
HAL Id: hal-04488824
https://hal.science/hal-04488824

Submitted on 4 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PLUME: Record, Replay, Analyze and Share User
Behavior in 6DoF XR Experiences

Charles Javerliat, Sophie Villenave, Pierre Raimbaud, Guillaume Lavoué

To cite this version:
Charles Javerliat, Sophie Villenave, Pierre Raimbaud, Guillaume Lavoué. PLUME: Record, Replay,
Analyze and Share User Behavior in 6DoF XR Experiences. Transactions on Visualization & Computer
Graphics (TVCG), In press, pp.1-11. �10.1109/TVCG.2024.3372107�. �hal-04488824�

https://hal.science/hal-04488824
https://hal.archives-ouvertes.fr

PLUME: Record, Replay, Analyze and Share User Behavior in 6DoF
XR Experiences

Charles Javerliat∗ , Sophie Villenave∗ , Pierre Raimbaud and Guillaume Lavoué

Fig. 1: The standalone PLUME Viewer application allows for the interactive visualization and analysis of behavioral and physiological
data recorded with the PLUME Recorder Unity plugin. From left to right: hierarchy of objects in the virtual environment; heatmap of
user position and 3D trajectory, highlighting of the most interacted objects; gaze direction; analysis control panel for visualizations;
custom event markers; timeline with synchronized physiological signals tracks and markers.

Abstract— From education to medicine to entertainment, a wide range of industrial and academic fields now utilize eXtended Reality
(XR) technologies. This diversity and growing use are boosting research and leading to an increasing number of XR experiments
involving human subjects. The main aim of these studies is to understand the user experience in the broadest sense, such as the
user cognitive and emotional states. Behavioral data collected during XR experiments, such as user movements, gaze, actions,
and physiological signals constitute precious assets for analyzing and understanding the user experience. While they contribute to
overcome the intrinsic flaws of explicit data such as post-experiment questionnaires, the required acquisition and analysis tools are
costly and challenging to develop, especially for 6DoF (Degrees of Freedom) XR experiments. Moreover, there is no common format for
XR behavioral data, which restrains data-sharing, and thus hinders wide usages across the community, replicability of studies, and the
constitution of large datasets or meta-analysis. In this context, we present PLUME, an open-source software toolbox (PLUME Recorder,
PLUME Viewer, PLUME Python) that allows for the exhaustive record of XR behavioral data (including synchronous physiological
signals), their offline interactive replay and analysis (with a standalone application), and their easy sharing due to our compact and
interoperable data format. We believe that PLUME can greatly benefit the scientific community by making the use of behavioral and
physiological data available for the greatest, contributing to the reproducibility and replicability of XR user studies, enabling the creation
of large datasets, and contributing to a deeper understanding of user experience.

Index Terms—Extended Reality, Virtual Reality, User Behavior, Human-Computer Interaction, Quality of Experience, Data Collection,
Physiological Signals.

1 INTRODUCTION

Application areas for eXtended Reality (XR) can be very diverse, from
entertainment to training, marketing, cultural heritage, or even ther-
apy. XR technologies accessibility and popularity have significantly
improved over the last decade, leading to an exponential increase of
research studies in XR environments. Even though each experiment

All authors are with École Centrale de Lyon, CNRS, LIRIS UMR5025,
ENISE. E-mails: {charles.javerliat, sophie.villenave,
pierre.raimbaud}@ec-lyon.fr, guillaume.lavoue@enise.ec-lyon.fr. * These
authors contributed equally and should be seen as joint first authors.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

has its own specificity, one usual main objective is to understand user
experience. This can take several forms i.e., with different focuses:
i) the evaluation of the quality of user experience according to newly
designed devices or systems, in various senses (e.g., user presence,
immersion, flow, or sensory perceived quality), ii) the acquisition of
data to feed behavior prediction models (e.g., deep learning networks
for gaze prediction), iii) the evaluation of an immersive system from its
domain-specific perspective (e.g., therapy effects, learning effects), or
iv) the improvement of global knowledge on human beings understand-
ing (e.g., cognitive processes, sociological aspects).

In research studies, the understanding of user experience in vir-
tual environments (VE) can derive from subjective or objective data
collected during experiments. Halbig and Latoschik proposed a classi-
fication relying on the way users provide data, between explicit – when
users are asked to rate, describe etc. their experience, and implicit data –
collected without asking users for dedicated actions to do so [27]. Con-

https://orcid.org/0000-0003-0748-5541
https://orcid.org/0000-0002-6152-9800
https://orcid.org/0000-0002-5584-8100
https://orcid.org/0000-0003-3988-6702

cretely, explicit data correspond to self-reported data and implicit data
to behavioral and physiological ones. Self-reported data are usually
collected via tools such as questionnaires (e.g. presence [65,79], embod-
iment [62], usability [7], workload [28]), or semi-structured interviews.
Behavioral data are usually collected in the VE (XR controller inputs,
interaction traces) or the real world (positions of XR Head-Mounted
Display – HMD, controllers or trackers). Physiological data such as
heart rate, eye-tracking, electrodermal activity, electrocardiogram and
electroencephalography are collected directly on users. In the litera-
ture, the majority of XR studies use self-reported data to validate their
hypotheses. Popularity of this kind of data can be explained by their
simplicity of acquisition, analysis and sharing. However, relying only
on them has limitations: post-experiment data collection means that
users assess the memory of their experience rather than their actual
experience [36]; questionnaires easily become outdated and unsuitable
to evaluate the newest technologies [25]; generic questionnaires can be
irrelevant to study-specific content [34], and biases can be introduced
by the users e.g., by trying to guess the right answer, adjusting rates
depending on the proposed scale over the asked items [12], or mis-
interpreting questions because of language translations [3]. To avoid
these limitations, researchers are increasingly collecting behavioral and
physiological data in addition to self-reported ones to address their
questions [27]. However, the former are more tedious to acquire, ana-
lyze and share, especially in 6DoF (Degrees of Freedom) XR studies
where e.g., the mapping of eye tracking data onto the 3D environment
is more complex to implement, as well as the logging of interactions
and events in a freely-accessible 3D space and the synchronization of
physiological data with body and ocular 3D motions. Using behavioral
and physiological data in XR studies is thus not readily accessible at
the moment, even more so for research teams whose academic field is
outside computer science as it requires many specific developments.

Using behavioral and physiological data in XR studies is also ham-
pered by the lack of standardization in their representation, making
them difficult to share and reuse for experiment replication, follow-up
studies or meta-analyses. Moreover, the heterogeneity of data repre-
sentation across studies makes almost impossible to aggregate data
from different experiments. This prevents the creation of datasets of
user behavior in 6DoF-XR, making them rare or even non-existent.
Consequently, the construction of models able to classify behavior or
predict body or gaze motions remains underdeveloped in 6DoF-XR.

In this context, we introduce PLUME, an open-source software tool-
box (PLUME Recorder, PLUME Viewer, PLUME Python) to facilitate
the collection, exploitation and sharing of behavioral and physiological
data from 6DoF-XR experiments created with Unity [76]. Its main
features are: i) exhaustive capture of VE data (objects positions, ori-
entations, appearance, user interactions, gaze, custom events) with the
PLUME Recorder plugin for Unity; ii) synchronous capture of physio-
logical data with Lab Streaming Layer [21]; iii) offline 3D interactive
replay of XR sessions and gathered data interactive visualization inside
the VE (3D trajectories, 6DoF position heatmap, 6DoF visual atten-
tion heatmap, interaction heatmap, physiological signals timeline) with
PLUME Viewer; iv) standardized data format for ease of use, shar-
ing, replicability, comparison and integration into analysis pipelines;
v) scripts to load and export recorded data in common formats and
frameworks (CSV, dataframe, XDF...). PLUME contributions are:

• A fast, lightweight and accurate recording engine that is easy to
install in any new or pre-existing Unity project with little to no
configuration required.

• A modular architecture allowing both ease of use and a high degree
of customization for users with specific needs.

• In-context 6DoF user behavior visualizations in a standalone ap-
plication including a new 6DoF eye-gaze projection algorithm for
visual attention visualization in dynamic XR environments.

To enable the widest adoption of our framework, PLUME is open-
source and available on GitHub1.

1GitHub Page: https://www.github.com/liris-xr/PLUME

PLUME is the result of months of development, and required cross-
disciplinary skills in software architecture, computer graphics and XR.
We believe that PLUME can greatly benefit the scientific community,
enabling the acquisition and analysis of complex behavioral data for all
academic teams, even those without computer engineering resources.
PLUME is our commitment to enable the replication of XR user studies,
improve results repeatability by offering an open and interoperable
acquisition pipeline and data format, and enable the production of large
scale datasets and meta-analyses. We also propose a novel, interactive
and accessible way of communicating 6DoF-XR experiments with the
PLUME Viewer standalone application. This paper focuses on the use
of PLUME for XR applications, but it can be used for a larger variety
of Unity-based application (2D, 3D, XR, networked).

The following section surveys related work in the capture and visual-
ization of XR user data. Next, we present PLUME main functionalities,
followed by a description of its architecture and an in-depth explana-
tion of our 6DoF visual attention heatmap visualization technique. We
present a PLUME usage case-study, along with an evaluation of the tool
impact on runtime performances in XR. We discuss the ethics of cap-
turing and using user data from XR studies, notably not self-reported
ones. Finally, we conclude on our framework, and outline our future
work.

2 RELATED WORK

In this section, we first give an overview of the types of data currently
collected during user studies in XR. Among these data, visual atten-
tion data are particularly difficult to collect and analyze in 3D 6DoF
environments. Then, as PLUME presents a novel algorithm for their
visualization, we dedicate here a specific subsection on the existing
techniques for visualization of visual attention, especially heatmaps.
Finally, we present and discuss existing tools that contribute to facilitate
behavioral and physiological data collection and visualization in XR.

2.1 Data Collection to Evaluate User Experience in XR
In various research and industry fields, XR is used to run studies that
seek understanding of the lived experience. We review here the different
types of data that can be collected in this context.

2.1.1 Self-Reported Questionnaires
The most widely used kind of tool to assess user experience in XR
studies is the questionnaire, as it is a simple and affordable way to
collect data in such studies. Questionnaires can be used to assess a
wide range of factors, including quality of experience [72], perceptual
quality of content [4], sense of presence in the VE [65, 79], system
usability [28] or cybersickness [35]. Most often, these questionnaires
are administered after the XR experience [36], measuring more the
memory of the experience than the experience itself. Moreover, despite
their psychometric validity, the administration of questionnaires is
subject to various biases [12], impacting on the reliability of the results.

2.1.2 Behavioral Data
User Trajectory and Movement Users’ trajectories in the VE are

a strong indicator of their behavior. In a 6DoF experiment, a trajectory
is a time series of an object’s position and rotation, the object often be-
ing the head (through the HMD) or the hands (through XR controllers or
trackers). Trajectories can be used to compare navigation conditions, as
in Berton et al. [5] who studied differences introduced by haptic sensory
feedback, or in Raimbaud et al. [57] depending on gazing conditions
from a virtual crowd. Visualizing users’ trajectories in VE context can
facilitate their comparison between users as shown by Homps et al. [31]
who offered an immersive tool to display trajectories and interact with
their visualizations. The recent development of machine learning al-
gorithms for time-series analysis makes possible the classification of
6DoF experiment trajectories that can be used for short-term prediction
of motions [42], future events prediction (e.g., to highlight risks or user
interface elements) or to cluster user behavior from motion data [61].
Also using machine learning, with user trajectory compression, Mon-
teiro et al. [49] predicted cybersickness when navigating uncomfortable
VEs such as VR games. Nonetheless, these models remain rare because

https://www.github.com/liris-xr/PLUME

of a lack of motion datasets from 6DoF experiments and dedicated
open-source analysis and visualization software.

Eye Gaze Understanding human visual attention during immer-
sive experiences is crucial for many applications: predicting visual at-
tention [32,43,44,64], optimizing storytelling and game balancing [37],
enabling virtual humans with realistic gaze behaviors [24], improving
rendering performance (e.g., using Variable Rate Shading) by focusing
the computations on the areas of interest from the user perspective [45]
etc. The visualization and analysis of visual attention in the VE context
can be achieved with real-time replay of gaze data, showing the gaze
with a sphere, a ring or a trail [68]. Accumulated gaze data visual-
ization can be done with 3D scanpath where spheres represent gaze
accumulations and lines saccadic movements, although it is more com-
monly done by building heatmaps from eye-tracking data. Such visual
attention mapping is well mastered for 3 Degrees of Freedom (3DoF)
experiences (i.e., with 360 images or videos), but much less for 6DoFs
data where the user can freely move in the 3D space and interact with
objects. Section 2.2 provides more details about the existing techniques
and challenges to generate 6DoF eye-gaze heatmaps.

User Input and Actions To interact with a VE, users can use
a variety of input tools, such as XR controllers, their hands or their
eyes. A sequence of inputs enables them to perform actions – selecting,
manipulating, navigating, using interfaces [6], the latter allowing for
the completion of user tasks [1,56]. Logging the input and the resulting
actions can be a strong indication of user behavior. These indicators
are often used in learning analytics [19] to better understand learners’
behavior when interacting with a user interface, e.g., a gamified learning
platform [40]. In VR, the use of these indicators remains rare [36],
as the tasks to be performed are not the same from an experiment to
another, requiring further development to clearly decompose and log
them. In this regard, Wu et al. proposed an XR application design
framework called GuST-3D [80] that enables tasks to be defined by the
developer and decomposed into actions for automatic recording.

2.1.3 Physiological Signals
Given limitations of self-reported data for behavioral evaluations when
using XR technologies, researchers are showing an increasing interest
in measuring physiological signals to infer the cognitive state of the user
during the XR experience. Physiological signals that can be measured
are notably the heart rate (HR), heart rate variation (HRV), electro-
cardiogram (ECG), pupil dilatation, electrodermal activity (EDA) and
electroencephalogram (EEG). For example, previous studies have used
EEG data to measure cognitive workload [74], a combination of EEG,
HR and EDA data for anxiety [11], or a combination of ECG and res-
piration data to measure stress [71]. Physiological signals acquisition
has improved in the last years since physiological sensors have become
more affordable, and the integration of these measurements into re-
search workflows has become more accessible through tools such as
the Lab Streaming Layer (LSL) framework. The use of physiological
sensors in 3DoF VR experiments has thus become more widespread,
leading to the production of high-quality multimodal datasets [26, 70].
However, using physiological sensors in 6DoF-XR studies remains
complicated as they are sensitive to user motions, which introduces
noise that can rapidly invalidate collected data. Another factor that
hinders the use of physiological signals is the interpretability of data.
Although some signals have been shown to be good indicators of stress
or arousal, it is still difficult to demonstrate high-level psychological
states such as presence or feelings about the quality of experience.
Therefore, there is a need for more 6DoF-XR studies using physiologi-
cal data, and to achieve this, their use and analysis should be simplified.
PLUME is a step towards this goal, enabling simultaneous capture,
visualization, and analysis of physiological signals in conjunction with
behavioral data from 6DoF-XR experiments.

2.2 6DoF Visual Attention Maps
2D images visual attention maps are usually created applying Gaussian
convolutions on gaze fixation points. This process aims at modeling
the gaze dispersion around the points of fixation (due to the size of the

fovea and the imprecision of tracking device). In 6DoF XR experiments,
the difficulty to use this process lies in the eye-gaze projection in the
3D space instead of 2D, and in mapping data in dynamic 3D scenes.

Previous works on 6DoFs visual attention maps include various
techniques to map the data onto a 3D scene. Pfeiffer et al. [54] proposed
a volume-based representation via a voxel grid storing the eye-gaze
projection values in each cell and applying a 3D convolution. While
straightforward, it is bound to the world space and does not apply with
dynamic scenes with moving objects. Moreover, a volumetric density
map does not fully respect occlusion. Stellmach et al. [67] proposed
a coarse-grained object-based representation with per object scalar
values. It contains information about which objects are fixated the
most, but without details on the fixation area on the mesh surface. It is
applicable to dynamic scenes as the values are linked to objects and not
to world space, but is restricted to coarse-grained analysis. For finer
results, surface-based representations highlight the parts of the mesh
that have been fixed. This is particularly useful to get information on
which sections of a mesh attracts the most attention. The values can
be stored directly alongside vertices [18, 41, 67] or triangles. However,
this method is strongly dependent on the mesh sampling resolution,
and does not allow for the mapping of data at higher resolution and
uniformly inside a triangle. This can cause issues, e.g., with meshes
with very large triangles such as walls and floors where the eye-gaze or
position projection may land inside a limited region of a triangle.

To overcome limitations due to mesh resolution, Maurus et al. [46]
proposed a pixel-based method that projects a Gaussian from screen
space onto surfaces to form the visual attention map. They added the
use of z-buffers to determine occluded areas for each point of view.
This technique has the advantage of being relatively fast as it does
not require computing raycasts into the scene for occlusion testing.
However, it is GPU-memory expensive as each point of view requires a
z-buffer, making it not scale well for long records. Moreover, it is not
designed to work with dynamic scenes as data are not bound to objects.
To keep the benefits of a detailed visual attention map without being
too heavy memory-wise and to have values bound to separate scene
objects, Pfeiffer and Memili [55] proposed a texel-based method that
stores values into a texture image. While being suitable for real-time
and dynamic scenes, the computed texture is heavily coupled with the
UV mapping of objects, which can be missing (e.g. for CAD objects),
overlapping or non-uniform. To tackle these issues, within the PLUME
Viewer, we propose a real-time surface-based mapping method agnostic
to UV mapping and which resolution can go beyond the mesh one.

2.3 Software for Behavioral and Physiological Data Collec-
tion and Visualization in 6DoF XR

In the scientific literature as well as in the industry, software tools
have been proposed to collect and visualize or even replay behavioral
or/and physiological data of XR users, possibly in the VE context. For
behavioral data like motions, REC [23] has been designed as a Unity
open-source plugin to record users’ body motions in XR and transfer
them to avatars afterwards. For user trajectories, the CrowdMP [59]
open-source project allows for the recording and replay in Unity VEs
of a VR user’s displacements among a crowd of virtual humans whose
runtime trajectories are recorded and replayed too. The EyeCVE sys-
tem [50], among others, had been developed to capture and replay
multiple CAVEs users’ gaze. For user inputs and actions, the commer-
cial software NVIDIA VCR [52] enables their capture, editing (filtering,
assembling) and replay, for OpenVR applications only. To generalize
to more XR applications and to ease their design, where such user data
would be logged and analyzed, Wu, Robert and colleagues proposed
the framework GuST-3D [60, 80]. This “design framework” approach
is in line with other tools such as UXF [8] that focused on logging
behavioral events, MRAT [51] that enabled in-situ replays in the real
world for Mixed Reality (MR) applications, and Ubiq [66] that was
designed to create supervised remote and collaborative XR studies. For
physiological data, LSL4Unity [20] can be used to record physiological
sensor signals synchronously with virtual objects positions.

The analysis of the aforementioned tools highlights challenges for
this kind of software, beyond signals capture and restitution: i) the syn-

Tool License Collected Data Visualization Tools Use Format
REC [23] GPLv3 Skeleton Transforms Skeleton Animation Replay 1 CSV
CrowdMP [59] MIT User / Agents Transform - 1 CSV
NVIDIA VCR
[52]

Proprietary HMD and Controller Inputs 3D Playback 1 Binary

GuST-3D [80] CeCILL User Transform and Eye Tracking*, Physiological
Signals*

Actions Graph 1 BVH, CSV

UXF [8] MIT User / Objects Transforms, Mouse, Custom - 1, 3 CSV, JSON, DB
MRAT [51] N/A User / Objects Transforms, Eye Tracking, Tasks,

Gesture and Voice Commands, Event Markers,
Screenshots, Custom

Timeline, Floor Plan 4, 5 JSON

Ubiq [66] ALv2 Experiment Logs and Network Traces - 1-5 JSON
LSL4
Unity [20]

MIT User / Objects Transforms, Eye Tracking*, Physio-
logical Signals, Custom

- 1, 2 XDF

ReLive [33] MIT User / Objects Transforms, Audio, Meshes, Ques-
tionnaires

3D Playback, Trajectories, Events Timeline,
Additional Metrics, Custom

4, 5 JSON

MIRIA [10] MIT User Transform, Interactions, Events Trajectories, Position Heatmap, Scatterplots 4 CSV
XREcho [77] MPLv2 User / Objects Transforms, Meshes, Eye Tracking* 3D Playback, Position Heatmap, Trajectories 1 CSV
VRSTK
[17, 29]

MIT User / Objects Transforms, Eye Gaze*, Physiologi-
cal Signals*, Questionnaires, Custom

3D Playback, Position Heatmap, Object Look
Graph

1 JSON, CSV

Tobii Ocumen
[73]

Proprietary Eye Tracking*, User / Objects Transforms, Colliders,
Meshes, Rendered Video

3D Playback, Eye Gaze Heatmap, Gaze Plots,
Perception Maps, Object Total Gaze Time,
Object Focus Count, Correlated Objects

1 Custom,
CSV

Vizard [69] Proprietary User / Objects Transforms, Meshes, Eye Tracking*,
Physiological Signals*

Eye Gaze Path, Eye Gaze Heatmap, Intersects
and Fixations

1 CSV

Cognitive 3D
[14]

Proprietary User / Objects Transforms, Meshes, Eye Tracking,
Physiological Signals*, Audio, Events

3D Playback, Eye Gaze Heatmap, Physiologi-
cal Signals

1, 4,
5

JSON

PLUME (ours) GPLv3 User / Objects Transforms, Audio, Meshes, Lights,
Canvas (UI), Eye Tracking, Interactions, Event
Markers, Physiological Signals, Custom

3D Playback, Position / Eye-Gaze / Inter-
action Heatmaps, Trajectories, Physiological
Signals and Events Markers

1-7 PLM, CSV,
XDF, PLY**

*Compatible with a reduced range of devices **Heatmaps Point Clouds (1) PC-VR (2) Standalone-VR (3) Web-VR (4) AR (5) MR (6) 2D (7) 3D

Table 1: Comparison of available software for behavioral and physiological data collection and visualization (in 6DoF). The comparison is based on
information available in original papers and code repositories.

chronous capture of different kinds of data and from multiple sources,
ii) the visualization of VE-contextualized signals i.e., in the light of the
VE state (user viewport, objects positions, time markers of previous
interactions etc.), iii) the ease of the recording tool integration into
existing projects, iv) the production of record files in interoperable
formats. From this, other studies attempted to address some of these
challenges simultaneously. ReLive [33] and MIRIA [10] offer in/ex-
situ visualizations from multiple participants’ motions and actions, only
in MR and without handling physiological data. AvatAR [58] proposes
advanced visualizations of behavioral data in MR: gaze collisions and
footprint visualization frame by frame, user touches on objects, 3D
trajectories and trajectory heatmaps for post-analyses. However, no
code or software are available. For VR, XREcho plugin for Unity [77]
and VRSTK [17, 29] enable the recording and replay of contextualized
sessions with advanced visualizations such as gaze collisions on the VE
and trajectory heatmaps. Both remain limited for physiological data
capture and data visualization, e.g. with the absence of gaze heatmaps
(see Section 2.2). Tobii Ocumen commercial software [73] enables
the capture of VR user’s gaze, hand and head motions. It provides
contextualized replays based on virtual objects position and user inputs
recordings in a standalone viewer. Eye-related physiological data such
as pupil dilation are recorded too; however this software remains mainly
gaze-oriented with no options for other physiological data integration.

The two most complete software – commercial, are Vizard [69] and
Cognitive3D [14]. Their main strength is the capture and visualization
of behavioral but also physiological data. The former is a Python-
based VR development solution that integrates visualization tools; the
latter is a plugin for Unity and Unreal Engine that can be integrated
to existing experiments. Their accessibility remains a concern, partly
because of their cost, but also Vizard’s incompatibility with Unity, and
Cognitive3D’s dependence on proprietary servers for data storage and
processing. Table 1 provides a comparison of tools functionalities.

According to our review of the current literature, available soft-

ware address parts of the challenges previously listed (synchronous
capture of data, VE-contextualized visualizations, ease of integration
within XR applications, interoperability), but none answers them all
for 6-DoF XR experiments. PLUME addresses all these challenges
within an open-source and modular architecture, focusing on commu-
nity engagement to foster improvements and adaptations. It allows
the capture of both behavioral and physiological data, and provides
in-context visualizations in a standalone viewer (including a new 6DoF
eye-gaze projection algorithm), even for built applications. PLUME
can be easily integrated into any Unity-based experiment and XR de-
vice (even standalone HMDs). Its interoperable data format and open
architecture enable the development of new analysis modules by the
community. Finally, we ensure the preservation of XR performances
and thus user experience, through an in-depth evaluation of PLUME’s
possible impact at runtime, a question mainly not tackled in other tools.

3 MOTIVATIONS AND DESIGN CHOICES

In this section, we highlight our motivations for the creation of PLUME
and its main contributions to the scientific community.

Review and Share 6DoF-XR Experimentations Our tool can
be used to run post-experimental checks to ensure that user sessions in
XR were conducted as expected. Reviewing sessions through PLUME
can help understanding unforeseen causes of outlier recordings, if post-
hoc data analyses had revealed unexpected results. PLUME also offers
an interactive way to share experiment content, helping reviewers and
readers to understand experimental protocols.

Interactive Data Exploration To facilitate the analysis of XR
experiments data, which are multimodal and dense, we propose an
interactive visualization tool that links the recorded data to the VE
context. PLUME Viewer allows reviewers, researchers, or developers
to review an experience. Unlike videos where only one viewpoint is
displayed, our interactive 3D tool enables exploration of the VE, and the

display of visualizations on it (trajectories, visual attention, interactions,
physiological signals). These visualisation tools are precious assets to
visualize and understand XR users’ behavior and experience.

Create a File Format for XR Behavioral Data Conducting exper-
iments using XR technologies is complex and time-consuming, often
limiting the number of people per experiment. Paradoxically, statistical
studies need large numbers of data to validate a result, as XR studies
involve subjects with strong interpersonal differences that introduce
uncontrollable biases. This observation is particularly relevant to exper-
iments where users move with 6DoF, since more options are available
to them e.g., moving directions, time to interact with objects. To facili-
tate data sharing and building large cross-laboratory datasets, PLUME
defines an open, compact, language-neutral and platform-neutral file
format that contains data from Unity, LSL, and even custom data.

Replicability, reproducibility and reliability of XR Experiments
The lack of replicability and reproducibility is a major issue in XR
research [30], as in many other fields that involve human subjects, from
psychology to neuroscience. This so-called replication crisis is due to
several factors such as intrinsic bias of subjective data collection, lack
of raw data sharing, lack of structured systematic procedures and lack
of data analysis transparency. The PLUME toolkit and its interoperable
data format greatly contribute to resolving these issues, as it allows for
consistent and accurate data collection, repeatable analysis, and easy
sharing of experiments and results. In particular, it facilitates multi-site
collaborations allowing for larger studies, as recommended by Carlier
et al. [39] to increase VR studies reliability and statistical power.

Making implicit data accessible for everyone As raised in the
introduction, collecting, and analyzing implicit data may require high-
level software engineering resources, especially for visualizing or ana-
lyzing object trajectories, user gaze, and relevant heatmaps, or when
it comes to synchronizing physiological and behavioral data, for joint
analysis. This requirement impairs the utilization of these rich data,
especially for academic teams outside the field of computer science.
With Plume, which has been designed to be as easy as possible to
use, we are committed to allowing any academic team, even without
computer engineering resources or knowledge, to capture, review, and
analyze implicit data from XR experiments.

4 FUNCTIONALITIES

We highlight here the main functionalities of PLUME (See Fig. 2),
which consists of three tools: i) PLUME Recorder, a plug-and-play
package for Unity to exhaustively record experiments, ii) PLUME
Viewer, a standalone application to interactively replay and analyze the
records, and iii) PLUME Python, a Python package to load records for
external analysis and export to different data formats.

4.1 PLUME Recorder: a Plug-and-Play Unity Package

For our recorder, we targeted Unity3D game engine since it is a free,
easy-to-use, and community-oriented graphics and physics engine to
develop 2D, 3D and XR applications. It is widely used by researchers
who need a VE for their experiments. Even though their main effort is
usually on developing the VE, they also need ad-hoc recording tools to
track users’ behaviors for post-experiment analyses. To save them the
time they spend developing logging tools and let them focus on their
scientific objectives, we designed the PLUME Recorder to be plug-
and-play, generic, lightweight and compatible with already existing
projects. PLUME Recorder comes with a pre-configured module that
can be dragged and dropped in a project to record with no extra config-
uration needed. It records the experiment as exhaustively as possible2,
including objects positions, appearances, user interfaces, perceived
audio and user interactions. As experiments can run into difficulties,
we integrated fail-safe mechanisms to the PLUME Recorder.

2Recorder modules currently implemented for: Transform, Mesh and
Skinned Mesh Renderer, Audio, Canvas, Terrain, Light, Camera, Render Set-
tings, Render Pipeline, Input Actions, LSL streams, custom markers, XRBaseIn-
teractor + XRBaseInteractable (XRITK)

Physiological Signals Recording The PLUME Recorder offers
the capability to synchronously record physiological signals with the
virtual environment itself (eye tracking, heart rate, electrocardiogram,
electroencephalogram etc.). In order to support a wide variety of de-
vices, the PLUME Recorder integrates a receiver for applications that
uses the Lab Streaming Layer (LSL) [21]. LSL is “an open-source
networked middleware ecosystem to stream, receive, synchronize, and
record neural, physiological, and behavioral data streams acquired from
diverse sensor hardware”. LSL has an already well-developed com-
munity and, as stated in their documentation, is compatible with “the
majority of EEG systems on the market” and other biosignal hardware.
By making PLUME able to record LSL streams, this further reduces
the development time needed for researchers that seek to integrate
synchronized physiological data in their recordings.

XR Interactions Recording XR experiments include specific in-
teractions with the VE that are relevant to log for behavioral analyses.
To integrate this kind of logging in the PLUME Recorder, we devel-
oped an extension to support the XR Interaction Toolkit (XRITK) [75],
Unity’s solution to create XR applications based on OpenXR, provid-
ing thus the largest compatibility. This pre-configured module can be
added to the XR projects to log generic user interactions. These logs in-
clude the object used to interact, interacted objects, the interaction type
(hover, select or activate) and status (begin/end). These interactions
can later be visualized using the PLUME Viewer (See Section 4.4).
The PLUME Recorder can also be customized to add the logging of
application-specific interactions (See Section 4.5).

Broad Compatibility Our recorder is a versatile module, and while
our main target is XR experiment recording, its design makes it also
usable in most non-XR Unity projects, whether 2D or 3D. It supports
different rendering pipelines (built-in, universal, high definition), and is
compatible with applications built for Windows, Android and iOS. We
have tested it on current Unity Long Term Support versions – 2021.3
and 2022.3 at the writing time. Although our recorder has been devel-
oped to be hardware agnostic, we have conducted specific testing for
standalone HMDs to ensure compatibility. It has notably been tested
with: HTC Vive Pro 2, HTC Vive Pro Eye, Varjo XR-3, Meta Quest 2
and Meta Quest Pro (PC VR and standalone mode for these last two).

4.2 Interoperable Record File

To the authors’ knowledge on the current state of the literature, there is
no open file format that is able to encapsulate the diversity, richness
and complexity of VE experiments in an efficient manner. We propose
our own file format based on the already established Protobuf format.
We use Protobuf to serialize record samples in a language-neutral,
platform-neutral manner, maximizing interoperability of the save file
between languages and workflows. The data collected by the recorder
is saved in a single file as the recording progresses. To save space, we
compress the data on-the-fly using a dynamic compression algorithm
and the gzip file format. This allows data compression as soon as it
becomes available, unlike static compression that requires the record to
be complete. As data are frequently flushed on disk and compression is
dynamic, data loss would be limited in case of application failure. The
record file can then be used to replay the experiment in PLUME Viewer
(See Section 4.4) without sharing the whole Unity project, making it
ideal to share exhaustive results of an experiment with peers.

4.3 PLUME Python: Load And Convert Records in Python

Our record files can easily be loaded in Python using the Protobuf
python package due to their interoperability. To further improve work-
flows, we provide a python package PLUME Python that contains a
set of utilities: load records, filter samples and convert the file to com-
monly used data formats. For instance, one can convert the samples to
a pandas dataframe [47] for statistical analysis, export it to CSV, or im-
plement their own exportation process. To maximize the integration in
the LSL ecosystem, PLUME Python can also export the physiological
signals as well as event markers to Extensible Data Format (XDF) to
be loaded in SigViewer [9], EEGLAB [16] and MoBILAB [53].

Unity Project

PLUME Recorder

Unity Application

PLUME Recorder
PLUME Python

PLUME Viewer

 Build

PLUME Record

Asset Bundle

LSL Application

Stream physiological signals

 Build Asset Bundle

Export to CSV /
XDF

Prepare for data
analysis

In-VE Interactive
Replay

6-DoF Visual
Attention HM

Positionnal
Heatmap

Interactions
Highlight

Physiological
Signals

Fig. 2: Overview of the PLUME Toolbox

4.4 PLUME Viewer: a Standalone Viewer and Analyzer
Records can be replayed interactively in our separate and standalone
application PLUME Viewer, fully decoupled with the original Unity
project of an experiment. It facilitates the sharing of a record with
peers, as it does not require any cumbersome installation of the project.
To share a record, one simply needs to send the record file and the asso-
ciated asset bundle3 exported by the recorder (See Fig. 2). Given these
files, the viewer can replay the experiment in an interactive manner to
visualize behavioral data inside the VE. One can navigate inside the
VE, play or pause the replay, or go to a specific timestamp. A major
benefit of this viewer is the contextualisation of temporal data such as
event markers or physiological signals within the spatial environment.
The viewer also comes with several analysis modules described below.

3D Trajectory. For an object, positional data are loaded and used to
create a polyline that represents the object 3D trajectory. This trajectory
can be computed for the entire duration of the record or a specific time
range. Multiple trajectories can be displayed at the same time.

Interaction Highlighting. This feature highlights objects that have
been the most interacted with. This visualization can be computed
for one or more interactors interacting with one or more interactables.
While non-interactable objects are displayed in transparency, interacta-
bles with the fewest interactions are shown in white, and those with the
most interactions in red.

6DoF Position Heatmap. For a designated object, positional data are
loaded and orthogonally projected towards the ground (y-axis) using an
adjustable Gaussian distribution. Positional heatmaps can be computed
for the entire duration of the record or a specific time range.

6DoF Eye-gaze Heatmap. Positional gaze data, i.e., origin and di-
rection, are loaded and projected from the user viewpoint onto selected
objects in the VE using a Gaussian distribution that simulates eye gaze.
Since gaze data are projected onto objects in the scene, the position
of some dynamic ones will change throughout the session. To con-
sider this when projecting data, the scene is replayed in fast-forward
to respect the occlusions generated by these dynamic objects. Visual
attention heatmaps can be computed for the entire record or a section.
Implementation details are given in Section 5.4.

4.5 Extensibility
As every experiment is different, one might need to record custom
event as markers, or more complex data. To meet the needs of as many
researchers as possible, we designed PLUME with extensibility in mind.
Custom data can be recorded by sending a custom Protobuf payload to
the recording system in one line of code, from anywhere in the project.
The sample is automatically timestamped, written to the record file,
and accessible in our other tools (PLUME Python, PLUME Viewer).

5 TECHNICAL HIGHLIGHTS

This section describes the key technical points that allow PLUME to
operate efficiently and accurately, from the recording mechanism and its

3An asset bundle is a file that contains assets from a Unity project. It can
easily be built during the development of the application since the PLUME
Recorder package provides a build feature directly usable within Unity editor

clock system to the mechanism for replaying records, to optimizations
making everything more performant. Finally, the last part is dedicated
to the algorithm we introduced for 6DoF heatmaps.

5.1 Recording the Virtual Environment
5.1.1 Event-based vs State-Based Recording
When it comes to creating a recording engine, two approaches exist:
event-based and state-based recording.

The event-based method relies on capturing any event that may result
in a change in the VE e.g., by recording the input sent to the game. This
method requires the engine to be deterministic so that replaying the
events lead to the same result in the VE for every simulation. It has the
benefit of being very lightweight, i.e., with a frugal quantity of data col-
lected. However, event-based recording comes with several downsides:
i) the VE state at any time is implicitly defined by the inputs, making
harder the analysis of a record without fully re-simulating the VE, and
strongly coupled with the game engine used for recording; ii) Unity
physics engine is not natively deterministic, so re-simulating a record
twice might not result in the same behavior, leading to authenticity
issues. For these reasons, we decided to avoid using this method.

The state-based method relies on capturing the changes in the state
of the virtual environment, i.e., when objects move, rotate, change their
appearance, etc. Saving the state of the VE has the benefit of being
explicit, meaning that one can access the state of the VE in the record at
any time without having to re-simulate the whole VE. In opposition to
the event-based system, data are decoupled with the game engine. This
major benefit comes at the cost of a more intensive recording process
and a higher volume of generated data. To mitigate these issues, we
fragmented the description of the VE state into small samples. This
allows for the recording of partial changes in the state of the VE only,
i.e., when one property of an object changes, we do not record any
other unchanged properties. Additionally, record files are compressed
using Deflate to save disk space. Finally, we optimized the PLUME
Recorder to be as fast as possible to minimize its impact on experiments.
Performance considerations are described in Section 5.3.

5.1.2 Time Measurement
Recording the state of a VE requires an adequate timing system so that
the temporal context remains as authentic as possible. Two components
are important: i) the choice of the clock to add timestamps to samples,
and ii) the synchronization of the clocks between PLUME Recorder and
external systems, eg., Lab Streaming Layer for physiological signals.

Each recorded sample is associated with a timestamp expressed in
nanoseconds since the beginning of the record on a 64-bits unsigned
integer. The timestamp is automatically added when the sample is sent
to the recording system using a high resolution Stopwatch clock [48].
Time measurement accuracy depends on the frequency of this clock.
During our experimentations with PLUME, the Stopwatch implementa-
tion on our machine was accurate within 100 nanoseconds (107 ticks/s).

PLUME Recorder integrates synchronized recording of physiologi-
cal data with LSL. LSL samples timestamps are adjusted to be on the
same time frame as PLUME’s clock. Network latency between clients
emitting on LSL streams and the PLUME Recorder receiving the data

is corrected using LSL time correction estimate. According to their
documentation, the LSL clock has a “sub-millisecond accuracy on a
local network of computers”, to analyze fast changes in signals such
as brain activity. A major benefit and contribution resulting from this
synchronization is the ability to contextualize the physiological signals
within the spatial context of the VE.

5.1.3 Referencing Scene Objects And Assets
In a record, each object property update is associated with an object
identifier. This one is crucial to keep the context of which object emitted
which data and when. Unity provides at runtime a unique instance
identifier (an integer) for each object in the scene. It is regenerated each
time the application is run, making it unsuitable as a stable identifier
for the same object across multiple records. As this could be useful
for inter-record analysis, we implemented a stable globally unique
identifier system (GUID) in our recorder. When building a project, a
GUID registry stores a stable mapping between object references in the
scenes and a unique GUID. When a new object is detected and does not
have a GUID yet, a new one is automatically generated and inserted in
the registry. In the same manner, we added a separate GUID registry
specific to assets (meshes, materials, lightmaps...) that also stores the
asset path so it can be found in the asset bundle exported by PLUME.

5.2 Replaying a Record
The exhaustivity of data contained in record files allows for a complete
replay in our standalone PLUME Viewer. Samples are chronologically
replayed with a mapping between the record object identifiers and
instantiated replay objects. Assets such as meshes, materials, lightmaps,
are loaded from the asset bundle using the recorded asset path. All of
the assets required for the replay can be contained into the asset bundle,
and no extra file apart from the record file and the asset bundle are
needed to replay the record in PLUME Viewer.

5.3 Performance Considerations
5.3.1 Sample Pooling
When recording several dynamic objects in a scene, a lot of samples
are instantiated each frame. Garbage collector operations, including
allocation and release of the memory, have a direct impact on perfor-
mance. For example, a transform update sample (position and rotation)
contains approximately 300 bytes, mainly due to the size of the GUIDs.
Allocating 300 bytes for each moving object at 50Hz can result in a
lot of garbage collection operations. To reduce allocations number and
memory release, the PLUME Recorder can reuse instance of samples
for which the content has already been written to the file buffer. Sample
instances are placed inside an object pool when available for reuse.
When creating a new sample, one can get an old instance in the pool
and fill it with new values instead of allocating a totally new instance.

5.3.2 Threaded Sample Packing and Writing
To provide extensibility as defined in Section 4.5, each sample contains
a payload packed in the Protobuf’s Any type. The packing process is
executed in a separate thread to reduce its impact. When recording a
sample, the user sends the payload. It is then wrapped in an unpacked
sample marked with its timestamp, and added to a thread-safe queue.
The packing thread consumes the unpacked sample, creates a sample
with the payload packed inside the Any type, and writes it to the disk.

5.4 GPU Accelerated 6DoF Heatmap
As previously seen in Section 2.2, to our knowledge, there is no al-
gorithm for 6DoF heatmap generation that supports dynamic scenes,
is agnostic to meshes UV mapping, and is able to go beyond mesh
resolution. We propose a new method to compute and render these
maps that overcomes these limitations. Our representation to store the
values is inspired by Yuksel et al. [81] Mesh Colors, consisting of a
sub-sampling of each triangle of the mesh. Our method can generate
6DoF heatmaps in real-time from the recorded data with adjustable
parameters, and renders it in real-time as well. We use this heatmap
generation process in our PLUME Viewer to project and analyze the
eye-gazes and objects positions in the virtual environment.

5.4.1 Mesh sampling
We resolve issues related to UV mapping and mesh resolution by stor-
ing heatmap values on points sampled on the surface. We adapted
the Yuksel et al. [81] representation that uses an equally subdivided
barycentric space to store mesh color data. The original Mesh Colors
algorithm proposes a way to reference samples by their barycentric
coordinates in the triangle. To better fit our need, we implemented a
sample indexing in O(1) complexity. This way, GPU kernels used for
accelerating the projection algorithm can directly reference samples us-
ing this index. We adapt the number of samples in triangles depending
on their surface area to achieve an acceptable quasi-uniform distribu-
tion over all the mesh. While not perfectly uniform, our representation
allows for a O(1) indexing of samples and a good compromise between
uniformity and computational cost. To reduce memory usage, each
sample stores a single float instead of a RGBA value, and colorization
of the heatmap is done in the shader used for rendering.

Mesh triangles are rarely uniform in terms of scale across a model,
e.g., it may have a very large amount of small triangles in high detailed
areas, and fewer but larger triangles in low detailed sections. Thus, ap-
plying the same resolution r to all the triangles of the mesh would result
in an unbalanced distribution of samples. We propose to adapt the sam-
pling for each triangle based on their surface area to obtain a globally
quasi-uniform distribution (See adaptive sampling resolution example
in supplementary materials). Let k be a parameter corresponding to
the number of sample points per squared meter we want to achieve, A
the area of the triangle and r its resolution. We want to compute r so
that number of samples #p, computed using the n-th triangle formula,
satisfies the following equation #p

A = k. We constrain the resolution r
to be greater or equal to 1, ensuring that each triangle has at least its
three vertices storing a value. Finally r can be expressed as:

r ≥ 1
#p =

(r+1)(r+2)
2

#p
A = k

⇒ r =

1 1+8kA < 25

−3+
√

1+8kA
2

1+8kA ≥ 25

The adaptive resolution results in good quasi-uniform distribution of
sample points on different size triangles. The triangle subdivision we
use ensures the samples are evenly spaced across an equilateral triangle
surface. Triangles are rarely equilaterals in practice in a model, but
this representation offers a cheap way of indexing samples in a O(1)
complexity, as demonstrated above, and is good enough to achieve an
overall quasi-uniform distribution of samples on the mesh. Additionally,
when a mesh resolution becomes too high (with very small triangles)
the sampling can be coupled to the mesh resolution again if the sample
density k is not high enough. We chose a default value of k = 1000
samples per squared meter which fits most of our use cases.

5.4.2 Gaussian projection
Heatmap generation is composed of several steps depicted in Fig. 3. We
start by accumulating projected Gaussian distributions corresponding
to eye gazes or projected positions. The projection of the Gaussian is
done through a virtual camera with a custom projection matrix, where
approximately 100% of the Gaussian non-zero values are included in
the resulting view frustum. We chose to include values corresponding
to 4 standard deviations (includes approximately 99.99% of all values).
In the case of eye gaze, the projection matrix is a perspective matrix,
modelling the eye-gaze dispersion as a cone. The field of view of this
perspective matrix is set to match the fovea angle of the human eye – we
considered approximately 2.5◦ from the optical axis of an eye. In the
case of user positions, an orthographic matrix is used to project them
onto selected surfaces (in most cases the VE floor), with a diameter
corresponding approximately to the average shoulder width (0.5 meters
considered here). These parameters can be adjusted in PLUME Viewer.

In both cases, the projection step takes into account any occlusion
that could occur. Gaussian values computation should only be per-
formed on visible samples. The easiest and fastest way to perform an
occlusion check is to use the z-buffer of our virtual camera, as used

by previous works [46, 55]. This buffer stores the minimal depth of
3D points projected on the screen. When two 3D points are projected
onto the same buffer pixel, the shortest depth is kept. To know if a
sample is visible, we compare its depth with the closest depth stored
in the z-buffer. If the values are close enough (±ε), the sample is
considered visible from the virtual camera. Using a z-buffer has the
benefit of being compatible with any model, without requiring colliders
and casting rays into the VE to check occlusions.

(a) (b) (c)

Fig. 3: Gaussian projection into 3D space to build heatmaps (a) per-
spective projection for eye-gaze mapping (b) orthographic projection for
position mapping (c) z-buffer for occlusion check. Sample (2) is closer
to the camera than occluded sample (3). (1) is the smallest depth value
projected in screen space, stored in the z-buffer, here it equals (2). As
(3) does not equal (1) (±ε), it does not receive the Gaussian projection.

A final pass normalizes the values after aggregation. Normalization
is useful for filtering or applying transformations on the values later
on, e.g., to tweak the render of the heatmap by changing color scale to
enhance contrast. To normalize values, we keep track of the maximum
value attributed to the sample points during aggregation.

5.4.3 Optimizations
Our algorithm is easily parallelizable on a GPU due to our samples
indexing system and because Gaussian values can be independently
computed for each sample. We use one GPU kernel to accumulate
values, and one to normalize them and run it on all samples on a mesh.
To avoid another pass through all samples to find the maximum value
for normalization, the maximum value is saved inside the accumulation
pass. The latter is subject to a race condition as each thread can update
the maximum value at any time. We ensure that no race condition can
occur in this critical code section using a mutex inside the accumulation
kernel, locking the writing operations on the maximum value.

When accumulating values for a fixation, the naive approach is to
run the kernel for all samples contained in the meshes of the VE, which
is greedy, does not scale well, and is not applicable for complex VEs.
To reduce the samples number where the projection is computed, we
discard those not visible by the virtual camera, as their value are outside
of 4σ of the Gaussian i.e., very close to 0.

5.4.4 Export
Position and eye-gaze heatmaps are exportable as point clouds. Each
object in the scene is exported in a separated file. Samples from each
objects are exported as points with their 3D position expressed in model
space and a scalar field containing the aggregated value. This makes
results available for external numerical analysis and visualization tools
(eg. CloudCompare [22], MeshLab [13], Point Cloud Library [63]).

6 PERFORMANCES EVALUATION

Considering that the PLUME Recorder is executed at the same time
as the XR application, it may have an impact on in-XR performance.
To limit potential negative effects on quality of experience (QoE) and
prevent cybersickness, this performance impact must be as low as
possible since XR applications must run at high frame rates (between
60 and 120 fps, depending on the applications and HMDs) [78]. In
this regard, we designed and optimized PLUME Recorder to be as fast
as possible (see Sections 5.1 and 5.3). We designed a benchmark to

evaluate the impact of PLUME Recorder on performance, knowing that
this impact is directly related to the number of objects (GameObjects
in Unity), since they are all tracked with their motion. Our benchmark
is as follows: we created three artificial scenes with respectively 300,
600, and 900 objects (simple cubes, since the object complexity has
no impact on PLUME performance). For each of these configurations,
we derived three sub-configurations for which respectively 0%, 25%
and 50% objects are moving. For all these configurations, we measured
the mean (and the 2.5th and 97.5th percentiles) increase in frame time
due to our recorder. This benchmark was run on a PC with up-to-date
graphics drivers, and these specifications: Windows 10; Intel Core i9-
10900K, 20 core @3.7GHz; 32 Go RAM; NVIDIA GeForce RTX 3070,
8Go VRAM. We used a simple screen display (not VR) since this does
not affect PLUME performance. Table 2 provides the results. For the
most tedious configuration (900 objects, of which 50% are moving) the
performance loss is 2.2ms on average, which remains quite reasonable
– 900 objects of which 450 are moving represent a realistic upper
limit of standard VR experiments. These performance measures are
valid for PC-VR experiments; however, autonomous HMDs have less
CPU capability thus the impact may be higher. Accurate performance
measures are difficult to run on HMDs since frame rates are usually
capped at some predefined values. Still, we measured the loss in
performance due to PLUME Recorder for the VR experiment conducted
on a Meta Quest Pro and presented in section 7 (the scene contains
∼600 objects, of which ∼20% are moving). The measured average
loss in performance is 1.04ms (67 fps with PLUME, 72 fps without).

VE objects count 300 600 900
Moving object % 0 25 50 0 25 50 0 25 50

Mean (ms) 0.08 0.31 0.68 0.19 0.59 1.66 0.25 0.87 2.16
2.5th percentile 0.00 0.12 0.50 0.06 0.36 1.32 0.10 0.60 1.76
97.5th percentile 0.20 0.56 0.78 0.30 1.24 2.78 0.42 1.64 3.30

Table 2: Frame time increase due to PLUME Recorder, various VEs

7 CASE STUDY

To demonstrate the potential of PLUME in helping researchers analyze
XR experiments, we developed an experimental protocol based on a
searching task: to find as many Easter eggs as possible in 3 minutes.
This takes place in a 6DoF highly interactable VE: a house with a living
room, a kitchen, two bedrooms and a bathroom, all linked by a corridor.

For the VR system we used a Meta Quest Pro in standalone mode
coupled with Touch Pro controllers. In addition, we used a cardiac chest
strap (Polar H9) to measure user heart rate. This device sent its data
via Bluetooth and the computer streams them on a local network using
LSL. Since the HMD was also connected to the local network via Wi-Fi,
it received the streamed physiological data, which allowed PLUME
to record them synchronously with the VR session (See a diagram of
this setup in supplementary materials). Users were free to move in a
2.5m * 4m area and to teleport in VR, granting them 6DoF. PLUME
Recorder was integrated to the scene to record sessions as described
in Section 4. Custom event markers were created to be recorded when
the user finds an egg and enters a room; another marker recorded the
total number of eggs retrieved. The PLUME record was saved on the
Meta Quest Pro and could be reviewed later using PLUME Viewer on
Windows. Using PLUME Viewer, anyone can replay the recordings in
real time, to review users’ actions and create visualizations as illustrated
in Figures 1 and 5. In particular, the custom event markers can easily be
connected with the physiological signal and the user behavior (e.g., the
user trajectory). Recorded data can also be loaded into a conventional
statistical analysis process using PLUME Python to produce relevant
analysis. Figure 5 shows: a) a graph displaying the number of collected
eggs over time for two users, and b) a table with the following statistics:
total number of collected eggs, number of grabbed objects, the most
hovered object, total distance covered, and number of teleportations.

8 ETHICS

By design PLUME records data anonymously, but depending on how
it is used, personal data may be linked to the recordings. We would

(a) 3D Trajectory + Event markers (b) Hovered objects highlight

(c) Visual attention HM (d) Position HM + Trajectory

Fig. 4: PLUME Viewer visualization examples

(a) Collected eggs over time: 2-users comparison.

Eggs Grabbed Most Hovered Traveled (m) Teleportation
User 1 23 15 Refrigerator 123.3 67
User 2 15 42 Wine Bottle 88.90 42

(b) Various behavior statistics: 2-users comparison

Fig. 5: Computed analytics with PLUME Python

therefore warn researchers that wish to use the tool that they need to be
careful when recording experimental data, especially when XR session
data may be linked to personal data. Actually, recorded data such as
positional data from the headset, controllers or trackers can be used to
accurately re-identify yet anonymized data, e.g., through gait motion
recognition [38]. Eye-gaze [2] and other bio-signals also provide
ways of re-identification. Therefore, the use of PLUME with XR
applications must be discussed with local ethical committees and data
protection officers as the type of data collected with PLUME may lead
to experiment participants’ anonymity break. When using PLUME for
public datasets creation, some solutions could be inspired from David-
John et al. [15] work, who presented mechanisms to effectively reduce
re-identification rate while maintaining high usability when training
machine learning models. Despite these potential risks (leakage of
personal data, re-identification, links with sensitive data), we believe
that PLUME will positively contribute to academic research, and to the
growth and accessibility of human-centered experimentation in XR.

9 CONCLUSION

We presented PLUME, a collection of tools to record, visualize, and
analyze experiments conducted in 6DoF virtual environments. PLUME
is aimed at researchers seeking to use behavioral and physiological data
from Unity XR applications. PLUME Recorder for Unity is a light-
weight, efficient, plug-and-play and multi-platform recorder that can be
integrated at any development stage. To review and analyze records, we
propose a standalone viewer, enabling interactive replays, synchronized
with physiological signals and visualizations (trajectories, interactions
highlights, position and eye-gaze heatmaps). Records can be loaded
into traditional statistical workflows too, using PLUME Python for post-
hoc analyses. To promote its adoption, PLUME is specifically designed

to be as easy as possible to use, even for in-the-wild experiments with
autonomous HMDs. In addition, PLUME is open-source and available
on GitHub for the community to use and contribute to.

Limitations Much of the remaining technical challenges for
PLUME development reside in improving performances even further.
This is especially true for the viewer application that is yet to receive
as much attention to its performances as the recorder did, particularly
to handle large recordings. Besides, analysis modules are currently lim-
ited to one single-user record, which can be a major limitation for some
use-cases, notably i) repeated single-user experiment, and ii) multi-user
experiment. For the former, it would require adapting the existing
modules to run aggregated data analysis such as navigation compar-
ison across conditions. Regarding multi-user cases, their recording
can already be done with PLUME on every instance of the application,
creating as many records as there are users. This solution has two major
advantages: the actual experience of each participant is recorded, even
preserving latency and network issues; each record contains the data for
the entire experiment – e.g. other users’ positions, state of the VE etc.
from the viewpoint of one user, and is therefore self-sufficient. How-
ever, this raises problems when aggregating and visualizing data, as the
VE state is duplicated in every record but might not be synchronized.
Enabling multi-users recording synchronization would require specific
development. Coupled with aggregated data analysis, this would cater
to the needs of the emerging social XR use-cases.

Perspectives We are actively working on resolving the aforemen-
tioned limitations. We anticipated the creation of analysis modules for
aggregated records of the same experiment through the implementation
of unique identification of virtual objects (See Section 5.1.3). More-
over, some XR use-cases could require external data feeds (e.g. external
webcam, integrated MR passthrough video, microphone, etc.) to be syn-
chronously recorded and replayed. Although not optimal, their capture
is already feasible using LSL integration in PLUME. Specific modules
would be necessary to replay the data in the viewer. Finally, the use
of Protobuf as our sample serializer could facilitate monitoring the ex-
periment in real-time from a remote instance of PLUME-Viewer. This
requires improving serialization performance and sending samples over
the network. Remote monitoring would be useful for crowdsourced
experiments or for live analyses from a distant machine.

We are looking forward to new collaborations with the community to
improve PLUME. Apart from these technical challenges, our tool must
convince the scientific community of its relevance and genuine utility.
We plan to promote PLUME in showcase demos, workshops and tend
towards a systematic use in our XR studies. PLUME is part of an open
science approach where collected data can be shared and aggregated
into standardized datasets for meta-analysis and prediction models. We
hope that it would facilitate the creation of new scientific contributions
based on collected 6DoF XR data and help XR experiments replicability,
repeatability, and reliability.

ACKNOWLEDGMENTS

This work was supported by Auvergne-Rhône-Alpes region as part of
the PROMESS project and by the French National Research Agency as
part of the RENFORCE project (ANR-22-CE31-0023-03).

REFERENCES

[1] J. Annett. Hierarchical task analysis. Handbook of cognitive task design,
2:17–35, 2003. 3

[2] S. M. Asish, A. K. Kulshreshth, and C. W. Borst. User identification
utilizing minimal eye-gaze features in virtual reality applications. Virtual
Worlds, 1(1):42–61, 2022. doi: 10.3390/virtualworlds1010004 9

[3] D. E. Beaton, C. Bombardier, F. Guillemin, and M. Ferraz. Guidelines for
the Process of Cross-Cultural Adaptation of Self-Report Measures. https:
//journals.lww.com/spinejournal/citation/2000/12150/
guidelines_for_the_process_of_cross_cultural.14.aspx.
Accessed: 2023-12-19. 2

[4] A. Bellazzi, L. Bellia, G. Chinazzo, F. Corbisiero, P. D’Agostino, A. De-
vitofrancesco, F. Fragliasso, M. Ghellere, V. Megale, and F. Salamone.
Virtual reality for assessing visual quality and lighting perception: A
systematic review. Building and Environment, 209:108674, 2022. 2

https://doi.org/10.3390/virtualworlds1010004
https://journals.lww.com/spinejournal/citation/2000/12150/guidelines_for_the_process_of_cross_cultural.14.aspx
https://journals.lww.com/spinejournal/citation/2000/12150/guidelines_for_the_process_of_cross_cultural.14.aspx
https://journals.lww.com/spinejournal/citation/2000/12150/guidelines_for_the_process_of_cross_cultural.14.aspx

[5] F. Berton, F. Grzeskowiak, A. Bonneau, A. Jovane, M. Aggravi, L. Hoyet,
A.-H. Olivier, C. Pacchierotti, and J. Pettre. Crowd navigation in vr: ex-
ploring haptic rendering of collisions. IEEE Transactions on Visualization
and Computer Graphics, 28(7):2589–2601, 2020. 2

[6] D. A. Bowman and L. F. Hodges. Formalizing the design, evaluation, and
application of interaction techniques for immersive virtual environments.
Journal of Visual Languages & Computing, 10(1):37–53, 1999. 3

[7] J. Brooke. Sus: A quick and dirty usability scale. Usability Eval. Ind.,
189, 11 1995. 2

[8] J. Brookes, M. Warburton, M. Alghadier, M. Mon-Williams, and F. Mush-
taq. Studying human behavior with virtual reality: The Unity Experiment
Framework. Behavior Research Methods, 52(2):455–463, Apr. 2020. doi:
10.3758/s13428-019-01242-0 3, 4

[9] C. Brunner. SigViewer repository. https://github.com/cbrnr/
sigviewer. Accessed: 2023-12-19. 5

[10] W. Büschel, A. Lehmann, and R. Dachselt. Miria: A mixed reality toolkit
for the in-situ visualization and analysis of spatio-temporal interaction
data. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–15, 2021. 4

[11] O. Bălan, G. Moise, A. Moldoveanu, M. Leordeanu, and F. Moldoveanu.
An Investigation of Various Machine and Deep Learning Techniques Ap-
plied in Automatic Fear Level Detection and Acrophobia Virtual Therapy.
Sensors, 20(2):496, Jan. 2020. Number: 2 Publisher: Multidisciplinary
Digital Publishing Institute. doi: 10.3390/s20020496 3

[12] B. C. Choi and A. W. Pak. A Catalog of Biases in Questionnaires. Pre-
venting Chronic Disease, 2(1):A13, Dec. 2004. 2

[13] P. Cignoni, A. Muntoni, and colleagues. MeshLab website. https:
//www.meshlab.net/. Accessed: 2023-12-19. 8

[14] Cognitive3D. Collect and measure spatial data to bring visibility to
user participation, and optimize simulations for success. https://
cognitive3d.com/. Accessed: 2023-12-19. 4

[15] B. David-John, K. Butler, and E. Jain. Privacy-preserving datasets of eye-
tracking samples with applications in XR. IEEE Transactions on Visual-
ization and Computer Graphics, 29(5):2774–2784, May 2023. Conference
Name: IEEE Transactions on Visualization and Computer Graphics. doi:
10.1109/TVCG.2023.3247048 9

[16] A. Delorme and S. Makeig. Eeglab: an open source toolbox for analysis
of single-trial eeg dynamics including independent component analysis.
Journal of Neuroscience Methods, 134(1):9–21, Mar 2004. doi: 10.1016/j.
jneumeth.2003.10.009 5

[17] J. Deuchler, W. Hettmann, D. Hepperle, and M. Wölfel. Streamlining
physiological observations in immersive virtual reality studies with the
virtual reality scientific toolkit. In 2023 IEEE Conference on Virtual
Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 485–
488. IEEE, 2023. 4

[18] X. Ding and Z. Chen. Towards mesh saliency detection in 6 degrees of
freedom. arXiv:2005.13127 [cs, eess], Jun 2020. arXiv: 2005.13127. 3

[19] E. Fincham, A. Whitelock-Wainwright, V. Kovanović, S. Joksimović,
J.-P. van Staalduinen, and D. Gašević. Counting Clicks is Not Enough:
Validating a Theorized Model of Engagement in Learning Analytics. In
Proceedings of the 9th International Conference on Learning Analytics &
Knowledge, LAK19, pp. 501–510. Association for Computing Machinery,
New York, NY, USA, Mar. 2019. doi: 10.1145/3303772.3303775 3

[20] S. C. for Computational Neuroscience. A integration approach of the
LabStreamingLayer framework for Unity3D. https://github.com/
labstreaminglayer/LSL4Unity. Accessed: 2023-12-19. 3, 4

[21] S. C. for Computational Neuroscience. LabStreamingLayer super repos-
itory comprising submodules for LSL and associated apps. https:
//github.com/sccn/labstreaminglayer. Accessed: 2023-12-19. 2,
5

[22] D. Girardeau-Montaut. CloudCompare: 3D point cloud and mesh process-
ing software. https://www.danielgm.net/cc/. Accessed: 2023-12-
19. 8

[23] G. Gorisse, O. Christmann, and C. Dubosc. REC: A Unity Tool to Re-
play, Export and Capture Tracked Movements for 3D and Virtual Reality
Applications. In Proceedings of the 2022 International Conference on
Advanced Visual Interfaces, AVI 2022, pp. 1–3. Association for Comput-
ing Machinery, New York, NY, USA, June 2022. doi: 10.1145/3531073.
3534472 3, 4

[24] I. Goudé, A. Bruckert, A.-H. Olivier, J. Pettré, R. Cozot, K. Bouatouch,
M. Christie, and L. Hoyet. Real-time multi-map saliency-driven gaze
behavior for non-conversational characters. IEEE Transactions on Visual-
ization and Computer Graphics, 2023. 3

[25] S. Graf and V. Schwind. Inconsistencies of presence questionnaires in
virtual reality. In Proceedings of the 26th ACM Symposium on Virtual
Reality Software and Technology, pp. 1–3, 2020. 2

[26] Q. Guimard, F. Robert, C. Bauce, A. Ducreux, L. Sassatelli, H.-Y. Wu,
M. Winckler, and A. Gros. PEM360: a dataset of 360° videos with continu-
ous physiological measurements, subjective emotional ratings and motion
traces. In Proceedings of the 13th ACM Multimedia Systems Conference,
MMSys ’22, pp. 252–258. Association for Computing Machinery, New
York, NY, USA, Aug. 2022. doi: 10.1145/3524273.3532895 3

[27] A. Halbig and M. E. Latoschik. A Systematic Review of Physiological
Measurements, Factors, Methods, and Applications in Virtual Reality.
Frontiers in Virtual Reality, 2, 2021. 1, 2

[28] S. G. Hart and L. E. Staveland. Development of NASA-TLX (Task Load
Index): Results of Empirical and Theoretical Research. In P. A. Hancock
and N. Meshkati, eds., Advances in Psychology, vol. 52 of Human Mental
Workload, pp. 139–183. North-Holland, Jan. 1988. doi: 10.1016/S0166
-4115(08)62386-9 2

[29] D. Hepperle, T. Dienlin, and M. Wölfel. Reducing the human factor in
virtual reality research to increase reproducibility and replicability. In
2021 IEEE International Symposium on Mixed and Augmented Reality
Adjunct (ISMAR-Adjunct), pp. 100–105. IEEE, 2021. 4

[30] D. Hepperle, T. Dienlin, and M. Wölfel. Reducing the human factor
in virtual reality research to increase reproducibility and replicability.
In 2021 IEEE International Symposium on Mixed and Augmented Real-
ity Adjunct (ISMAR-Adjunct), pp. 100–105, 2021. doi: 10.1109/ISMAR
-Adjunct54149.2021.00030 5

[31] F. Homps, Y. Beugin, and R. Vuillemot. ReViVD: Exploration and Fil-
tering of Trajectories in an Immersive Environment using 3D Shapes. In
2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR),
pp. 729–737, Mar. 2020. ISSN: 2642-5254. doi: 10.1109/VR46266.2020.
00096 2

[32] Z. Hu, A. Bulling, S. Li, and G. Wang. Fixationnet: Forecasting eye
fixations in task-oriented virtual environments. IEEE Transactions on
Visualization and Computer Graphics, p. 1–1, 2021. doi: 10.1109/TVCG.
2021.3067779 3

[33] S. Hubenschmid, J. Wieland, D. I. Fink, A. Batch, J. Zagermann,
N. Elmqvist, and H. Reiterer. Relive: Bridging in-situ and ex-situ vi-
sual analytics for analyzing mixed reality user studies. In Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems, pp.
1–20, 2022. 4

[34] A. Iop, V. G. El-Hajj, M. Gharios, A. de Giorgio, F. M. Monetti, E. Ed-
ström, A. Elmi-Terander, and M. Romero. Extended reality in neuro-
surgical education: A systematic review. Sensors, 22(16):6067, 2022.
2

[35] H. K. Kim, J. Park, Y. Choi, and M. Choe. Virtual reality sickness
questionnaire (VRSQ): Motion sickness measurement index in a virtual
reality environment. Applied Ergonomics, 69:66–73, May 2018. doi: 10.
1016/j.apergo.2017.12.016 2

[36] Y. M. Kim, I. Rhiu, and M. H. Yun. A Systematic Review of a Virtual
Reality System from the Perspective of User Experience. International
Journal of Human–Computer Interaction, 36(10):893–910, June 2020. doi:
10.1080/10447318.2019.1699746 2, 3

[37] G. A. Koulieris, G. Drettakis, D. Cunningham, and K. Mania. An au-
tomated high-level saliency predictor for smart game balancing. ACM
Transactions on Applied Perception, 11(4):1–21, Jan 2015. doi: 10.1145/
2637479 3

[38] K. Kurita. Human identification from walking signal based on measure-
ment of current generated by electrostatic induction. Kansei Engineering
International Journal, 11(4):183–189, 2012. 9

[39] M. Lanier, T. F. Waddell, M. Elson, D. J. Tamul, J. D. Ivory, and A. Przy-
bylski. Virtual reality check: Statistical power, reported results, and the
validity of research on the psychology of virtual reality and immersive
environments. Computers in Human Behavior, 100:70–78, 2019. doi: 10.
1016/j.chb.2019.06.015 5

[40] E. Lavoué, Q. Ju, S. Hallifax, and A. Serna. Analyzing the relationships
between learners’ motivation and observable engaged behaviors in a gam-
ified learning environment. International Journal of Human-Computer
Studies, 154:102670, Oct. 2021. doi: 10.1016/j.ijhcs.2021.102670 3

[41] G. Lavoué, F. Cordier, H. Seo, and M.-C. Larabi. Visual attention for
rendered 3d shapes. Computer Graphics Forum, 37(2):191–203, May
2018. doi: 10.1111/cgf.13353 3

[42] F. Lemic, J. Struye, and J. Famaey. Short-term trajectory prediction
for full-immersive multiuser virtual reality with redirected walking. In

https://doi.org/10.3758/s13428-019-01242-0
https://doi.org/10.3758/s13428-019-01242-0
https://github.com/cbrnr/sigviewer
https://github.com/cbrnr/sigviewer
https://doi.org/10.3390/s20020496
https://www.meshlab.net/
https://www.meshlab.net/
https://cognitive3d.com/
https://cognitive3d.com/
https://doi.org/10.1109/TVCG.2023.3247048
https://doi.org/10.1109/TVCG.2023.3247048
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1145/3303772.3303775
https://github.com/labstreaminglayer/LSL4Unity
https://github.com/labstreaminglayer/LSL4Unity
https://github.com/sccn/labstreaminglayer
https://github.com/sccn/labstreaminglayer
https://www.danielgm.net/cc/
https://doi.org/10.1145/3531073.3534472
https://doi.org/10.1145/3531073.3534472
https://doi.org/10.1145/3524273.3532895
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1109/ISMAR-Adjunct54149.2021.00030
https://doi.org/10.1109/ISMAR-Adjunct54149.2021.00030
https://doi.org/10.1109/VR46266.2020.00096
https://doi.org/10.1109/VR46266.2020.00096
https://doi.org/10.1109/TVCG.2021.3067779
https://doi.org/10.1109/TVCG.2021.3067779
https://doi.org/10.1016/j.apergo.2017.12.016
https://doi.org/10.1016/j.apergo.2017.12.016
https://doi.org/10.1080/10447318.2019.1699746
https://doi.org/10.1080/10447318.2019.1699746
https://doi.org/10.1145/2637479
https://doi.org/10.1145/2637479
https://doi.org/10.1016/j.chb.2019.06.015
https://doi.org/10.1016/j.chb.2019.06.015
https://doi.org/10.1016/j.ijhcs.2021.102670
https://doi.org/10.1111/cgf.13353

GLOBECOM 2022-2022 IEEE Global Communications Conference, pp.
6139–6145. IEEE, 2022. 2

[43] C. Maranes, D. Gutierrez, and A. Serrano. Exploring the impact of 360°
movie cuts in users’ attention. Proceedings - 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces, VR 2020, p. 73–82, 2020. doi: 10.
1109/VR46266.2020.1580727911717 3

[44] D. Martin, A. Serrano, A. W. Bergman, G. Wetzstein, and B. Masia.
Scangan360: A generative model of realistic scanpaths for 360 images.
IEEE Transactions on Visualization and Computer Graphics, 28(5):2003–
2013, 2022. 3

[45] S. L. Matthews, A. Uribe-Quevedo, and A. Theodorou. Rendering opti-
mizations for virtual reality using eye-tracking. In 2020 22nd symposium
on virtual and augmented reality (SVR), pp. 398–405. IEEE, 2020. 3

[46] M. Maurus, J. H. Hammer, and J. Beyerer. Realistic heatmap visualization
for interactive analysis of 3d gaze data. In Proceedings of the Symposium
on Eye Tracking Research and Applications, p. 295–298. ACM, Safety
Harbor Florida, Mar 2014. doi: 10.1145/2578153.2578204 3, 8

[47] W. McKinney. Pandas Dataframe documentation. https://pandas.
pydata.org/docs/reference/api/pandas.DataFrame.html. Ac-
cessed: 2023-12-19. 5

[48] Microsoft. MSDN Stopwatch documentation. https://learn.
microsoft.com/en-us/dotnet/api/system.diagnostics.
stopwatch. Accessed: 2023-12-19. 6

[49] D. Monteiro, H.-N. Liang, X. Tang, and P. Irani. Using Trajectory Com-
pression Rate to Predict Changes in Cybersickness in Virtual Reality
Games. In 2021 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), pp. 138–146. IEEE, Bari, Italy, Oct. 2021. doi: 10.
1109/ISMAR52148.2021.00028 2

[50] A. Murgia, R. Wolff, W. Steptoe, P. Sharkey, D. Roberts, E. Guimaraes,
A. Steed, and J. Rae. A tool for replay and analysis of gaze-enhanced
multiparty sessions captured in immersive collaborative environments. In
2008 12th IEEE/ACM International Symposium on Distributed Simulation
and Real-Time Applications, pp. 252–258. IEEE, 2008. 3

[51] M. Nebeling, M. Speicher, X. Wang, S. Rajaram, B. D. Hall, Z. Xie, A. R.
Raistrick, M. Aebersold, E. G. Happ, J. Wang, et al. Mrat: The mixed
reality analytics toolkit. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, pp. 1–12, 2020. 3, 4

[52] Nvidia. NVIDIA VCR. https://docs.nvidia.com/vcr-sdk/
overview/overview.html/. Accessed: 2024-01-03. 3, 4

[53] A. Ojeda, N. Bigdely-Shamlo, and S. Makeig. Mobilab: an open source
toolbox for analysis and visualization of mobile brain/body imaging data.
Frontiers in Human Neuroscience, 8, Mar 2014. doi: 10.3389/fnhum.2014
.00121 5

[54] T. Pfeiffer. Measuring and visualizing attention in space with 3d attention
volumes. In Proceedings of the Symposium on Eye Tracking Research and
Applications - ETRA ’12, p. 29. ACM Press, Santa Barbara, California,
2012. doi: 10.1145/2168556.2168560 3

[55] T. Pfeiffer and C. Memili. Model-based real-time visualization of realistic
three-dimensional heat maps for mobile eye tracking and eye tracking
in virtual reality. In Proceedings of the Ninth Biennial ACM Symposium
on Eye Tracking Research & Applications, p. 95–102. ACM, Charleston
South Carolina, Mar 2016. doi: 10.1145/2857491.2857541 3, 8

[56] P. Raimbaud. Virtual reality for building industry needs: guiding the
design of user interactions through a task-centred methodology. PhD
thesis, Arts-et-Metiers and Universidad de los Andes, 2020. 3

[57] P. Raimbaud, A. Jovane, K. Zibrek, C. Pacchierotti, M. Christie, L. Hoyet,
J. Pettré, and A.-H. Olivier. The stare-in-the-crowd effect when navigating
a crowd in virtual reality. In ACM Symposium on Applied Perception 2023,
pp. 1–10, 2023. 2

[58] P. Reipschläger, F. Brudy, R. Dachselt, J. Matejka, G. Fitzmaurice, and
F. Anderson. Avatar: An immersive analysis environment for human mo-
tion data combining interactive 3d avatars and trajectories. In Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems, pp.
1–15, 2022. 4

[59] I. Rennes. Virtual Crowds! CrowdMP is a Unity project used as an exper-
imentation platform. https://project.inria.fr/crowdscience/
project/ocsr/crowdmp/. Accessed: 2023-12-19. 3, 4

[60] F. A. S. Robert, H.-Y. Wu, L. Sassatelli, S. Ramanoel, A. Gros, and
M. Winckler. An Integrated Framework for Understanding Multimodal
Embodied Experiences in Interactive Virtual Reality. In Proceedings of the
2023 ACM International Conference on Interactive Media Experiences,
June 2023. doi: 10.1145/3573381.3596150 3

[61] S. Rossi, I. Viola, L. Toni, and P. Cesar. Extending 3-DoF Metrics to

Model User Behaviour Similarity in 6-DoF Immersive Applications. In
Proceedings of the 14th Conference on ACM Multimedia Systems, MMSys
’23, pp. 39–50. Association for Computing Machinery, New York, NY,
USA, June 2023. doi: 10.1145/3587819.3590976 2

[62] D. Roth and M. E. Latoschik. Construction of the Virtual Embodiment
Questionnaire (VEQ). IEEE Transactions on Visualization and Computer
Graphics, 26(12):3546–3556, Dec. 2020. Conference Name: IEEE Trans-
actions on Visualization and Computer Graphics. doi: 10.1109/TVCG.
2020.3023603 2

[63] R. B. Rusu and S. Cousins. Point Cloud Library website. https://
pointclouds.org/. Accessed: 2023-12-19. 8

[64] V. Sitzmann, A. Serrano, A. Pavel, M. Agrawala, D. Gutierrez, B. Ma-
sia, and G. Wetzstein. How do people explore virtual environments?
arXiv:1612.04335 [cs], Sep 2017. arXiv: 1612.04335. 3

[65] M. Slater, M. Usoh, and A. Steed. Depth of Presence in Virtual Environ-
ments. Presence: Teleoperators and Virtual Environments, 3(2):130–144,
May 1994. doi: 10.1162/pres.1994.3.2.130 2

[66] A. Steed, L. Izzouzi, K. Brandstätter, S. Friston, B. Congdon, O. Olkkonen,
D. Giunchi, N. Numan, and D. Swapp. Ubiq-exp: A toolkit to build and
run remote and distributed mixed reality experiments. Frontiers in Virtual
Reality, 3, 2022. 3, 4

[67] S. Stellmach, L. Nacke, and R. Dachselt. Advanced gaze visualizations
for three-dimensional virtual environments. In Proceedings of the 2010
Symposium on Eye-Tracking Research & Applications - ETRA ’10, p. 109.
ACM Press, Austin, Texas, 2010. doi: 10.1145/1743666.1743693 3

[68] V. Sundstedt and V. Garro. A Systematic Review of Visualization Tech-
niques and Analysis Tools for Eye-Tracking in 3D Environments. Frontiers
in Neuroergonomics, 3, 2022. 3

[69] B. Systems. Complete VR eye tracking system – 1 user. https:
//www.biopac.com/product/vr-eye-tracking-lab-1user/. Ac-
cessed: 2023-12-19. 4

[70] L. Tabbaa, R. Searle, S. M. Bafti, M. M. Hossain, J. Intarasisrisawat,
M. Glancy, and C. S. Ang. VREED: Virtual Reality Emotion Recognition
Dataset Using Eye Tracking & Physiological Measures. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
5(4):178:1–178:20, Dec. 2022. doi: 10.1145/3495002 3

[71] G. Tartarisco, N. Carbonaro, A. Tonacci, G. Bernava, A. Arnao, G. Crifaci,
P. Cipresso, G. Riva, A. Gaggioli, D. De Rossi, A. Tognetti, and G. Pioggia.
Neuro-Fuzzy Physiological Computing to Assess Stress Levels in Virtual
Reality Therapy. Interacting with Computers, 27(5):521–533, Sept. 2015.
doi: 10.1093/iwc/iwv010 3

[72] K. Tcha-Tokey, O. Christmann, E. Loup-Escande, and S. Richir. Proposi-
tion and Validation of a Questionnaire to Measure the User Experience in
Immersive Virtual Environments. International Journal of Virtual Reality,
16(1):33–48, Jan. 2016. doi: 10.20870/IJVR.2016.16.1.2880 2

[73] Tobii. Tobii Ocumen software website. https://developer.tobii.
com/xr/solutions/tobii-ocumen/. Accessed: 2024-01-03. 4

[74] C. Tremmel, C. Herff, T. Sato, K. Rechowicz, Y. Yamani, and D. J. Krusien-
ski. Estimating Cognitive Workload in an Interactive Virtual Reality
Environment Using EEG. Frontiers in Human Neuroscience, 13, 2019. 3

[75] Unity. XR Interaction Toolkit documentation. https:
//docs.unity3d.com/Packages/com.unity.xr.interaction.
toolkit@2.4/manual/index.html. Accessed: 2023-12-19. 5

[76] Unity Technologies. Unity Real-Time Development Platform | 3D, 2D,
VR & AR Engine. https://unity.com/. Accessed: 2023-12-19. 2

[77] S. Villenave, J. Cabezas, P. Baert, F. Dupont, and G. Lavoue. Xrecho: A
unity plug-in to record and visualize user behavior during xr sessions. In
13th ACM Multimedia Systems Conference (MMSys 2022), Jun 2022. doi:
10.1145/3524273.3532909 4

[78] J. Wang, R. Shi, W. Zheng, W. Xie, D. Kao, and H.-N. Liang. Effect
of frame rate on user experience, performance, and simulator sickness
in virtual reality. IEEE Transactions on Visualization and Computer
Graphics, 29(5):2478–2488, 2023. 8

[79] B. G. Witmer and M. J. Singer. Measuring Presence in Virtual Environ-
ments: A Presence Questionnaire. Presence: Teleoperators and Virtual
Environments, 7(3):225–240, 1998. doi: 10.1162/105474698565686 2

[80] H.-Y. Wu, F. Robert, T. Fafet, B. Graulier, B. Passin-Cauneau, L. Sas-
satelli, and M. Winckler. Designing Guided User Tasks in VR Embodied
Experiences. Proceedings of the ACM on Human-Computer Interaction,
6(EICS):158:1–158:24, June 2022. doi: 10.1145/3532208 3, 4

[81] C. Yuksel, J. Keyser, and D. H. House. Mesh colors. Technical report,
Department of Computer Science, Texas A&M University, 2008. 7

https://doi.org/10.1109/VR46266.2020.1580727911717
https://doi.org/10.1109/VR46266.2020.1580727911717
https://doi.org/10.1145/2578153.2578204
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch
https://doi.org/10.1109/ISMAR52148.2021.00028
https://doi.org/10.1109/ISMAR52148.2021.00028
https://docs.nvidia.com/vcr-sdk/overview/overview.html/
https://docs.nvidia.com/vcr-sdk/overview/overview.html/
https://doi.org/10.3389/fnhum.2014.00121
https://doi.org/10.3389/fnhum.2014.00121
https://doi.org/10.1145/2168556.2168560
https://doi.org/10.1145/2857491.2857541
https://project.inria.fr/crowdscience/project/ocsr/crowdmp/
https://project.inria.fr/crowdscience/project/ocsr/crowdmp/
https://doi.org/10.1145/3573381.3596150
https://doi.org/10.1145/3587819.3590976
https://doi.org/10.1109/TVCG.2020.3023603
https://doi.org/10.1109/TVCG.2020.3023603
https://pointclouds.org/
https://pointclouds.org/
https://doi.org/10.1162/pres.1994.3.2.130
https://doi.org/10.1145/1743666.1743693
https://www.biopac.com/product/vr-eye-tracking-lab-1user/
https://www.biopac.com/product/vr-eye-tracking-lab-1user/
https://doi.org/10.1145/3495002
https://doi.org/10.1093/iwc/iwv010
https://doi.org/10.20870/IJVR.2016.16.1.2880
https://developer.tobii.com/xr/solutions/tobii-ocumen/
https://developer.tobii.com/xr/solutions/tobii-ocumen/
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.4/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.4/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.4/manual/index.html
https://unity.com/
https://doi.org/10.1145/3524273.3532909
https://doi.org/10.1145/3524273.3532909
https://doi.org/10.1162/105474698565686
https://doi.org/10.1145/3532208

	Introduction
	Related Work
	Data Collection to Evaluate User Experience in XR
	Self-Reported Questionnaires
	Behavioral Data
	Physiological Signals

	6DoF Visual Attention Maps
	Software for Behavioral and Physiological Data Collection and Visualization in 6DoF XR

	Motivations and Design Choices
	Functionalities
	PLUME Recorder: a Plug-and-Play Unity Package
	Interoperable Record File
	PLUME Python: Load And Convert Records in Python
	PLUME Viewer: a Standalone Viewer and Analyzer
	Extensibility

	Technical Highlights
	Recording the Virtual Environment
	Event-based vs State-Based Recording
	Time Measurement
	Referencing Scene Objects And Assets

	Replaying a Record
	Performance Considerations
	Sample Pooling
	Threaded Sample Packing and Writing

	GPU Accelerated 6DoF Heatmap
	Mesh sampling
	Gaussian projection
	Optimizations
	Export

	Performances Evaluation
	Case study
	Ethics
	Conclusion

