Electronic Supporting Information

Efficient and sustainable tandem annulation-decarboxylation reaction using ecocatalysis

Laure Liénart,^a Yves-Marie Legrand,^a Franck Pelissier,^a Philippe Gaveau,^b Peter Hesemann,^b Eddy Petit,^c Claude Grison,^a* Claire M. Grison^a*1

^a ChimEco, Univ Montpellier, CNRS UMR 5021, Montpellier, France; ^b ICGM, Univ Montpellier, CNRS UMR5253, ENSCM, Montpellier, France; ^c IEM, Univ Montpellier, CNRS UMR 5635, ENSCM, Montpellier, France.

Table of contents

Char	acterisation of ecocatalysts [®]	2
1.1.	MP-AES analyses of ecocatalysts [®]	2
1.2.	XRPD diffractograms of ecocatalysts [®]	2
Synth	nesis and characterisation of cyclohexenones	5
2.1. correlat	Synthesis of 3-methyl-2-cyclohexenone: experimental conditions used for the Spearman ion matrix	5
2.2. coffee g	Synthesis of 3-methyl-2-cyclohexenone using Eco1-E-spent C. arabica from different spen grounds	t 6
2.3.	Recycling and reuse of ecocatalysts [®]	6
2.4.	Method of calculation of green metrics	6
2.5. 2.5.1 2.5.2	Procedure and characterisation of cyclohexenones General procedure for the scope of isolated cyclohexenones ¹ H and ¹³ C NMR spectra of cyclohexenones	7 7 9
	<i>Char</i> 1.1. 1.2. <i>Synth</i> 2.1. correlat 2.2. coffee g 2.3. 2.4. 2.5. 2.5.1 2.5.2	 Characterisation of ecocatalysts[®] 1.1. MP-AES analyses of ecocatalysts[®] 1.2. XRPD diffractograms of ecocatalysts[®] Synthesis and characterisation of cyclohexenones 2.1. Synthesis of 3-methyl-2-cyclohexenone: experimental conditions used for the Spearman correlation matrix 2.2. Synthesis of 3-methyl-2-cyclohexenone using Eco1-E-spent C. arabica from different spen coffee grounds 2.3. Recycling and reuse of ecocatalysts[®] 2.4. Method of calculation of green metrics 2.5. Procedure and characterisation of cyclohexenones 2.5.1. General procedure for the scope of isolated cyclohexenones 2.5.2. ¹H and ¹³C NMR spectra of cyclohexenones

^{*} Corresponding author. Tel.: +33786854454.

E-mail address: <u>claire.grison.2@cnrs.fr</u>; claude.grison@cnrs.fr

1. Characterisation of ecocatalysts[®]

1.1. MP-AES analyses of ecocatalysts®

	mean of wt(%) (standard deviation)												
Ecocatalyst [®]	Al	Ca	Cd	Cr	Cu	Fe	К	Mg	Mn	Na	Ni	Pb	Zn
Eco1-E-Salix	0.07	19.4	0.01	0	0	0.12	13.1	3.00	0.02	0.26	0	0,01	0,21
alba	(0.03)	(2.8)	(0.01)	(0)	(0)	(0.03)	(5.9)	(0.89)	(0.01)	(0.03)	(0)	(0.02)	(0.04)
Eco1-E- Fallopia japonica	0.13 (0.04)	8.93 (2.02)	0.007 (0.01)	0 (0)	0 (0)	0.13 (0.03)	29.2 (1.8)	3.98 (0.23)	0.06 (0.02)	0.14 (0.04)	0 (0)	0 (0)	0.04 (0.05)
Eco1-E-Arundo	0.01	1.37	0.03	0	0.01	0.025	36.2	1.01	0.03	0.08	0	0	0.01
donax	(0)	(0.51)	(0.02)	(0)	(0.07)	(0.01)	(4.3)	(0.06)	(0.01)	(0.05)	(0)	(0)	(0.01)
Eco1-E-spent	0.19	21.49	0.01	0	0.15	0.39	4.93	7.33	0.19	1.97	0	0	0.05
Coffea arabica	(0.11)	(1.66)	(0.01)	(0)	(0.02)	(0.09)	(2.70)	(0.28)	(0.02)	(0.56)	(0)	(0)	(0.01)

Table S1. Elemental composition of ecocatalysts[®] determined by MP-AES.

1.2. XRPD diffractograms of ecocatalysts[®]

Figure S1. XRPD of Eco1-E-F. japonica

Figure S2. XRPD of Ecol-E-S. alba

Figure S3. XRPD of Eco1-E-A. donax

Figure S4. XRPD of Ecol-E-spent C. arabica

2. Synthesis and characterisation of cyclohexenones

2.1. Synthesis of 3-methyl-2-cyclohexenone: experimental conditions used for the Spearman correlation matrix

Table S2. Details of experimental conditions of 38 reactions used for calculating the Spearman correlation matrix. *These conditions have been reproduced 9 times and the yield corresponds to the mean of the 9 yields.

Exp.	(eco)catalyst	K	Mg	Ca	Na	cat.	temp.	time	glycerol	yield
1		(eq.)	(eq.)	(eq.)	(eq.)	(g/moi)	<u> (°C)</u> 180	(min) 30	(eq.)	<u>(%)</u> 45
2		0,0012	0,0027	0,0041	0,0007	2	180	30	0,5	
2	Ecol-E-spent	0,0058	0,0034	0,0001	0,0014	2	180	30	0,5	65
3	C. arabica	0,0130	0,0218	0,0323	0,0058	16	100	20	0,5	05
4		0,0343	0,0300	0,0745	0,0152	10	100	30	0,5	20
5		0,0000	0,0017	0,0000	0,0000	0	180	30	0,5	30
6		0,0000	0,0033	0,0000	0,0000	0	180	30	0,5	60
7	MgO	0,0000	0,0066	0,0000	0,0000	0	180	30	0,5	55
8	-	0,0000	0,0131	0,0000	0,0000	1	180	30	0,5	71
9		0,0000	0,0525	0,0000	0,0000	2	180	30	0,5	67
10		0,0000	0,1000	0,0000	0,0000	4	180	30	0,5	88
11		0,0109	0,0000	0,0000	0,0000	1	180	30	0,5	45
12	K ₂ CO ₂	0,0263	0,0000	0,0000	0,0000	2	180	30	0,5	62
13	112003	0,0526	0,0000	0,0000	0,0000	4	180	30	0,5	60
14		0,1000	0,0000	0,0000	0,0000	7	180	30	0,5	72
15	Eco1-E-A. donax	0,2137	0,0110	0,0109	0,0004	25	180	30	0,5	65
16	Eco1-E-S. alba	0,0406	0,0110	0,0660	0,0004	10	180	30	0,5	67
17	Eco1-E-F. japonica	0,0479	0,0110	0,0110	0,0051	11	180	30	0,5	68
18	Eco1-E-A. donax	0,0499	0,0026	0,0025	0,0001	5,86	180	30	0,5	57
19	MgO	0,0000	0,0131	0,0000	0,0000	1	180	30	0,5	71
20	CaCO ₃	0,0000	0,0000	0,0440	0,0000	4	180	30	0,5	14
21	Ca ₅ (PO ₄) ₃ OH	0,0000	0,0000	0,0440	0,0000	4	180	30	0,5	0
22	MgO & CaCO ₃ & Ca ₅ (PO ₄) ₃ OH	0,0000	0,0130	0,0320	0,0000	4	180	30	0,5	82
23	Eco1-E-spent C. arabica (350 °C)	0,0085	0,0181	0,0293	0,0263	36	180	90	0,5	57
24	Eco1-E-spent C. arabica (no TT)	0,0030	0,0027	0,0066	0,0103	131	180	30	0,5	5
25	K_2CO_3	0,0109	0,0000	0,0000	0,0000	1	180	30	0	29
26	K_2CO_3	0,0109	0,0000	0,0000	0,0000	1	180	30	0,5	45
27	Eco1-E-spent <i>C. arabica</i>	0,0075	0,0109	0,0162	0,0029	4	180	30	0	34
28		0,0075	0,0109	0,0162	0,0029	4	100	30	0,5	0
29		0,0075	0,0109	0,0162	0,0029	4	120	30	0,5	0
30	Ecol-E-spent	0,0075	0,0109	0,0162	0,0029	4	140	30	0,5	16
31	C. arabica	0,0075	0,0109	0,0162	0,0029	4	160	30	0,5	56
32		0,0075	0,0109	0,0162	0,0029	4	200	30	0,5	84

33		0,0075	0,0109	0,0162	0,0029	4	220	30	0,5	92
34		0,0075	0,0109	0,0162	0,0029	4	180	90	0,5	82
35	Ecol-E-spent	0,0075	0,0109	0,0162	0,0029	4	220	45	0,5	92
36	C. arabica	0,0075	0,0109	0,0162	0,0029	4	220	90	0,5	72
37*	Eco1-E-spent <i>C. arabica</i>	0,0075	0,0109	0,0162	0,0029	4	180	30	0,5	81*
38	-	0,0000	0,0000	0,0000	0,0000	0	180	30	0,5	0

2.2. Synthesis of 3-methyl-2-cyclohexenone using Eco1-E-spent C. arabica from different spent coffee grounds

collection date of spent coffee ground

Figure S5: Yield comparison for the synthesis of 3-methyl-2-cyclohexenone using Ecol-E-spent C. arabica from spent coffee grounds collected at different seasons. Conditions of the reaction: ethylacetoacetate (2 equiv.), Ecol-E-spent C. arabica (0.01 equiv.) of Mg), butenone (1 equiv.) and glycerol (0.5 equiv.), 180 °C, 30 min. Yields were quantified by GC-FID analysis.

2.3. Recycling and reuse of ecocatalysts[®]

Table S3. Experimenta	al conditions for t	he recycling of E	Ecol-E-spent C. arabica
-----------------------	---------------------	-------------------	-------------------------

run	ecocatalyst®	temp. (°C)	time (min)	yield (%)
1				72
2				63
3	Eco1-E-spent C. arabica	220	45	63
4				37
5				38

2.4. Method of calculation of green metrics

E-factor

$$E_{factor} = \frac{\text{total mass of all wastes (for all runs, reaction and workup)}}{\text{total mass of final product (for all runs)}}$$

Process Mass Intensity (PMI)

$$PMI = \frac{\text{total mass of reactants}}{\text{mass of final product}}$$

Energy

$$E(h. °C) = (reaction time) \times (reaction temperature)$$

Since data of electric power are not available for each electric equipment used to perform a chemical reaction followed by its workup in literature, the calculation of energy could not be done in Joules and was simplified.

Space Time Yield (STY)

STY $(g.h^{-1}.L^{-1}) = \frac{\text{masse of product}}{\text{volume of reactor } \times \text{ reaction time}}$

Turn-Over Number (TON)

 $TON = \frac{\text{total moles of limiting reactants of all runs}}{\text{moies of catalysts used for all runs}} \times \text{mean of all yields}$

Turn-Over Frequency (TOF)

TOF $(h^{-1}) = \frac{TON}{reaction time of all catalysed reactions}$

2.5. Procedure and characterisation of cyclohexenones

2.5.1. General procedure for the scope of isolated cyclohexenones

The β -keto ester (2 equiv.), Eco1-E-spent *C. arabica* (0.011 equiv. of Mg), conjugated enone (or enal) (1 equiv.) and glycerol (0.5 equiv.) were mixed in a micro-wave reactor (CEM Discover[®] 2.0). The reaction mixture was ramped to temperature for 10 minutes until 180 °C, then was stirred for 45 minutes at 180 °C. The reaction procedure was repeated four times for subsequent purification. After cooling to room temperature, the Eco1-E-spent *C. arabica* was filtered through sinter with ethyl acetate (20 mL) and the collected solution was concentrated under reduced pressure. The crude product was purified by distillation under vaccum.

3-methyl-2-cyclohexen-1-one (3). The reaction of ethyl acetoacetate (30 mmol, 3.83 mL, 2 equiv.), Eco1-E-spent *C. arabica* (0.17 mmol, 53 mg, 0.011 equiv. of Mg), 3-buten-2-one (15 mmol, 1.39 mL, 1 equiv.) and glycerol (7.5 mmol, 0.6 mL, 0.5 equiv.) provided **3** in 65% yield/70% purity. The product was isolated by liquid-liquid extraction with NaOH 0.5M (3 x 18 mL) and ethyl acetate (25 mL). The product **3** was isolated in 55% yield as a light yellow liquid by distillation. ¹H NMR (600 MHz, CDCl₃) δ : 5.86 (bs, 1H), 2.32 (m, 2H), 2.27 (t, J = 6.0 Hz, 2H), 2.00-1.95 (m, 2H), 1.94 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ : 199.8, 162.9, 126.7, 37.1, 31.0, 24.5, 22.6.

3-ethyl-2-cyclohexen-1-one (7). The reaction of ethyl acetoacetate (30 mmol, 3.83 mL, 2 equiv.), Eco1-E-spent *C. arabica* (0.17 mmol, 53 mg, 0.011 equiv. of Mg), 1-penten-3-one (15 mmol, 1.53 mL, 1 equiv.) and glycerol (7.5 mmol, 0.6 mL, 0.5 equiv.) provided **7** in 73% yield/76% purity. The crude product was isolated by liquid-liquid extraction with NaOH 0.5M (3 x 18mL) and ethyl acetate (25 mL). The product **7** was isolated in 63% yield as a light yellow liquid. ¹H NMR (600 MHz, CDCl₃) δ : 5.87 (s, 1H), 2.35 (m, 2H), 2.28 (t, J = 6.0 Hz, 2H), 2.25-2.21 (q, J = 7.4 Hz, 2H), 2.00-1.95 (m, 2H), 1.10-1.07 (t, J = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ : 200.0, 167.9, 124.5, 37.3, 30.8, 29.6, 22.6, 11.2.

3,6-dimethyl-2-cyclohexen-1-one (8). The reaction of ethyl 2-methylacetoacetate (30 mmol, 4.24 mL, 2 equiv.), Eco1-E-spent *C. arabica* (0.17 mmol, 53 mg, 0.011 equiv. of Mg), 3-buten-2-one (15 mmol, 1.39 mL, 1 equiv.) and glycerol (7.5 mmol, 0.6 mL, 0.5 equiv.) provided **8** in 69% yield/75% purity. The crude product was isolated by liquid-liquid extraction with NaOH 0.5M (5 x 18mL) and ethyl acetate (25 mL). The product **8** was isolated

in 67% yield as a light yellow liquid. ¹H NMR (600 MHz, CDCl₃) δ : 5.81 (s, 1H), 2.36-2.21 (m, 3H), 2.04-2.00 (m, 1H), 1.91 (s, 3H), 1.70-1.64 (m, 1H), 1.10 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ : 202.5, 161.9, 126.4, 40.7, 31.0, 30.9, 24.5, 15.4.

2,3-dimethyl-2-cyclohexen-1-one (9). The reaction of ethyl 3-oxovalerate (30mmol, 4.29mL, 2 equiv.), Eco1-E-spent *C. arabica* (0.17 mmol, 53 mg, 0.011 equiv. of Mg), 3-buten-2-one (15 mmol, 1.39 mL, 1 equiv.) and glycerol (7.5 mmol, 0.6 mL, 0.5 equiv.) provided **9** in in 79% yield/72% purity. The crude product was isolated by liquid-liquid extraction with NaOH 0.5M (3 x 24 mL) and ethyl acetate (30 mL). The product **9** was isolated in 74% yield as a light yellow liquid. ¹H NMR (600 MHz, CDCl₃) δ : 2.37 (m, 2H), 2.33-2.31 (m, 2H), 1.94-1.90 (m, 5H), 1.75 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ : 199.3, 155.3, 131.2, 37.7, 32.9, 22.4, 21.6, 10.9.

3,5-dimethyl-2-cyclohexen-1-one (10). The reaction of ethyl acetoacetate (30 mmol, 3.83 mL, 2 equiv.), Ecol-E-spent *C. arabica* (0.17 mmol, 53 mg, 0.011 equiv. of Mg), 3-penten-2-one (15 mmol, 2.31 mL, 1 equiv.) and glycerol (7.5 mmol, 0.6 mL, 0.5 equiv.) provided **10** in 90% yield/100% purity as a light yellow liquid. ¹H NMR (600 MHz, CDCl₃) δ : 5.83 (s, 1H), 2.38 (dd, J = 16.2, 3.6 Hz, 1H), 2.27 (dd, J = 18.0, 4.2 Hz, 1H), 2.20-2.12 (m, 1H), 2.01-1.96 (m, 2H), 1.92 (s, 3H), 1.04 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ : 200.3, 162.2, 126.5, 45.4, 39.6, 30.2, 24.5, 21.3.

Isophorone (11). The reaction of ethyl acetoacetate (30 mmol, 3.83 mL, 2 equiv.), Eco1-E-spent *C. arabica* (0.17 mmol, 53 mg, 0.011 equiv. of Mg), mesityl oxide (15 mmol, 1.81 mL, 1 equiv.) and glycerol (7.5 mmol, 0.6 mL, 0.5 equiv.) provided **12** in 6% yield/68% purity. The crude product was isolated by liquid-liquid extraction with NaOH 0.5M (3x6mL) and ethyl acetate (8 mL). The product **12** was isolated in 6% yield as a light yellow liquid. ¹H NMR (600 MHz, CDCl₃) δ : 5.86 (m, 1H), 2.18 (s, 2H), 2.15 (s, 2H), 1.92 (s, 3H), 1.01 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ : 200.1, 160.5, 125.6, 50.9, 45.4, 33.7, 28.4, 24.7.

5-Methyl-2-cyclohexen-1-one (12). The reaction of ethyl acetoacetate (30 mmol, 3.83 mL, 2 equiv.), Eco1-E-spent *C. arabica* (0.17 mmol, 53 mg, 0.011 equiv. of Mg), crotonaldehyde (15 mmol, 1.39 mL, 1 equiv.) and glycerol (7.5 mmol, 0.6 mL, 0.5 equiv.) provided **13** in 33% yield/100% purity as a light yellow liquid. ¹H NMR (600 MHz, CDCl₃) δ : 6.95 (ddd, J = 15.0, 10.2, 8.4 Hz, 1H), 6.02-5.98 (m, 1H), 2.50-2.37 (m, 2H), 2.28-2.16 (m, 1H), 2.14-1.98 (m, 2H), 1.06 (d, J = 10.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ : 200.2, 150.0, 129.7, 46.4, 34.1, 30.5, 21.3.

4-methyl-2-cyclohexen-1-one (13). The reaction of ethyl acetoacetate (30 mmol, 3.83 mL, 2 equiv.), Eco1-E-spent *C. arabica* (0.17 mmol, 53 mg, 0.011 equiv. of Mg), methacrolein (15 mmol, 1.39 mL, 1 equiv.) and glycerol (7.5 mmol, 0.6 mL, 0.5 equiv.) provided **11** in 33% yield/80% purity. ¹H NMR (600 MHz, CDCl₃) δ : 6.78 (ddd, J = 10.2, 2.4, 1.2 Hz, 1H), 5.92 (ddd, J = 10.2, 2.4, 1.2 Hz, 1H), 2.54-2.52 (m, 1H), 2.47-2.44 (m, 1H), 2.36-2.31 (m, 1H), 2.10-2.07 (m, 1H), 1.68-1.61 (dddd, J = 16.8, 13.2, 9.0, 4.2 Hz, 1H), 1.13 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ : 200.1, 156.6, 128.9, 37.2, 31.4, 31.2, 20.5.

2.5.2. ¹H and ¹³C NMR spectra of cyclohexenones

3-methyl-2-cyclohexen-1-one (3)

Figure 7. ¹³C NMR spectrum (150MHz, CDCl₃) of 3

3-ethyl-2-cyclohexen-1-one (7)

3,6-dimethyl-2-cyclohexen-1-one (8)

Figure 8. ¹³C NMR spectrum (150MHz, CDCl₃) of 9

Isophorone (11)

5-Methyl-2-cyclohexen-1-one (12)

4-methyl-2-cyclohexen-1-one (13)