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A NEW AND GENERAL STOCHASTIC PARALLEL MACHINE SCHELOC
PROBLEM WITH LIMITED LOCATION CAPACITY AND CUSTOMER

CREDIT RISK

Ming Liu1, Tao Lin1 , Feng Chu2,*, Feifeng Zheng3 and Chengbin Chu4

Abstract. Scheduling-Location (ScheLoc) problem considering machine location and job scheduling
simultaneously is a relatively new and hot topic. The existing works assume that only one machine
can be placed at a location, which may not be suitable for some practical applications. Besides, the
customer credit risk which largely impacts the manufacturer’s profit has not been addressed in the Sch-
eLoc problem. Therefore, in this work, we study a new and general stochastic parallel machine ScheLoc
problem with limited location capacity and customer credit risk. The problem consists of determin-
ing the machine-to-location assignment, job acceptance, job-to-machine assignment, and scheduling of
accepted jobs on each machine. The objective is to maximize the worst-case probability of manufac-
turer’s profit being greater than or equal to a given profit (referred to as the profit likelihood). For
the problem, a distributionally robust chance-constrained (DRCC) programming model is proposed.
Then, we develop two model-based approaches: (i) a sample average approximation (SAA) method; (ii)
a model-based constructive heuristic. Numerical results of 300 instances adapted from the literature
show the average profit likelihood proposed by the constructive heuristic is 9.43% higher than that
provided by the SAA, while the average computation time of the constructive heuristic is only 4.24%
of that needed by the SAA.
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1. Introduction

Recent information and automation technologies provide foundations for Industry 4.0 [2, 15]. The core idea
of Industry 4.0 is to use the emerging technologies in a way that business and engineering processes are deeply
integrated [24]. Scheduling problem and location problem play important roles in manufacturing, and both
of them have received much attentions from academia [1, 14, 26, 27]. In practice, these two problems closely
intertwine and impact the production performance together. For example, in container port operations, decision
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4 Université Gustave-Eiffel, ESIEE Paris, COSYS-GRETTIA, F-77454 Marne-la-Vallée, France.
*Corresponding author: feng.chu@univ-evry.fr

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2023016
https://www.rairo-ro.org
https://orcid.org/0000-0003-3502-5649
mailto:feng.chu@univ-evry.fr
https://creativecommons.org/licenses/by/4.0


1180 M. LIU ET AL.

makers must determine the positions of ships in berth (i.e., location problem) and the schedule for loading and
unloading containers (i.e., scheduling problem), simultaneously [11]. Another example comes from the mining
industry. The planners must jointly determine which candidate locations should be selected to deploy crushers
(i.e., space problem) and how to sequence minerals on the crushers at those locations (i.e., scheduling problem)
[10]. These facts indicate the necessity of investigating the integrated scheduling-location problem.

The scheduling-location problem is referred to as ScheLoc problem which is first introduced by Hennes and
Hamacher [9]. The deterministic single machine ScheLoc problem is well addressed by Hennes and Hamacher [9]
and Kalsch and Drezner [11]. Since parallel machine manufacturing environment is quite common in practice,
recent works focus on the deterministic parallel machine ScheLoc problem [8, 13, 28]. In reality, unexpected
events often occur. Especially, job processing time can be uncertain as it may be affected by various factors
such as machine and equipment conditions, manufacturing environment and operator skills [3]. Therefore, Liu
et al. [19] study a stochastic parallel machine ScheLoc problem with uncertain job processing time. Moreover,
Liu and Liu [16] address the parallel machine ScheLoc problem with only mean vector and covariance matrix of
job processing time known. These works promote the studies of ScheLoc problems. However, all of them assume
that only one machine can be placed at a location, which may not be suitable for some practical applications. In
reality, some locations are larger to accommodate more machines than the others. Therefore, this study extends
the existing works and investigate a new and general parallel machine ScheLoc problem. For this novel problem,
we assume a location can place several machines and its holding capacity is limited.

Usually, manufacturers complete required jobs and get the corresponding payment timely. However, accord-
ing to Liu et al. [20], many manufacturers have experienced late payment from their customers. Manufacturers
prefer jobs from customers with low credit risk to curb the adverse consequences of high customer late pay-
ment probability and maintain competitiveness. Tsosie and Nicastro [22] point out that customer credit has
been applied to evaluate the customer payment probability. Liu et al. [20] indicate further that around 34%
manufacturers have started to assess the customer payment probability based on their credit history. They are
also the first to consider customer credit risk for flow shop scheduling problem. However, there is no research
investigating the ScheLoc problem under customer credit risk.

Motivated by the above facts, this work addresses a novel and general stochastic parallel machine ScheLoc
problem with limited location capacity and customer credit risk. The customer credit risk and job processing
time are both assumed to be ambiguous, and only their partial distributional information is given. The studied
problem consists of determining the machine-to-location assignment, job acceptance, job-to-machine assignment,
and scheduling of accepted jobs on each machine. The objective is to maximize the profit likelihood, i.e.,
the worst-case probability of manufacturer’s profit being greater than or equal to a given level. Besides, the
worst-case probability of job completion time respecting the due date (referred to as the service likelihood) is
also guaranteed. For the problem, a distributionally robust chance-constrained (DRCC) programming model is
constructed. Then, we develop two model-based approaches: (i) a sample average approximation (SAA) method;
(ii) a constructive heuristic. The contributions of this paper mainly include:

(1) A new and general stochastic parallel machine ScheLoc problem with limited location capacity and customer
credit risk is investigated. Especially, the assumption in the literature that only one machine can be placed
at a location is relaxed.

(2) For the problem, a DRCC programming model is proposed.
(3) Two model-based approaches, i.e., a SAA method and a constructive heuristic, are developed to efficiently

solve the problem.

The remainder of this paper is laid out as follows. A literature review is presented in Section 2. In Section 3,
we describe the studied problem in detail and propose a new DRCC programming model. In Section 4, a
SAA method and a model-based constructive heuristic are developed. Numerical experiments are conducted in
Section 5. In Section 6, this work is concluded and future research directions are suggested.
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2. Literature review

This paper addresses a general stochastic parallel machine ScheLoc problem with limited location capacity
and customer credit risk. For the problem, a DRCC programming model is constructed. In the following, we
review the related works about ScheLoc problems and distributionally robust (DR) approaches.

The ScheLoc problem, first introduced by Hennes and Hamacher [9], has received much attention from
academia [8, 12, 13, 16, 19, 25, 28]. Most existing works concern the deterministic ScheLoc problems [8, 9, 12,
13, 25, 28]. Hennes and Hamacher [9] first study a deterministic single machine ScheLoc problem, to minimize
the makespan. A polynomial-time algorithm based on earliest release date (ERD) first rule is developed to
solve the problem. Since parallel machine environment is quite common in practice, Heßler and Deghdak [8]
investigate a deterministic parallel machine ScheLoc problem. The objective is to minimize the makespan. For
the problem, an mixed integer programming (MIP) model is first proposed. Then, several constructive heuristics
are developed for it. 1450 instances are tested to demonstrate the effectiveness of the developed algorithms. The
same problem is then studied by Wang et al. [25], Kramer and Kramer [12] and Li et al. [13]. Wang et al. [25]
first propose a new MIP model. Then, three constructive heuristics are designed to solve the problem. Numerical
experiment results on benchmark instances proposed by Heßler and Deghdak [8] show that both the new MIP
model and the proposed heuristics perform better than that of Heßler and Deghdak [8]. Kramer and Kramer
[12] propose a new MIP model from the perspective of arc-flow formulation. Then, a column generation method,
two constructive heuristics and an iterated local search metaheuristic are designed. Numerical experiments show
that the optimal solutions of the same benchmark instances can be obtained. Li et al. [13] propose three new
mixed integer linear programming (MILP) models and a novel logic-based Benders decomposition (LBBD)
method. Numerical results demonstrate the efficiency of the new formulations and the algorithm. Zhang et al.
[28] investigate a new variant of the parallel machine ScheLoc problem considering delivery times and due dates.
The work aims to minimizing the total cost. They first develop MILP models. A tailored LBBD method and a
matheuristic are then developed to solve the problem.

In practice, unexpected events such as machine breakdown often occur. Therefore, some recent works focus on
the ScheLoc problem with uncertain job processing time. Liu et al. [19] first study a stochastic parallel machine
ScheLoc problem. The objective is to minimize the weighted sum of the expected total completion time and
the location cost. For the problem, a two-stage stochastic programming model is established. Then, a SAA
method, a genetic algorithm and a scenario-based heuristic are developed to solve the model. Liu and Liu [16]
consider the stochastic parallel machine ScheLoc problem, in which only the mean and covariance matrix of job
processing time are known. The objective is to minimize the machine location cost. The worst-case probability
of job completion time respecting the due date is also guaranteed. For the problem, a distributionally robust
(DR) formulation is first proposed. Then, an approximated mixed integer second order cone programming model
is developed for it.

The above works provide beneficial support for decision-making in the ScheLoc problem. However, all of
them restrict that only one machine can be placed at a location, and ignore the customer credit risk which has
a non-negligible impact on the manufacturers’ profit [20]. Note that Liu et al. [20] are the first one to study
a stochastic flow shop scheduling problem with customer credit risk. Nevertheless, there is no research work
integrating it into the ScheLoc problem, to the best of our knowledge.

Besides, due to data scarcity, it is usually impractical to accurately estimate the probability distribution
of random parameters [5]. DR optimization, first introduced by Scarf [21], is an appropriate tool to handle
uncertainty in the case where its distributional knowledge cannot be fully obtained and optimize the worst-case
performance measure over an uncertainty set, namely ambiguity set. Wagner [23] and Delage and Ye [5] use
moment-based ambiguity sets for deriving tractable reformulations of DR models. Referring to their works, we
also consider a moment-based ambiguity set which is constructed based on the given mean vector and covariance
matrix of uncertain parameters for this study.

Based on above facts, in the work, we study a new and general stochastic parallel machine ScheLoc problem
with limited location capacity and customer credit risk. Especially, we assume that customer credit risk and job
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Table 1. Comparison of ScheLoc related works.

Literature Problem Deter. Stoch. CCR Capacity Objective Approach

Hennes and Hamacher [9] Single X 1 Min makespan ERD
Heßler and Deghdak [8] Parallel X 1 Min makespan MIP and CH

Wang et al. [25] Parallel X 1 Min makespan MIP and CH
Kramer and Kramer [12] Parallel X 1 Min makespan MIP, CG, CH and ILS

Li et al. [13] Parallel X 1 Min makespan MILP, LBBD

Zhang et al. [28] Parallel X 1 Min total cost MILP, LBBD, matheuristic
Li et al. [19] Parallel X 1 Min weighted sum of SAA, GA and CH

LSC and expected TCT

Liu et al. [16] Parallel X 1 Min LSC MI-SOCP
This paper Parallel X X N+ Max profit like-

lihood

SAA, model-based CH

Notes. Deter.: deterministic environment; Stoch.: stochastic environment; CCR: customer credit risk; N+: the location-
dependent capacity; Single: single machine; Parallel: parallel machine; TCT: total completion time; CH: constructive
heuristic; CG: column generation; ILS: iterated local search; LSC: location selection cost.

processing time are ambiguous and only their partial distributional information is given due to data scarcity.
For the problem, a DRCC programming model is constructed. Table 1 summarizes main differences between
our work and the closely related literature.

3. Problem description and formulation

In the section, the detail of the studied problem is first described. Then, a new mathematical programming
model is constructed. Besides, a complexity analysis is conducted for the studied problem.

3.1. Problem description

For the studied problem, consider a set of candidate locations 𝐾, a set of machines 𝑁 and a set of jobs 𝐽 . A
location 𝑘 ∈ 𝐾 can be selected to place at most 𝛿𝑘 machines, where 𝛿𝑘 is called the capacity of location 𝑘 ∈ 𝐾.
When location 𝑘 ∈ 𝐾 is selected, there is a location selection cost 𝑐𝐿𝑘 . A cost 𝑐𝑀𝑛𝑘 is incurred when a machine
𝑛 ∈ 𝑁 is assigned to a location 𝑘 ∈ 𝐾. A job 𝑗 ∈ 𝐽 with a customer payment probability 𝑙𝑗 ∈ [0, 1] corresponding
to a credit risk can be rejected, but results in penalty 𝑒𝑗 . If job 𝑗 ∈ 𝐽 is accepted to process, the manufacturer
can obtain an expected revenue 𝑓𝑗 · 𝑙𝑗 , where 𝑓𝑗 denotes the revenue without credit risk [20]. In addition, job
𝑗 ∈ 𝐽 is located initially at a storage area and has a release time 𝑟𝑗𝑘 that corresponds to its moving time from the
storage area to a location 𝑘 ∈ 𝐾. Each job 𝑗 ∈ 𝐽 has a due date 𝑑𝑗 . The uncertain processing time of job 𝑗 ∈ 𝐽
is denoted as 𝑝𝑗 , for which only the mean and covariance are known. Besides, this work follows basic assumptions:

(1) A location can place several machines, and its capacity is limited.
(2) All parallel machines are identical.
(3) Job 𝑗 ∈ 𝐽 can only be assigned to exactly one machine if it is accepted to process.
(4) A machine can process at most one job at a time.
(5) Any two uncertain parameters are independent of each other.

To illustrate the studied problem, an example with 3 candidate locations, 2 machines and 8 jobs is presented.
The job storage areas and candidate locations are dispersed on a network in Figure 1. The release time of job
𝑗 to location 𝑘 is set to be their Euclidean distance (e.g., 𝑟21 = 2) where we assume that the common moving
speed is 1 per time unit. The means of job processing times and customer payment probabilities are set to
be [5, 4, 6, 3, 3, 2, 9, 7] and [0.6, 0.8, 0.3, 0.7, 0.5, 0.8, 0.1, 0.3], respectively. The job rejection penalties, the
revenues for processing job without credit risk, and the due dates are set to be [4, 2, 4, 2, 1, 5, 1, 2], [8, 10, 7,
11, 12, 14, 6, 10], and [12, 7, 19, 6, 18, 8, 23, 19], respectively. The location selection costs are set to be [18,
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Figure 1. An illustrated example for the problem.

Figure 2. A feasible solution of the example.

30, 10], and the machine-to-location assignment costs and the capacity of each location are uniformly set to
be 1. The problem consists of determining the machine-to-location assignment, job acceptance, job-to-machine
assignment and scheduling of accepted jobs on each machine. A feasible solution is shown in Figure 2. It can be
observed that machines 1 and 2 are assigned to locations 1 and 3, respectively. Job 7 is rejected. Jobs 2, 1 and
3 are assigned to the machine 1 at location 1, while jobs 4, 6, 8 and 5 are assigned to the machine 2 at location
3. The expected profit is calculated as 13.8.

3.2. A new DRCC programming model

In the section, problem parameters and decision variables are first defined. Then, a DRCC programming
model is constructed.

Input parameters

𝐾 Set of candidate locations, which is indexed by 𝑘;
𝑁 Set of machines, which is indexed by 𝑛;
𝐽 Set of jobs, which is indexed by 𝑖, 𝑗;
𝛿𝑘 The capacity of location 𝑘 ∈ 𝐾, which denotes the maximum number of machines that can be placed;
𝑐𝐿𝑘 The cost of selecting a location 𝑘 ∈ 𝐾;
𝑐𝑀𝑛𝑘 The cost of placing machine 𝑛 ∈ 𝑁 at location 𝑘 ∈ 𝐾;
𝑙𝑗 Customer payment probability of job 𝑗 ∈ 𝐽 ;
𝑒𝑗 Rejection penalty of job 𝑗 ∈ 𝐽 ;
𝑓𝑗 Revenue for processing job 𝑗 ∈ 𝐽 without credit risk;
𝑟𝑗𝑘 Release time of job 𝑗 ∈ 𝐽 to location 𝑘 ∈ 𝐾 that corresponds to its moving time from 𝑗’s storage area

to location 𝑘;
𝑑𝑗 Due date of job 𝑗 ∈ 𝐽 ;
𝑝𝑗 Uncertain processing time of job 𝑗 ∈ 𝐽 ;
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𝜁 The given profit level;
𝛼 The risk of at least one job’s completion time exceeds its due date;
ℋ Equals max

𝑗∈𝐽,𝑘∈𝐾
{𝑟𝑗𝑘}+

∑︀
𝑗∈𝐽

𝑝𝑗 + max
𝑗∈𝐽

{𝑝𝑗}, which is taken as a large enough positive number;

𝒫 The moment-based ambiguity set, i.e.,

𝒫 =

{︃
P :

EP[𝑈 ] = 𝜇,

EP[(𝑈 − 𝜇)(𝑈 − 𝜇)𝑇 ] = Γ

}︃
where 𝑈 is a column vector which collects uncertain parameters (i.e., 𝑈 = [𝑙,𝑝]⊤, where 𝑙 =
[𝑙1, · · · , 𝑙|𝐽|]⊤ and 𝑝 = [𝑝1, · · · , 𝑝|𝐽|]⊤), P denotes the unknown probability distribution of 𝑈 , and
EP[·] indicates the expected value with probability distribution P. 𝜇 and Γ are the expectation and
covariance matrix of 𝑈 , which are assumed to be known in advance.

Decision variables

𝑧𝑘 Equals 1 if location 𝑘 ∈ 𝐾 is selected, and 0 otherwise;
ℎ𝑗 Equals 1 if job 𝑗 ∈ 𝐽 is accepted to process, and 0 otherwise;
𝑢𝑛𝑘 Equals 1 if machine 𝑛 ∈ 𝑁 is placed at location 𝑘 ∈ 𝐾, and 0 otherwise;
𝑥𝑗𝑛𝑘 Equals 1 if job 𝑗 ∈ 𝐽 is assigned to machine 𝑛 ∈ 𝑁 at location 𝑘 ∈ 𝐾, and 0 otherwise;
𝑦𝑖𝑗𝑛𝑘 Equals 1 if job 𝑗 ∈ 𝐽 is processed after job 𝑖 ∈ 𝐽 on machine 𝑛 ∈ 𝑁 at location 𝑘 ∈ 𝐾, and 0

otherwise;
𝐶𝑗 The completion time of job 𝑗 ∈ 𝐽 .

In the following, we present the DRCC programming model, named as P1.

[P1]: max inf
P∈𝒫

P

⎧⎨⎩∑︁
𝑗∈𝐽

𝑓𝑗 · 𝑙𝑗 · ℎ𝑗 −
∑︁
𝑗∈𝐽

𝑒𝑗 · (1− ℎ𝑗)

−
∑︁
𝑘∈𝐾

𝑐𝐿𝑘 · 𝑧𝑘 −
∑︁
𝑛∈𝑁

∑︁
𝑘∈𝐾

𝑐𝑀𝑛𝑘 · 𝑢𝑛𝑘 ≥ 𝜁

}︃
(1)

s.t.
∑︁
𝑛∈𝑁

𝑢𝑛𝑘 ≤ 𝛿𝑘 · 𝑧𝑘, ∀𝑘 ∈ 𝐾 (2)∑︁
𝑘∈𝐾

𝑢𝑛𝑘 ≤ 1, ∀𝑛 ∈ 𝑁 (3)∑︁
𝑛∈𝑁

∑︁
𝑘∈𝐾

𝑥𝑗𝑛𝑘 = ℎ𝑗 , ∀𝑗 ∈ 𝐽 (4)∑︁
𝑗∈𝐽

𝑥𝑗𝑛𝑘 ≤ |𝐽 | · 𝑢𝑛𝑘, ∀𝑛 ∈ 𝑁, 𝑘 ∈ 𝐾 (5)

𝑦𝑖𝑗𝑛𝑘 + 𝑦𝑗𝑖𝑛𝑘 ≤
1
2
· (𝑥𝑖𝑛𝑘 + 𝑥𝑗𝑛𝑘), ∀𝑖, 𝑗 ∈ 𝐽, 𝑖 ̸= 𝑗, 𝑛 ∈ 𝑁, 𝑘 ∈ 𝐾 (6)

𝑦𝑖𝑗𝑛𝑘 + 𝑦𝑗𝑖𝑛𝑘 ≥ 𝑥𝑖𝑛𝑘 + 𝑥𝑗𝑛𝑘 − 1, ∀𝑖, 𝑗 ∈ 𝐽, 𝑖 ̸= 𝑗, 𝑛 ∈ 𝑁, 𝑘 ∈ 𝐾 (7)

inf
P∈𝒫

P
{︂

max
𝑖∈𝐽,𝑖 ̸=𝑗,𝑛∈𝑁,𝑘∈𝐾

{︃∑︁
𝑛∈𝑁

∑︁
𝑘∈𝐾

𝑟𝑗𝑘 · 𝑥𝑗𝑛𝑘

+ 𝑝𝑗 , 𝐶𝑖 + 𝑝𝑗 − ℋ ·
(︀
1− 𝑦𝑖𝑗𝑛𝑘

)︀}︀
≤ 𝑑𝑗 , 𝑗 ∈ 𝐽} (8)

≥ 1− 𝛼

𝑧𝑘, ℎ𝑗 , 𝑢𝑛𝑘, 𝑥𝑗𝑛𝑘, 𝑦𝑖𝑗𝑛𝑘 ∈ {0, 1}, 𝐶𝑗 ≥ 0, ∀𝑖, 𝑗 ∈ 𝐽, 𝑖 ̸= 𝑗, 𝑛 ∈ 𝑁, 𝑘 ∈ 𝐾. (9)
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The objective function (1) is to maximize the profit likelihood, i.e., the worst-case probability of manufac-
turer’s profit being greater than or equal to the given level 𝜁. Notably, the manufacturer’s profit consists of four
parts, i.e., the revenue by processing accepted jobs, the job rejection penalty, the cost of selecting locations,
and the cost of assigning machines to these selected locations.

Constraint (2) denotes the number of machines placed at location 𝑘 cannot exceed its capacity. Constraint (3)
indicates a machine cannot be placed at multiple locations. Constraint (4) implies that if a job has been accepted
for processing, it must be assigned to a machine. Constraint (5) denotes a machine can process jobs only when
it has been placed at a location. Constraint (6) indicates there is no processing precedence relationship between
job 𝑖 and job 𝑗 if they are not assigned to the same machine 𝑛 at location 𝑘. Constraint (7) expresses that either
job 𝑖 is processed before job 𝑗, or job 𝑗 is processed before job 𝑖 provided that they are both assigned to the
same machine 𝑛 at location 𝑘. Constraint (8) ensures that the service likelihood is greater than or equal to a
certain level 1− 𝛼. Constraint (9) denotes the domain of decision variables.

3.3. The complexity analysis

In this subsection, we conduct a complexity analysis for the parallel machine ScheLoc problem with limited
location capacity and customer credit risk.

Theorem 1. The concerned parallel machine ScheLoc problem with limited location capacity and customer
credit risk is NP-complete.

Proof. The proof is based on the following fact that PARTITION reduces to the parallel machine ScheLoc
problem with limited location capacity and customer credit risk. Given a set of integers 𝜏1, 𝜏2, . . . , 𝜏|𝐽| and an
auxiliary integer 𝜌, such that 𝜌 = 1

2

∑︀|𝐽|
𝑗=1 𝜏𝑗 . The PARTITION problem is to decide whether the set can be

partitioned into two subsets such that the sum of the integers of the two subsets are both equal to 𝜌. It is known
that the PARTITION problem is NP-complete, which is a decision problem in terms of complexity theory.

In the following, we construct a special case of the studied problem (i.e., a decision problem). The number
of candidate locations, machines and jobs are set to be 2, 2, |𝐽 |, respectively. The capacities of both locations
are set to be 1. The location selection cost, machine-to-location assignment cost, and job rejection penalty are
uniformly set to be 0. The customer payment probability of each job and the revenue for processing each job
are uniformly set to be 1. The release time of each job from its storage area to any location is set to be 0. The
processing time of job 𝑗 ∈ 𝐽 is set to be 𝜏𝑗 , and all jobs’ due dates are uniformly set to be 𝜌. To sum up,

𝛿𝑘 = 1, 𝑐𝐿𝑘 = 0, 𝑐𝑀𝑛𝑘 = 0, 𝑒𝑗 = 0, 𝑙𝑗 = 1, 𝑓𝑗 = 1, 𝑟𝑗𝑘 = 0, 𝑝𝑗 = 𝜏𝑗 , 𝑑𝑗 = 𝜌, 𝑘 ∈ {1, 2}, 𝑗 ∈ 𝐽.

In the case, a schedule with profit of |𝐽 | exists if and only if all jobs have been accepted and processed no later
than the common due date 𝜌. This can be done if and only if the jobs can be partitioned into two sets with
equal total processing time, which is the PARTITION problem. �

4. Solution methods

Due to the objective function (1) in probabilistic form and DR chance Constraint (8), model P1 cannot
be directly solved via commercial solvers. Thus, we first propose a widely applied SAA method to solve the
problem approximately. However, from the computation results in Section 5, we can see that no feasible solution
can be found within the time limit for some large-scale instances. Therefore, we further propose a model-based
constructive heuristic to solve the problem efficiently.

4.1. The SAA method

The principle of the SAA method is to replace the unknown probability distribution by an empirical distribution,
which corresponds to a set of scenarios. In recent years, it has been widely applied to transform the DRCC
programming model into a deterministic one [7,18,20]. Referring to these works, in the following, we apply this
method to convert the model P1 into a tractable model P2.
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New input parameters

Ω Set of scenarios, which is indexed by 𝜔;
𝑙𝑗𝜔 Customer payment probability of job 𝑗 ∈ 𝐽 in scenario 𝜔 ∈ Ω;
𝑝𝑗𝜔 Processing time of job 𝑗 ∈ 𝐽 in scenario 𝜔 ∈ Ω;
ℋ𝜔 Equals max

𝑗∈𝐽,𝑘∈𝐾
{𝑟𝑗𝑘}+

∑︀
𝑗∈𝐽

𝑝𝑗𝜔+max
𝑗∈𝐽

{𝑝𝑗𝜔}, which is taken as a large enough positive number in scenario

𝜔 ∈ Ω.

New decision variables

𝑚𝜔 Equals 1 if manufacturer’s profit being greater than or equal to a given level 𝜁 in scenario 𝜔 ∈ Ω, and
0 otherwise;

𝜓𝑗𝜔 The completion time of job 𝑗 ∈ 𝐽 in scenario 𝜔 ∈ Ω;
𝑞𝜔 Equals 1 if at least one job’s completion time exceeds its due date in scenario 𝜔 ∈ Ω, and 0 otherwise.

[P2]: max
1
|Ω|

∑︁
𝜔∈Ω

𝑚𝜔 (10)

s.t. (2)− (7), (9)

𝜁 −

⎛⎝∑︁
𝑗∈𝐽

𝑓𝑗 · 𝑙𝑗𝜔 · ℎ𝑗 −
∑︁
𝑗∈𝐽

𝑒𝑗 · (1− ℎ𝑗)

−
∑︁
𝑘∈𝐾

𝑐𝐿𝑘 · 𝑧𝑘 −
∑︁
𝑛∈𝑁

∑︁
𝑘∈𝐾

𝑐𝑀𝑛𝑘 · 𝑢𝑛𝑘

)︃
≤ 𝜁 ·

(︀
1−𝑚𝜔

)︀
, ∀𝜔 ∈ Ω (11)∑︁

𝑘∈𝐾

∑︁
𝑛∈𝑁

𝑟𝑗𝑘 · 𝑥𝑗𝑛𝑘 + 𝑝𝑗𝜔 ≤ 𝜓𝑗𝜔, ∀𝑗 ∈ 𝐽, 𝜔 ∈ Ω (12)

𝜓𝑖𝜔 + 𝑝𝑖𝜔 −ℋ𝜔 ·
(︀
1− 𝑦𝑖𝑗𝑛𝑘

)︀
≤ 𝜓𝑗𝜔, ∀𝑖, 𝑗 ∈ 𝐽, 𝑖 ̸= 𝑗, 𝑛 ∈ 𝑁, 𝑘 ∈ 𝐾 (13)

𝜓𝑗𝜔 −ℋ𝜔 · 𝑞𝜔 ≤ 𝑑𝑗 , ∀𝑗 ∈ 𝐽, 𝜔 ∈ Ω (14)∑︁
𝜔∈Ω

𝑞𝜔 ≤ |Ω| · 𝛼 (15)

𝑧𝑘, ℎ𝑗 , 𝑢𝑛𝑘, 𝑥𝑗𝑛𝑘, 𝑦𝑖𝑗𝑛𝑘, 𝑞𝜔, 𝑚𝜔 ∈ {0, 1}, 𝜓𝑗𝜔, 𝐶𝑗 ≥ 0, ∀𝑗 ∈ 𝐽, 𝜔 ∈ Ω. (16)

The objective function (10) is to maximize the proportion of scenarios in which the manufacturer’s profit is
greater than or equal to the given level 𝜁. Constraints (11) express whether the manufacturer’s profit being
greater than or equal to a given level 𝜁 in scenario 𝜔 ∈ Ω. Constraints (12) and (13) calculate the completion
time of job 𝑗 ∈ 𝐽 in scenario 𝜔 ∈ Ω. Constraints (14) indicate whether the completion time of each job is no
later than its due date. Constraints (15) represent the number of scenarios in which at least one job’s completion
time exceeds its due date is no greater than the give level (i.e., |Ω| · 𝛼). Constraints (16) denote the domain of
decision variables.

The SAA method transforms the original DRCC programming model P1 into a scenario-based mixed-integer
linear programming (MILP) model P2, which can be directly solved by commercial solvers such as Gurobi.
However, the computation time of the method will grow exponentially with the size of the problem. Therefore,
to solve the large-scale problem efficiently, we propose a model-based constructive heuristic.

4.2. The model-based constructive heuristic

In this subsection, we propose a new model-based constructive heuristic to solve the large-scale problem effi-
ciently. Before presenting the heuristic, we first employ some common methods to transform the DRCC pro-
gramming model P1 into a deterministic mathematical programming model.
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4.2.1. An equivalent transformation

In the first step, we introduce an auxiliary continuous decision variable 𝛽 ∈ [0, 1] to equivalently transform
the original objective function (1) into formulas (17)–(19) as follows.

min 𝛽 (17)

s.t. inf
P∈𝒫

P

⎧⎨⎩∑︁
𝑗∈𝐽

𝑓𝑗 · 𝑙𝑗 · ℎ𝑗 −
∑︁
𝑗∈𝐽

𝑒𝑗 · (1− ℎ𝑗)

−
∑︁
𝑘∈𝐾

𝑐𝐿𝑘 · 𝑧𝑘 −
∑︁
𝑛∈𝑁

∑︁
𝑘∈𝐾

𝑐𝑀𝑛𝑘 · 𝑢𝑛𝑘 ≥ 𝜁

}︃
≥ 1− 𝛽 (18)

𝛽 ∈ [0, 1]. (19)

4.2.2. Bonferroni inequality

In the second step, we apply Bonferroni inequality to break the joint chance constraint (8) into a set
of individual chance constraints. Specifically, joint chance constraint (8) can be conservatively approx-
imated as individual chance constraints (20) and (21), where 𝛼′𝑗 and 𝛼′′𝑖𝑗𝑛𝑘 must satisfy

∑︀
𝑗∈𝐽 𝛼

′
𝑗 +∑︀

𝑖∈𝐽

∑︀
𝑗∈𝐽,𝑗 ̸=𝑖

∑︀
𝑛∈𝑁

∑︀
𝑘∈𝐾 𝛼′′𝑖𝑗𝑛𝑘 = 𝛼 [4]. For convenience, we divide the risk tolerance 𝛼 evenly in line with

Do Chung et al. [6], i.e., 𝛼′𝑗 = 𝛼′′𝑖𝑗𝑛𝑘 = 𝛼
|𝐽|+|𝐽|·(|𝐽|−1)·|𝑁 |·|𝐾| ·

inf
P∈𝒫

P
{︂∑︁

𝑛∈𝑁

∑︁
𝑘∈𝐾

𝑟𝑗𝑘 · 𝑥𝑗𝑛𝑘 + 𝑝𝑗 ≤ 𝑑𝑗

}︂
≥ 1− 𝛼′𝑗 , ∀𝑗 ∈ 𝐽 (20)

inf
P∈𝒫

P
{︂
𝐶𝑖 + 𝑝𝑗 −ℋ ·

(︀
1− 𝑦𝑖𝑗𝑛𝑘

)︀
≤ 𝑑𝑗

}︂
≥ 1− 𝛼′′𝑖𝑗𝑛𝑘, ∀𝑖, 𝑗 ∈ 𝐽, 𝑖 ̸= 𝑗, 𝑛 ∈ 𝑁, 𝑘 ∈ 𝐾. (21)

4.2.3. A deterministic mathematical programming model

In the third step, we refers to Theorem 2.2 in Wagner [23] to equivalently transform the DR individual
chance constraints into deterministic constraints (i.e., without probability). Before applying this theorem, we
first introduce some new parameters.

New input parameters

𝜇𝑗 The expectation of 𝑙𝑗 , where 𝑗 ∈ 𝐽 ;
𝜎2

𝑗 The variance of 𝑙𝑗 , where 𝑗 ∈ 𝐽 ;
𝜉𝑗 The expectation of 𝑝𝑗 , where 𝑗 ∈ 𝐽 ;
𝛾2

𝑗 The variance of 𝑝𝑗 , where 𝑗 ∈ 𝐽 .

Referring to Theorem 2.2 in Wagner [23], DR individual chance constraints (18), (20) and (21) can be
equivalently transformed into the following constraints (22), (23) and (24), respectively.

√︃∑︁
𝑗∈𝐽

𝑓2
𝑗 · 𝜎2

𝑗 · ℎ2
𝑗 ≤

√︃
𝛽

1− 𝛽

⎛⎝−∑︁
𝑗∈𝐽

𝑒𝑗 · (1− ℎ𝑗)−
∑︁
𝑘∈𝐾

𝑐𝐿𝑘 · 𝑧𝑘 −
∑︁
𝑛∈𝑁

∑︁
𝑘∈𝐾

𝑐𝑀𝑛𝑘 · 𝑢𝑛𝑘 − 𝜁 +
∑︁
𝑗∈𝐽

𝑓𝑗 · 𝜇𝑗 · ℎ𝑗

⎞⎠, (22)

𝛾𝑗 ≤

√︃
𝛼′𝑗

1− 𝛼′𝑗

(︃
𝑑𝑗 −

∑︁
𝑛∈𝑁

∑︁
𝑘∈𝐾

𝑟𝑗𝑘 · 𝑥𝑗𝑛𝑘 − 𝜉𝑗

)︃
, ∀𝑗 ∈ 𝐽 (23)

𝛾𝑗 ≤

√︃
𝛼′′𝑖𝑗𝑛𝑘

1− 𝛼′𝑖𝑗𝑛𝑘

(𝑑𝑗 +ℋ · (1− 𝑦𝑖𝑗𝑛𝑘)− 𝐶𝑖 − 𝜉𝑗), ∀𝑖, 𝑗 ∈ 𝐽, 𝑖 ̸= 𝑗, 𝑛 ∈ 𝑁, 𝑘 ∈ 𝐾. (24)
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After that, a new deterministic mathematical programming model P3 is presented as follows.

[P3]: min 𝛽 (25)
s.t. (2)− (7), (9), (19), (22)− (24). (26)

Model P3 still cannot be directly solved via commercial solvers due to the nonconvex constraint (22). However,
note that this nonconvex constraint become a convex (i.e., second-order conic) one if the decision variable 𝛽 is
fixed. Motivated by this fact, we design a constructive heuristic based on model P3.

4.2.4. The constructive heuristic

The basic idea of the heuristic is trial-and-error. That is to say, given a certain 𝛽, we can check whether model
P3 is feasible by calling commercial solvers such as Gurobi. If the condition is true, the value of 𝛽 is reduced via
the golden-section search method, and vice versa. Besides, to offset the impact of conservative approximation
caused by Bonferroni inequality, we enlarge the solution search space via modifying the preset profit level and
job due date, i.e., 𝜁 ′ = 𝜁/𝜃1 and 𝑑′𝑗 = 𝜃2 · 𝑑𝑗 , with tuning parameters 𝜃1, 𝜃2 > 1. The time complexity of
this constructive heuristic is O(MN T ), where M denotes the maximum number of updates for 𝜁 and 𝑑𝑗 ,
N represents the number of iterations for 𝛽, and we use O(T ) to denote the time complexity of checking
the feasibility of P3 with fixed 𝛽 (Note that the feasibility version of model P3 with fixed 𝛽 is a decision
problem in terms of complexity theory. Such a decision problem is NP-complete, because Constraints (24) are
Knapsack-like constraints. Therefore, for simplicity, we use O(T ) to denote the time complexity of solving this
decision problem). Algorithm 1 presents the details of the constructive heuristic.

Algorithm 1: The model-based constructive heuristic.
Input: Revelant problem parameters, model P3,
M (% The maximum number of updates for 𝜁 and 𝑑𝑗),
N (% The number of iterations for 𝛽).

1 𝛽(1) = 0.618 (% Initialize 𝛽);
2 𝑆 = {0, 1} (% The set of trial 𝛽);
3 𝑆* = ∅ (% The set of 𝛽 such that the feasibility version of model P3 is feasible);
4 for 𝑖 = 1 : M do
5 𝜁′ = 𝜁/𝜃1 and 𝑑′𝑗 = 𝜃2 · 𝑑𝑗 ;
6 for 𝑡 = 1 : N do

7 𝑆 = 𝑆 ∪ 𝛽(𝑡);
8 Call Gurobi to solve model P3;
9 if model P3 is feasible then

10 𝑆* = 𝑆* ∪ 𝛽(𝑡);

11 𝛽(𝑡+1) = 𝛽(𝑡) − 0.618 ·
(︂

𝛽(𝑡) −max
𝑠∈𝑆

{︁
𝑆(𝑠)|𝑆(𝑠) < 𝛽(𝑡)

}︁)︂
;

12 else

13 𝛽(𝑡+1) = 𝛽(𝑡) + 0.618 ·
(︂

min
𝑠∈𝑆

{︁
𝑆(𝑠)|𝑆(𝑠) > 𝛽(𝑡)

}︁
− 𝛽(𝑡)

)︂
;

14 end

15 end
16 if 𝑆* is not empty then
17 break;
18 end

19 end
Output: The minimum 𝛽 in 𝑆* and its corresponding solution.
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5. Numerical experiments

In this section, the illustrated example in Section 3 is first solved to demonstrate the validity of the SAA
method and the constructive heuristic. Then, the performance of the two developed methods, and one adapted
version of the best heuristic in stochastic ScheLoc area from the literature (i.e., the scenario-based heuristic
proposed by Liu et al. [19]), are further compared by 300 instances adapted from Heßler and Deghdak [8]. All
numerical experiments are performed on a personal computer with Core I5, 2.11 GHz processor, 16 GB RAM,
and Windows 10 Operating System, and the two solution methods are both coded in Python 3.6 combined with
Gurobi 9.0. The computation time of each method is limited to 3600 s.

5.1. Evaluation standard

Solutions obtained by different methods are compared by the out-of-sample test in line with Liu et al. [20].
Specifically, 10 000 scenarios are first randomly generated, which represents various realizations of uncertain
parameters. Then, the profit likelihood (denoted as Υ1) and service likelihood (denoted as Υ2) are measured
as follows:

(1) The profit likelihood Υ1 is measured by (𝜂1/10, 000), where 𝜂1 denotes the number of scenarios in which
manufacturer’s profit no less than the given level;

(2) The service likelihood Υ2 is measured by (𝑛2/10, 000), where 𝜂2 denotes the number of scenarios in which
no job’s completion time exceeds its due date.

Accordingly, the performance of different methods is compared by the values of Υ1 and Υ2.

5.2. The solutions obtained by the two methods for the example

In this part, the example in Section 3 is solved to demonstrate the effectiveness of the two methods in
Section 4. The number of scenarios (i.e., |Ω|) for the SAA method is set to be 30, and the values of parameters
M and N for the constructive heuristic are set to be 5 and 10, respectively. The given profit level is set to be
6, and the risk tolerance 𝛼 is set to be 0.2.

The schedules obtained by the two methods are presented in Figure 3. From Figure 3, we can see that the
selected locations of two methods are identical, i.e., both locations 1 and 3 are selected. Recall that the capacity
of each location is set to be 1. Therefore, two machines are assigned to two locations, respectively. For the SAA
method, it can be observed that jobs 2 and 4 are rejected. Jobs 1, 5 and 3 are assigned to machine 1 at location
1, while jobs 6, 8 and 7 are distributed to machine 2 at location 3. In contrast, for the constructive heuristic,
we can see that jobs 3 and 4 are rejected. Jobs 2, 1 and 5 are distributed to machine 1 at location 1, while jobs
6, 8 and 7 are assigned to machine 2 at location 3.

The expected profits of solutions obtained by the two methods are calculated as 6.7 and 10.6, respectively.
Moreover, out-of-sample test shows the profit likelihood proposed by the constructive heuristic is (0.9259 −
0.5905)/0.5905 × 100% = 56.8% higher than that provided by the SAA, while the service likelihood of the
constructive heuristic is only (0.8537 − 0.8014)/0.8537 × 100% = 6.1% lower than that of the SAA. Note that
the service likelihood of the two methods are both higher than the given level (i.e., 1− 𝛼 = 0.8).

5.3. Numerical experiments on 300 instances

In this part, the performance of the two developed methods and the scenario-based heuristic from the liter-
ature are compared by 300 adapted instances. In the following, the instance generation rule is first illustrated.
Then, computation results of different methods for these instances are analyzed.

5.3.1. Instance generation rule

The instances are adapted from the large-scale data set for the ScheLoc problem provided by Heßler and
Deghdak [8]. This data set includes the following information (i) the number of candidate locations; (ii) the
number of machines; (iii) the number of jobs; (iv) job processing time; (v) job release time.
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Figure 3. The schedules obtained by the two methods for the example in Section 3.1.

Since our work is an extension of the classic parallel machine ScheLoc problem, some necessary parameters
are not included in the data set. Therefore, referring to the relevant literature and considering the charac-
teristic of our addressed problem, we carefully generate the rest parameters. Specifically, customer payment
probability is randomly generated following 𝑈 [0, 1] [20]. Each job’s due date is randomly generated follow-
ing 𝑈

[︁
(1− 𝜓1 − 𝜓2/2) ·

∑︀
𝑗∈𝐽 E(𝑝𝑗), (1− 𝜓1 + 𝜓2/2) ·

∑︀
𝑗∈𝐽 E(𝑝𝑗)

]︁
, in which both 𝜓1 and 𝜓2 are adjustable

parameters [17]. In this paper, 𝜓1 is set to be 0.2, and 𝜓2 is set to be 0.6. The given profit level 𝜁 is randomly
generated following 𝑈

[︁
0.2 ·

∑︀
𝑗∈𝐽(𝑓𝑗 − 𝑒𝑗) · 𝑙𝑗 −min𝑘∈𝐾 𝑐𝐿𝑘 , 0.4 ·

∑︀
𝑗∈𝐽(𝑓𝑗 − 𝑒𝑗) · 𝑙𝑗 −min𝑘∈𝐾 𝑐𝐿𝑘

]︁
, in which the

job processing revenue without credit risk and the job rejection penalty are randomly generated following
𝑈 [10, 15] and 𝑈 [1, 5], respectively [20], and the location selection cost is randomly generated following 𝑈 [10, 50].
The capacity of each location is uniformly set to be 1, and the machine-to-location assignment cost is uniformly
set to be 0. The standard deviation of each uncertain parameter is set to be 0.3 times its expectation [20].

Note that we adopt the first sixty combinations in Heßler and Deghdak [8]’s data set, and for each problem
setting, we randomly generate five instances. Thus a total of 300 instances are tested.

5.3.2. Computation results

The computation results obtained by different methods for the 300 instances are shown in Table 2. Specifically,
the first column denotes the sequence number of the tested problem setting, and the second column reports its
size which includes the number of candidate locations, machines and jobs. The third to fifth columns give the
profit likelihood, the service likelihood and the computation time of the SAA method, respectively. The sixth
to eighth and the last three columns show the corresponding results of the scenario-based heuristic and the
constructive heuristic, respectively. The average value of each indicator is reported in the last row of the table,
which is calculated based on the instances for which all the methods can find feasible solutions within 3600 s.

From Table 2, we can see that the scenario-based heuristic and our proposed constructive heuristic can obtain
solutions for all the combinations, while the SAA method can only obtain solutions for 53 of them. Moreover, the
average computation time of the constructive heuristic is only 51.4/1212.7 = 4.24% and 51.4/231.9 = 22.2% of
those needed by the SAA and the scenario-based heuristic, respectively. These results demonstrate the efficiency
of the constructive heuristic for solving the studied problem.
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Table 2. Computation results obtained by different methods.

The SAA The scenario-based heuristic The constructive heuristic
NO. (|𝐾|, |𝑁 |, |𝐽 |) ϒ1 ϒ2 T (s) ϒ1 ϒ2 T(s) ϒ1 ϒ2 T (s)

1 (13,4,59) 0.9640 0.7411 415.4 0.9768 0.4919 200.8 0.9973 0.9680 42.5

2 (10,6,55) 0.9262 0.7025 2253.9 0.9292 0.2771 8.7 0.9891 0.9534 40.7
3 (14,5,8) 0.9687 0.4084 94.9 0.9492 0.3886 226.9 0.9390 0.5284 3.7

4 (13,6,97) 0.7802 0.7820 3600.0 0.8304 0.3808 428.0 0.9028 0.9612 193.8

5 (15,10,46) 0.8082 0.8840 3600.0 0.9725 0.5755 305.2 0.9633 0.9814 74.6
6 (14,2,10) 0.9840 0.2305 148.8 0.8883 0.1681 150.2 0.9706 0.2351 4.1

7 (7,6,35) 0.9015 0.6987 501.3 0.9347 0.1846 198.4 0.9929 0.9861 11.7

8 (12,8,29) 0.9117 0.2304 2523.7 0.9050 0.2285 303.4 0.9911 0.2510 129.5
9 (7,4,77) 0.8880 0.9923 1527.0 0.9495 0.6497 97.3 0.9837 0.9970 42.4

10 (6,2,68) 0.8366 0.8672 815.2 0.9047 0.4066 293.9 0.9730 0.9738 14.9

11 (6,2,39) 0.9992 0.0525 321.0 0.9866 0.0925 172.0 0.9807 0.1027 5.4
12 (15,10,31) 0.9473 0.7335 100.9 0.8839 0.5442 382.9 0.9015 0.9558 38.9

13 (12,10,49) 0.7934 0.3892 77.2 0.9184 0.1053 484.9 0.9115 0.6344 68.1

14 (9,7,95) 0.6403 0.9450 3600.0 0.9335 0.2432 154.2 0.9226 0.9592 157.1
15 (12,3,95) 0.9337 0.9150 1470.4 0.8856 0.4568 525.6 0.9229 0.9745 83.1

16 (8,5,79) 0.8635 0.6877 1897.4 0.9108 0.1985 321.8 0.9003 0.9563 64.0
17 (12,10,51) 0.9802 0.7826 576.2 0.9211 0.0903 56.7 0.9615 0.9807 75.7

18 (9,4,4) 0.8017 0.8262 93.6 0.9343 0.1793 330.5 0.9194 0.9780 3.5

19 (12,9,50) 0.8816 0.4933 3600.0 0.9626 0.3111 108.0 0.9906 0.4257 67.9
20 (6,4,15) 0.8511 0.4221 144.1 0.8893 0.4964 185.8 0.9238 0.5824 2.6

21 (15,3,61) 0.9014 0.2627 720.7 0.9791 0.0884 348.1 0.9947 0.3961 42.5

22 (5,2,94) 0.8450 0.8549 1920.6 0.9977 0.5744 310.0 0.9643 0.9976 37.3
23 (7,3,58) 0.8007 0.1764 198.7 0.8953 0.0607 201.1 0.9185 0.2013 15.7

24 (14,6,51) 0.8963 0.4732 355.3 0.9910 0.5384 63.3 0.9866 0.5093 49.6

25 (13,6,29) 0.9313 0.6231 1816.8 0.8159 0.9347 62.1 0.8999 0.8796 93.3
26 (6,2,62) 0.8176 0.7648 536.5 0.9581 0.1947 414.7 0.9652 0.9389 10.7

27 (14,7,46) 0.8822 0.5128 2046.8 0.8915 0.3475 239.7 0.9099 0.5066 45.8

28 (6,4,32) 0.9314 0.8700 17.2 0.8895 0.5343 103.2 0.9606 0.9998 4.1
29 (15,3,21) 0.9024 0.6337 488.2 0.9265 0.7588 504.2 0.9919 0.8348 16.2

30 (15,10,31) 0.9253 0.8642 521.3 0.8650 0.3016 262.9 0.9456 0.9996 69.7
31 (12,3,45) 0.8612 0.8864 506.8 0.9425 0.9328 191.6 0.9522 0.9932 15.3

32 (15,2,87) 0.8553 0.7551 1275.7 0.8434 0.3662 274.6 0.9038 0.9987 68.7

33 (13,2,20) 0.9146 0.1102 4.5 0.9340 0.1745 83.3 0.9581 0.1024 5.7
34 (8,3,74) 0.8972 0.6933 1169.2 0.9081 0.1833 118.0 0.9120 0.9675 40.3

35 (15,6,44) 0.9816 0.8927 119.5 0.9888 0.8055 406.6 0.9608 0.9355 38.3

36 (14,8,56) 0.9262 0.7691 3309.9 0.8922 0.8353 96.3 0.9310 0.9998 90.4
37 (10,6,46) 0.9236 0.7657 412.7 0.9464 0.1282 198.8 0.9524 0.9391 29.8

38 (15,8,71) – – 3600.0 0.8864 0.5959 433.9 0.8975 0.8361 178.2
39 (8,5,100) 0.7370 0.7519 3600.0 0.9153 0.4491 516.8 0.9567 0.9193 102.9
40 (6,4,16) 0.8831 0.1963 134.2 0.9502 0.1022 144.7 0.9794 0.2375 2.7

41 (5,2,38) 0.7993 0.8533 42.0 0.9005 0.4753 86.4 0.9710 0.9556 2.7

42 (7,6,46) 0.9544 0.9148 989.4 0.8546 0.9582 311.1 0.9249 0.9196 19.0
43 (8,5,69) 0.7169 0.9921 2371.0 0.8816 0.0944 111.0 0.9317 0.9924 45.6

44 (13,3,98) 0.8501 0.1481 1693.5 0.9277 0.1978 593.5 0.9909 0.1203 123.8
45 (9,8,68) 0.8012 0.7421 1650.9 0.9559 0.1782 340.6 0.9870 0.9961 83.9

46 (10,7,40) 0.7945 0.8116 718.9 0.9367 0.6528 85.5 0.9843 0.9997 24.5

47 (13,7,59) 0.8072 0.8962 2621.4 0.9818 0.2582 122.1 0.9913 0.9090 75.6
48 (9,8,47) 0.8145 0.3364 1087.2 0.9302 0.3042 92.7 0.8970 0.4219 35.4

49 (9,6,50) 0.8521 0.5621 1905.5 0.9387 0.1475 111.1 0.9296 0.6377 33.8

Notes. “–” represents no feasible solution can be found within 3600 s; ϒ1 represents the profit likelihood; ϒ2 represents
the service likelihood; T represents the computation time.
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Table 2. continued.

The SAA The scenario-based heuristic The constructive heuristic

NO. (|𝐾|, |𝑁 |, |𝐽 |) ϒ1 ϒ2 T (s) ϒ1 ϒ2 T (s) ϒ1 ϒ2 T (s)

50 (10,3,51) 0.8466 0.8082 181.7 0.8344 0.9899 309.0 0.8843 0.9919 17.1

51 (16,14,21) – – 3600.0 0.8796 0.7499 299.2 0.9129 0.8328 258.3
52 (22,18,66) – – 3600.0 0.8675 0.7031 270.8 0.8855 0.9876 472.8

53 (22,16,26) 0.8516 0.7401 2776.3 0.9905 0.5042 89.3 0.9881 0.9430 54.3

54 (24,12,45) – – 3600.0 0.9487 0.3612 542.8 0.9736 0.9310 146.9
55 (17,14,90) – – 3600.0 0.9519 0.6547 778.4 0.9950 0.9609 574.6

56 (17,14,30) 0.7451 0.7562 729.0 0.8237 0.8923 24.6 0.8411 0.9975 50.1

57 (20,18,58) – – 3600.0 0.9040 0.2969 725.2 0.9369 0.3685 330.0
58 (19,10,57) 0.8955 0.8821 859.6 0.9842 0.3984 378.9 0.9948 0.9808 166.4

59 (19,6,57) 0.8161 0.9564 130.6 0.9279 0.5976 161.9 0.9616 0.9910 87.3
60 (22,19,28) – – 3600.0 0.8414 0.7732 924.6 0.8237 0.9904 529.4

Average 0.8683 0.6611 1212.7 0.9220 0.4043 231.9 0.9502 0.7849 51.4

Focusing on the out-of-sample performance of the three methods, it can be observed that the average
profit likelihood (i.e., Υ1) and the service likelihood (i.e., Υ2) of the constructive heuristic are (0.9502 −
0.8683)/0.8683 = 9.43% and (0.7849− 0.6611)/0.6611 = 18.73% higher than those of the SAA method, respec-
tively, and (0.9502−0.9220)/0.9220 = 3.06% and (0.7849−0.4043)/0.4043 = 94.14% superior to those provided
by the scenario-based heuristic, respectively. Based on these results, we conclude that the model-based con-
structive heuristic performs better than the SAA method and the scenario-based heuristic.

6. Conclusion

In this work, we study a new and general stochastic parallel machine ScheLoc problem with limited location
capacity and customer credit risk. The problem consists of determining machine-to-location assignment, job
acceptance, job-to-machine assignment, and scheduling of accepted jobs on each machine. The objective is to
maximize the profit likelihood. For the problem, a DRCC programming model is established. Then, a SAA
method and a model-based constructive heuristic are proposed. An illustrated example demonstrates the effec-
tiveness of the model, and computation results of 300 adapted instances show the efficiency of the constructive
heuristic.

Several research directions can be explored in the future. Firstly, the ScheLoc problem can be investigated in a
more complex environment, by considering uncertain job release time and job due date, for example. Secondly, in
this study, the DR joint chance-constraint is conservatively approximated as a set of individual chance constraints
via Bonferroni inequality. It is a worthy topic of developing new techniques that can equivalently rewrite the
DR joint chance-constraint. Thirdly, the characteristics of stochastic ScheLoc problems can be further explored
such that some valid inequalities can be derived to speed up the solution procedure. Finally, it is an interesting
topic to adapt the existing algorithms developed for the classical parallel machine ScheLoc problem (such as
LBBD and ILS) to solve our studied problem.
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