to describe the vapor phase. A first simulation is carried out with tf =50 ms, using three different
grids containing 128 x 256, 256 x 512 and 512 x 1024 elements. In this configuration the stability time step is constrained
by viscous effects, and the time steps in the simulations are chosen accordingly. The bubble volume evolution versus the
average pressure in the bubble is shown, for the three grids, in Fig. 6, where the isentropic and isothermal relations given by
Egs. (87) and (88) are also reported. Results obtained with the three grids are almost superimposed and behave as expected
between the isothermal and isentropic transformations, though much closer to the isothermal for this t¢. The closer view
in Fig. 6b) shows that the finer grid results tend towards the isothermal relation. These results show a grid convergence for
the present setup, with differences for the bubble radius smaller than 9 x 10~3%. For the following simulations, the coarse
grid (128 x 256 elements) will be used.
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Fig. 7. Evolution of the bubble volume v as a function of the average pressure p for different speed of pressure temporal variation (higher t; imply slower
pressure variations).
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Fig. 8. Temperature fields reached at t =t; and corresponding average temperature for a) a rapid bubble expansion (t; =5 ms) and b) a slow bubble
expansion (tf =90 ms).

A parametric study is carried out, varying t; between 0.05 and 90 ms. Results are shown in Fig. 7a) over the entire
pressure variation domain and a closer view is proposed in Fig. 7b). The bubble evolution tends toward the isothermal
expansion for large t¢ and the isentropic expansion for low t¢ confirming the theoretical expectations.

The evolution of the average temperature in the vapor bubble and in the liquid is shown as a function of the average
pressure in the vapor in Fig. 8a) for a rapid expansion (ty = 0.05 ms) and Fig. 8b) for a slow expansion (t; =90 ms).
The temperature field at the end of the simulation is also reported. For both cases the temperature in the liquid is almost
constant and equal to T; =300 K. On the other hand, the behavior of the temperature in the vapor is very different. For
the faster case, the temperature in the bubble undergoes a huge drop, a temperature around 200 K is reached in the center
of the bubble center and a thin thermal boundary layer is formed around the bubble. The fast expansion of the bubble is
quasi adiabatic thus inducing a huge cooling of the gas. On the contrary, the temperature in the bubble for the slow case is
almost constant and only slightly decreases during the expansion. The final average temperature is 297 K and the minimum
temperature is 293 K at the center of the bubble: the slow expansion of the bubble is quasi isothermal.

4.4.2. Expansion at high pressure: Van de Walls EoS
For a real gas, the perfect gas equation is no longer valid. Isothermal and isentropic transformations for a real gas can be
expressed with the relations Egs. (89) and (90) between v and p, derived using the van der Waals EoS Eq. (27):

isotherm:  pv® —v?(pB+RT)+VvA— AB=0, (89)

) - K (R/cv) A
lsentroplc . p == m - ﬁ N (90)
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Fig. 9. Evolution of the specific volume as a function of the average pressure in the vapor for a bubble of nitrogen in liquid methane: numerical results (color
curves) and theoretical evolution using a perfect gas or a Van der Waals EoS. a) Rapid bubble expansion that tends towards an isentropic transformation.
b) Slow bubble expansion that tends toward the isothermal transformation.
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Fig. 10. Setup for the study of the drop shape evolution in an acoustic field. Evolution of the pressure and velocity fields over one temporal period for the
pressure oscillation.

where c, is the heat capacity at constant volume, R is the gas constant, A and B are given by Eq. (27) and K is a constant
that can computed from v; and p; (see Appendix (27) for details on Eq. (90)). For the simulation in real gas regime, a
nitrogen bubble in liquid methane at T; = 150 K is considered and the pressure is varied from p; =40 bar to py =10 bar.
In these conditions real gas effects cannot be neglected and the van der Waals EoS is used to describe both the vapor and
the liquid phases. Two different small ¢ are considered in order to reproduce an adiabatic expansion: 0.2 and 1 ms. Results
are shown in Fig. 9a), where both the real gas Eq. (90) and perfect gas Eq. (88) isentropic transformations are also reported
for comparison. It appears that the two theoretical curves differ, as expected in the present high pressure conditions. The
numerical results demonstrate that decreasing ty, the bubble expansion tends towards the van der Waals EoS isentropic
transformation, as it was expected. The same approach is developed for the isothermal expansion. Two different ty are
considered in order to reproduce an isothermal expansion, i.e. 1 and 20 s. Results are shown in Fig. 9b), where both the real
gas (Eq. (90)) and perfect gas (Eq. (88)) isothermal transformations are also reported for comparison. When t¢ increases,
the bubble expansion tends toward the real gas isothermal transformation. In conclusion, the above results demonstrate the
correct behavior of the thermodynamic models in the compressible solver and the ability to account for real gas effects.

4.5. Drop shape evolution in an acoustic field

In this test case the interaction between a droplet and an acoustic wave is computed with an asymmetric simulation in
order to observe the deformation and potential breakup of the droplet induced by acoustic waves. The setup is shown in
Fig. 10. The domain is a cylindrical cavity of height L =8 mm filled with air at To =300 K and po = 101325 Pa. A water
droplet with an initial radius of r =1 mm is positioned at the center of the domain (r = z = 0). The gravity acceleration is
artificially set to zero. The bottom and lateral boundaries are adiabatic walls whereas the upper boundary is an open end
and an acoustic oscillation boundary condition is imposed,

p(t) = po + Apsin(wt), (91)

with w = 2 f1; where fi; = co/L is the first acoustic mode frequency of the cavity, with cop = 347 m/s speed of sound
in air at the present conditions. With the above conditions, the pressure wave frequency is fi; = 21695 Hz. The pressure
wave amplitude is set to 2% po that is Ap =2026.5 Pa. By imposing this boundary condition, a stationary acoustic wave
is maintained in the domain. The setup is shown in Fig. 10, where the pressure and velocity fields evolutions over one
oscillation period T (t =1/f1) are shown. The pressure wave propagates in time, both in the gas and in the liquid: the
pressure in the drop is slightly greater than in the gas, by a difference corresponding to the surface tension (for the initial
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Fig. 11. Axial velocity evolution along the anti-nodal line (z = L/2) at two different times along one cycle corresponding to the maximum of velocity. Results
are shown for different grid refinements.

circular drop the pressure jump across the interface is constant and equal to Aps = 20 /r =116 Pa). The pressure nodal
line, which corresponds to the axial velocity anti-nodal line, is at the center of the domain (dashed line, z=1L/2). As a
consequence, during one period, the drop is subjected to an oscillating velocity field in the axial direction (z). The surface
tension for the case shown in this figure is 0 = 0.058 N.s. The maximum velocity at the nodal line, Av, can be estimated
considering an average impedance pgco of the volume of air at Tg and po,

Ap

Av = , (92)
PoCo
that results in a theoretical Av =4.96 m/s, which corresponds to a Weber number,
AvD
e= 202V (93)
o

The axial velocity and pressure at z=L/2 are shown in Fig. 11 at two different instants along one cycle corresponding to
the maximum and minimum of velocity oscillation (that is the second and fourth snapshots in Fig. 10). The first observation
that can be made from Figs. 10 and 11 is that the pressure waves propagate both in the gas and inside the liquid drop but
induce a velocity field which is much more important in the gas, in agreement with the higher impedance of the liquid
(Coic)/(pvey) = 2500 in the present case). The axial velocity far from the drop reaches maximum absolute values of 4.7
my/s, as shown in Fig. 11, in agreement with the theoretical expected value given by Eq. (92). The absolute velocity increases
towards the drop interface: this is a consequence of the acceleration of the gas flow that goes around the drop. In the
drop the axial velocity falls to almost a zero value. However, the tangential velocity is continuous across the interface and
a very thin boundary layer is established. The pressure jump across the interface can be seen in Figs. 11a) and 11b): it
has a value of 110 Pa in agreement with the theoretical value for the spherical drop at rest which is (Aps =20 /r =116
Pa). The simulation has been carried out with several grid refinements in order to ensure a proper convergence analysis
and results are reported in Fig. 11 for three uniform grids having a number of cells in the r and z direction of: 256 x 512,
512 x 1024 and 1024 x 2048 corresponding with cell sizes of 15 pm, 7.8 pm, and 3.9 pm, respectively. The axial velocity
field is well captured with the three meshes and a convergence is observed. An over-shoot and an under-shoot on the
pressure are observed with the coarser grids. These oscillations of the pressure at the interface are associated with the pg
field that contains the jump across the interface induced by the surface tension. If the mesh is not fine enough, the interface
starts wrinkling since the beginning of the simulation, inducing oscillations on the pg field at the interface, in particular in
this region where the velocity variation at the interface is greater. This phenomenon disappears when increasing the mesh
resolution and no oscillations are visible with the finest grid. This behavior is related to the well-known issue of parasitic
currents induced by surface tension, which can be reduced by refining the grid.

The temporal evolution of the equivalent drop diameter is shown in Fig. 12a) for the different grids, over forty periods.
The diameter decreases for the coarser grid and a liquid mass loss around 10% is reached at t =40t. The mass loss reduces
while increasing the grid resolution showing that the simulations converge towards a conservative solution. For the finest
grid the mass loss is lower than 1% at t = 40t. Snapshots of the drop shape at t =407t are shown in Fig. 13 (We =1) and
no significant difference is observed between the two finest grids. Considering the above observations, the 1024 x 2048 grid
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condition

has be used to carry out the rest of the simulations for the present test case. Observing the drop shape at 40t for We = 1
in Fig. 13, it appears that the drop shape, which initially is spherical, only slightly changes in time, in agreement with the
low We number. In order to analyze the impact of the acoustic field on the interface deformation, a parametric study has
been carried out increasing the We number up to 40. This has been achieved by decreasing the surface tension and keeping
constant all the other parameters. The Ohnesorge number, Oh = 1;/(o;* D *5')1/2 is around Oh = 0.003. In these conditions,
secondary atomization with a bag-breackup mode is expected for We > 11 [23]. We do not aim to go up to atomization
in the present simulations and the axisymmetric hypothesis we make would not allow it. However, we can simulate the
strong drop shape modification preceding the atomization. In terms of characteristic time, the characteristic time scale t. =
D(pl,og)l/z/v associated with atomization is around 8 ms in the present conditions, thus t =407t corresponds to t = 0.22¢,.
The equivalent diameter D.q temporal evolutions over 40t are shown in Fig. 12b) and the corresponding snapshots of the
drop interface at 407 are shown in Fig. 13). For We = 20 and We =40 the D.q shows a drop at 25 and 357 respectively,
while no particular drop in the diameter is observed for We < 10. The diameter drop corresponds to a topological change
in the drop shape as observed in Fig. 13. The acoustic velocity induces a deformation in the drop shape that flattens and
eventually leads to the formation of two rims at an instant that corresponds with the diameter drop early observed.

These results demonstrate the ability of the present solver in describing the interaction between an acoustic field and
a drop interface and open the door for further analysis including three dimensional simulations of secondary atomization
induced by an acoustic field.

5. Conclusion

This paper presents an innovative numerical strategy for the study of two-phase compressible flows. The compressible
solver proposed in this paper has many interesting features. It is able to describe acoustic waves, but it does not require
to impose the stability constraint due to acoustic waves propagation. Indeed, imposing the latter stability constraint can
be prohibitive in configurations with high density variations but for which sound propagation does not play any role,
as for instance free convection or the expansion/compression of a bubble due to a pressure drop/increase. The proposed
formulation gives a clear framework to account for heat conduction and viscous effects. It can be coupled to any equation
of state, provided the sound speed can be computed. It works as well for liquids as for gases. It tends asymptotically
to the incompressible projection method under usual assumptions of incompressible solvers, but it is also well suited to
simulate low Mach number flows with density variations, as free-convection flows or a bubble growth. Its generalization to
two-phase flows is quite straightforward. Even if an additional splitting on variables has to be carried out to impose the
surface tension, general state-of-art and powerful techniques previously developed for incompressible two-phase flows can
be applied directly to this two-phase compressible solver. Future works will tackle the generalization of this solver to higher
order temporal discretization schemes, that could be based on IMEX Runge Kutta schemes. Coupling with extended physical
models, as liquid-vapor phase change, supersonic flows, more complex equations of state and Immersed boundary methods,
will be also investigated in the future.
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Appendix A. Cardan algorithm applied to compute the density from the VAW EOS

In order to evaluate the density corresponding to a thermodynamic state defined by pressure p and temperature T,
the roots of the Van der Waals EoS which is a cubic equation, have to be computed. The method of Cardan is employed.
Let’s consider the form of the Van der Waals EoS given by Eq. (25) with the coefficients of Eq. (28). A new variable p is
introduced and verifies,

a 1

=p——=—=p+—. Al
p=p-—5=pP+5 (A1)
Expressing Eq. (28) as a function of o we obtain the following equation,
P2 +a1p+ag=0, (A2)
where the coefficients a; are given by,
- 1 2 9p 9RT p
w=——\=—"———"—=—--. A3
0= 727 <32 A AB > Ab (A3)
- 1 p RT
HH=—-—=+-+—-—. A4
=73 T4 B (A4)
The cubic Eq. (A.2) has one, two or three real solutions depending on the sign of the discriminant A = —(4&? + 2751(2]).

Moreover, p must be positive. Crossing these requirements the following cases are possible,

e if A <0, one solution given by p; =u + v where u and v are given by the following relations,

x 1/3 ~ 1/3
—0g + /55 —ag — [’y
u=| — Y27 0 ==Y (A5)
2 2
e if A =0, two solutions given by,

- 3dg - 3ag

= " A.6
== p2=—5 (A.6)

If p1 > 0 two solutions are available and it will be p, = p; and p; = p,. If p; < 0 there is only one solution: p = ps.
e if A > 0, three solutions given by,

,5k:2,/_—a]cos 1cos’l _—ao _—27 +2k_n , k=1,2,3 (A7)
3 3 2 (1% 3

If p1 > 0, there are two solutions, one for each phase: p, = p; and p; = p3. If p1 <0 and p; > 0 then there are two
solutions, one for each phase p, = p2 and p; = p3. If p1 <0 and pz < 0 there is a single phase solution: p = ps.
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Appendix B. Isentropic transformation for a real gas described by the Van Der Waals EOS

This appendix demonstrates how to obtain the isentropic relation expression Eq. (90) for a fluid described by the van
der Waals EoS. Let’s recall the first Clapyeron relation,

§Q =c,dT +1dv, (B.1)

where §Q is the heat absorbed during a reversible transformation, v =1/p is the specific volume and [ is the isothermal
dilation coefficient defined by,

_r (P
I=T <ﬁ> (B.2)

The Clapyeron relation Eq. (B.1) can be combined with the first thermodynamic principle, e = §Q — pdv, to express the
internal energy variation,

de =c,dT + (I — p)dv. (B.3)
The expressions for p and T given by the van der Waals EoS Eq. (27) can be rewritten in terms of the specific volume v,
pr A R )
vZ v—B’
1 A
T:E<p+ﬁ>(v—8). (B.5)

Using the van der Waals EoS the dilation coefficient [ is given by,
A
I=p+ - (B.6)
v
Replacing Eq. (B.6) in Eq. (B.3) gives,
A
de =c,dT + —zdv. (B.7)
v
For an isentropic transformation dS = 0 which gives de = —pdv, and thus,
A
cydT+=—(p+ ﬁ)dv. (B.8)

The right hand side of Eq. (B.8) is expressed using Eq. (B.4), thus obtaining the following relation between dT and dv along
an isentropic transformation,

—RT

¢, dT = dv, (B.9)

which can be integrated between two states. Finally, the temperature T is replaced by its expression as a function of p and
v, Eq. (B.5), thus yielding to the following relation between p and v along an isentropic transformation,

AN“ wtl . Cv
p+—) (v=B) =K with o=—, (B.10)
v R
where K is a constant. Eq. (B.10) can be used to relate p and v between two states along an isentropic transformation.
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