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Abstract

While the practical interest of Recurrent Neu-
ral Networks (RNNs) is attested, much re-
mains to be done to develop a thorough theo-
retical understanding of their abilities, partic-
ularly in what concerns their learning capaci-
ties. A powerful framework to tackle this ques-
tion is the one of PAC-Bayes theory, which
allows one to derive bounds providing guaran-
tees on the expected performance of learning
models on unseen data. In this paper, we
provide an extensive study on the conditions
leading to PAC-Bayes bounds for non-linear
RNNs that are independent of the length of
the data. The derivation of our results re-
lies on a perturbation analysis on the weights
of the network. We prove bounds that hold
for β-saturated and DS β-saturated SRNs,
classes of RNNs we introduce to formalize
saturation regimes of RNNs. The first regime
corresponds to the case where the values of
the hidden state of the SRN are always close
to the boundaries of the activation functions.
The second one, closely related to practical
observations, only requires that it happens at
least once in each component of the hidden
state on a sliding window of a given size.
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Curien UMR 5516, F-42023, SAINT-ETIENNE, France
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1 INTRODUCTION

In recent years the increase in computational power
allowed neural networks to achieve above human-level
success in a variety of tasks. Among these models,
Recurrent Neural Networks (RNNs) hold a special place.
RNNs process sequential inputs recursively by using
the same set of parameters to update their internal
state after reading each element in an input sequence.
Their recursive nature is at the core of the struggle to
understand their behavior and generalization abilities.

RNNs expressiveness has been studied from various per-
spectives. It is known that RNNs with unbounded preci-
sion and computation time are Turing complete (Siegel-
mann and Sontag, 1992). This is even the case with
bounded precision and growing memory (Chung and
Siegelmann, 2021). Connections between RNNs and
classical models have also been investigated, from finite
automata (Weiss et al., 2018; Eyraud and Ayache, 2021;
Li et al., 2022) to more complex models (Merrill et al.,
2020; Delétang et al., 2023; Hao et al., 2022).

While these results are of crucial interest, they focus
on the computational expressiveness of RNNs without
investigating their learning abilities. In this regard, gen-
eralization bounds for RNNs have been derived within
the PAC-learning formalism. Chen et al. (2020) derived
generalz bounds depending on the spectral norms of
weight matrices and the total number of parameters.
Tu et al. (2020), Wang et al. (2021), and Panigrahi
and Goyal (2021) have provided bounds for specifi-
cally defined learnable concept classes. Zhang et al.
(2018) and Allen-Zhu and Li (2019) study the links
between gradient descent and provable generalization.
The main caveat of these bounds is that they depend
on a arbitrary fixed maximal length of sequences.

In this work, we show how this caveat can be overcome
for Simple RNNs (SRNs). Our result is based on the
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PAC-Bayesian theory (McAllester, 2003; Guedj, 2019)
which has recently proved useful to derive theoretical
guarantees on the generalization ability of feed forward
neural networks (Neyshabur et al., 2018; Jiang et al.,
2019; Dziugaite et al., 2020).

Most of our results require the SRN to be at least
partially saturated, a regime in which a RNN has its
squashing activation functions fed with inputs large
enough to approach their boundaries. The saturation
phenomenon in RNNs has been observed empirically,
particularly in Natural Language Processing (Shibata
et al., 2020), and we provide further evidence with a
study of the TAYSIR benchmark models (Eyraud et al.,
2023). Saturation was also the subject of a theoretical
study: Merrill et al. (2020) consider the more restric-
tive case where the limit of the squashing functions is
reached, forcing the hidden states to behave binarily.
This hypothesis allows the authors to establish results
on the expressiveness of different RNN architectures.

Our analysis relies on bounding the stability of RNNs
with respect to perturbed parameters and combining
this bound with tools from PAC-Bayesian theory, ex-
tending the framework introduced by Neyshabur et al.
(2018). Indeed, while this framework requires the per-
turbation of every parameters of the SRN, we prove
that adding a noise to the bias is sufficient. The idea
behind this result is that a sufficiently strong bias noise
can cover the noise generated by the perturbation of
all the parameters. This simplifies the proofs with the
cost of loosening the derived bounds.

Using this new framework, we first demonstrate a gen-
eral result: if the norm of the difference between the
hidden states of a SRN and those its bias-perturbed
counter part can be bounded in some way, then a
length-independent PAC Bayes result can be obtained.
We first apply this theorem to stable SRNs, which are
models whose recurrent weight matrix W has a spec-
tral norm lower than 1. This non-trivial result is clear
intuitively: the update map of a stable SRN being con-
tractive, input perturbations are not magnified through
its multiple applications and can thus be controlled
over sequences of arbitrary length.

We then pioneer the question of non stable RNNs by
showing that the non-contractiveness of the update
map can be compensated by the saturating effect of
the squashing recurrent activation function. This yields
to generalization bounds, without any restriction on
the sequence length, for SRNs that are in a saturation
regime, a notion we formalize in two ways in this work:
The first where the limit of the activation function is
almost reached at each time step, the second where
this happens at least once on a sliding window.

After introducing the main definitions and notations

in Section 2, we detail our main results in Section 3
and provide the sketch of their proofs in Section 4.
Section 5 provides experimental evidence of saturation
while Section 6 discusses the results and the related
works. Section 7 concludes.

2 PRELIMINARIES

We introduce first our main notations, then Simple
Recurrent Networks (SRNs), saturation regimes and
the subclasses of SRNs under consideration. The super-
vised classification setting considered is then presented
before an introduction to the PAC-Bayesian framework

2.1 Notations

We denote matrices and vectors by uppercase and low-
ercase letters, respectively, and we use x[j] to indicate
the jth coordinate of a vector x. We denote by Id the
identity matrix of size d× d . Given v ∈ Rd, we denote
by ∥v∥ its Euclidean norm, and by ∥v∥∞ its infinity
norm. Given a matrix M , its spectral norm is denoted
by ∥M∥, and its Frobenius norm by ∥M∥Fro. Given an
univariate function σ, we denote by σ′ its derivative.
Given two integers k, s, with k ≤ s, we denote by [[k, s]]
the set of integers within the range of k and s. When k
and s are real numbers, we use [k, s] to denote a closed
interval and ]k, s[ for an open interval.

2.2 Simple Recurrent Networks

Simple Recurrent Networks (SRNs) are a class of
models designed to process sequential data (Elman,
1990). An input sequence of length T , is denoted
XT := {xk}Tk=1 with xk ∈ Ru. Let h0 ∈ Rd be the
initial hidden state. The computation of a SRN is
defined recursively by the following equations:{

hk = σ (Uxk +Whk−1 + b)

yk = σ (V hk + c)
(1)

where U ∈ Rd×u, W ∈ Rd×d, V ∈ Ro×d, b ∈ Rd, c ∈
Ro, and where we denote by σ the activation func-
tion and by yk ∈ Ro the SRN output. We denote a
SRN by RP , where P = vec(U,W, V, b, c) is the vector
containing all the parameters of the SRN.

In this article, we focus on SRNs trained for classi-
fication tasks with σ = tanh. Our results can, with
some adaptation, be extended to the sigmoidal func-
tion. For a given sequence XT , the output of RP (X

T )
is the last output vector yT , i.e. RP (X

T ) = yT . Let
X = {XT : T > 0} be the set of all finite sequences that
the SRN RP can process. We assume1 that there ex-

1Note that this assumption is trivial in the case of one-
hot encoding, with B = 1.
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ists a constant B such that for all XT = {xk}Tk=1 ∈ X ,
∥xk∥ ≤ B for all 1 ≤ k ≤ T .

2.2.1 β-saturation

We first formalize the saturation regime of SRNs.

Definition 2.1 (β-Saturated SRN). A SRN RP is
β-saturated if there exists β, 0 < β ≤ 1, such that for
all XT ∈ X and all 1 ≤ k ≤ T ,

min
1≤j≤d

|hk[j]| > β.

Note that when β = 1, our definition coincide with
the one of Merrill et al. (2020). We then introduce a
relaxation of the β-saturation constraint as follows:

Definition 2.2 (Desynchronised Sliding
β-saturation (DS β-saturation)). A SRN RP

is DS β-saturated if there exist β > 0 and an integer
F ≥ 1 called the window size, such that for all XT ∈ X
with T ≥ F , and for all 1 ≤ k ≤ T − F , for all
1 ≤ j ≤ d:

∃ s ∈ [[k, k + F − 1]] such that |hs[j]| > β.

This defines a SRN that may not saturate at every
iteration, but every coordinate will saturate at least
once within a sliding window of size F . Note that a DS
β-saturated SRN is a β-saturated SRN when F = 1.

The work presented here being of probabilistic nature,
considered SRNs do not have to be β-saturated or DS
β-saturated on every sequences of X : it is required to
happen on a set Xτ ⊂ X whose measure is 1− τ .

We now provide an intuition about these saturation
regimes from a geometrical standpoint. First, because
of the tanh activation function, all the hidden state
vectors lie in [−1, 1]d. Let RP be a β-saturated SRN
for some 0 ≤ β ≤ 1. By definition, every coordinate of
each hidden state vector is greater than β in absolute
value. For β = 1, all the hidden state vectors live in
{−1, 1}d. This set corresponds to the vertices of the
hypercube [−1, 1]d. For β smaller than 1, the hidden
state vector will land next to a vertex and within a
infinite norm ball of radius 1− β.

The dynamics of a DS β-saturated SRN can be intu-
itively represented as: within every window of size F
the hidden state vector visit the neighborhood of a
boundary in every dimension of the hypercube [−1, 1]d

without necessarily landing near the vertices.

2.2.2 Classes of SRNs

We first give a formal definition of stable SRNs, consis-
tent with that of Miller and Hardt (2019).

Definition 2.3 (Stable SRN). Let RP be a SRN as
in Equation 1, we say that RP is stable if ∥W∥ < 1.

Now, we introduce the notion of perturbed SRN, which
is obtained by perturbing the parameters of a SRN by
a given noise vector ϑ.

Definition 2.4 (Perturbed SRN). Given a SRN
RP as in Equation 1, and ϑ ∈ Rdim(P ), we define the
perturbed SRN RP+ϑ by the following set of equations:h̊k = σ

(
(U + ϑU )xk + (W + ϑW )̊hk−1 + b+ ϑb

)
ẙk = σ

(
(V + ϑV )̊hk + c+ ϑc

) ,

where ϑ = vec(ϑU , ϑW , ϑV , ϑb, ϑc), and h̊0 = h0.

Perturbed SRNs are central to our analysis. We will
show that robustness to perturbations can be translated
to generalization guarantees by leveraging tools from
the PAC-Bayesian theory. A particular case is the one
where the matrices ϑU , ϑW and ϑV are zero matrices:

Definition 2.5 (Fuzzy SRN). Let RP be a SRN
and ε = (εo, εd) ∈ Ro+d. RP+ϑε is a fuzzy
SRN if Rdim(P ) ∋ ϑε = vec(ϑε

U , ϑ
ε
W , ϑε

V , ϑ
ε
b, ϑ

ε
c) =

vec(0, 0, 0, εd, εo).

In order to have a clear distinction between perturbed
and fuzzy SRNs, we denote a fuzzy SRN by Rε

P , and
refer to its hidden and output vectors with h̃k and ỹk.

2.3 Supervised Classification Setting

We consider supervised classification tasks where the
input space is the set of all finite sequences X and the
output space is a set of discrete labels Y = {1, . . . , o}.
Let D be a fixed unknown distribution over X ×Y and
let Zm be a learning sample of size m identically and
independently drawn (i.i.d.) from D. Lastly, H is a
set of classifiers fP : X → Y parameterized by a vector
P . In a usual deep learning setting, fP = g ◦ fP where
fP : X → R|Y| and g(x) = max1≤i≤|Y| x[i]. Since g is
generic and has no influence on the decision, we allow
ourselves an abuse of notation by considering fP as
being fP .

We now define the expected margin loss that will be
used to assess the quality of a (learned) classifier.

Definition 2.6 (Expected margin loss). Let γ ≥ 0 a
margin. The expected margin loss is defined by:

Lγ(fP ) = P(XT ,y)∼D

[
fP (X

T )[y]−max
j ̸=y

fP (X
T )[j] ≤ γ

]
.

The margin loss can be seen as a measurement of
the classifier’s strength toward to perturbations. Its
empirical counterpart is classically defined as follows:
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Definition 2.7 (Empirical margin loss). Let fP be a
classifier on X × Y and γ > 0. The empirical margin
loss is:

L̂γ(fP ) =
1

m

∑
(XT ,y)∈Zm

1{fP (XT )[y]−maxj ̸=y fP (XT )[j]≤γ}

where 1 is the indicator function.

Note that if γ = 0, L0(fP ) is the expected zero-one
loss and L̂0(fP ) is the empirical zero-one loss.

2.4 PAC-Bayesian Framework

The Probably Approximately Correct (PAC) learning
framework (Valiant, 1984) allows one to evaluate the
quality of a hypothesis (model) by assessing to which
extent the empirical loss can provide a good approxi-
mation of the expected loss with high probability. The
PAC-Bayesian theory (McAllester, 2003; Alquier, 2021)
is a framework to obtain generalization guarantees over
a random prediction instead of a single predictor as
in the classic PAC setting. In the PAC-Bayes frame-
work, one considers a distribution Q over H which is
learned from data. The performance of randomized
predictors drawn from Q is then analyzed with respect
to a prior distribution π over H that is independent of
the training data. In order to get a bound on a single
hypothesis fP , one needs to link the expected loss over
Q with the loss of fP . For this purpose, we introduce
the following lemma.
Lemma 2.8. Let H be a set of classifiers on X × Y.
Let π,Q two distributions on H. Let Zm ⊂ X × Y
a set of m training samples assumed to be drawn iid
from an unknown distribution D on X × Y with DX
the marginal over X . The distribution π is the prior
and is assumed to be independent of Zm. Let fP ∈ H
drawn with respect to the distribution Q. Let Xτ ⊂
X a subset of X such that DX (Xτ ) = 1− τ for τ ∈
[0, 1[, if :

PJ∼Q

[
sup

XT∈Xτ

∥∥fP (XT )− fJ(X
T )
∥∥
∞ < γ/4

]
≥ 1

2
,

then, with probability 1− δ over Zm, we have

L0(fP ) ≤ L̂γ(fP ) + τ + 4

√
2KL (Q∥π) + ln

(
6m
δ

)
m− 1

,

where KL(·∥·) is the Kullback-Leibler divergence.

The proof is in the Appendix. This lemma is a relax-
ation of the one of Neyshabur et al. (2018, Lemma 1).
While in the latter, one has to control the distance –
between a fixed classifier and one randomly sampled
using Q – over all possible data, in Lemma 2.8 it is
sufficient to control this distance with probability 1− τ .

3 MAIN RESULTS

3.1 PAC-Bayesian Bounds

To obtain PAC-Bayesian bounds, we follow the princi-
ple of Neyshabur et al. (2018) by analyzing how per-
turbations of the weights affect the outputs of a net-
work. In particular, we study the distance between
a SRN RP and the perturbed SRN RP+ϑ. We de-
fine the prior π = N (0, ρ2Idim(P )) and the posterior
Q = N (P, ρ2Idim(P )) for ρ > 0. We assumed that the
network parameters are initialized according to the
prior distribution π. Note that the posterior is equiva-
lent to the distribution P +ϑ with ϑ ∼ N (0, ρ2Idim(P )).
In this context, it is well known that:

KL (Q∥π) = KL (P + ϑ∥π) = ∥P∥2Fro
2ρ2

.

We now present a general result that will allow us
to derive several generalization bounds for SRNs. It
uses the fact that it is not necessary to perturb all the
parameters of the SRN but only the bias. Combined
with Lemma 2.8, we obtain a particularly convenient
tool for studying the generalization power of SRNs
independently of the data length.

Theorem 3.1 (Backbone theorem). Let D be a distri-
bution on X × Y, and DX the marginal over X . Let
E > 0, RP be a SRN and γ ≥ 0 a margin, such that
there exists C > 0 and 0 < τ < 1 verifying for all
ε = (εo, εd) ∈ Ro+d, ∥ε∥ ≤ E:

PXT∼DX

[
∀ 1 ≤ k ≤ T,

∥∥∥h̃k − hk

∥∥∥ ≤ C∥εd∥+ α
]
≥ 1−τ

where h̃k is the hidden state vector of the fuzzy SRN Rε
P ,

α is constant such that 4∥V ∥α < min(γ, 4E∥V ∥(C+1))
and XT = {xk}Tk=1. Then we have the following PAC-
Bayes bound with probability at least 1 − δ over the
training sample Zm:

L0(RP )−L̂γ(RP ) ≤ τ+Õ
(
DCB∥V ∥∥P∥Fro + ln( 1δ )

(γ − α∥V ∥)
√
m

)
with D = max(d, o), γ = min(γ, 4E∥V ∥(C + 1)) and B
such that for all k, 1 ≤ k ≤ T , ∥xk∥ ≤ B.

The detailed proof is given in Appendix and a sketch
is presented in Section 4. The first step of the proof
consists in bounding the distance between the outputs
of RP and Rε

P . We show in particular that:∥∥RP (X
T )−Rε

P (X
T )
∥∥ ≤ ∥V ∥∥h̃T − hT ∥+ ∥εo∥. (2)

It is then obvious that bounding ∥h̃T−hT ∥ is crucial. In
order to apply Theorem 3.1, it is important to exhibit
reasonable constants C and α. Depending on the type
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of SRNs considered, we will derive different values for
C and α. It is crucial to note that for SRNs exhibiting
a form of saturation, the constants C and α not only
act as guarantors for the application of Theorem 3.1,
but also guarantee that saturation is maintained, which
allows us to apply Lemma 2.8. To conclude this section,
we notice that Theorem 3.1 relies on the use of the
fuzzy SRN Rε

P : this implies that perturbing only the
biases is sufficient to obtain PAC-Bayesian bounds.

3.2 PAC-Bayes Bound for Stable SRNs

We first present a length independent PAC-Bayes
bound for stable SRNs.
Theorem 3.2 (Stable SRN). Let RP be a stable
SRN (see Definition 2.3). Then for all ε = (εo, εd) ∈
Ro+d and all XT ∈ X we have:∥∥∥h̃T − hT

∥∥∥ ≤ (1− ∥W∥)−1∥εd∥.

We then can apply Theorem 3.1 for stable SRNs with
constants C = (1− ∥W∥)−1, α = 0, and unbounded E .

We highlight below the key points of the proof (the full
proof can be found in the appendix).

First, by leveraging the fact that the tanh activation
function σ is 1-Lipschitz, we can derive the bound:

∥h̃T − hT ∥ ≤ ∥W∥∥h̃T−1 − hT−1∥+ ∥εd∥.

By applying this argument recursively on T , we obtain:

∥h̃T − hT ∥ ≤

(
T−1∑
s=0

∥W∥s
)
∥εd∥. (3)

Now, the SRN is stable, so ∥W∥ < 1. Thus, for T → ∞
the series ∥εd∥

∑T−1
s=0 ∥W∥s converges to ∥εd∥ 1

1−∥W∥ .

The fundamental step to determine C in the above
derivation is the use of the Lipschitz property. In fact,
for all x ∈ Ru and all h, h′ ∈ Rd we have:

∥σ (Ux+Wh′ + b)− σ (Ux+Wh+ b)∥
≤ ∥W∥∥h′ − h∥ < ∥h′ − h∥.

(4)

In particular, RP has Lipschitz constant strictly smaller
than 1 with respect to the hidden state vectors. We
refer to this property as global contractiveness, cor-
responding to the defining property of stable SRNs
according to Miller and Hardt (2019). In the next
section, we show how the requirement of global con-
tractiveness can be relaxed by leveraging the notions of
β-saturation and DS β-saturation. Specifically, these
properties provide us with additional information on
the dynamic of the hidden state vectors, allowing us
to apply Theorem 3.1 to a setting that is only locally
contractive, that is, where there exists an open sets of
hidden states vectors for which Equation 4 holds.

3.3 PAC-Bayes Bound for β-saturated and
DS β-saturated SRNs

When the considered SRN is not stable, we find that
the effect of the spectral norm of W on the bound can
be compensated by a saturation regime. We first state a
length independent PAC-Bayes bound for β-saturation.
Theorem 3.3 (β-saturated SRN). Let RP be a β-
saturated SRN with ∥W∥ ≥ 1 with η = β − z > 0, and
z =

√
1− 1

∥W∥ . Let t ∈]0, 1[, ∆ = tanh′(tanh−1(z) +

tη
1−z2 ) and ∇ = (1−t)η

1−z2 , then for any ε = (εo, εd) ∈ Ro+d

such that ∥ε∥ ≤ ∇(1−∆∥W∥) we have:∥∥∥h̃T − hT

∥∥∥ ≤ 1

1−∆∥W∥
∥εd∥.

This result allows us to apply Theorem 3.1 to β-
saturated SRN with C = (1 −∆∥W∥)−1, α = 0, and
E = ∇(1−∆∥W∥).

To better understand the regime in which this theorem
is relevant, we provide intuitive explanation on the
different variables below and a visualization in Figure 1.

Figure 1: Detail of a corner of the hypercube [−1, 1]2

with the main variables of the theorems.

We consider the setting of Theorem 3.3. Since ∥W∥ ≥ 1,
the SRN is not contractive everywhere, but if β is large
enough, the SRN will be locally contractive in a neigh-
borhood of the hypercube vertices, whose size depends
on z. More precisely, the SRN is locally contractive in
the ℓ∞ ball of radius η = β − z centered on any h in
the violet region of Figure 1. In this 2D visualization,
the violet square represents a region where the hidden
state vectors of the SRN are guaranteed to land due to
β-saturation. Figure 1 zooms on one vertex but similar
figures can be drawn for each vertex of the hypercube.
The red borders delimit the regions where the SRN
is (locally) contractive.

Intuitively, the proof of Theorem 3.3 relies on the fact
that ∥hk−h̃k∥ ∝ ∥RP (X

T )−Rε
P (X

T )∥ can be bounded
independently of T if both RP and Rε

P are locally
contractive. First consider the case where noise would
be injected in the SRN at only one time step: h̃k =
hk + N . One can show that if ∥N∥∞ < η/(1 − z2),
then h̃k+1 is guaranteed to still lie in the contractive
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region (details are provided in Section 4). Thus, in this
case, by successively applying the contractive mapping,
the noise injected at iteration k will be exponentially
reduced and will not affect the local contractiveness of
the following iterations. However, this only holds if the
noise is injected once during the execution. In the case
where a constant noise is injected at each iteration, the
accumulation of the noise terms is likely to drive the
fuzzy hidden state outside the locally contractive area.

A key element is that for small enough noise injected at
each iteration, the fuzzy SRN remains locally contrac-
tive at each iteration. This constraint on the magnitude
of the noise is captured by the definitions of ∇ and ∆.

From a high-level perspective, η/(1− z2) represents a
noise budget that can be divided into two parts. This
is illustrated in Figure 1. The blue pigmented zone
represents the region where local contractiveness is
guaranteed at each step when noise is added at each
iteration. The width of this region is directly controlled
by the variable ∇ = (1−t)η

1−z2 . As for ∆, it corresponds to
a strict lower bound on ∥W∥−1 needed to ensure that
all fuzzy SRN hidden states remain in the blue region.
Section 4.2 provides detailed technical explanations of
how these variables are obtained and used.

In the following, we show that local constractiveness
is not mandatory for having a SRN robust to noise
injection. DS β-saturation is a relaxation of the β-
saturation in two ways: 1) β-saturation does not need
to occur at every iteration, 2) not all hidden vector
coordinates have to be β-saturated simultaneously. The
hypothesis of DS β-saturation is sufficiently structuring
to derive guarantees, and closely related to observed
phenomena is practical RNNs. We discuss this last
point further in the Section 5.
Theorem 3.4 (DS β-saturated SRN). Let RP be a DS
β-saturated SRN with ∥W∥∞ ≥ 1, F ≥ 1 the window
size verifying η = β − z > 0, where z =

√
1− 1

2∥W∥F
∞

.

For any t ∈]0, 1[, we set ∆ = tanh′(tanh−1(z) + tη
1−z2 )

and ∇ = (1−t)η
1−z2 , then for any ε = (εo, εd) ∈ Ro+d such

that ∥ε∥ ≤
(

∇∆

4
∑F−1

j=0 ∥W∥j
∞

)
we have:

∥∥∥h̃T − hT

∥∥∥
∞

≤ ∥εd∥∞
F−1∑
j=0

∥W∥j∞ +
∇∆

4
.

DS β-saturation cannot be interpreted as local contrac-
tiveness. From a high level perspective, if one observes a
single coordinate of a DS β-saturated SRN they will find
that in absolute value this coordinate will frequently
go above the threshold β. The idea inherited from
β-saturation is that when a neuron reaches a certain
degree of saturation, it compresses the noise it might

have received from the previous layer. We show that
desynchronized, sparse but regular β-saturation is suffi-
cient to contain the accumulated noise and thus extract
generalization guarantees. The quantities η,∇,∆ and
t ∈]0, 1[ have a similar role to that of the β-saturation
regime: they represent the partitioning of the budget
available for noise accumulation across iterations.

Theorems 3.3 [resp. 3.4] is easily adaptable to the case
where a SRN RP is β-saturated [resp. DS β-saturated
respectively] only on a subset Xτ ⊂ X . Indeed, if RP

is β-saturated on Xτ with DX (Xτ ) = 1− τ , this means
that the results of these theorems hold with probability
greater than or equal to 1− τ . Theorem 3.1 can thus
be used to prove the bounds.

4 SKETCH OF PROOFS

In this section we sketch the proof of Theorem 3.1
and the derivations of the constants C and α of the
other theorems. We also provide a sketch showing
why the perturbation of the biases is enough to obtain
PAC-Bayes bounds. The detailed proofs are in the
appendix.

4.1 Backbone Theorem

Let RP be a SRN. First, we prove that it is sufficient
to study the distance between RP and a fuzzy SRN
Rε

P , where ε = (εo, εd) ∈ Ro+d. Leveraging Equation 2
and the hypothesis of Theorem 3.1, we show that for
an appropriately chosen ρ, and for ε ∼ N (0, ρ2I), we
have with high probability:∥∥RP (X

T )−Rε
P (X

T )
∥∥ ≤ ∥V ∥C∥εd∥+ ∥εo∥
≤ ∥V ∥(C + 1)∥εmax(o,d)∥.

Then, it is possible to set the variance of the noise ε
such that the following inequality holds:

P
[
∥V ∥(C + 1)∥εmax(o,d)∥ < γ/4

]
≥ 1

2
.

Finally, we can apply Lemma 2.8, from which we derive
the bound stated in Theorem 3.1.

4.2 PAC-Bayes Bound for β-saturated SRNs

The sketch of the proof for stable SRNs being given in
Section 3.2, we focus on the saturated regimes.

Let RP be a β-saturated SRN with β = z+η, for some
η > 0 and z =

√
1− 1

∥W∥ . Let XT ∈ X a sequence of
length T . As explained previously, β-saturated SRNs
are locally contractive around the hidden state vectors.
In order to obtain a bound on ∥h̃T − hT ∥ independent
from T , the local contractiveness must be preserved in
the fuzzy version of RP to prevent noise explosion.
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We prove that z is a boundary of the local contractive-
ness region, thus for β = z+ η, η represents the budget
for accumulating the noise in the post-activation space.
The reasoning can then focus only on the choice of
ε = (εo, εd) ∈ Ro+d such that Rε

P is z-saturated.

First, given that β is defined in the post-activation
space, we need to transpose it into a pre-activation
quantity, since the noise is added before the activation.
This is achieved by applying tanh−1 and some basic
calculus, leading to the following inequality:

min
1≤j≤d

tanh−1(|hk[j]|) > tanh−1(z) +
η

1− z2
(5)

It gives us the pre-activation budget η
1−z2 before loosing

the local contractiveness. In order to ensure that the
fuzzy SRN remains locally contractive, we use only
a fraction of this budget. We call this fraction ∇ :=
(1−t)η
1−z2 , for 0 < t < 1. Now, assume that we can define
ε = (εo, εd) ∈ Ro+d such that the noise accumulated
by Rε

P never grows bigger than ∇. Concretely, for a
given XT = {xk}Tk=1 ∈ X , we assume that h̃k produced
by Rε

P never deviates from hk further than ∇: h̃k =
hk+Nk, ∥Nk∥ ≤ ∇ where Nk is the noise accumulated
up to iteration k. From Equation 5, we can deduce:

min
1≤j≤d

tanh−1(|h̃k[j]|) > tanh−1(z) +
tη

1− z2
(6)

Leveraging Equation 6, we prove that the Lipschitz con-
stant of Rε

P evaluated on the data from X is bounded
by ∆∥W∥ < 1 where ∆ := tanh′

(
tanh−1(z) + tη

1−z2

)
.

From here, we prove in the appendix an expression of
the accumulated noise NT at time T :

NT =

T−1∑
s=1

Λ(cT )

(
T−s∏
l=1

WΛ(cT−l)

)
εd + Λ(cT )εd (7)

where 1 ≤ k ≤ T , ck is a d-dimensional vector with co-
ordinates ck[j] taking values between tanh−1(hk[j]) and
tanh−1(hk[j] +Nk[j]), and Λ(ck) = Diag(tanh′(ck)).

From Equations 5 and 6, it follows that all the entries
of Λ(ck) are bounded by ∆, and thus ∥Λ(ck)∥ < ∆.
With the triangle inequality we extract a bound on
∥NT ∥ which takes the form of a convergent geometric
series times ∥εd∥. For T → ∞ we obtain a bound on
the maximum amplification of the noise. From this
follows a bound on εd such that the initial condition
∥NT ∥ < ∇ is fulfilled for all T : it suffices to choose εd
such that ∥εd∥ < ∇(1−∆∥W∥) where (1−∆∥W∥)−1

is the limit of the converging geometric series.

4.3 PAC-Bayes Bound for DS β-saturated
SRNs

The DS β-saturation is a relaxation of the β-saturation
hypothesis. However, the handling of DS β-saturation

needs to be more careful. Indeed, for β-saturation
we can unroll the entire recurrence of T iterations
and obtain an expression for the vector h̃T − hT . It
is made possible by the regularity and synchronicity
of saturation resulting from the β-saturation assump-
tion. Abandoning synchronicity in the DS β-saturation
framework no longer allows us to unroll the entire recur-
rence, forcing us to approach the problem in a different
way. We prove by induction that the coordinates of
the vector h̃k − hk do not exceed the threshold set in
the theorem with 0 ≤ k ≤ T − F . To do this, we
first show a bound on the maximal amplification that
a coordinate of the vector h̃k − hk can experience in
F − 1 iterations: ∥h̃k+F−1 − hk+F−1∥∞ is bounded by
∥εd∥∞

∑F−2
j=0 ∥W∥j∞ + ∥W∥F−1

∞ ∥h̃k − hk∥∞.

In the induction initialization k is equal to zero, thus
∥W∥F−1

∞ ∥h̃k − hk∥∞ = 0. The theorem assumption on
∥ε∥ allows us to show that the accumulated noise during
the F−1 iterations is bounded by ∇∆

2 . This last bound
is crucial to: 1) guarantee that Rε

P will have a similar
saturation pattern (refer to C.8 for a formal definition)
as that of RP on the first F iterations, 2) define the
induction hypothesis. For the rest of the proof we
assume that for l ≥ 1 we have ∥h̃lF −hlF ∥∞ ≤ ∇∆

2 and
prove that RP and Rε

P will have a similar saturation
pattern for the next F iterations proving the fulfilment
of the induction hypothesis up to iteration (l + 1)F .

4.4 Sufficiency of Bias Perturbation

The previous sketches of proof have all been based on
the fact that it is sufficient to perturb only the bias.
On that point, they actually all rely on the same result:
in this sub-section we provide a sketch of it. Let RP

be a SRN, we recall that for ϑ ∈ Rdim(P ) RP+ϑ is a
perturbed SRN producing hidden state vectors denoted
with h̊k. In the Appendix C.4 we prove that, in a
similar way as Equation 7, it is possible to express h̊k as:
h̊k = hk + N̊k, with N̊k being defined recursively. Now,
we focus on the process of generating the next hidden
state h̊k+1. Let xk+1 ∈ Ru such that ∥xk+1∥ ≤ B. By
the definition of the perturbed SRN RP+ϑ we have:

h̊k+1 = σ
(
Ůxk+1 + W̊ (hk + N̊k) + b̊

)
= σ

(
Uxk+1 +Whk + b+ N̊k+1

)
= σ (Uxk+1 +Whk + b) + Λ(ck+1)N̊k+1

= hk+1 + Λ(ck+1)N̊k+1,

where Λ(ck+1) is defined similarly as for Equation 7,
and Ů = (U + ϑU ), W̊ = (W + ϑW ), b̊ = (b + ϑb)
N̊k+1 := ϑUxk+1 +WN̊k + ϑW (hk + N̊k) + ϑb.

The total noise added in the production of N̊k+1 on
top of the noise N̊k, inherited from previous iterations,
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is Z := ϑUxk+1 + ϑW (hk + N̊k) + ϑb. We recall that
hk + N̊k = h̊k ∈ [−1, 1]d, therefore ∥hk + N̊k∥ ≤

√
d.

Hence one can derive the following bound:

∥Z∥ ≤ ∥ϑU∥∥xk+1∥+ ∥ϑW ∥∥(hk + N̊k)∥+ ∥ϑb∥

≤ ∥ϑU∥B + ∥ϑW ∥
√
d+ ∥ϑb∥

≤ ∥ϑ∥FroB + ∥ϑ∥Fro
√
d+ ∥ϑ∥Fro

≤ (B + 1 + d)∥ϑ∥Fro.

Now if we consider a fuzzy SRN Rε
P , with ∥ε∥ ≤ r, for

some r > 0, whose execution deviates little from RP ,
then by choosing ϑ ∈ Rdim(P ) such that ∥ϑ∥ ≤ r

(B+1+d) ,
we can be sure that RP+ϑ will not deviate from RP

further than Rε
P does.

In this work, the random nature of parameter pertur-
bation is central. However, the fact that we restrict
ourselves to Gaussian noise provides us with a way
of guaranteeing the amplitude of the noise with arbi-
trarily high probability. So by adjusting the variance
of the Gaussian noise we can control, with a desired
probability, the deviation of a fuzzy SRN, and hence
the deviation on the perturbed SRN from the SRN RP

that we are studying.

5 EXPERIMENTAL CLUES FOR
SATURATION

The TAYSIR benchmark (Eyraud et al., 2023) provides
a set of 10 small RNNs trained on a classification task.
We fed the validation set to these models and kept track
of the values of their hidden states. We observe a trend
in half of them (all details are available in Appendix):
in these models, the values tend to be either around 0
or close to the extrema {−1, 1}.

These models have one clear bias: their initial state
h0 is the null vector. We then retrained the models
using the same hyper-parameters, but with values of
the initial state randomly chosen in the set {−1, 1}.
The noticed trend in the distribution of hidden values
is then particularly significant in half of the models
(see Figure 2 for 3 examples).

Figure 2: Examples of hidden value distributions of
TAYSIR models with values of h0 chosen in {−1, 1}.

Because of the values around the origin, these models
are not saturated in the sense of our definitions. How-
ever, these distributions offer a clear argument in favor

of studying saturation: practical RNNs can have the
majority of their hidden values closed to the extrema.

These models being GRU Cho et al. (2014), we trained
SRNs on the corresponding TAYSIR data. Since keep-
ing the same architecture with SRN neurons instead
of GRU gates did not achieved acceptable accuracy,
we ran a grid search on the range of hyper-parameters
used in TAYSIR. Three of the trained SRNs obtained
comparable accuracy to the original models, other tasks
seemingly being too complex for SRNs. Among these,
two exhibit the noticeable hidden value distribution.

As DS β-saturation relies on a sliding window of size
F , we then parsed the sequences one by one and we
tracked, in each component of the hidden state, how
many consecutive values of the hidden states were less
than than a threshold (0.7) in absolute value. We kept
the max for each component on each sequence, counted
these maxima over all sequences of the validation set,
and obtained Figure 3.

Figure 3: Max Consecutive values below the threshold
in SRNs trained on TAYSIR data.

All sequences of these validation sets are of length 22.
This figure shows that almost all components of the hid-
den state have an absolute value close to an extremum
at least once every 12 to 15 time steps. Again, this
does not exactly correspond to our formalisation of DS
β-saturation with a potential sliding window F = 15
since, for instance, it may be the case than one compo-
nent is never greater than the threshold. Nevertheless,
it provides observations that ground this saturation
regime with the reality of practical RNNs.

6 DISCUSSION AND RELATED
WORKS

In this work, our main goal was to study the general-
ization abilities of RNNs. We first propose a theorem
that provides a sufficient condition on the distance be-
tween a SRN and its fuzzy version to obtain a length
independent PAC-Bayes bound. This general result
offers a new potentially impactful framework to study
RNNs generalisation ability. We first exemplify its
use on stable SRNs , models where the hidden state
dynamic is contractive, and obtained a PAC-Bayes
bound independent from the length of the data. For
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non-contractive SRNs, we derived PAC-Bayes bounds
under the additional assumption of saturation. We
think that the extension to DS β-saturated SRNs is
particularly valuable, as this is arguably a much more
realistic setting (Shibata et al., 2020; Chandar et al.,
2019; Oliva et al., 2017). Moreover, this is the first
bound independent from the length of the data for non-
stable RNNs, which is of great interest for studying
networks modelling long-term dependencies. Indeed,
contractive RNNs can only take decision based on the
last elements of the input sequence (Hammer and Tiňo,
2003), while 1-saturated SRNs are equivalent to Deter-
ministic Finite Automata (DFAs) (Merrill et al., 2020;
Eyraud and Mitarchuk, 2022), models able to handle
unbounded long-term dependencies (Carroll and Long,
1989). The correspondence between these two classes of
models adds another dimension to our result: it leads
the way towards a first PAC-Bayes bound for DFAs.

Concerning limitations, the main challenge posed by
the saturation assumption is that β-saturated SRNs
can hardly be learned using gradient descent because
of vanishing gradients (Chandar et al., 2019). However,
this drawback is not shared with DS β-saturation since
gradient at unsaturated time steps does not vanish
and since this regime only requires each component to
saturated asynchronously once over a sliding window.
This is enforced by the experimental observation that
well trained RNNs often have hidden state values close
to the extrema, as exemplified for instance on the
TAYSIR models or the ones of Shibata et al. (2020):
training can drive the model to tend to this regime,
our result showing its interest for generalisation.

We conclude this section by mentioning some related
work on the topic of generalisation bounds for RNNs.
The first PAC-Bayesian bound for a class of linear
RNNs is proven by Eringis et al. (2021). In Zhang
et al. (2018) the authors follow Neyshabur et al. (2018)
approach to prove a PAC-Bayes bound for nonlinear
RNNs, dependent on the input length. Moreover, the
authors propose a way to control the singular values of
the transition matrix W to reduce the dependency on
the sequence length. Chen et al. (2018, 2020) obtain, for
general SRNs, a bound on the empirical Rademacher
complexity which is length independent only when
∥W∥ < 1. Tu et al. (2020) introduce a norm for RNNs
reflecting the information on the data transmitted by
the gradient during training. They use the Rademacher
complexity and derive a bound that does not depend
directly on the size of the model, but that exhibits
a strong dependency on the length of the data. A
totally different approach is explored by Wang et al.
(2021), Allen-Zhu and Li (2019) and Panigrahi and
Goyal (2021). In these works, the authors study the
learnability of a class of functions defined by a com-

plexity criterion and provide bounds depending on the
length of the data. In particular, Panigrahi and Goyal
(2021) define a set of concepts using a complexity mea-
sure, and a hypothesis class given by RNNs with a
fixed set of hyperparameters (including the length of
the string T ). They prove that, within this hypothesis
class, there is a RNN that will achieve perfect general-
ization and provide a bound depending on the set of
hyperparameters.

7 CONCLUSION

In this paper, we propose PAC-Bayes bounds for a class
of nonlinear RNNs working in different regimes. To the
best of our knowledge, this is the first extensive theo-
retical study on generalizations that does not depend
on the length of the sequences. We first prove a general
theorem that provides a sufficient condition to obtain
length independent PAC-Bayes bounds. Then, we show
how this result can be used to prove a generalization
bound assuming that the spectral norm of the weight
matrix W is strictly smaller than one, a case known as
stable RNN. Finally, we show that it is possible to ob-
tain bounds also when ∥W∥ ≥ 1, under the assumption
that the network is in a saturation regime. While in the
first setting the update map is contractive, and then
perturbations are not magnified through the iterations,
it is not the case in the latter, so obtaining length
independent bounds is more challenging. This work
has led to the development of tools for studying SRNs
that are worth highlighting, notably the fact that it is
sufficient to perturb only the bias when perturbing the
SRN parameters, explained in greater detail in Section
4. Another theoretical contribution is the extension of
the notion of saturation. Merrill et al. (2020) define
saturation as a limit and therefore does not describe an
observable phenomenon; we propose a more empirically
realistic formalisation of this notion.

An important element is that our goal in this paper was
to propose and study a framework for length indepen-
dent bounds. We did not try to tighten these bounds
as it would have complexified the demonstration. A
clear future work is thus to stiffen these bounds.

Another continuation of this work is to extend the re-
sult to Deterministic Finite Automata: given their
correspondence with saturated RNNs (Eyraud and
Mitarchuk, 2022), it seems possible to derive a first
PAC-Bayes bound for DFAs (Bengio et al., 1994).

Finally, our results pave the way for the proposal of
new learning algorithms: as saturation is proven to be
useful for generalisation, a well-designed normalisation
of gradient descent based on it, or even a brand new
approach, represent likely directions for improvement.
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APPENDICES

This supplementary material is organized as follows. Appendix A is dedicated to the presentation of our
experimental study. Appendix B presents the extension of the results of Neyshabur et al. (2018). Finally,
Appendix C contains the proofs of the main theorems of the paper.

A EXPERIMENTS

To study the practicality of our theoretical work, we use the recent 2023 TAYSIR competition Eyraud et al.
(2023) that provides already trained neural net models for a goal of knowledge distillation. Though extraction of
surrogate models is not our aim, this benchmark is of interest since it provides a large variety of architectures,
including SRNs, trained on various tasks (artificial, bio-informatics, NLP, etc.).

We first looked at the already-trained models by parsing the validation set while keeping track of the hidden
state reached. The distribution of values observed in the hidden states components are given in Figure 4. For
LSTMs (models 1.6 and 1.11) we report only the values of the h vector though the state of a LSTM model is the
concatenation of this vector and the cell one c. Note that model 1.7 is a transformer and thus is not studied here.

Figure 4: Distribution of hidden state values while parsing the validation set with the original TAYSIR models

We observe a trend in this figure: several distributions show values either around zero or close to the extrema −1
and 1. This is already an observation in favor of our work: it shows that asking hidden values to be close to the
extrema is connected to practical RNN behavior.

However, one characteristic of the TAYSIR models may bias these plots: the initial state is always the vector
made of zeros. We thus retrained the models keeping the same architecture but with an initial state made of −1’s
and 1’s, randomly selected. The result is given in Figure 5.

While model 1.11 surprisingly does not have the noticeable distribution anymore, model 1.5 now exhibits it in a
clear way. Overall, the trend is more visible, with 3 models where the large majority of hidden state values are
around −1 and 1.

However, these 3 models, numbered 1.3, 1.4, and 1.5, are GRUs while our paper focuses on SRN. Since directly
replacing the GRU cells by SRNs does not achieve interesting accuracy, we grid search the space of hyperparameters
used for the competition to obtain competitive SRNs (with initial vectors made of 1’s and −1’s). The achieve
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Figure 5: Distribution of hidden state values while parsing the validation set with the original TAYSIR models

accuracy is given in Table 1 and compares to the original model one.

Number Original model SRN
1.3 1.0 0.99983
1.4 0.99983 0.99983
1.5 1.0 0.99842

Table 1: Accuracy of original GRU models and of trained SRNs

In the left part of Figure 6 we provide the distribution of hidden state values for each of the obtained SRN: almost
all these values are greater that 0.8 for model 1.3 and 1.5.

To obtain the plots on the right of the figure, we fed the models with each sentence of the validation set. For each
component of the hidden states, we track how many consecutive times the value was less than 0.7. We report in
these plots the maximum value reached by this number for each sequence. Notice that the length of sequences on
all these datasets is 22.

For SRN models 1.3 and 1.5, on almost all sequences, almost all components of the hidden states exceed the
threshold at most every 10 time steps. As discussed in the main text, this is a clear practical observation in favor
of DS β-saturation.
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Figure 6: Accurate SRN hidden value distributions and maximum consecutive under a threshold per component.
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B SUFFICIENT CONDITION FOR PAC-BAYES BOUNDS

In this section we propose a relaxation of the results in Neyshabur et al. (2018). We start by recalling some
definitions and Lemma 1 in Neyshabur et al. (2018).

Definition 2.6 (Expected margin loss). Let γ ≥ 0 be the margin. The expected margin loss is defined by:

Lγ(fP ) = P(XT ,y)∼D

[
fP (X

T )[y]−max
j ̸=y

fP (X
T )[j] ≤ γ

]
.

The margin loss can be seen as a measurement of the classifier’s strength toward to perturbations. Its empirical
counterpart is classically defined as follows:

Definition 2.7 (Empirical margin loss). Let fP be a classifier on X ×Y and γ > 0. The empirical margin loss is:

L̂γ(fP ) =
1

m

∑
(XT ,y)∈Zm

1{fP (XT )[y]−maxj ̸=y fP (XT )[j]≤γ}

where 1 is the indicator function.

Note that if γ = 0, L0(fP ) is the expected zero-one loss and L̂0(fP ) is the empirical zero-one loss.

Lemma B.3 (Lemma 1 in Neyshabur et al. (2018)). Let H be a set of classifiers on X × Y. Let π,Q two
distributions on H. Let also Zm ⊂ X × Y a sample of m training instances iid from an unknown distribution D
on X ×Y. The distribution π is called the prior and is assumed to be independent of Zm. Let fP ∈ H drawn with
respect to the distribution Q. If:

PJ∼Q

[
sup

XT∈X

∥∥fP (XT )− fJ(X
T )
∥∥
∞ < γ/4

]
≥ 1

2
,

then, with probability 1− δ over the learning sample of size m,

L0(fP ) ≤ L̂γ(fP ) + 4

√
2KL (Q∥π) + ln

(
6m
δ

)
m− 1

.

We now provide the main result of this section, that is, a relaxation of this lemma.

Lemma 2.8 (Relaxation of Lemma 1 in Neyshabur et al. (2018)). Let H be a set of classifiers on X × Y. Let
π,Q two distributions on H. Let Zm ⊂ X × Y a set of m training samples assumed to be drawn iid from an
unknown distribution D on X ×Y with DX the marginal over X . The distribution π is the prior and is assumed to
be independent of Zm. Let fP ∈ H drawn with respect to the distribution Q. If ∃Xτ ⊂ X such that DX (Xτ ) =
1− τ for τ ∈ [0, 1[,

PJ∼Q

[
sup

XT∈Xτ

∥∥fP (XT )− fJ(X
T )
∥∥
∞ < γ/4

]
≥ 1

2
,

then, with probability 1− δ over Zm, we have

L0(fP ) ≤ L̂γ(fP ) + τ + 4

√
2KL (Q∥π) + ln

(
6m
δ

)
m− 1

,

where KL(·∥·) is the Kullback-Leibler divergence.

The proof of this statement is of similar nature of the one of Neyshabur et al. (2018).

Proof. Let H be a set of classifiers on X × Y. Let π,Q two distributions on H. Let also Zm ⊂ X × Y. The
distribution π is called the prior and is assumed to be independent of Zm. Let fP ∈ H drawn with respect to the
distribution Q. We assume that we have:
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• Xτ ⊂ X such that DX (Xτ ) = 1− τ < 1. If τ = 0 we are in the case of Lemma 1 in Neyshabur et al. (2018)

• and PJ∼Q
[
supXT∈Xτ

∥∥fP (XT )− fJ(X
T )
∥∥
∞ < γ/4

]
≥ 1

2 .

We start by defining the margin function:

Mγ(X
T , y) = fP (X

T )[y]−max
j ̸=y

fP (X
T )[j]− γ,

and the set:

SP =

{
J : sup

XT∈Xτ

∥∥fP (XT )− fJ(X
T )
∥∥
∞ < γ/4

}
.

Then we define, given A ∈ X

Dτ (A) :=
D(A ∩ Xτ )

1− τ

Dc
τ (A) :=

D(A ∩ X c
τ )

τ
,

where X c
τ = X \ Xτ . The definitions of Dτ and of Dc

τ give us the expression:

D(A) = τDc
τ (A) + (1− τ)Dτ (A).

We also define the distribution Q̃ on H by the density q of the distribution Q:

q̃(J) =
1

Z

{
q(J) if J ∈ SP

0 otherwise,

where Z := P [J ∈ SP ] ≥ 1
2 is a constant. We define:

Lτ
γ(fP ) = P(XT ,y)∼Dτ

[
Mγ(X

T , y) ≤ 0
]

L̂τ
γ(fP ) =

1

m

∑
(XT ,y)∈Zm

1{fP (XT )[y]−maxj ̸=y fP (XT )[j]≤γ}1{XT
i ∈Xτ}.

By definition of Dτ and from Neyshabur et al. (2018) we have:

Lτ
0(fP ) ≤ Lτ

γ/2(fJ)

L̂τ
γ/2(fP+ϑ) ≤ L̂τ

γ(fP ).

Also by definition of Dτ and by what precedes we have:

L0(fP ) = (1− τ)Lτ
0(fP ) + τLτc

0 (fP )

≤ (1− τ)Lτ
0(fP ) + τ

≤ Lτ
γ/2(fP+ϑ) + τ.

(8)

Then:
L̂τ
γ/2(fJ) ≤ L̂τ

γ(fP )

=
1

m

m∑
i=1

1{Mγ(XT
i ,y)≤0}1{XT

i ∈Xτ}

≤ 1

m

m∑
i=1

1{Mγ(XT
i ,y)≤0}

= L̂γ(fP ),

(9)
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because for all A1, A2 ⊂ X we have 1A11A2 ≤ 1Ai with i = 1, 2. Now we apply the inequalities 8, 9 and obtain:

L0(fP ) ≤ EJ∼Q̃

[
Lτ
γ/2(fJ) + τ

]
≤ EJ∼Q̃

[
L̂τ
γ/2(fJ)

]
+ τ + 2

√
2(KL(Q̃∥π) + ln

(
2m
δ

)
)

m− 1

≤ L̂γ(fP ) + τ + 2

√
2(KL(Q̃∥π) + ln

(
2m
δ

)
)

m− 1

≤ L̂γ(fP ) + τ + 2
√
2

√
2(KL(Q∥π) + 1) + ln

(
2m
δ

)
m− 1

≤ L̂γ(fP ) + τ + 2
√
2

√
2(KL(Q∥π) + ln(3)) + 2 ln

(
2m
δ

)
m− 1

≤ L̂γ(fP ) + τ + 4

√
KL(Q∥π) + ln

(
6m
δ

)
m− 1

,

where the proof of KL(Q̃∥π) ≤ 2(KL(Q∥π) + 1), can be found in Neyshabur et al. (2018).

C MAIN THEOREMS

In this section, we provide detailed proofs of the PAC-Bayes results stated in the paper. It is organized as follows.
In Section C.1, we state and prove a series of lemmas that constitutes the building blocks of the main results.
The main theorems are stated and proved in Section C.2. In Section C.3, we recall a few technical results that
are needed in the rest of the document.

For clarity reasons, we first recall our main notations: if RP is a SRN, then (hk, yk), (̊hk, ẙk) and (h̃k, ỹk) are
the hidden state vector and the output vectors produced at step k by RP , RP+ϑ, and Rε

P , respectively, where
RP+ϑ is the perturbed SRN and Rε

P is the fuzzy SRN.

C.1 Auxiliary Lemmas

C.1.1 Relationship Between Perturbed and Fuzzy SRNs

In this subsection, after stating some results on the distance between a SRN RP and RP+ϑ or Rε
P , we show that

a fuzzy SRN can dominate a perturbed SRN if ϑ and ε are Gaussian multivariate independent variables, and if
the size of the noise ε is large enough. This simplifies the problem of bounding ∥RP (X

T )−RP+ϑ(X
T )∥ for a

given XT .

Lemma C.1 (Distance between RP and RP+ϑ). Let RP be a SRN and let ϑ ∈ Rdim(P ). Let XT = {xk}Tk=1 ∈ X .
If the activation function σ is 1-Lipschitz, then:

∥RP (X
T )−RP+ϑ(X

T )∥ ≤ ∥V ∥∥hT − h̊T ∥+ ∥ϑV h̊T + ϑc∥.

Proof. Let RP+ϑ(X
t) = ẙT . Following the notations and assumptions introduced in the statement of this lemma,

for all XT = {xk}Tk=1 ∈ X we have:

∥RP (X
T )−RP+ϑ(X

T )∥ = ∥σ (V hT + c)− σ
(
(V + ϑV )̊hT + c+ ϑc

)
∥

≤ ∥V hT + c−
(
(V + ϑV )̊hT + c+ ϑc

)
∥

= ∥V (hT − h̊T )− ϑV h̊T − ϑc∥

≤ ∥V ∥∥hT − h̊T ∥+ ∥ϑV h̊T + ϑc∥.

where the first inequality follows from the fact that σ is 1-Lipschitz.
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Corollary C.2 (Distance between RP and Rε
P ,). Let RP be a SRN, and let ε =

(
εd, εo

)
∈ Rd+o. For

XT = {xk}Tk=1 ∈ X we have:

∥RP (X
T )−Rε

P (X
T )∥ ≤ ∥V ∥∥hT − h̃T ∥+ ∥εo∥.

Proof. We define ϑ ∈ Rdim(P ) such that ϑV = 0, ϑU = 0 and ϑW = 0 are zero matrices and ϑc = εo as well as
ϑb = εd. It is easy to check that Rε

P = RP+ϑ. From this equality we deduce the claim of the corollary.

Lemma C.3 (Noise regrouping). Let RP be a SRN, ϑ ∼ N (0, ρ2Idim(P )) and ε = (εd, εo) ∼ N (0, ν2I(d+o)) two
random vectors. Let B such that for all {xk}Tk=1 and for all k, ∥xk∥ ≤ B. We set ν2 := ρ2(B2 + d+ 1), then for
all t > 0 such that

ρ2(B2 + d+ 1)(max(o, d)− 2) ≤ t2

and for all {xk}Tk=1 we have:

P
[
∥ϑUxk + ϑW h̊k−1 + ϑb∥ < t

]
≥ P

[
∥εd∥ < t

]
,

P
[
∥ϑV h̊k + ϑc∥ < t

]
≥ P

[
∥εo∥ < t

]
.

Proof. Following the notations and assumptions introduced in the statement of this lemma, we have that
ϑUxk + ϑW h̊k−1 + ϑb and ϑV h̊k + ϑc are centered Gaussian random variables of dimension d and o, respectively.
By hypothesis on X we have ∥xk∥ ≤ B for all XT = {xk}Tk=1. And due to the fact that for all ω ∈ R, | tanh(ω)| ≤ 1,
for all hidden state vectors h̊k we have ∥̊hk∥ ≤

√
d. Thus by Lemma C.19 and usual properties of Gaussian

variables we have that the variance of the coordinates of ϑUxk + ϑW h̊k−1 + ϑb is bounded by ρ2(B2 + d+ 1).
By applying the same arguments we have that the variance of the coordinates of ϑV h̊k + ϑc is bounded by
ρ2(d+ 1) ≤ ρ2(B2 + d+ 1). We define the following function:

f : (ν, d) 7→ e−(t−(
√
d−2)ν)2/4dν2

.

It is easy to see that the function f(·, d) is strictly increasing on 0 < ν < t√
d−2

. Thus, under the assumptions

ν2 = ρ2(B2 + d + 1) and ν2 ≤ t2

max(o,d) , we can prove the lemma by using the concentration inequality from
Lemma C.20.

C.1.2 On Perturbed SRN

In this subsection we state a result allowing us to estimate the gap between an SRN and its perturbed version.
An analogous result is proved for Fuzzy SRN . The purpose of this Lemma is to prove that it is sufficient to noise
only the bias in the SRN parameters.

Lemma C.4 (Expression of the perturbed hidden state vector). Let RP be a SRN and RP+ϑ a perturbed SRN
with ϑ ∈ Rdim(P ). For all {xk}Tk=1 ∈ X there exists a sequence {ck}Tk=1 ∈ Rh such that for 1 ≤ k ≤ T :

h̊k = hk +

k−1∑
s=1

Λ(ck)

(
k−s∏
l=1

WΛ(ck−l)

)
ns + Λ(ck)nk

where :

• Λ(ck) = Diag
(
σ′(ck)

)
with ck provided by Lemma C.18

•
∏k−s

l=1 WΛ(ck−l) = WΛ(ck−1)WΛ(ck−2) · · ·WΛ(cs).

• nk =
(
ϑUxk + ϑW h̊k−1 + ϑb

)
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Proof. Following the notations introduced in the statement of the lemma, we prove the result by induction on k.
We analyze the execution of the perturbed SRN Rε

P . By Lemma C.18, there exists c1 ∈ Rh such that:

h̊1 = σ ((Ux1 + ϑUx1) + (Wh0 + ϑWh0) + (b+ ϑb))

= σ ((Ux1 +Wh0 + b) + (ϑUx1 + ϑWh0 + ϑb))

= σ (Ux1 +Wh0 + b) + σ′(c1)⊙ (ϑUx1 + ϑWh0 + ϑb).

By definition of the perturbed FP-SRN we have h̊0 = h0 what gives us the following equality:(
ϑUx1 + ϑWh0 + ϑb

)
=
(
ϑUx1 + ϑW h̊0 + ϑb

)
=: n1.

Hence we deduce the equality:
h̊1 = h1 + Λ(c1)n1,

where in the last line we set Λ(c) = Diag(σ′(c)). We proved the initialisation step (i.e. k = 1) but for
comprehensibility we prove the statement for k = 2. By reapplying the same argument we can find a vector
c2 ∈ Rh such that:

h̊2 = σ ((U + ϑU )x2 + (W + ϑW )(h1 + Λ(c1)n1) + (b+ ϑb))

= σ
(
Ux2 +W (h1 + Λ(c1)n1) + b+ (ϑUx1 + ϑW h̊1 + ϑb)

)
= σ (Ux2 +Wh1 + b) + σ′(c2)⊙ (WΛ(c1)n1) + σ′(c2)⊙ (ϑUx1 + ϑW h̊1 + ϑb)

= h2 + Λ(c2)WΛ(c1)n1 + Λ(c2)n2

= h2 +

2−1∑
s=1

Λ(c2)

(
2−s∏
l=1

WΛ(c2−l)

)
n1 + Λ(c2)n2.

Let us assume now that for k ≥ 1 we have the following expression:

h̊k = hk +

k−1∑
s=1

Λ(ck)

(
k−s∏
l=1

WΛ(ck−l)

)
ns + Λ(ck)nk.

By Lemma C.18 there exists a vector ck+1 ∈ Rh such that:

h̃k+1 = σ

(
(U + ϑU )xk+1 + (W + ϑW )

(
hk +

k−1∑
s=1

Λ(ck)

(
k−s∏
l=1

WΛ(ck−l)

)
ns + Λ(ck)nk

)
+ (b+ ϑb)

)

= σ

(
Uxk+1 +W

(
hk +

k−1∑
s=1

Λ(ck)

(
k−s∏
l=1

WΛ(ck−l)

)
ns + Λ(ck)nk

)
+ b+ nk+1

)
,

where nk+1 := ϑUxk+1 + ϑW h̊k + ϑb. Now by applying Lemma C.18 we obtain:

h̊k+1 = σ (Uxk+1 +Whk + b) + σ′(ck+1)⊙

(
W

k−1∑
s=1

Λ(ck)

(
k−s∏
l=1

WΛ(ck−l)

)
ns +WΛ(ck)nk + nk+1

)

= hk+1 + Λ(ck+1)

k−1∑
s=1

(
k−s+1∏
l=1

WΛ(ck−l+1)

)
ns + Λ(ck+1)WΛ(ck)nk + Λ(ck+1)nk+1

= hk+1 +

k∑
s=1

Λ(ck+1)

(
k−s+1∏
l=1

WΛ(ck−l+1)

)
ns + Λ(ck+1)nk+1.

Thus by induction Lemma C.4 is true for all {x1, . . . , xT } ∈ X .
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C.1.3 On Fuzzy SRN

From the previous subsection we know that it is enough to cleverly choose the variance of the noise ε to simplify
the problem and study fuzzy SRNs. We state here a couple of results concerning the latter. The first result is a
bound on the distance between RP and Rε

P , and the second result gives an expression of h̃k as a function of hk

and the noise εd.
Lemma C.5 (A general bound on the distance between RP and Rε

P ). Let RP be a SRN and let ε = (εo, εd) ∈ Rd+o.
Then for all XT ∈ X we have:

∥RP (X
T )−Rε

P (X
T )∥ ≤ ∥V ∥

(
T−1∑
s=0

∥W∥s
)
∥εd∥+ ∥εo∥.

Proof. Let RP be a SRN and let ε = (εo, εd) ∈ Rd+o. Let XT = {xk}Tk=1 ∈ X . The proof is by induction on the
time step k. We have by Lemma C.2:

∥RP (X
T )−Rε

P (X
T )∥ ≤ ∥V ∥∥hT − h̃T ∥+ ∥εo∥.

We need to bound ∥hT − h̃T ∥. At first we will bound ∥h1 − h̃1∥ by leveraging that σ is 1-Lipschitz:

∥h1 − h̃1∥ = ∥σ (Ux1 +Wh0 + b)− σ (Ux1 +Wh0 + b+ εd) ∥
≤ ∥Ux1 +Wh0 + b− Ux1 −Wh0 − b− εd∥
= ∥εd∥.

Now we assume that up to k − 1, 1 ≤ k − 1 < T , we have:

∥hk−1 − h̃k−1∥ ≤

(
k−2∑
s=0

∥W∥s
)
∥εd∥,

and we then prove that this property is true also for k.

∥hk − h̃k∥ =
∥∥∥σ(Uxk +Whk−1 + b

)
− σ

(
Uxk +Wh̃k−1 + b+ εd

)∥∥∥
≤
∥∥∥Uxk +Whk−1 + b− Uxk −Wh̃k−1 − b− εd

∥∥∥
=
∥∥∥W (

hk−1 − h̃k−1

)
− εd

∥∥∥
≤ ∥W∥

∥∥∥hk−1 − h̃k−1

∥∥∥+ ∥εd∥

≤ ∥W∥

[(
k−2∑
s=0

∥W∥s
)
∥εd∥

]
+ ∥εd∥

=

(
k−1∑
s=0

∥W∥s
)
∥εd∥.

Finally, we combine this result for k = T with the one of Lemma C.2 and we obtain:

∥RP (X
T )−Rε

P (X
T )∥ ≤ ∥V ∥

(
T−1∑
s=0

∥W∥s
)
∥εd∥+ ∥εo∥.

Lemma C.6 (Expression of the fuzzy hidden state vector). Let RP be a SRN and Rε
P a fuzzy SRN with

ε = (εo, εd) ∈ Rd+o. For all {xk}Tk=1 ∈ X there exists a sequence {ck}Tk=1 ∈ Rd such that for 1 ≤ k ≤ T :

h̃k = hk +

k−1∑
s=1

Λ(ck)

(
k−s∏
l=1

WΛ(ck−l)

)
εd + Λ(ck)εd

where :
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• Λ(ck) = Diag
(
σ′(ck)

)
•
∏k−s

l=1 WΛ(ck−l) = WΛ(ck−1)WΛ(ck−2) · · ·WΛ(cs).

Proof. Following the notations introduced in the statement of the lemma, we prove the result by induction on k.
We analyze the execution of the fuzzy SRN Rε

p. By Lemma C.18, there exists c1 ∈ Rd such that:

h̃1 = σ (Ux1 +Wh0 + b+ εd)

= σ (Ux1 +Wh0 + b) + σ′(c1)⊙ εd

= h1 + Λ(c1)εd,

where in the last line we set Λ(c) = Diag(c) and leverage the linearity of the Hadamard product denoted by ⊙.

We proved the initialisation step (i.e. k = 1) but for comprehensibility we prove the statement for k = 2. By
reapplying the same argument we can find a vector c2 ∈ Rd such that:

h̃2 = σ (Ux2 +W (h1 + Λ(c1)εd) + b+ εd)

= σ (Ux2 +Wh1 + b+WΛ(c1)εd + εd)

= σ (Ux2 +Wh1 + b) + σ′(c2)⊙ (WΛ(c1)εd + εd)

= h2 + Λ(c2)WΛ(c1)εd + Λ(c2)εd

= h2 +

2−1∑
s=1

Λ(c2)

(
2−s∏
l=1

WΛ(c2−l)

)
εd + Λ(c2)εd.

Let us assume now that for k ≥ 1 we have the following expression:

h̃k = hk +

k−1∑
s=1

Λ(ck)

(
k−s∏
l=1

WΛ(ck−l)

)
εd + Λ(ck)εd.

By Lemma C.18 there exists a vector ck+1 ∈ Rd such that:

h̃k+1 = σ

(
Uxk+1 +W

(
hk +

k−1∑
s=1

Λ(ck)

(
k−s∏
l=1

WΛ(ck−l)

)
εd + Λ(ck)εd

)
+ b+ εd

)

= σ (Uxk+1 +Whk + b) + σ′(ck+1)⊙

(
W

k−1∑
s=1

Λ(ck)

(
k−s∏
l=1

WΛ(ck−l)

)
εd +WΛ(ck)εd + εd

)

= hk+1 + Λ(ck+1)

k−1∑
s=1

(
k−s+1∏
l=1

WΛ(ck−l+1)

)
εd + Λ(ck+1)WΛ(ck)εd + Λ(ck+1)εd

= hk+1 +

k∑
s=1

Λ(ck+1)

(
k−s+1∏
l=1

WΛ(ck−l+1)

)
εd + Λ(ck+1)εd.

Thus by induction Lemma C.6 is true for all XT ∈ X .

C.1.4 On the Properties of DS β-saturated SRN

In this subsection, we state and prove a series of results for desynchronised sliding β-saturation (DS β saturation)
with window of length F . Since DS β-saturation and β-saturation coincide for F = 1, all the results in this
section will also apply to the β-saturation. These results focus on the conditions under which a locally contractive
DS β-saturated SRN RP has a fuzzy version Rε

P that remains locally contractive. It tackles this question by
introducing restrictions on the norm of ε. We first introduce a definition that will allow us to differentiate the
different timesteps.
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Definition C.7 (Saturation Iteration). Let RP be a DS β-saturated SRN with window size F ≥ 1. Let
XT = {xk}Tk=1 ∈ X a sequence of length T > F . By definition of DS β-saturation, for every coordinate 1 ≤ i ≤ d
there exists {ς1, . . . , ςt}i ⊂ [[1, T ]] a non empty subset of indices such that for all ς ∈ {ς1, . . . , ςt}i we have:∣∣ tanh−1(hς [i])

∣∣ > β,

and for all κ ∈ [[1, T ]] \ {ς1, . . . , ςt}i we have: ∣∣ tanh−1(hκ[i])
∣∣ ≤ β.

The set {ς1, . . . , ςt}i will be called the set of saturation iterations for the coordinate i.

Definition C.8 (Similar Saturation Pattern). Let RP and RP ′ be two DS β-saturated SRN. We say that RP ′

has a similar saturation pattern RP to on XT ∈ X if for all 1 ≤ i ≤ d we have:

{ς1, . . . , ςt}i ⊂ {ς ′1, . . . , ς ′t}i,

with {ς ′1, . . . , ς ′t}i the set of saturation iteration of RP ′ on XT .

Lemma C.9 (Pre-activation error margin). Let z, η ∈
]
0, 1

2

[
and x ∈ R such that | tanh(x)| ≥ z + η, then we

have:
|x| > tanh−1(z) +

η

1− z2
.

Proof. Let z, η ∈
]
0, 1

2

[
and x ∈ R such that | tanh(x)| > z + η. If x > 0, we have by the mean value theorem for

some ω, z < ω < z + η:

tanh−1(z + η) = tanh−1(z) +
η

1− ω2
because

d

dt
tanh−1(ω) =

1

1− ω2

≥ tanh−1(z) +
η

1− z2

where the last inequality follows from the fact that − d
dt tanh

−1 is an increasing function on the open interval
]0, 1[. Thus:

tanh−1(x) > tanh−1(z) +
η

1− z2
.

If x < 0 we apply the same argument and obtain:

tanh−1(−z − η) = − tanh−1(z + η)

= − tanh−1(z)− η

1− ω2

≤ − tanh−1(z)− η

1− z2

where the last inequality follows from the fact that − d
dt tanh

−1 is an increasing function on the open interval
]− 1, 0[.

We obtain that:
tanh−1(x) < − tanh−1(z)− η

1− z2
.

Finally we combine both inequalities to deduce:∣∣ tanh−1(x)
∣∣ > tanh−1(z) +

η

1− z2
.

Lemma C.10 (Margin error control). Let z, η ∈
]
0, 1

2

[
and x ∈ R such that | tanh(x)| ≥ z + η. For all 0 < t < 1

and − (1−t)η
1−z2 < g < (1−t)η

1−z2 we have :

tanh′
(
tanh−1(x+ g)

)
< tanh′

(
tanh−1(z) +

tη

1− z2

)
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Proof. Let z, η ∈
]
0, 1

2

[
and x ∈ R such that | tanh(x)| > z + η. Since the function tanh′ is symmetric, we can

assume that x > 0, without loss of generality. By Lemma C.9 we have:

tanh−1(x) > tanh−1(z) +
η

1− z2
= tanh−1(z) +

tη

1− z2
+

(1− t)η

1− z2
,

which is equivalent to:

tanh−1(x)− (1− t)η

1− z2
> tanh−1(z) +

tη

1− z2
.

Thus, since tanh′ is a strictly decreasing function on ]0,∞[, we have:

tanh′
(
tanh−1(x)− (1− t)η

1− z2

)
< tanh′

(
tanh−1(z) +

tη

1− z2

)
.

If we set − (1−t)η
1−z2 < g < (1−t)η

1−z2 , we have:

tanh−1(x)− g > tanh−1(x)− (1− t)η

1− z2
.

Thus, by applying the same argument we obtain the desired inequality:

tanh′
(
tanh−1(x)− g

)
< tanh′

(
tanh−1(z) +

tη

1− z2

)
.

Lemma C.11 (Control over the noise in a fuzzy saturated SRN). Let RP be a β-saturated SRN with ∥W∥ >

1, z =
√
1− 1

∥W∥ , β > z and η = β − z. We set:

• 0 < t < 1,

• ∆ := tanh′
(
tanh−1(z) + tη

1−z2

)
,

• ∇ := (1−t)η
1−z2 ,

• ε = (εd, εo) ∈ Rd+o such that ∥εd∥ < ∇ (1−∆∥W∥).

Let Rε
P be the fuzzy SRN related to RP . By leveraging the expression obtained in Lemma C.6, we claim that for

all XT = {xk}Tk=1 ∈ X and for all 1 ≤ k ≤ T :∥∥∥∥∥W
k−1∑
s=1

Λ(ck)

(
k−s∏
l=1

WΛ(ck−l)

)
εd +WΛ(ck)εd + εd

∥∥∥∥∥ ≤
k−1∑
s=0

(
∆∥W∥

)s
∥εd∥ < ∇. (10)

Proof. Under the notations and assumptions of Lemma C.11 we are going to prove this theorem by induction.
Remark first that by Lemma C.22 and the definition of ∆ we have:

1 ≤
∞∑
s=0

(
∆∥W∥

)s
=

1

1−∆∥W∥
< ∞.

Then by hypothesis we have:

∥εd∥ ≤ ∥εd∥
1−∆∥W∥

< ∇.

Thus for k = 1 the desired property is true. Now we assume that for all 1 ≤ j ≤ k − 1 the lemma holds. By
Lemma C.6, we have:

h̃k = hk +

k−1∑
s=1

Λ(ck)

(
k−s∏
l=1

WΛ(ck−l)

)
εd + Λ(ck)εd.
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By the induction hypothesis we have:∥∥∥∥∥
k−1∑
s=1

(
k−s∏
l=1

WΛ(ck−l)

)
εd + εd

∥∥∥∥∥ ≤
k−1∑
s=0

(
∆∥W∥

)s
∥εd∥ < ∇.

This implies that every coordinate of
(∑k−1

s=1

(∏s
l=k−1 WΛ(cl)

)
εd + εd

)
is in the open interval ]−∇,∇[. Thus

we can prove that:
∥Λ(ck)∥ < ∆

since, for 1 ≤ j ≤ d, we have:
∥Λ(ck)∥ = ∥σ′(ck)∥∞ = tanh′( min

1≤j≤d
|ck[j]|),

and that by Lemma C.18 we know that for all 1 ≤ j ≤ d we have |hk[j]| < ck[j] < |hk[j]|+∇ thus by Lemma
C.10 and the definition of ∆,∇ we have that ∥Λ(ck)∥ < ∆. We can now bound the following sum of vectors:∥∥∥∥∥W

k−1∑
s=1

Λ(ck)

(
k−s∏
l=1

WΛ(ck−l)

)
εd +WΛ(ck)εd + εd

∥∥∥∥∥
≤

k−1∑
s=1

∥W∥∥Λ(ck)∥

(
k−s∏
l=1

∥W∥∥Λ(ck−l)∥

)
∥εd∥+ ∥W∥∥Λ(ck)∥∥εd∥+ ∥εd∥

=

k∑
s=1

(
k−s+1∏
l=1

∥W∥∥Λ(ck−l+1)∥

)
∥εd∥+ ∥εd∥

≤
k∑

s=1

(
∆∥W∥

)k−s

∥εd∥+ ∥εd∥

≤
k∑

s=1

(
∆∥W∥

)s
∥εd∥+ ∥εd∥

=

k∑
s=0

(
∆∥W∥

)s
∥εd∥ ≤

∞∑
s=0

(
∆∥W∥

)s
∥εd∥ < ∇.

This proves, by induction, the Lemma’s claim.

C.2 Main Results

In this section we state our main results, starting by the sufficiency of disturbing only the bias in the parameters
of an SRN. Then we state the Backbone theorem followed by the PAC-Bayes bounds for different setup’s we
talked abound in the article.

The idea of the following lemma is that for a given SRN RP , if one can define a fuzzy SRN Rε
P that does not

deviates from RP further then a constant r, we can define a perturbed SRN RP+ϑ, by controlling the magnitude
of ∥ϑ∥, that will remain within the same range of RP that Rε

P .
Lemma C.12 (Fuzzy is enough). Let RP and Rε

P be a SRN and its fuzzy version and let XT = {x1, . . . , xT } ∈ X .
By Lemma C.6 we have the following expression for ∥h̃T − hT ∥ :

∥h̃T − hT ∥ =

∥∥∥∥∥
T−1∑
s=1

Λ(cT )

(
T−s∏
l=1

WΛ(cT−l)

)
εd + Λ(cT )εd

∥∥∥∥∥
≤

T−1∑
s=1

∥Λ(cT )∥

(
T−s∏
l=1

∥W∥∥Λ(cT−l)∥

)
∥εd∥+ ∥Λ(cT )∥∥εd∥

= ∥Λ(cT )∥

[
T−1∑
s=1

(
T−s∏
l=1

∥W∥∥Λ(cT−l)∥

)
+ 1

]
∥εd∥ .
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Proof. We set X T = {Xk ∈ X / k ≤ T} and B(0, ∥ε∥) the Euclidean ball centered at zero and radius ∥ε∥ of
dimension dim(ε). We define the function r(T, ∥ε∥) as follows:

r(T, ∥ε∥) := sup
XT×B(0,∥ε∥)

{
∥Λ(cT )∥

[
T−1∑
s=1

(
T−s∏
l=1

∥W∥∥Λ(cT−l)∥

)
+ 1

]
∥εd∥

}
.

By Lemma C.4 one can deduce that:

∥̊hT − hT ∥ =

∥∥∥∥∥
T−1∑
s=1

Λ(cT )

(
T−s∏
l=1

WΛ(cT−l)

)
ns + Λ(cT )nT

∥∥∥∥∥ ,
with ns =

(
ϑUxs + ϑW h̊s−1 + ϑb

)
. We can establish the following bound on ns:

∥ns∥ = ∥ϑUxs + ϑW h̊s−1 + ϑb∥

≤ ∥ϑU∥∥xs∥+ ∥ϑW ∥∥̊hs−1∥+ ∥ϑb∥

≤ ∥ϑ∥Fro · (∥xs∥+ ∥̊hs−1∥+ 1)

≤ ∥ϑ∥Fro · (B +
√
d+ 1) .

The last inequality comes from the hypothesis that the data is bounded by B, and from the fact that h̊s−1 is
produced by the tanh therefor all the entries of h̊s−1 are between −1 and 1. One can remark that this bound
does not depend on s, therefor we can assert that:

∥̊hT − hT ∥ ≤ ∥Λ(cT )∥

[
T−1∑
s=1

(
T−s∏
l=1

∥W∥∥Λ(cT−l)∥

)
+ 1

]
∥ϑ∥Fro · (B +

√
d+ 1) .

If one sets ϑ such that ∥ϑ∥Fro ≤ r(T,∥ε∥)
B+

√
d+1)

then we get:

∥̊hT − hT ∥ ≤ r(T, ∥ε∥)

In the following we consider the worst case scenario therefor Lemma C.12 is well suited.
Theorem 3.1 (Backbone theorem). We assume that there is a distribution D on the data set X . Let E > 0 and
RP be a SRN and γ ≥ 0 a margin, such that there exists C > 0 and 0 < τ < 1 verifying for all ε = (εo, εd) ∈ Ro+d,
∥ε∥ ≤ E:

PXT∼D

[
∀ 1 ≤ k ≤ T

∥∥∥h̃k − hk

∥∥∥ ≤ C∥εd∥+ α
]
≥ 1− τ

where h̃k is the hidden state vector of the fuzzy SRN Rε
P , α is constant such that 4∥V ∥α < min(γ, 4E∥V ∥(C + 1))

and XT = {xk}Tk=1. Then we have the following PAC-Bayes bound with probability at least 1− δ over the training
sample:

L0(RP )− L̂γ(RP ) ≤ τ + Õ
(
DCB∥V ∥∥P∥Fro + ln( 1δ )

(γ − α∥V ∥)
√
m

)
with D = max(d, o), γ = min(γ, 4E∥V ∥(C + 1)) and B such that for all k, 1 ≤ k ≤ T , ∥xk∥ ≤ B.

Proof. Let RP be a SRN. Let ε = (εo, εd) ∈ Rd+o, ∥ε∥ ≤ E . Let XT ∈ X . We have, by Lemma C.2:

∥RP (X
T )−Rε

P (X
T )∥ ≤ ∥V ∥∥h̃T − hT ∥+ ∥εo∥.

By hypothesis PXT∼D

[∥∥∥h̃T − hT

∥∥∥ ≤ C∥εd∥+ α
]
≥ 1− τ , thus there exists Xτ ⊂ X such that D(Xτ ) ≥ 1− τ and

∀XT ∈ Xτ we have
∥∥∥h̃T − hT

∥∥∥ ≤ C∥εd∥+ α. From now we suppose that XT ∈ Xτ , what allows us to assert:

∥RP (X
T )−Rε

P (X
T )∥ ≤ ∥V ∥

(
C∥εd∥+ α

)
+ ∥εo∥.
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Now we assume that ε = (εo, εd) ∼ N (0, ν2I). We will show that for a well chosen ν2 we can bound ∥ε∥ with
with arbitrary probability. In the proof of Lemma C.20 we can use the lower bound on E [∥ε∥] to state that:

P [∥εD∥ > t] ≥ P [∥εd∥ > t] as well as
P [∥εD∥ > t] ≥ P [∥εo∥ > t] ,

due to the fact that εD, εd and εo share the same variance coordinate-wise and that the norm of εD is impacted
by the dimension. Then:

P
[
∥V ∥

(
C∥εd∥+ α

)
+ ∥εo∥ < t

]
≥ P

[
∥V ∥

(
C∥εD∥+ α

)
+ ∥εD∥ < t

]
.

Thus for a well chosen ν2 we will have:

∥RP (X
T )−Rε

P (X
T )∥ ≤ ∥V ∥(C + 1)∥εD∥+ ∥V ∥α

with high probability. We now set:

• γ = min(γ, 4E∥V ∥(C + 1)),

• C =

(
1−

√
4 ln(2)

1−12 ln(2)

)2

,

• ν2 =
(

γ−α∥V ∥
4∥V ∥(C+1)

)2 (
C
D

)
.

By defining ν2 as above we can assert thanks to Lemma C.20 that:

P
[
∥εD∥ <

γ − α∥V ∥
4∥V ∥(C + 1)

]
≥ 1

2
.

We have that with probability at least 1
2 that for all XT ∈ X :

∥RP (X
T )−Rε

P (X
T )∥ ≤ ∥V ∥(C + 1)∥εD∥+ α∥V ∥ < γ/4.

Finally, we define ϑ ∼ N (0, ρ2I) where ϑ ∈ Rdim(P ) and ρ2 = ν2

(B2+d+1) . In virtue of Lemma C.12 and by
Lemma C.3 we can claim that with probability at least 1

2 we have:

sup
XT∈Xτ

∥RP (X
T )−RP+ϑ(X

T )∥ < γ/4.

As a result of this we can apply Lemma 2.8 and state that, with probability 1− δ over the training samples of
size m, we have:

L(RP ) ≤ L̂γ(RP ) + τ + 4

√√√√ 64 ln(4)
C

(
DB2 + dD +D

)(
∥V ∥(C+1)
γ−α∥V ∥

)2
∥P∥2Fro + ln 6m

δ

m− 1
.

A very important remark is that this theorem is valid if the Euclidean norm ∥ · ∥ is replaced by the infinite norm
∥ · ∥∞ as well as respectively the subordinate matrix norm ∥ · ∥ is replaced by the subordinate matrix norm ∥ · ∥∞.
This is due to the fact that the Euclidean norm dominates the infinite norm, and in the result from Neyshabur
et al. (2018) it is sufficient to get a bound involving the infinite norm.
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C.2.1 A PAC-Bayes Bound for Stable SRNs

Theorem 3.2 (Stable SRN). Let RP be a stable SRN (see Definition 2.3). Then for all ε = (εo, εd) ∈ Ro+d and
all XT ∈ X we have: ∥∥∥h̃T − hT

∥∥∥ ≤ 1

1− ∥W∥
∥εd∥.

Proof. Let RP be a SRN with ∥W∥ < 1 Let ε = (εo, εd) ∼ N (0, ρ2Id+o). Let XT ∈ X we have, in Lemma C.5
we prove that:

∥h̃T − hT ∥ ≤

(
T−1∑
s=0

∥W∥s
)
∥εd∥.

By hypothesis ∥W∥ < 1, thus: (
T−1∑
s=0

∥W∥s
)

≤

( ∞∑
s=0

∥W∥s
)

=
1

1− ∥W∥
.

Therefore we can derive a bound on ∥h̃T − hT ∥ that is independent of T :

∥h̃T − hT ∥ ≤ 1

1− ∥W∥
∥εd∥.

Thus, we can apply Theorem 3.1 with C = 1
1−∥W∥ and any E ∈ R+. As a result we obtain that, with probability

1− δ over the training samples of size m, we have:

L(RP ) ≤ L̂γ(RP ) + 4

√√√√ 64 ln(4)
C

(
DB2 + dD +D

)(
∥V ∥+1−∥W∥
γ(1−∥W∥)

)2
∥P∥2Fro + ln 6m

δ

m− 1
.

C.2.2 A PAC-Bayes Bound for β-saturated SRNs

Theorem 3.3 (β-saturated SRN). Let RP be a β-saturated SRN with ∥W∥ > 1 and such that η = β−z > 0, where
z =

√
1− 1

∥W∥ . Let t ∈]0, 1[, ∆ = tanh′(tanh−1(z) + tη
1−z2 ) and ∇ = (1−t)η

1−z2 , then for any ε = (εo, εd) ∈ Ro+d

such that ∥ε∥ ≤ ∇(1−∆∥W∥) we have: ∥∥∥h̃T − hT

∥∥∥ ≤ 1

1−∆∥W∥
∥εd∥.

Proof. Let RP be a β-saturated SRN with ∥W∥ > 1, z =
√
1− 1

∥W∥ , β > z and η = β − z. We also suppose that
∥V ∥ ≥ 1 and we set a margin constant γ > 0 so that it is possible to choose 0 < t < 1 such that:

• ∇ := (1−t)η
1−z2 = γ/4,

• ∆ := tanh′
(
tanh−1(z) + tη

1−z2

)
.

By Lemma C.6 we have the following expression:∥∥∥h̃T − hT

∥∥∥ =

∥∥∥∥∥
T−1∑
s=1

Λ(cT )

(
T−s∏
l=1

WΛ(cT−l)

)
εd + Λ(cT )εd

∥∥∥∥∥ .
In Lemma C.11 we proved that for ε = (εo, εd) ∈ Ro+d such that ∥εd∥ < ∇(1−∆∥W∥) we have:∥∥∥∥∥W

k−1∑
s=1

Λ(ck)

(
k−s∏
l=1

WΛ(ck−l)

)
εd +WΛ(ck)εd + εd

∥∥∥∥∥ ≤
∞∑
s=0

(
∆∥W∥

)s
∥εd∥

≤ ∥εd∥
1−∆∥W∥

.
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Moreover, we also showed that ∆∥W∥ < 1. Thus, for k → ∞ the series converges. This explains the previous
inequalities. We can now apply Theorem 3.1 with C = 1

1−∆∥W∥ that holds for ∥εd∥ < ∇(1−∆∥W∥). The way we
define ∇ = γ/4 combined with the fact that 1 −∆∥W∥ = C−1 we can assert that γ

4∥V ∥(C+1) ≤ ∇(1 −∆∥W∥).
This allows us to apply Theorem 3.1 leading us to the following bound that holds with probability 1− δ over the
training sets of size m we have:

L(RP ) ≤ L̂γ(RP ) + 4

√√√√ 64 ln(4)
C

(
DB2 + dD +D

)(
∥V ∥+1−∆∥W∥
γ(1−∆∥W∥)

)2
∥P∥2Fro + ln 6m

δ

m− 1
.

C.2.3 A PAC-Bayes Bound for Desynchronised Sliding β-Saturated SRNs

We start with a result that is an upper bound on the amplification that the noise can experience in a fuzzy SRN.
This result is closely related to Lemma C.5 with the difference to not consider the same norm and not unrolling
the entire recurrence.
Lemma C.16 (Maximal coordinate amplification). Let RP and Rε

P respectively a SRN and its fuzzy version,
XT ∈ X a sequence and S ≥ 1 an integer. For all k ∈ {1, . . . , T − S} we have:

∥h̃k+S − hk+S∥∞ ≤ ∥W∥S∞∥h̃k − hk∥∞ + ∥εd∥∞
S−1∑
j=0

∥W∥j∞

Proof. Let RP and Rε
P be and SRN and its fuzzy version respectively, XT ∈ X a sequence and S ≥ 1 an integer.

Let k ∈ {1, . . . , T − S}. The proof is a straightforward application of triangle inequality and operator norm
applied recursively S. We start by writing h̃s as a function of hs with s := k + S:

h̃s = σ
(
Uxs +Wh̃s−1 + b+ εd

)
= σ

(
Uxs +Whs−1 + b+W

(
h̃s−1 − hs−1

)
+ εd

)
= σ (Uxs +Whs−1 + b) + Λ(cs)

(
W
(
h̃s−1 − hs−1

)
+ εd

)
by Lemma C.18 and the definition of cs. We then have:

h̃s = hs + Λ(cs)
(
W
(
h̃s−1 − hs−1

)
+ εd

)
.

Hence, we obtain:
h̃s − hs = Λ(cs)

(
W
(
h̃s−1 − hs−1

)
+ εd

)
.

We set i ∈ {1, . . . , d} (d being the dimension of the hidden state vector), and we denote Wi the ith row of a
matrix W . We observe: ∣∣∣ (h̃s − hs

)
[i]
∣∣∣ = ∣∣∣Λ(cs)(W (

h̃s−1 − hs−1

)
+ εd

)
[i]
∣∣∣.

The matrix Λ(cs) being diagonal with entries in [0, 1] we obtain:∣∣∣Λ(cs)(W (
h̃s−1 − hs−1

)
+ εd

)
[i]
∣∣∣ ≤ ∣∣∣ (W (

h̃s−1 − hs−1

)
+ εd

)
[i]
∣∣∣

≤
∣∣∣⟨Wi, h̃s−1 − hs−1⟩+ εd[i]

∣∣∣
≤
∣∣∣⟨Wi, h̃s−1 − hs−1⟩

∣∣∣+ ∥εd∥∞

≤ ∥Wi∥1∥h̃s−1 − hs−1∥∞ + ∥εd∥∞
≤ ∥W∥∞∥h̃s−1 − hs−1∥∞ + ∥εd∥∞.
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The projection operator Rd ∋ h :→ h[i] ∈ R is linear and Wh[i] is the scalar product between the ith row of the
matrix W and the vector h. We apply the Hölder’s inequality and bound ∥Wi∥ with max1≤i≤d ∥Wi∥ = ∥W∥∞.
One can remark that these arguments apply to all i ∈ {1, . . . , d}, hence:

∥h̃s − hs∥∞ ≤ ∥W∥∞∥h̃s−1 − hs−1∥∞ + ∥εd∥∞.

Moreover this reasoning does not depend on s, thus one can recursively repeat it S − 1 more times and obtain:

∥h̃k+S − hk+S∥∞ ≤ ∥W∥S∞∥h̃k − hk∥∞ + ∥εd∥∞
S−1∑
j=0

∥W∥j∞

Theorem 3.4 (desynchronized sliding β-saturated SRN). Let RP be a desynchronized sliding β-saturated SRN
with ∥W∥∞ ≥ 1, F ≥ 1 the max window verifying η = β − z > 0, where z =

√
1− 1

2∥W∥F
∞

. Let t ∈]0, 1[,

∆ = tanh′(tanh−1(z) + tη
1−z2 ) and ∇ = (1−t)η

1−z2 , then for any ε = (εo, εd) ∈ Ro+d such that ∥ε∥ ≤
(

∇∆
4
∑F

i=0 ∥W∥i
∞

)
we have: ∥∥∥h̃T − hT

∥∥∥
∞

≤ ∥εd∥∞
F∑

j=0

∥W∥j∞ +
∇
4
.

Proof. With the notations from the theorem above, we choose any i ∈ {1, . . . , d} and a sequence XT = {xk}Tk=1 ∈
X . There are two points that must be proven simultaneously: 1) That for all XT ∈ X and for all 1 ≤ s ≤ T

we have
∥∥∥h̃k − hk

∥∥∥
∞

≤ ∥εd∥∞
∑F

j=0 ∥W∥j∞ + 1
4∇; 2) that Rε

P has a similar saturation pattern as RP (see
Definition C.8). We will use a proof by induction on l that we have 1) for the any iteration s ∈ {lF, . . . , (l+ 1)F}
and we will use 1) to prove 2). This will allow us to refine the bound in 1).

For all 1 ≤ k ≤ T , we have that:

h̃k = σ
(
Uxk +Wh̃k−1 + b+ εd

)
= σ

(
Uxk +Whk−1 + b+ εd +W (h̃k−1 − hk−1)

)
= σ (Uxk +Whk−1 + b) + σ′ (ck)⊙

(
εd +W (h̃k−1 − hk−1)

)
,

where the second term and σ′ (ck) are introduced by applying Lemma C.18. We then have:

h̃k = hk + σ′ (ck)⊙
(
εd +W (h̃k−1 − hk−1)

)
. (11)

We now begin the induction by the initialization with l = 1. For s ≤ F , by Lemma C.16 combined with the fact
that by definition of a fuzzy SRN, h̃0 = h0, we have:

∥h̃s − hs∥∞ ≤ ∥εd∥∞
s−1∑
j=0

∥W∥j∞

≤ ∥εd∥∞
F−1∑
j=0

∥W∥j∞.

Because of Equation 11, we need a bound on ∥εd +W (h̃s−1 − hs−1)∥∞:

∥εd +W (h̃s−1 − hs−1)∥∞ ≤ ∥εd∥∞ + ∥W∥∞∥h̃s−1 − hs−1)∥∞

≤ ∥εd∥∞ + ∥W∥∞

∥εd∥∞
F−1∑
j=0

∥W∥j∞


= ∥εd∥∞

F∑
j=0

∥W∥j∞ <
∇∆

4
<

∇∆

2
.
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We get ∥εd∥∞
∑F

j=0 ∥W∥j∞ < ∇
4 from the hypothesis ∥ε∥ ≤

(
∇∆

4
∑F

i=0 ∥W∥i
∞

)
. We proved that for all 0 ≤ s ≤ F

the noise accumulated up to sth iteration in the fuzzy SRN Rε
P does not exceed ∇, therefore by Lemma C.10 we

can assert that Rε
P will have a similar saturation pattern as RP up to iteration F . We have simultaneously

• ∥h̃F − hF ∥∞ ≤ ∥εd∥∞
∑F−1

j=0 ∥W∥j∞ + ∇
4

• ∥h̃F − hF ∥∞ ≤ ∇∆
2

because ∥εd∥∞
∑F−1

j=0 ∥W∥j∞ ≤ ∥εd∥∞
∑F−1

j=0 ∥W∥j∞ + ∇
4 . The initialization is thus proven.

Now we suppose that for l ≥ 1, we have ∥h̃lF − hlF ∥∞ ≤ ∇∆
2 . We need to show that ∥h̃(l+1)F − h(l+1)F ∥∞ ≤ ∇∆

2 .
We start by applying Lemma C.16 to prove that Rε

P will have a similar saturation pattern as RP for the iterations
lF ≤ s ≤ (l + 1)F . By Lemma C.16:

∥h̃s − hs∥ ≤ ∥W∥s−lF
∞ ∥h̃lF − hlF ∥∞ + ∥εd∥

s−lF−1∑
j=0

∥W∥j∞.

By induction hypothesis, we have ∥h̃lF − hlF ∥∞ ≤ ∇∆
2 . Therefore we obtain:

∥h̃s − hs∥∞ ≤ ∥W∥s−lF
∞

∇∆

2
+ ∥εd∥

s−lF−1∑
j=0

∥W∥j∞

≤ ∥W∥(l+1)F−lF
∞

∇∆

2
+ ∥εd∥

F−1∑
j=0

∥W∥j∞,

because ∥W∥ ≥ 1, and lF ≤ s ≤ (l + 1)F . This gives us:

∥h̃s − hs∥∞ ≤ ∥W∥F−1
∞

∇∆

2︸ ︷︷ ︸
≤∇

4

+ ∥εd∥
F−1∑
j=0

∥W∥j∞︸ ︷︷ ︸
∇∆
4

≤ ∇
2
.

By the assumption on β and Lemma C.22, we know that ∥W∥F∆ ≤ 1/2 thus ∥W∥F ∇∆
2 ≤ ∇

4 and, since by

assumption we have ∥ε∥ ≤
(

∇∆
4
∑F

i=0 ∥W∥i
∞

)
. We thus have:

∥h̃s − hs∥∞ ≤ ∇
4

+
∇∆

4
≤ ∇

2
,

because ∆ ≤ 1 and hence ∇∆
4 ≤ ∇

4 . By leveraging the previously proven identity:

h̃s = hs + σ′(cs)⊙
(
εd +W (h̃s−1 − hs)

)
,

we can assert that Rε
P will have a similar saturation pattern as RP up to iteration (l + 1)F . This is due to the

fact that the perturbation never exceeds ∇.

From this, we are going to prove an upper bound on ∥h̃(l+1)F −h(l+1)F ∥∞ with the knowledge that one saturation
has occurred in the window {lF, . . . , (l + 1)F}. For a coordinate 1 ≤ i ≤ d, we do not know at which iteration s,
lF ≤ s ≤ (l + 1)F a saturation occurs. To estimate the worst possible case, we will reason as follows: we fix a
coordinate 1 ≤ i ≤ d and chose s ∈ {ς1, . . . , ςt}i ∩ {lF, . . . , (l + 1)F}, where {ς1, . . . , ςt}i is the set of saturating
iterations of coordinate i. We then know that a saturation will occur on ith coordinate at iteration s. Lemma
C.16 is then applied for iterations between lF and s− 1 in order to have an upper bound on the accumulated
noise up to the saturating iteration. We then use Equation 11 to extract a more accurate bound for the iteration
s. Finally we use that s ≤ (l + 1)F and ∆ ≤ 1 to extract a bound independent of s and thus independent of i.
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Formally, we begin with bounding the noise accumulated between the iteration lF and s− 1 by using Lemma
C.16:

∥h̃s−1 − hs−1∥∞ ≤ ∥W∥s−lF−1
∞ ∥h̃lF − hlF ∥+ ∥εd∥∞

s−lF−2∑
j=0

∥W∥j∞

≤ ∥W∥s−lF−1
∞

∇∆

2
+ ∥εd∥∞

s−lF−2∑
j=0

∥W∥j∞ by induction hypothesis.

Coordinate i will saturate on iteration s:∣∣∣(h̃s − hs

)
[i]
∣∣∣ = σ′(cs[i]) ·

∣∣∣(εd +W (h̃s−1 − hs)
)
[i]
∣∣∣

≤ ∆ ·
∣∣∣(εd +W (h̃s−1 − hs)

)
[i]
∣∣∣ by Lemma C.10

≤ ∆ · ∥εd +W (h̃s−1 − hs)∥∞

≤ ∆ ·
(
∥εd∥∞ + ∥W∥∞∥h̃s−1 − hs∥∞

)
.

Now if we plug in the bound on ∥h̃s−1 − hs∥∞ we obtain:

∣∣∣(h̃s − hs

)
[i]
∣∣∣ ≤ ∆ ·

∥εd∥∞ + ∥W∥∞

∥W∥s−lF−1
∞

∇∆

2
+ ∥εd∥∞

s−lF−2∑
j=0

∥W∥j∞


= ∆ ·

∥W∥s−lF
∞

∇∆

2
+ ∥εd∥∞

s−lF−1∑
j=0

∥W∥j∞

 .

Since s ≤ (l + 1)F and that ∆ ≤ 1, we can derive a bound on
∣∣∣(h̃s − hs

)
[i]
∣∣∣ that does not depend on s:

∆ ·

∥W∥s−lF
∞

∇∆

2
+ ∥εd∥∞

s−lF−1∑
j=0

∥W∥j∞

 ≤ ∆ ·

∥W∥(l+1)F−lF
∞

∇∆

2
+ ∥εd∥∞

(l+1)F−lF−1∑
j=0

∥W∥j∞


= ∆ ·

∥W∥F∞
∇∆

2
+ ∥εd∥∞

F−1∑
j=0

∥W∥j∞


≤ ∆∥W∥F∞

∇∆

2
+ ∥εd∥∞

F−1∑
j=0

∥W∥j∞.

Consequently we have: ∣∣∣(h̃s − hs

)
[i]
∣∣∣ ≤ ∆∥W∥F∞

∇∆

2
+ ∥εd∥∞

F−1∑
j=0

∥W∥j∞.

Note that these arguments do not depend on (i, s), all that was assumed is that a coordinate 1 ≤ i ≤ d will
saturate during an iteration s ∈ {lF, . . . , (l+ 1)F}. These assumptions are fulfilled because we showed above that
Rε

P has a similar saturation pattern as RP on {lF, . . . , (l + 1)F}. Therefore we can assert that:

∥h̃(l+1)F − h(l+1)F ∥∞ ≤ ∆∥W∥F∞
∇∆

2
+ ∥εd∥∞

F−1∑
j=0

∥W∥j∞.

Now we exploit the assumption on ∆ and ∥ε∥ to obtain:

∆∥W∥F∞
∇∆

2
+ ∥εd∥∞

F−1∑
j=0

∥W∥j∞ ≤ ∇∆

4
+

∇∆

4
=

∇∆

2
,
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obtained from Lemma C.22 that implies ∆∥W∥F∞ ≤ 1/2. Hence:

∥h̃(l+1)F − h(l+1)F ∥∞ ≤ ∇∆

2
.

This finishes the induction and thus the proof.

C.3 Technical Results

This section is dedicated to a series of technical lemmas.
Lemma C.18 (Vector variant of the mean value theorem). Let y, ζ ∈ Rd and let σ : Rd → Rd be a differentiable
activation function. Then there exists c ∈ Rd such that:

σ(y + ζ) = σ(y) + σ′(c)⊙ ζ

and ∈ y[j] < c[j] < (y + ζ)[j] for all 1 ≤ j ≤ d.

Proof. Let y, ζ ∈ Rd, and let 1 ≤ j ≤ d. By the mean value theorem there exists cj , y[j] < cj < (y + ζ)[j] such
that:

σ
(
(y + ζ)[j]

)
= σ(y[j]) + σ′(cj) · ζ[j].

We can repeat this operation for any coordinate 1 ≤ j ≤ d and create a vector c = (c1, . . . , cd) such that:

σ(y + ζ) = σ(y) + σ′(c)⊙ ζ.

The following two lemmas are classical results about Gaussian multivariate variables.
Lemma C.19 (A bound on the variance of the noise). Let Υ = (Υk,l) be a random matrix of size p× q where
Υk,l

iid∼ N (0, ρ2), and let x ∈ Rq with ∥x∥ ≤ B. Then for all 1 ≤ j ≤ p we have:

V
[
(Υx[j])

]
≤ ρ2B2.

Moreover, the coordinates of the random vector Υx are independent.

Proof. Following the notations introduced in the statement of the lemma, we have:

Υx[j] = ΥT
j x = xTΥj

where Υj denotes the jth row of the matrix Υ. By hypothesis the matrix Υ is centered, thus the random variable
ΥT

j x is also centered. Therefore we have:

V
[
Υx[j]

]
= E

[
(ΥT

j x)
2
]

= E
[
xTΥjΥ

T
j x
]

= xTE
[
ΥjΥ

T
j

]
x

= xT (ρ2Iq)x = ρ2∥x∥2 ≤ ρ2B2.

Since the parameters of Υ are iid, the coordinates of Υx are independent.

Lemma C.20 (Concentration of Gaussian vectors). Let ε ∼ N (0, ν2Id) a Gaussian random vector with d > 2,
and let t ≥ 0. If

ν2 =
t2

d

(
1−

√
4 ln(2)

1− 12 ln(2)

)2

,

then:
P
[
∥ε∥ > t

]
≤ 1

2
.
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Proof. Let ε ∼ N (0, ν2Id) a Gaussian random vector. We have the following concentration bound from the book
of Vershynin (2018):

P
[
∥ε∥ > t+ E

[
∥ε∥
]]

≤ e−t2/4dν2

.

Let X ∼ N (0, Id) the random variable ∥X∥ follows the χ law of degree d. Therefore:

E
[
∥X∥

]
=

√
2
Γ(d+1

2 )

Γ(d2 )

where Γ is the Gamma function, defined by:

Γ : ω 7→
∫ ∞

0

tω−1e−tdt.

In the article from Cristinel (2010) we can find the following inequality for all x > 0:√
x+

1

4
<

Γ(x+ 1)

Γ(x+ 1
2 )

which implies the inequality:
√
d− 2 <

√
2
Γ(d+1

2 )

Γ(d2 )
= E

[
∥X∥

]
.

Since E
[
∥ε∥
]
= νE

[
∥X∥

]
we obtain:

E
[
∥ε∥
]
> ν

√
d− 2

and therefore:
P [∥ε∥ > t] ≤ e−

(
t−(

√
d−2)ν

)2
/4dν2

.

We need to arrange ν such that:

P [∥ε∥ > t] ≤ 1

2
,

for that purpose we need to solve:

e−
(
t−(

√
d−2)ν

)2
/4dν2

=
1

2
,

which is equivalent to solving the quadratic equation:

(d− 2− 4 ln(2)d)ν2 − (2t
√
d− 2)ν + t2 = 0.

The above equation has a unique positive solution:

ν = t

√
d− 2−

√
d4 ln(2)

(d− 2)− 4 ln(2)d
.

In our situation a lower bound for ν is enough, thus:

t

√
d− 2−

√
d4 ln(2)

(d− 2)− 4 ln(2)d
≥ t

√
d− 2−

√
(d− 2)4 ln(2)

(d− 2)− 4 ln(2)d

= t

(√
d− 2

d− 2

)(
1−

√
4 ln(2)

1− 4 ln(2) d
d−2

)

=
t√

d− 2

(
1−

√
4 ln(2)

1− 4 ln(2) d
d−2

)

≥ t√
d

(
1−

√
4 ln(2)

1− 12 ln(2)

)
.
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The last inequality is due to the fact that d > d− 2 and d
d−2 ≤ 3 for d > 2. As a result, by setting

ν =
t√
d

(
1−

√
4 ln(2)

1− 12 ln(2)

)

we have:
P
[
∥ε∥ > t

]
≤ 1

2
.

Lemma C.21. Let C ≥ 1, we set za :=
√
1− a

C , where 0 < a < 1. Then, for all α > 0 we have:

tanh′
(
tanh−1(za) + α

)
C < a,

Proof. From the notation above one can assert:

tanh′
(
tanh−1(za)

)
= 1− tanh2

(
tanh−1(za)

)
= 1− z2a

=
a

C
,

hence tanh′
(
tanh−1(za)

)
C = a. The function tanh′ being strictly decreasing on the interval [0,+∞[, we can

claim that for all α > 0 we have:
tanh′

(
tanh−1(za) + α

)
C < a

Lemma C.22 (Converging geometric sum). Let W ∈ Rd×d be a matrix such that ∥W∥ > 1 and F ≥ 1, we set
z :=

√
1− 1

∥W∥F . Then, for all α > 0 we have:

tanh′
(
tanh−1(z) + α

)
∥W∥F < 1,

and thus
∞∑
s=0

(
tanh′

(
tanh−1(z) + α

)
∥W∥F

)s
=

1

1− tanh′
(
tanh−1(z) + α

)
∥W∥F

< ∞.

Proof. Let W ∈ Rd×d be a matrix such that ∥W∥ > 1 and F ≥ 1. We set z :=
√

1− 1
∥W∥F . Then, for all 0 < α

we have:

tanh′(tanh−1(z)) = 1− tanh2(tanh−1(z))

= 1−

√
1− 1

∥W∥F

2

=
1

∥W∥F
.

Secondly, the function tanh′ is a strictly decreasing function on (0,+∞), thus for all 0 < α < 1 we have

tanh′(tanh−1(z) + α) < tanh′(tanh−1(z))

tanh′(tanh−1(z) + α)∥W∥F < tanh′(tanh−1(z))∥W∥F = 1.

Finally the limit of the geometric series is the usual computation.
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