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Commonality Subtraction Operator for the ℰℒ
Description Logic
Axel Mascaro1, Christophe Rey1
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Abstract
In the context of the ℰℒ description logic, we define and study a new concept difference operator,
called commonality subtraction operator (CSO), with respect to an acyclic definitional ontology 𝒯 , and
noted 𝐴 ⊖𝒯 𝐵. CSO aims at removing from a concept description 𝐴 all common parts with another
description 𝐵, w.r.t. 𝒯 , which we call descriptional commonalities. Based on the proposed operator of
tree subtraction (TSO), we give an algorithm to compute CSO along with its complexity. CSO fits well
with existential restrictions and applies to any couple of concepts (𝐴,𝐵), which makes it different from
existing difference operators. We practically justify the definition of CSO by explaining our needs for
such an operator in the context of a metrology resources management project.
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1. Introduction

The STAM project1, funded by the European Regional Development Fund (FEDER) of the
European Union, aims at developing a multitool platform in the field of metrology. One of
its objectives is to provide a kind of facebook for metrology. In that purpose, it is based on a
documentation repository in which metrological resources (e.g. pdf documents, images, texts,
data files, instruments...) could be easily retrieved. In its current version, metrological resources
are identified by characteristics defined in a metrology dictionary and which are retrieved by
a keyword-based search. Besides, resources are also tagged by annotations called "families",
another kind of keywords. By selecting one or many families, the user can restrict the results of
a keyword search to resources annotated by the chosen families.

In [1], we have improved this exact retrieval process by generalizing it into a matchmaking
one, which aims at finding the semantically closest resources with respect to the user query,
using the ℰℒ description logic (DL). The choice of ℰℒ is linked to the underlying metrology
resource management system which is powered by GraphDB, an RDF data management system
that allows tractable reasoning in the OWL2 EL profile, based on ℰℒ [2]. First, leveraging the
existing dictionary, an ℰℒ ontology is built by associating logical descriptions to metrological
keywords and families in order to obtain ℰℒ concept definitions. Then, user queries that describe
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Notice

Figure 1: Ontology of the metrology (as an ℰℒ TBox) in example 1.

wanted resources are built as ℰℒ concept descriptions. The semantically closest resources w.r.t.
a user query are obtained by pairwisely comparing all resources w.r.t the query, in a semantic
way using the ontology. This process produces a ranking of resources w.r.t the query based
on the idea that the bigger the shared information between the query and the resources, the
better. But instead of directly computing the shared information, we compute what is original
in each resource w.r.t. the query. This means best resources are the ones which have the least
original parts w.r.t. the query. Moreover, the process also computes what parts of the query
are original w.r.t. each resource, which can be used to further refine the ranking if needed.
The whole approach is based on a new difference operator for ℰℒ, namely the commonality
subtraction operator (CSO, noted ⊖𝒯 ), which is the contribution presented in this paper.

Example 1. In the metrology context, we may have the following ℰℒ ontology and resource
and query descriptions (see figure 1): 𝒯 = {𝑆𝑡𝑒𝑒𝑙 ≡ 𝐼𝑟𝑜𝑛 ⊓ ∃ℎ𝑎𝑠𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛.𝐶𝑎𝑟𝑏𝑜𝑛, 𝐼𝑟𝑜𝑛 ⊑
𝑀𝑒𝑡𝑎𝑙, 𝑀𝑒𝑡𝑎𝑙 ⊑ 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝑊𝑜𝑜𝑑 ⊑ 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝐶𝑎𝑟𝑏𝑜𝑛 ⊑ 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝑀𝑖𝑐𝑟𝑜𝑚𝑒𝑡𝑒𝑟 ⊑
𝐶𝑎𝑙𝑙𝑖𝑝𝑒𝑟, 𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝐶𝑎𝑙𝑙𝑖𝑝𝑒𝑟 ⊑ 𝐶𝑎𝑙𝑙𝑖𝑝𝑒𝑟, 𝐶𝑎𝑙𝑙𝑖𝑝𝑒𝑟 ⊑ 𝐿𝑒𝑛𝑔𝑡ℎ𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡},
𝑅𝑒𝑠 = ∃𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒.𝐶𝑎𝑙𝑙𝑖𝑝𝑒𝑟 ⊓ ∃ℎ𝑎𝑠𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙.(𝐼𝑟𝑜𝑛 ⊓ 𝑊𝑜𝑜𝑑), and 𝑄𝑢𝑒𝑟𝑦 =
∃𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒.𝑀𝑖𝑐𝑟𝑜𝑚𝑒𝑡𝑒𝑟 ⊓ ∃ℎ𝑎𝑠𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙.𝑆𝑡𝑒𝑒𝑙. Intuitively, 𝑆𝑡𝑒𝑒𝑙 is defined as 𝐼𝑟𝑜𝑛
in which is included 𝐶𝑎𝑟𝑏𝑜𝑛, 𝐼𝑟𝑜𝑛 is a kind of 𝑀𝑒𝑡𝑎𝑙 which is a kind of 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙, as 𝑊𝑜𝑜𝑑 and
𝐶𝑎𝑟𝑏𝑜𝑛. 𝑀𝑖𝑐𝑟𝑜𝑚𝑒𝑡𝑒𝑟 is a kind of 𝐶𝑎𝑙𝑙𝑖𝑝𝑒𝑟, as 𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝐶𝑎𝑙𝑙𝑖𝑝𝑒𝑟, and 𝐶𝑎𝑙𝑙𝑖𝑝𝑒𝑟 is a kind of
𝐿𝑒𝑛𝑔𝑡ℎ𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡. 𝑅𝑒𝑠 describes a resource that is about a 𝐶𝑎𝑙𝑙𝑖𝑝𝑒𝑟 as instrument type, made
of 𝐼𝑟𝑜𝑛 and 𝑊𝑜𝑜𝑑. With 𝑄𝑢𝑒𝑟𝑦, a user is looking for resources about 𝑀𝑖𝑐𝑟𝑜𝑚𝑒𝑡𝑒𝑟 as instrument
type, made of 𝑆𝑡𝑒𝑒𝑙. We then would like to have: (i) 𝑅𝑒𝑠⊖𝒯 𝑄𝑢𝑒𝑟𝑦 = ∃ℎ𝑎𝑠𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙.𝑊𝑜𝑜𝑑,
which means 𝑄𝑢𝑒𝑟𝑦 shares all aspects of 𝑅𝑒𝑠 except the fact that 𝑅𝑒𝑠 is a resource about
an instrument made of wood, and (ii) 𝑄𝑢𝑒𝑟𝑦 ⊖𝒯 𝑅𝑒𝑠 = ∃𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒.𝑀𝑖𝑐𝑟𝑜𝑚𝑒𝑡𝑒𝑟 ⊓
∃ℎ𝑎𝑠𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙.∃ℎ𝑎𝑠𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛. 𝐶𝑎𝑟𝑏𝑜𝑛, which means that𝑅𝑒𝑠 shares with𝑄𝑢𝑒𝑟𝑦 the fact that
it describes resources made of 𝐼𝑟𝑜𝑛, but does not share other aspects of 𝑄𝑢𝑒𝑟𝑦 (the 𝑀𝑖𝑐𝑟𝑜𝑚𝑒𝑡𝑒𝑟
instrument type and the 𝐶𝑎𝑟𝑏𝑜𝑛 inclusion inside the material).

The CSO ensures two important features: inverse subsumption criterion to define commonal-
ities, and fine-grained difference. The inverse subsumption criterion states that a commonality
between the minuend and the subtrahend exists when a part of the minuend subsumes the



Table 1
ℰℒ constructors and axioms. 𝐴 ∈ C, 𝑅 ∈ r, and 𝐶 and 𝐷 are concepts.

Constructors/Axioms Syntax Semantics Remarks

top ⊤ Δℐ It is assumed that:
∙ conjunctions do not contain ⊤ nor
many times the same conjunct, and
∙ writing

d𝑛
𝑖=1 𝐶𝑖 means the 𝐶𝑖s are

not conjunctions themselves.

concept name ∈ C 𝐴 𝐴ℐ ⊆ Δℐ

role ∈ r 𝑟 𝑟ℐ⊆Δℐ×Δℐ

conjunction 𝐶 ⊓𝐷 𝐶ℐ ∩𝐷ℐ

existential restriction ∃𝑟.𝐶 {𝑥∈Δℐ |∃𝑦∈𝐶ℐ :
(𝑥, 𝑦) ∈ 𝑟ℐ}

Concept definition 𝐴≡𝐶 𝐴ℐ = 𝐶ℐ 𝐴 appears only once as the lhs of a
definition.Primitive concept definition 𝐴⊑𝐶 𝐴ℐ ⊆ 𝐶ℐ

subtrahend. A contrario, in existing operators, the minuend is usually subsumed by (parts
of) the subtrahend. This is justifed by our resource retrieval context where the minuend is
seen as a query and the subtrahend may answer parts of it: we consider answering part of a
query as corresponding to being subsumed by this part of the query. In example 1, considering
𝑄𝑢𝑒𝑟𝑦 ⊖𝒯 𝑅𝑒𝑠, ∃ℎ𝑎𝑠𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙.𝐼𝑟𝑜𝑛 is a commonality between 𝑄𝑢𝑒𝑟𝑦 and 𝑅𝑒𝑠 since it is a
part of 𝑄𝑢𝑒𝑟𝑦 (once 𝑆𝑡𝑒𝑒𝑙 has been replaced by its definition 𝐼𝑟𝑜𝑛⊓ ∃ℎ𝑎𝑠𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛.𝐶𝑎𝑟𝑏𝑜𝑛)
and it subsumes 𝑅𝑒𝑠. A contrario, ∃ℎ𝑎𝑠𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙.𝑆𝑡𝑒𝑒𝑙 is not a commonality with 𝑅𝑒𝑠 since
it does not subsume 𝑅𝑒𝑠. The fine-grained difference browses the tree structure implied by
existential restrictions in order to precisely remove commonalities between the minuend and the
subtrahend without modifying the remaining of the minuend. Going on with the same example,
the CSO removes ∃ℎ𝑎𝑠𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙.𝐼𝑟𝑜𝑛 from 𝑄𝑢𝑒𝑟𝑦 since it is a commonality with 𝑅𝑒𝑠, and it
keeps ∃ℎ𝑎𝑠𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙.∃ℎ𝑎𝑠𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛.𝐶𝑎𝑟𝑏𝑜𝑛, and ∃𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒.𝑀𝑖𝑐𝑟𝑜𝑚𝑒𝑡𝑒𝑟.

After recalling notions about ℰℒ in section 2, we study CSO for ℰℒ (with an acyclic and
definitional TBox) in section 3. In section 4, we relate CSO to other difference operators. At last,
we conclude. When not given in the text body, full proofs of properties are given in appendix.

2. Recalls about ℰℒ
We assume to have two countably infinite sets: C for concept names and r for role names.
From these, with the help of ℰℒ constructors (see table 1), ℰℒ concept descriptions can be built.
From now on, unless stated otherwise, the term concept refers to the expression "ℰℒ concept
description". A concept that is not a concept name nor ⊤ is called a compound concept. Given a
concept 𝐶 , we can define its size.

Definition 1 (size [3]). Given a concept 𝐶 , its size noted size(𝐶) is defined by induction on its
structure: if𝐶 ∈ C∪⊤ then size(𝐶) = 1; if𝐶 = 𝐶1⊓𝐶2, then size(𝐶) = 1+size(𝐶1)+size(𝐶2);
and if 𝐶 = ∃𝑟.𝐷 then size(𝐶) = 1 + size(𝐷)

Concepts are given a model-theoretic semantics based on interpretations which are couples
(Δℐ , .ℐ) of, respectively, a universe of discourse and an interpretation function, see the third
column of table 1. Axioms that relate concepts are of the following kinds: concept definitions of



the form 𝐴 ≡ 𝐶 and primitive concept definitions of the form 𝐴 ⊑ 𝐶 . The size of an axiom is
the sum of the sizes of the left and right hand sides of the axiom. An ℰℒ TBox, or just TBox, is
a finite set of axioms. The size size(𝒯 ) of a TBox 𝒯 is the sum of the sizes of its axioms. An
interpretation (Δℐ , .ℐ) is a model of a TBox 𝒯 if, for each axiom in 𝒯 , the condition given in
the third column of table 1 is satisfied. A concept 𝐶 is subsumed by another concept 𝐷 w.r.t. a
TBox 𝒯 , noted 𝐶 ⊑𝒯 𝐷 (or 𝒯 |= 𝐶 ⊑ 𝐷), if 𝐶ℐ ⊆ 𝐷ℐ in every model of 𝒯 . When 𝒯 = ∅, we
can note interchangeably ⊑ or ⊑∅.

A definitional TBox contains only concept definitions. A TBox containing primitive concept
definitions can be made definitional in linear time w.r.t. size(𝒯 ) [3] since (i) each primitive
concept definition 𝐴 ⊑ 𝐶 can be transformed into the concept definition 𝐴 ≡ 𝐶 ⊓ 𝐴, with
𝐴 a new concept name, and (ii) two primitive concept definitions 𝐴 ⊑ 𝐵 and 𝐴 ⊑ 𝐶 can be
grouped into one 𝐴 ⊑ 𝐵 ⊓ 𝐶 . In the sequel, TBoxes are supposed to be definitional.

The signature of a TBox 𝒯 , noted sig𝒯 , is the set of all concept names and roles that occur in
𝒯 . We note C𝒯 = C ∩ sig𝒯 , r𝒯 = r ∩ sig𝒯 , and 𝒯ℰℒ the set of all concepts that can be built
using elements of sig𝒯 and ⊤. Concept names appearing as the left-hand side of a definition are
called defined concepts and they define the set def𝒯 ⊆ C𝒯 . Defined concepts may only appear
once as the left hand side of a concept definition. Other concept names are called primitive
concepts. They define the set prim𝒯 ⊆ C𝒯 . The set of concepts built using only primitive
concepts of 𝒯 and ⊤ is noted 𝒯 prim

ℰℒ .
Following definition 2.9 of [3], for 𝐴, 𝐵 and 𝐵′ concept names, we say that 𝐴 directly uses 𝐵

in 𝒯 if there is in 𝒯 a primitive concept definition 𝐴 ⊑ 𝐶 , or a concept definition 𝐴 ≡ 𝐶 , such
that 𝐵 occurs in 𝐶 . We say that 𝐴 uses 𝐵 if 𝐴 directly uses 𝐵, or if there is a concept name 𝐵′

such that 𝐴 uses 𝐵′ and 𝐵′ directly uses 𝐵. A TBox contains a cycle when some concept name
𝐴 uses itself. A TBox is acyclic if it contains no cycle. In the sequel, TBoxes are supposed to be
acyclic, in addition to being definitional.

The complete expansion (a.k.a. unfolding) 𝒯 * of an acyclic definitional TBox 𝒯 [4, 5] rewrites
every concept definition of 𝒯 into an equivalent one with only primitive concepts in its right
hand side. Then, for a concept 𝐶 , 𝒯 *(𝐶) is the complete expansion of 𝐶 w.r.t. 𝒯 . This process
is EXPTIME in the sizes of 𝒯 and 𝐶 .

Example 2. We have the following acyclic definitional TBox: 𝒯 = {𝐴 ≡ 𝐵 ⊓ 𝐶,𝐶 ≡ 𝐷 ⊓
∃𝑟.𝐵,𝐷 ≡ 𝐸,𝐹 ≡ ∃𝑟.𝐷}. Thus we have C𝒯 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹}, r𝒯 = {𝑟}, prim𝒯 =
{𝐵,𝐸} and def𝒯 = {𝐴,𝐶,𝐷, 𝐹}. The complete expansion 𝒯 * is 𝒯 * = {𝐴 ≡ 𝐵 ⊓ 𝐸 ⊓ ∃𝑟.𝐵,
𝐶 ≡ 𝐸 ⊓ ∃𝑟.𝐵, 𝐷 ≡ 𝐸, 𝐹 ≡ ∃𝑟.𝐸}.

3. The Commonality Subtraction Operator (CSO)

In section 3.1, we define the CSO, first informally, by presenting the notions of characteristic
branch and descriptional commonality, and then formally. In section 3.2, we present a new
syntactical operator called the tree subtraction operator (TSO) and show how to use it to compute
the CSO. We also give the main properties associated to both the TSO and the CSO, namely
existence, unicity, and termination, soundness and complexity of the associated algorithms.



3.1. Definition of CSO

The CSO operator 𝐶 ⊖𝒯 𝐷 is intended to remove from the minuend 𝐶 all concept parts
shared with the subtrahend 𝐷 w.r.t. some TBox 𝒯 . We call these shared parts 𝒯 descriptional
commonalities (or 𝒯 commonalities for short) from𝐶 to𝐷. Syntactically, we want commonalities
to be removable from the minuend without impacting its other parts. So they have to be atomic
in some sense. Since ℰℒ concepts have a tree structure (see [6]), we capture the notion of atomic
parts of a concept as its branches in its tree structure. We define the notion of branch with the
ones of subdescription and width of a concept. Semantically, being a 𝒯 commonality from 𝐶
to 𝐷 means being a part of 𝐶 linked to 𝐷: we propose a 𝒯 commonality from 𝐶 to 𝐷 to be
defined as a characteristic branch of 𝐶 w.r.t. 𝒯 that subsumes 𝐷:

• A characteristic branch of 𝐶 w.r.t. 𝒯 is a primitive branch of 𝐶 or of a concept equivalent
to 𝐶 (w.r.t. 𝒯 ) such that it cannot be syntactically removed from 𝐶 without changing its
semantics. Fine-grained difference (cf. introduction) is achieved by working at the level
of characteristic branches.

• Imposing 𝐷 being subsumed by a characteristic branch of 𝐶 expresses the fact that
commonalities from 𝐶 to 𝐷 are parts of 𝐶 to which 𝐷 answers (by being subsumed by
them). This is how the inverse subsumption criterion is implemented (cf. introduction).

Then, 𝐶 ⊖𝒯 𝐷 is defined as the minimal concept 𝐸 that subsumes 𝐶 such that there are no 𝒯
commonalities from 𝐸 to 𝐷 (meaning all 𝒯 commonalities from 𝐶 to 𝐷 have been removed).

We now formalize these notions. First, the width of a concept 𝐶 is the maximum number of
conjuncts composing any conjunction occuring in 𝐶 .

Definition 2 (width of a concept). The width of 𝐶 , noted wid(𝐶), is defined as follows:
wid(𝐶) = 1 if 𝐶 ∈ C ∪ {⊤}
wid(𝐶) = 𝑀𝑎𝑥(𝑛,𝑀𝑎𝑥{wid(𝐶𝑖), 1 ≤ 𝑖 ≤ 𝑛}) if 𝐶 =

d𝑛
𝑖=1𝐶𝑖, 𝑛 ≥ 2

wid(𝐶) = wid(𝐷) if 𝐶 = ∃𝑟.𝐷

A subdescription of a concept 𝐶 is obtained by removing zero or many conjuncts anywhere
in 𝐶 , provided it remains a syntactically correct concept2. The following definition formalizes
this idea. It is equivalent to the definition given in [7] (restricted to ℰℒ).

Definition 3 (subdescription of a concept). With 𝑛 ≥ 2, the set of subdescriptions of 𝐶 , noted
subd𝐶 , is set to {𝐶} if 𝐶 ∈ C ∪ {⊤}, or to {∃𝑟.𝐸 | 𝐸 ∈ subd𝐷} if 𝐶 = ∃𝑟.𝐷, or to⋃︀
𝒞⊆{𝐶𝑖|1≤𝑖≤𝑛}
with |𝒞|=𝑚̸=0

(︂ ⋃︀
⟨𝑆1,...,𝑆𝑚⟩∈

∏︀
𝐶𝑖∈𝒞

subd𝐶𝑖

(︁d𝑚
𝑗=1 𝑆𝑗

)︁)︂
if 𝐶 =

d𝑛
𝑖=1𝐶𝑖.

We note subdprim𝐶,𝒯 = subd𝐶 ∩ 𝒯 prim
ℰℒ the set of subdescriptions of 𝐶 where concept names are

primitive concepts or ⊤ only (w.r.t. 𝒯 ).

Example 3. Let 𝐷 = 𝐴 ⊓ ∃𝑟.(𝐵 ⊓ 𝐶). We have:
subd𝐷 = {𝐴 ⊓ ∃𝑟.(𝐵 ⊓ 𝐶),∃𝑟.(𝐵 ⊓ 𝐶), 𝐴 ⊓ ∃𝑟.𝐶,𝐴 ⊓ ∃𝑟.𝐵, ∃𝑟.𝐵, ∃𝑟.𝐶,𝐴}
2The notion of subdescription is close to but not the same as the one of subconcept defined in [3]. Informally, a
subconcept is any conjunction taken in the original concept from which zero or many conjuncts have been removed
(keeping at least one).



A branch is essentially a concept having a width of at most 1.

Definition 4 (branch). Let 𝒯 be a TBox and 𝐶 ∈ 𝒯ℰℒ. The set of branches over 𝒯 is noted br𝒯 .
The set of primitive branches over 𝒯 is noted brprim𝒯 . The set of branches of 𝐶 is noted br𝐶 . And the
set of primitive branches of 𝐶 is noted brprim𝐶,𝒯 . These sets are defined as follows:
br𝒯 = {𝑆 ∈ 𝒯ℰℒ | wid(𝑆) = 1}
brprim𝒯 = {𝑆 ∈ 𝒯 prim

ℰℒ | wid(𝑆) = 1}
br𝐶 = {𝑆 ∈ subd𝐶 | wid(𝑆) = 1}
brprim𝐶,𝒯 = {𝑆 ∈ subdprim𝐶,𝒯 | wid(𝑆) = 1}

Example 4. Using TBox 𝒯 from example 2, let 𝐺 be the following concept:
𝐺 = 𝐶 ⊓ ∃𝑟1.(∃𝑟2.∃𝑟3.⊤ ⊓𝐷 ⊓ ∃𝑟4.𝐵). Then we have:
br𝐺 = {𝐶,∃𝑟1.∃𝑟2.∃𝑟3.⊤, ∃𝑟1.𝐷,∃𝑟1.∃𝑟4.𝐵} and brprim𝐺,𝒯 = {∃𝑟1.∃𝑟2.∃𝑟3.⊤,∃𝑟1.∃𝑟4.𝐵}.

A characteristic branch of 𝐶 w.r.t. 𝒯 is a primitive branch of 𝐶 or of a concept equivalent to
𝐶 such that it cannot be syntactically removed from 𝐶 without changing its semantics.

Definition 5 (characteristic branch). Let 𝒯 be a TBox and 𝐶 ∈ 𝒯ℰℒ. The set char𝒯𝐶 of character-
istic branches of 𝐶 w.r.t. 𝒯 is defined as follows:
char𝒯𝐶 = {𝑆 ∈ brprim𝒯 | ∃𝐶 ′ ∈ 𝒯ℰℒ such that(︀

𝐶 ≡𝒯 𝐶 ′ and 𝑆 ∈ br𝐶′ and ∀𝐶 ′′ ∈ 𝒯ℰℒ (br𝐶′′ = br𝐶′ ∖ {𝑆}) → (𝐶 ′′ ̸≡𝒯 𝐶)
)︀
}

𝒯 commonalities from 𝐶 to 𝐷 are defined as characteristic branches of 𝐶 that subsume 𝐷.

Definition 6 (descriptional commonality). Let 𝒯 be a TBox and (𝐶,𝐷) ∈ (𝒯ℰℒ)2. The set
dcom𝒯

𝐶,𝐷 of 𝒯 descriptional commonalities from 𝐶 to 𝐷 is defined as follows:
dcom𝒯

𝐶,𝐷 = {𝑆 ∈ char𝒯𝐶 | 𝐷 ⊑𝒯 𝑆}

At last, 𝐶 ⊖𝒯 𝐷 is defined as the minimal concept 𝐸 (w.r.t. ⊑𝒯 ) that subsumes 𝐶 with no
𝒯 commonalities from 𝐸 to 𝐷 (unicity is shown in proposition 2). When all characteristic
branches are commonalities (and thus must all be removed from 𝐶), the result is ⊤.

Definition 7 (CSO). Let 𝒯 be a TBox and (𝐶,𝐷) ∈ (𝒯ℰℒ)2. The binary operator ⊖𝒯 , called
commonality subtraction operator (CSO) for 𝒯 , is defined as follows:

𝐶 ⊖𝒯 𝐷 =

{︃
𝑀𝑖𝑛⊑𝒯 {𝐸 ∈ 𝒯ℰℒ | 𝐶 ⊑𝒯 𝐸 and dcom𝒯

𝐸,𝐷 = ∅} if char𝒯𝐶 ̸⊆ dcom𝒯
𝐶,𝐷

⊤ if char𝒯𝐶 ⊆ dcom𝒯
𝐶,𝐷

Example 5. Table 2 shows two examples of CSO, with 𝒯 from example 2: 𝑅𝑒𝑠⊖𝒯 𝑄𝑢𝑒𝑟𝑦 and
𝑄𝑢𝑒𝑟𝑦 ⊖𝒯 𝑅𝑒𝑠 where 𝑅𝑒𝑠 = 𝐴 ⊓ 𝐹 ⊓ ∃𝑟.⊤ ⊓ ∃𝑠.⊤ and 𝑄𝑢𝑒𝑟𝑦 = 𝐵 ⊓ ∃𝑟.𝐷 ⊓ ∃𝑠.𝐸. In both
cases, the corresponding sets of characteristic branches and descriptional commonalities are given.

3.2. Computing the CSO using the Tree Subtraction Operator (TSO)

In order to compute 𝐶⊖𝒯 𝐷, we propose an approach based on a syntactical difference operator
that operates on branches of expansions of 𝐶 and 𝐷. This operator is not the classical set
difference of the branch sets since it takes into account subsumption relationships between



Table 2
An example of 𝑅𝑒𝑠⊖𝒯 𝑄𝑢𝑒𝑟𝑦 and 𝑄𝑢𝑒𝑟𝑦 ⊖𝒯 𝑅𝑒𝑠, with 𝒯 from example 2.

𝒯 ={𝐴 ≡ 𝐵 ⊓ 𝐶,𝐶 ≡ 𝐷 ⊓ ∃𝑟.𝐵,𝐷 ≡ 𝐸,𝐹 ≡ ∃𝑟.𝐷}
𝑅𝑒𝑠=𝐴 ⊓ 𝐹 ⊓ ∃𝑟.⊤ ⊓ ∃𝑠.⊤
𝒯 *(𝑅𝑒𝑠)=𝐵 ⊓𝐸 ⊓ ∃𝑟.𝐵 ⊓ ∃𝑟.𝐸 ⊓ ∃𝑟.⊤⊓ ∃𝑠.⊤
char𝒯𝑅𝑒𝑠={𝐵,𝐸, ∃𝑟.𝐵, ∃𝑟.𝐸,∃𝑠.⊤}

𝑄𝑢𝑒𝑟𝑦=𝐵 ⊓ ∃𝑟.𝐷 ⊓ ∃𝑠.𝐸
𝒯 *(𝑄𝑢𝑒𝑟𝑦)=𝐵 ⊓ ∃𝑟.𝐸 ⊓ ∃𝑠.𝐸
char𝒯𝑄𝑢𝑒𝑟𝑦={𝐵, ∃𝑟.𝐸,∃𝑠.𝐸}

dcom𝒯
𝑅𝑒𝑠,𝑄𝑢𝑒𝑟𝑦={𝐵, ∃𝑟.𝐸,∃𝑠.⊤} and thus 𝑅𝑒𝑠⊖𝒯 𝑄𝑢𝑒𝑟𝑦=𝐸 ⊓ ∃𝑟.𝐵

dcom𝒯
𝑄𝑢𝑒𝑟𝑦,𝑅𝑒𝑠={𝐵, ∃𝑟.𝐸} and thus 𝑄𝑢𝑒𝑟𝑦 ⊖𝒯 𝑅𝑒𝑠=∃𝑠.𝐸

branches, e.g. those involving the concept ⊤. Moreover it does not change the original tree
structure of the minuend. We call this operator the tree subtraction operator (TSO), noted �.
Informally, 𝐶�𝐷, to be read "𝐶 deprived of 𝐷", is intended to be the minimal concept w.r.t. ⊑
that subsumes 𝐶 such that all branches in br𝐶 that subsume a branch in br𝐷 have been removed
from br𝐶 . That means we remove from br𝐶 branches that are also in br𝐷 , but also branches of
br𝐶 that end by ⊤ when there is in br𝐷 a branch beginning with the same existential restrictions.
If all branches of 𝐶 are removed, then the result is set to be ⊤.

Definition 8 (TSO). Let 𝐶 and 𝐷 be two concepts. The binary operator �, called tree subtraction
operator (TSO), is defined as follows:

𝐶�𝐷 =

{︃
𝑀𝑖𝑛⊑{𝐸 | 𝐶 ⊑ 𝐸 and br𝐸 = br} if br ̸= ∅
⊤ if br = ∅

with br = br𝐶 ∖
(︀
br𝐷 ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ br𝐶 , 𝑛 ≥ 0 |

∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷,𝑚 ≥ 0}
)︀

and 𝑃 any concept name or ⊤ (with the exception that 𝑃 cannot be ⊤ when 𝑚 = 0).

Example 6. Following table 2, with 𝑅 = 𝒯 *(𝑅𝑒𝑠) and 𝑄 = 𝒯 *(𝑄𝑢𝑒𝑟𝑦), we have:
br𝑅 ∖

(︀
br𝑄 ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ br𝑅, 𝑛 ≥ 0 |

∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝑄,𝑚 ≥ 0}
)︀
= {𝐸,∃𝑟.𝐵}.

Thus 𝑅𝑒𝑠⊖𝒯 𝑄𝑢𝑒𝑟𝑦 = 𝑅�𝑄 = 𝐸 ⊓ ∃𝑟.𝐵.

It is not difficult to show that definition 8 ensures 𝐶�𝐷 keeps the tree structure of 𝐶 , i.e. is
a subdescription of 𝐶 . We can illustrate this with non equivalent concepts having the same
set of branches, like 𝐶1 = ∃𝑟.𝐴 ⊓ ∃𝑟.𝐵 and 𝐶2 = ∃𝑟.(𝐴 ⊓ 𝐵) which set of branches is
br𝐶1 = br𝐶2 = {∃𝑟.𝐴, ∃𝑟.𝐵}. Suppose we remove from 𝐶1 (resp. 𝐶2) a concept 𝐷 that has no
commonality with 𝐶1 (resp. 𝐶2), then the result is 𝐶1 and not 𝐶2 (resp. 𝐶2 and not 𝐶1), thus
keeping the initial tree structure.

TSO is implemented by algorithm 1. Its principle is to traverse at the same time the tree
structures of both 𝐶 and 𝐷, removing from 𝐶 branches that subsume, w.r.t. the empty TBox, a
branch of𝐷. Properties of the TSO and algorithm 1 (unicity, termination, soundness, complexity)
are given in proposition 1.

Proposition 1 (Properties of TSO and algorithm 1). Let 𝐶 and 𝐷 be two concepts. We have:
𝑎. 𝐶�𝐷 always exists and is unique.
𝑏. Algorithm 1 terminates and produces a unique result.



Algorithm 1 tso(𝐶,𝐷)

Require: 𝐶 and 𝐷 two ℰℒ concepts.
Ensure: 𝐶�𝐷 (cf. def. 8)

1: if 𝐶 = 𝐷 or 𝐶 = ⊤ then
2: 𝑅𝑒𝑠𝑢𝑙𝑡 := ⊤
3: else
4: if 𝐶 = 𝐶1 ⊓ . . . ⊓ 𝐶𝑛 with 𝑛 ≥ 2 then
5: 𝑅𝑒𝑠𝑢𝑙𝑡1 := tso(𝐶1, 𝐷) ⊓ . . . ⊓ tso(𝐶𝑛, 𝐷)
6: if There is at least one conjunct ̸= ⊤ in 𝑅𝑒𝑠𝑢𝑙𝑡1 then
7: 𝑅𝑒𝑠𝑢𝑙𝑡 := 𝑅𝑒𝑠𝑢𝑙𝑡1 without any ⊤ conjunct.
8: else
9: 𝑅𝑒𝑠𝑢𝑙𝑡 := ⊤

10: end if
11: else if 𝐷 = 𝐷1 ⊓ . . . ⊓𝐷𝑚 with 𝑚 ≥ 2 then
12: 𝑅𝑒𝑠𝑢𝑙𝑡 := tso(. . . (tso(tso(𝐶,𝐷1), 𝐷2), . . .), 𝐷𝑚)
13: else if 𝐶 = ∃𝑟.𝐶 ′ and 𝐷 = ∃𝑟.𝐷′ then
14: 𝑅𝑒𝑠𝑢𝑙𝑡1 := tso(𝐶 ′, 𝐷′)
15: if 𝑅𝑒𝑠𝑢𝑙𝑡1 = ⊤ then
16: 𝑅𝑒𝑠𝑢𝑙𝑡 := ⊤
17: else
18: 𝑅𝑒𝑠𝑢𝑙𝑡 := ∃𝑟.𝑅𝑒𝑠𝑢𝑙𝑡1
19: end if
20: else
21: 𝑅𝑒𝑠𝑢𝑙𝑡 := 𝐶
22: end if
23: end if
24: return 𝑅𝑒𝑠𝑢𝑙𝑡

Algorithm 2 cso(𝒯 , 𝐶,𝐷)

Require:
∙ 𝒯 an acyclic and definitional ℰℒ TBox
∙ (𝐶,𝐷) ∈ (𝒯ℰℒ)2

Ensure: 𝐶 ⊖𝒯 𝐷 (cf. def. 7)
1: return tso(𝒯 *(𝐶), 𝒯 *(𝐷))

𝑐. 𝐶�𝐷 = tso(𝐶,𝐷) (soundness).
𝑑. Computing tso(𝐶,𝐷) is in PTIME in the sizes of 𝐶 and 𝐷.

Sketch of proof. 𝑎. Existence comes from the definition of br which always corresponds to at
least one concept, or ⊤ when it is empty. Unicity trivially comes from the minimality w.r.t. ⊑.
𝑏. We show by induction on the sizes of 𝐶 and 𝐷 that tso(𝐶,𝐷) always terminates and

generates an output which size is strictly less than size(𝐶) + size(𝐷).
𝑐. Soundness is showed in 3 steps: (i) from the characterization of subumption in ℰℒ without



Table 3
Comparison of existing difference operators on an example where 𝑅𝑒𝑠1 ≡ 𝐴 ⊓ 𝐵 ⊓ ∃𝑟.(𝐶 ⊓𝐷) and
𝑅𝑒𝑠2 ≡ 𝐴 ⊓𝐵 ⊓ ∃𝑟.𝐶 .

Oper. 𝑅𝑒𝑠1 −𝑅𝑒𝑠2 𝑅𝑒𝑠2 −𝑅𝑒𝑠1

⊖𝑇𝑒 ∃𝑟.(𝐶 ⊓𝐷) undefined
⊖𝐵𝑟 ∃𝑟.(𝐶 ⊓𝐷) ⊤
⊖𝑆𝑢 ⊤ ∃𝑟.𝐶
⊖𝐻𝑒 𝐵 ⊓ ∃𝑟.(𝐶 ⊓𝐷) 𝑅𝑒𝑠2
⊖𝑅𝑖 Either ∃𝑟.𝐷 (full meet case) or one of {𝐵 ⊓

∃𝑟.(𝐶 ⊓ 𝐷), 𝐴 ⊓ ∃𝑟.(𝐶 ⊓ 𝐷), 𝐴 ⊓ 𝐵 ⊓ ∃𝑟.𝐷}
(maxi-choice case)

𝑅𝑒𝑠2 (full meet and maxi-choice cases)

⊖𝒯 ∃𝑟.𝐷 ⊤

any TBox given in [6], we derive a characterization of subsumption in ℰℒ in terms of subde-
scriptions , (ii) then is derived a characterization of TSO in terms of subdescriptions, and (iii) at
last a proof by induction of soundness is given, using the characterization obtained at step (ii).
𝑑. Tractability is showed by finding a worst case (when 𝐶 and 𝐷 are conjunctions of concepts

names, without any existential restriction) and studying the complexity in this case.

Now, we can use TSO to compute CSO: 𝐶⊖𝒯 𝐷 is obtained by computing 𝒯 *(𝐶)�𝒯 *(𝐷), cf.
algorithm 2. Proposition 2 shows properties associated to CSO, namely existence, uniqueness,
and soundness and complexity of algorithm 2 (termination is trivially implied by terminations
of the complete expansion and algorithm 1).

Proposition 2. Let 𝒯 be a TBox and (𝐶,𝐷) ∈ (𝒯ℰℒ)2. There is:
𝑎. 𝐶 ⊖𝒯 𝐷 exists and is unique (up to ≡𝒯 ).
𝑏. 𝐶 ⊖𝒯 𝐷 = 𝒯 *(𝐶)�𝒯 *(𝐷) = cso(𝒯 , 𝐶,𝐷) (soundness).
𝑐. Computing cso(𝒯 , 𝐶,𝐷) is in EXPTIME in the sizes of 𝒯 , 𝐶 and 𝐷 and in PTIME in the sizes

of 𝒯 *(𝐶) and 𝒯 *(𝐷).

Sketch of proof. 𝑎. Existence and unicity of CSO easily come from definition 7.
𝑏. Soundness of cso(𝒯 , 𝐶,𝐷) is grounded on (i) the characterization of subsumption in terms

of subdescriptions already used in proof of proposition 1, and on (ii) a lemma stating br𝐶�𝐷 is
the set of branches of 𝐶 that do not subsume 𝐷.
𝑐. The result easily comes from complexity of the complete expansion and algorithm 1.

4. Related works

As far as we know, five difference operators have been defined for DLs before CSO, in [8, 7, 9,
10, 11]. In the sequel, we respectively note them ⊖𝑇𝑒, ⊖𝐵𝑟 , ⊖𝑆𝑢, ⊖𝐻𝑒 and ⊖𝑅𝑖 (and ⊖𝒯 for
CSO). We do not consider the contraction operator defined in [12], since it appears to be more a
matchmaking operator rather than a difference one.

We first begin by illustrating how these difference operators behave. Let’s take the following
two descriptions: 𝑅𝑒𝑠1 ≡ 𝐴 ⊓𝐵 ⊓ ∃𝑟.(𝐶 ⊓𝐷) and 𝑅𝑒𝑠2 ≡ 𝐴 ⊓𝐵 ⊓ ∃𝑟.𝐶 . In table 3, we give



Table 4
Comparison of difference operators in DLs (precise definitions of operators are recalled in appendix).

Reference and informal principle 1○ 2○ 3○ 4○ Remarks and complexity

[8] 𝐶 ⊖𝑇𝑒 𝐷 finds the maximal concept
w.r.t. ⊑ that added to 𝐷 by conjunction
gives a concept equivalent to 𝐶 .

C M M N ∙ Defined for any DL ℒ.
∙ Not defined if 𝐶 ̸⊑ 𝐷.
∙ Unstudied with a TBox.
∙ Complexity is not given.

[7] 𝐶 ⊖𝐵𝑟 𝐷 finds the minimal concepts
w.r.t. the subdescription order such that,
added to 𝐷 by conjunction, they give a
concept equivalent to 𝐶 ⊓𝐷.

C M T N ∙ 𝐶 is in 𝒜ℒ𝒞, 𝐷 is in 𝒜ℒℰ .
∙ Unstudied with a TBox.
∙ PTIME in sizes of 𝐶 and 𝐷 given
an oracle for subsumption.

[9] 𝐶 ⊖𝑆𝑢 𝐷 removes the minimal con-
juncts of 𝐶 , w.r.t. a syntactical total order
on ℰℒ concepts, that are subsumed by
conjuncts of 𝐷 (one removed conjunct for
one conjunct of 𝐷).

S B − N ∙ Defined for ℰℒ.
∙ 𝒯 is acyclic and definitional
∙ EXPTIME in the sizes of 𝒯 , 𝐶
and 𝐷 and PTIME in the sizes of
𝒯 *(𝐶) and 𝒯 *(𝐷).

[10]𝐶⊖𝐻𝑒𝐷 removes conjuncts of𝐶 that
are subsumed by the smallest conjunct of
𝐷, w.r.t. a syntactical total order. Recur-
sive process inside existential restrictions.

S B − Y ∙ Defined for ℰℒ.
∙ 𝒯 is acyclic and definitional.
∙ 𝐶 ⊖𝐻𝑒 𝐷 = 𝐶 if 𝐶 ̸⊑ 𝐷.
∙ Complexity is not given.

[11] Extending the notion of subdescrip-
tion to contain concepts obtained after
replacing a concept name by ⊤, 𝐶 ⊖𝑅𝑖 𝐷
finds the single subdescription (full meet
mode) or the many subdescriptions (maxi-
choice mode)𝑆 of𝐶 that are minimal w.r.t.
⊑ such that 𝑆 ̸⊑ 𝐷.

S M − Y ∙ Defined for ℰℒ.
∙ 𝒯 is acyclic and definitional.
∙ 𝐶 ⊖𝑅𝑖 𝐷 = 𝐶 if 𝐶 ̸⊑ 𝐷.
∙ Complexity is not given.

[This paper] 𝐶 ⊖𝒯 𝐷 removes 𝒯 descrip-
tional commonalities from 𝐶 to 𝐷, i.e. the
characteristic branches of𝐶 that subsume
𝐷.

S B M Y ∙ Defined for ℰℒ.
∙ 𝒯 is acyclic and definitional.
∙ EXPTIME in the sizes of 𝒯 , 𝐶
and 𝐷 and PTIME in the sizes of
𝒯 *(𝐶) and 𝒯 *(𝐷).

the result of 𝑅𝑒𝑠1 ⊖ 𝑅𝑒𝑠2 and 𝑅𝑒𝑠2 ⊖ 𝑅𝑒𝑠1, for ⊖ replaced by each operator. Note that we
suppose to have an empty TBox 𝒯 , for a sake of simplicity. We can see that each of the six
operators give different results when considering both 𝑅𝑒𝑠1 ⊖𝑅𝑒𝑠2 and 𝑅𝑒𝑠2 ⊖𝑅𝑒𝑠1.

Second, we propose to classify these operators in table 4 according to 4 dimensions. 1○ is their
type: S for subtraction-based (something is removed from the minuend) or C for completion-
based (something is added to the subtrahend). 2○ is the definition type of the difference: M
for semantical or B for both semantical and syntactical. 3○ is the optimization (min or max)
criterion type to choose the best result: T for syntactical, M for semantical, or − if non relevant.
4○ is the fine grained difference property i.e. the ability to remove precise subdescriptions of

the minuend inside nested existential restrictions without removing unnecessary ones: Y for



yes and N for no.
Tables 3 and 4 show that CSO is original w.r.t. existing operators. More precisely:

• ⊖𝑇𝑒 and ⊖𝐵𝑟 are completion-based operators, they do not achieve fine-grained difference,
and ⊖𝐵𝑟 does not ensure unicity.

• ⊖𝑆𝑢 is a subtraction operation, however it is not a fine-grained difference. Moreover the
notion of commonality is based on subsumption and not inverse subsumption.

• ⊖𝐻𝑒 and ⊖𝑅𝑖 are a fine-grained subtraction operators, as is CSO. However, the differences
with CSO are the following ones: (i) for both operators, there can be subtraction only when
the minuend is subsumed by the subtrahend, which is a restriction CSO does not have; (ii)
in ⊖𝐻𝑒, the notion of common part is not based on inverse subsumption; and (iii) ⊖𝑅𝑖 is
sometimes too much fine-grained, which may lead it not to remove existential restrictions
in cases where CSO does, e.g. ∃𝑟.𝐴⊖𝑅𝑖 ∃𝑟.𝐴 = ∃𝑟.⊤, while ∃𝑟.𝐴⊖𝒯 ∃𝑟.𝐴 = ⊤.

5. Conclusion

We propose a difference operator for ℰℒ w.r.t. an acyclic and definitional TBox, named CSO. It
is based on the TSO, a operator to achieve a syntactical tree difference between two concepts.
We propose a tractable algorithm to compute TSO and thus CSO (in the sizes of the complete
expansion of the inputs w.r.t. the TBox), and show that CSO is an original difference operator
w.r.t existing ones. Also, an implementation of these operators has been done in the Ruby
programming language for integration into the metrology platform. Performance tests are being
achieved.

Even if CSO is intended to be used in a matchmaking process, we plan to study how it
instanciates properties that are defined for difference operators in the AGM approach of agent
belief revision [13], namely preservation, success, inclusion, vacuity, recovery, failure, fullness
and relevance. This would provide a more precise insight on CSO w.r.t. existing operators and
help decide its potential interest in the AGM framework. Besides, we would like to extend this
work to the case where TBoxes can be general and cyclic, for which we do not know any DL
difference operator yet.
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Appendices

.1. Difference operators in DLs

The definitions of difference operators listed in section 4 are recalled in table 5 with their precise
definitions.

.2. Proof of Proposition 1

Proposition 1 (Properties of TSO and algorithm 1). Let 𝐶 and 𝐷 be two concepts. We have:
𝑎. 𝐶�𝐷 always exists and is unique.
𝑏. Algorithm 1 terminates and produces a unique result.
𝑐. 𝐶�𝐷 = tso(𝐶,𝐷) (soundness).
𝑑. Computing tso(𝐶,𝐷) is in PTIME in the sizes of 𝐶 and 𝐷.

Proof.

𝑎. Existence and unicity of 𝐶�𝐷 (for the case br ̸= ∅)
We prove 𝐶�𝐷 always exists. Since br𝐸 is a subset of br𝐶 , it is always possible to build 𝐸

such that 𝐶 ⊑ 𝐸. Then either 𝐸 is minimal w.r.t. ⊑, or it can be made smaller w.r.t. ⊑ by
replacing conjunctions of the kind ∃𝑟.𝐴 ⊓ ∃𝑟.𝐵 into ∃𝑟.(𝐴 ⊓𝐵) until this is not possible while
ensuring 𝐶 ⊑ 𝐸. So 𝐶�𝐷 always exists.

We now prove unicity of 𝐶�𝐷 by contradiction. Suppose there are 2 concepts 𝐸1 and 𝐸2,
with 𝐸1 ̸= 𝐸2 in 𝐶�𝐷. Since br𝐸1 = br𝐸2 and 𝐸1 ̸= 𝐸2, we have 𝐸1 ̸≡ 𝐸2. Thus the only
possible situation is that 𝐸1 and 𝐸2 are not comparable w.r.t. ⊑. This implies that 𝐸1⊓𝐸2 ⊑ 𝐸1

and 𝐸1 ⊓𝐸2 ⊑ 𝐸2. But at the same time, we have br𝐸1⊓𝐸2 = br𝐸1 = br𝐸2 and 𝐶 ⊑ 𝐸1 ⊓𝐸2.
This means neither 𝐸1 nor 𝐸2 were minimal w.r.t. ⊑ having the same properties. So, 𝐶�𝐷 is
unique.

𝑏. Termination By induction, we show algorithm 1 always terminates and generates an
output which size, we call 𝑠𝑜𝑢𝑡, is strictly less than than the combined size of the inputs 𝐶 and
𝐷, we call 𝑠𝑖𝑛 and define as 𝑠𝑖𝑛 = size(𝐶) + size(𝐷). The induction is made on 𝑠𝑖𝑛.

According to definition 1, we have size(𝐶) ≥ 1 and size(𝐷) ≥ 1.
Base case: 𝑠𝑖𝑛 = size(𝐶) + size(𝐷) = 1 + 1 = 2

• Lines 1 and 2: the algorithm clearly stops with 𝑠𝑜𝑢𝑡 = size(⊤) = 1 < 2 = 𝑠𝑖𝑛
• Lines 4 to 10: this case is not possible when size(𝐶) = 1.
• Lines 11 and 12: this case is not possible when size(𝐷) = 1.
• Lines 13 to 19: this case is not possible when size(𝐶) = size(𝐷) = 1.
• Lines 20 and 21: the algorithm clearly stops with 𝑠𝑜𝑢𝑡 = size(𝐶) = 1 < 2 = 𝑠𝑖𝑛

General case: the induction hypothesis (IH) says there is 𝑛 ≥ 3 such that the algorithm stops
with 𝑠𝑜𝑢𝑡 < 𝑠𝑖𝑛 for all 𝑠𝑖𝑛 = size(𝐶) + size(𝐷) ≤ 𝑛.

We now suppose 𝑠𝑖𝑛 = size(𝐶) + size(𝐷) = 𝑛 + 1. So size(𝐶) = 𝑛 + 1 − size(𝐷) and
size(𝐷) = 𝑛+ 1− size(𝐶) (with size(𝐶) ≥ 1 and size(𝐷) ≥ 1).



Table 5
Comparison of difference operators in DLs, with their formal definition.

Definition Ref., [ 1○, 2○, 3○, 4○] and remarks
𝐶 ⊖𝑇𝑒 𝐷 =𝑚𝑎𝑥⊑{𝐸 ∈ ℒ | 𝐷 ⊓ 𝐸 ≡ 𝐶} [8], [C,M,M,N]

∙ ℒ is any DL.
∙ Not defined if 𝐶 ̸⊑ 𝐷.

𝐶 ⊖𝐵𝑟 𝐷 = 𝑚𝑖𝑛⪯{𝐸 ∈ 𝒜ℒ𝒞 | 𝐸 ⊓𝐷 ≡ 𝐶 ⊓𝐷} [7], [C,M,T,N]
∙ ⪯ is the subdescription ordering
defined for 𝒜ℒ𝒞 concepts.
∙ 𝐶 is in 𝒜ℒ𝒞 and 𝐷 is in 𝒜ℒℰ .

Case 1: 𝐷 is a one conjunct conjunction.

𝐶⊖𝑆𝑢𝐷 =

⎧⎪⎨⎪⎩
𝑛𝑜𝑟𝑚(

d

1≤𝑖≤𝑛,
𝑖̸=𝑘

𝐶𝑖) if ∃𝑘 | 𝑘=𝑎𝑟𝑔𝑚𝑖𝑛𝑖{𝐶𝑖|𝐶𝑖⊑𝐷}

𝐶 otherwise
Case 2: 𝐷 is a conjunction of at least 2 conjuncts.
𝐶 ⊖𝑆𝑢 𝐷 = (...((𝐶 ⊖𝑆𝑢 𝐷1)⊖𝑆𝑢 ...⊖𝑆𝑢 𝐷𝑚)

[9], [S,B,−,N]
∙ Defined in ℰℒ.
∙ 𝑛𝑜𝑟𝑚(𝐷)=𝐷1⊓. . .⊓𝐷𝑚

∙ 𝑛𝑜𝑟𝑚(𝐶) = 𝐶1 ⊓ . . . ⊓ 𝐶𝑛

∙ ∀1≤ 𝑖≤𝑛 − 1, 𝐶𝑖 ≺𝐶𝑖+1 with
≺ a syntactical total order for ℰℒ
concepts.

If 𝐶 ̸⊑ 𝐷 then 𝐶 ⊖𝐻𝑒 𝐷 = 𝐶 .
Else (i.e. 𝐶 ⊑ 𝐷):

𝐶⊖𝐻𝑒𝐷 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊤ if 𝐶 is a primitive concept
d𝑛

𝑖=1(𝐶𝑖 ⊖𝐻𝑒 𝐷≺) if 𝐶 = 𝐶1 ⊓ ... ⊓ 𝐶𝑛

∃𝑟.(𝐶1 ⊖𝐻𝑒 𝐷1) if 𝐶 = ∃𝑟.𝐶1, 𝐷≺ = ∃𝑟.𝐷1,

and 𝐶1 ⊖𝐻𝑒 𝐷1 ̸≡ ⊤
⊤ if 𝐶 = ∃𝑟.𝐶1, 𝐷≺ = ∃𝑟.𝐷1,

and 𝐶1 ⊖𝐻𝑒 𝐷1 ≡ ⊤
⊤ if 𝐷 ≡ ⊤
𝐶 otherwise

[10], [S,B,−,Y]
∙ 𝐶𝑖 is not a conjunction, ∀𝑖.
∙ 𝐷≺ is the least conjunct of 𝐷
w.r.t. ≺.
∙ ≺ a syntactical total order for
ℰℒ concepts.
∙ 𝐶 are 𝐷 are normalized and
completely expanded.
∙ 𝐶 and 𝐷 are in ℰℒ.

If 𝐶 ̸⊑ 𝐷 then 𝐶 ⊖𝑅𝑖 𝐷 = 𝐶 .
Else (i.e. 𝐶 ⊑ 𝐷):
𝐶 ⊖𝑅𝑖 𝐷 ∈ 𝐿𝐶𝑆(𝜎(𝐶⊥𝐷))
with 𝐶⊥𝐷 = {[𝐸]|

1. 𝐶 ⊑ 𝐸
2. 𝐸 ̸⊑ 𝐷
3. 𝐸 minimal w.r.t. ⊑ s.t. 1. and 2.

and [𝐸] = {𝐸′|𝐸′ ≡ 𝐸}.

[11], [S,M,−,Y]
∙ 𝜎 is a selection function s.t.:
if 𝐶⊥𝐷 ̸= ∅, 𝜎(𝐶⊥𝐷) ̸= ∅.
if 𝐶⊥𝐷 ̸= ∅, 𝜎(𝐶⊥𝐷) ⊆ 𝐶⊥𝐷.
if 𝐶⊥𝐷 = ∅, 𝜎(𝐶⊥𝐷) = {[𝐶]}.
∙ Maxi-choice case: when 𝜎 se-
lects a unique concept. Full meet
case: when 𝜎 selects all concepts.
∙ 𝐶 and 𝐷 are in ℰℒ.

𝐶⊖𝒯 𝐷 =

⎧⎪⎨⎪⎩
𝑀𝑖𝑛⊑𝒯 {𝐸 ∈ 𝒯ℰℒ | 𝐶 ⊑𝒯 𝐸 and dcom𝒯

𝐸,𝐷 = ∅}
if char𝒯𝐶 ̸⊆ dcom𝒯

𝐶,𝐷

⊤ if char𝒯𝐶 ⊆ dcom𝒯
𝐶,𝐷

with dcom𝒯
𝐶,𝐷 = {𝑆 ∈ char𝒯𝐶 | 𝐷 ⊑𝒯 𝑆}

and char𝒯𝐶 = {𝑆 ∈ brprim𝒯 | ∃𝐶 ′ ∈ 𝒯ℰℒ such that(︀
𝐶 ≡𝒯 𝐶 ′ and 𝑆 ∈ br𝐶′ and
∀𝐶 ′′ ∈ 𝒯ℰℒ (br𝐶′′ = br𝐶′ ∖ {𝑆}) → (𝐶 ′′ ̸≡𝒯 𝐶)

)︀
}

[This paper], [S,B,−,Y]
∙ 𝐶 and 𝐷 are in ℰℒ.



• Lines 1 and 2: the algorithm clearly stops with 𝑠𝑜𝑢𝑡 = size(⊤) = 1 < 𝑛+ 1 = 𝑠𝑖𝑛 (since
𝑛 ≥ 3).

• Lines 4 to 10:

– Since 𝐶 = 𝐶1 ⊓ . . . ⊓ 𝐶𝑘, with 𝑘 ≥ 2, there is (according to definition 1):
size(𝐶) = (

∑︀𝑘
𝑖=1 size(𝐶𝑖)) + 𝑘 − 1, with size(𝐶𝑖) ≥ 1, ∀1 ≤ 𝑖 ≤ 𝑘

Since size(𝐶) = 𝑛+ 1− size(𝐷), we have ∀1 ≤ 𝑖 ≤ 𝑘:
size(𝐶𝑖) = 𝑛+ 1− size(𝐷)

− size(𝐶1)− . . .− size(𝐶𝑖−1)− size(𝐶𝑖+1)− . . .− size(𝐶𝑘)− 𝑘 + 1
As ∀1 ≤ 𝑖 ≤ 𝑘, size(𝐶𝑖) ≥ 1, we have:
size(𝐶𝑖) ≤ 𝑛+ 1− size(𝐷)− (𝑘 − 1)− 𝑘 + 1 = 𝑛− size(𝐷)− 2.𝑘 + 3

– At line 5, we have 𝑘 ≥ 2 recursive calls tso(𝐶𝑖, 𝐷) with size(𝐶𝑖) ≤ 𝑛− size(𝐷)−
2.𝑘 + 3 and size(𝐷) ≥ 1. For each recursive call tso(𝐶𝑖, 𝐷), we note the combined
size of its inputs 𝑠𝑟𝑐𝑖𝑛 and the size of its output 𝑠𝑟𝑐𝑜𝑢𝑡. Then, for each recursive call
tso(𝐶𝑖, 𝐷), we have:
∘ 𝑠𝑟𝑐𝑖𝑛 = size(𝐶𝑖)+ size(𝐷) ≤ 𝑛− size(𝐷)− 2.𝑘+3+ size(𝐷) = 𝑛− 2.𝑘+3 ≤
𝑛− 1 ≤ 𝑛 (since 𝑘 ≥ 2).

∘ Thus, by IH, the recursive call stops and 𝑠𝑟𝑐𝑜𝑢𝑡 < 𝑠𝑟𝑐𝑖𝑛 ≤ 𝑛− 2.𝑘 + 3, i.e. 𝑠𝑟𝑐𝑜𝑢𝑡 ≤
𝑛− 2.𝑘 + 2

– At line 7, since all recursive calls stop, the algorithm stops with 𝑠𝑜𝑢𝑡 ≤ 𝑘 * (𝑛 −
2.𝑘 + 2) + 𝑘 − 1 (since there are 𝑘 concepts 𝐶𝑖 and 𝑘 − 1 constructors ⊓ in 𝐶).
∘ Now, 𝑘 ≤ (𝑛+1)/2. Indeed, size(𝐶) ≤ 𝑛 (since size(𝐶)+size(𝐷) = 𝑛+1 and

size(𝐷) ≥ 1). And size(𝐶) ≥ 2.𝑘−1 (since size(𝐶) = (
∑︀𝑘

𝑖=1 size(𝐶𝑖))+𝑘−1
and size(𝐶𝑖) ≥ 1, ∀1 ≤ 𝑖 ≤ 𝑘).

∘ Thus 𝑠𝑜𝑢𝑡 ≤ (𝑛+ 1)/2 * (𝑛− 2.(𝑛+ 1)/2 + 2) + (𝑛+ 1)/2− 1 = 𝑛

So 𝑠𝑜𝑢𝑡 < 𝑛+ 1 = 𝑠𝑖𝑛.
– At line 9, the algorithm clearly stops with 𝑠𝑜𝑢𝑡 = size(⊤) = 1 < 𝑛+ 1 = 𝑠𝑖𝑛 (since

𝑛 ≥ 3).

• Lines 11 and 12:

– Here we focus on 𝐷 = 𝐷1 ⊓ . . . 𝐷𝑚, with 𝑚 ≥ 2. The same reasoning as the one
made at line 4 with 𝐷 instead of 𝐶 leads to
∘ ∀1 ≤ 𝑗 ≤ 𝑚:

size(𝐷𝑗) = 𝑛+ 1− size(𝐶)
− size(𝐷1)− . . .− size(𝐷𝑗−1)− size(𝐷𝑗+1)− . . .− size(𝐷𝑚)−𝑚+1,

∘ ∀1 ≤ 𝑗 ≤ 𝑚: size(𝐷𝑗) ≤ 𝑛− size(𝐶)− 2.𝑚+ 3 and
∘ 𝑚 ≤ (𝑛+ 1)/2

– Now we show the set of nested recursive calls
tso(. . . (tso(tso(𝐶,𝐷1), 𝐷2), . . .), 𝐷𝑚)
terminates with 𝑠𝑜𝑢𝑡 < 𝑠𝑖𝑛.
Formally this would need a proof by induction. However, for a sake of simplicity,
we only sketch this proof. We use the notations 𝑠𝑟𝑐,𝑗𝑖𝑛 and 𝑠𝑟𝑐,𝑗𝑜𝑢𝑡 for the combined size
of the inputs and the size of the output of the nested recursive call involving 𝐷𝑗 as
its second argument.



∘ First the recursive call tso(𝐶,𝐷1) is such that 𝑠𝑟𝑐,1𝑖𝑛 = size(𝐶) + size(𝐷1).
Thus: 𝑠𝑟𝑐,1𝑖𝑛 ≤ size(𝐶) + 𝑛− size(𝐶)− 2.𝑚+ 3 = 𝑛− 2.𝑚+ 3

Thus: 𝑠𝑟𝑐,1𝑖𝑛 ≤ 𝑛− 1 ≤ 𝑛 (since 𝑚 ≥ 2).
By IH, the recursive call stops with 𝑠𝑟𝑐,1𝑜𝑢𝑡 < 𝑠𝑟𝑐,1𝑖𝑛 ≤ 𝑛− 2.𝑚+ 3.

∘ The recursive call tso(tso(𝐶,𝐷1), 𝐷2) is such that
𝑠𝑟𝑐,2𝑖𝑛 = size(𝑠𝑟𝑐,1𝑜𝑢𝑡 ) + size(𝐷2)
And then:
𝑠𝑟𝑐,2𝑖𝑛 < size(𝑠𝑟𝑐,1𝑖𝑛 ) + size(𝐷2)

𝑠𝑟𝑐,2𝑖𝑛 < size(𝑠𝑟𝑐,1𝑖𝑛 )
+ 𝑛+ 1− size(𝐶)− size(𝐷1)− size(𝐷3)− . . .− size(𝐷𝑚)−𝑚+ 1

𝑠𝑟𝑐,2𝑖𝑛 ≤ size(𝑠𝑟𝑐,1𝑖𝑛 )
+ 𝑛+ 1− size(𝐶)− size(𝐷1)− size(𝐷3)− . . .− size(𝐷𝑚)−𝑚

𝑠𝑟𝑐,2𝑖𝑛 ≤ size(𝐶) + size(𝐷1)
+ 𝑛+ 1− size(𝐶)− size(𝐷1)− size(𝐷3)− . . .− size(𝐷𝑚)−𝑚

𝑠𝑟𝑐,2𝑖𝑛 ≤ 𝑛+ 1− size(𝐷3)− . . .− size(𝐷𝑚)−𝑚

𝑠𝑟𝑐,2𝑖𝑛 ≤ 𝑛+1− (𝑚−2)−𝑚 = 𝑛−2.𝑚+3 (since size(𝐷𝑗) ≥ 1, ∀1 ≤ 𝑗 ≤ 𝑚)
By IH, the recursive call stops with 𝑠𝑟𝑐,2𝑜𝑢𝑡 < 𝑠𝑟𝑐,2𝑖𝑛 ≤ 𝑛− 2.𝑚+ 3.

∘ The recursive call tso(tso(tso(𝐶,𝐷1), 𝐷2), 𝐷3) is such that
𝑠𝑟𝑐,3𝑖𝑛 = size(𝑠𝑟𝑐,2𝑜𝑢𝑡 ) + size(𝐷3)
And then:
𝑠𝑟𝑐,3𝑖𝑛 < size(𝑠𝑟𝑐,2𝑖𝑛 ) + size(𝐷3)

𝑠𝑟𝑐,3𝑖𝑛 < size(𝑠𝑟𝑐,2𝑖𝑛 )
+𝑛+1− size(𝐶)− size(𝐷1)− size(𝐷2)− size(𝐷4)− . . .− size(𝐷𝑚)−𝑚+1

𝑠𝑟𝑐,3𝑖𝑛 ≤ size(𝑠𝑟𝑐,2𝑖𝑛 )
+𝑛+1−size(𝐶)−size(𝐷1)−size(𝐷2)−size(𝐷4)− . . .−size(𝐷𝑚)−𝑚

𝑠𝑟𝑐,3𝑖𝑛 ≤ size(𝑠𝑟𝑐,1𝑜𝑢𝑡 ) + size(𝐷2)
+𝑛+1−size(𝐶)−size(𝐷1)−size(𝐷2)−size(𝐷4)− . . .−size(𝐷𝑚)−𝑚

𝑠𝑟𝑐,3𝑖𝑛 < size(𝑠𝑟𝑐,1𝑖𝑛 ) + size(𝐷2)
+𝑛+1−size(𝐶)−size(𝐷1)−size(𝐷2)−size(𝐷4)− . . .−size(𝐷𝑚)−𝑚

𝑠𝑟𝑐,3𝑖𝑛 < size(𝐶) + size(𝐷1) + size(𝐷2)
+𝑛+1−size(𝐶)−size(𝐷1)−size(𝐷2)−size(𝐷4)− . . .−size(𝐷𝑚)−𝑚

𝑠𝑟𝑐,3𝑖𝑛 ≤ size(𝐶) + size(𝐷1) + size(𝐷2)
+𝑛+1−size(𝐶)−size(𝐷1)−size(𝐷2)−size(𝐷4)− . . .−size(𝐷𝑚)−𝑚−1

𝑠𝑟𝑐,3𝑖𝑛 ≤ 𝑛+ 1− size(𝐷4)− . . .− size(𝐷𝑚)−𝑚− 1

𝑠𝑟𝑐,3𝑖𝑛 ≤ 𝑛+1− (𝑚−2)−𝑚 = 𝑛−2.𝑚+3 (since size(𝐷𝑗) ≥ 1, ∀1 ≤ 𝑗 ≤ 𝑚)
By IH, the recursive call stops with 𝑠𝑟𝑐,3𝑜𝑢𝑡 < 𝑠𝑟𝑐,3𝑖𝑛 ≤ 𝑛− 2.𝑚+ 3.

∘ So on and so forth.
As sketched previously, a formal subproof by induction would show that each
recursive call in
tso(. . . (tso(tso(𝐶,𝐷1), 𝐷2), . . .), 𝐷𝑚)
stops with 𝑠𝑟𝑐,𝑗𝑜𝑢𝑡 < 𝑠𝑟𝑐,𝑗𝑖𝑛 ≤ 𝑛− 2.𝑚+ 3 < 𝑛+ 1, ∀1 ≤ 𝑗 ≤ 𝑚. Thus, at line 12, the
algorithm stops with 𝑠𝑜𝑢𝑡 < 𝑠𝑖𝑛 = 𝑛+ 1.

• Lines 13 to 19:



– Here we have 𝐶 = ∃𝑟.𝐶 ′ and 𝐷 = ∃𝑟.𝐷′. So 𝑠𝑖𝑛 = 𝑛+1 = size(𝐶)+ size(𝐷) ≥ 4.
– At line 14, the recursive call tso(𝐶 ′, 𝐷′) is such that 𝑠𝑟𝑐𝑖𝑛 = size(𝐶 ′) + size(𝐷′) =

𝑛+ 1− 2 = 𝑛− 1 ≤ 𝑛. By IH, the recursive call stops with 𝑠𝑟𝑐𝑜𝑢𝑡 < 𝑠𝑟𝑐𝑖𝑛 = 𝑛− 1. I.e.
𝑠𝑟𝑐𝑜𝑢𝑡 ≤ 𝑛− 2.

– Since instruction at lines 15 to 19 stops, then the algorithm stops. Moreover:
∘ At line 16, 𝑠𝑜𝑢𝑡 = size(⊤) = 1 < 𝑠𝑖𝑛 (since 𝑠𝑖𝑛 ≥ 4).
∘ At line 18, 𝑠𝑜𝑢𝑡 = 1 + 𝑠𝑟𝑐𝑜𝑢𝑡 ≤ 1 + 𝑛− 2 = 𝑛− 1. So 𝑠𝑜𝑢𝑡 < 𝑠𝑖𝑛 = 𝑛+ 1.

• Lines 20 and 21: the algorithm clearly stops with 𝑠𝑜𝑢𝑡 = size(𝐶) < size(𝐶) + size(𝐷) =
𝑠𝑖𝑛 (since size(𝐷) ≥ 1).

This ends the proof of termination.
Besides, the fact that algorithm 1 generates a unique output comes from the fact that each

output is uniquely defined (see lines 2, 7, 9, 12, 16, 18 and 21) and that there is no undeterministic
step (i.e. no instruction implying a choice).

𝑐. Soundness The proof of soundness comes in 3 steps:

Step 1 from the characterization of subumption in ℰℒ without any TBox given in [6], we derive
a characterization of subsumption in ℰℒ in terms of subdescriptions (in corollary 1).

Step 2 from corollary 1 is derived a characterization of TSO in terms of subdescriptions.
Step 3 a proof by induction of soundness is given, using the characterization obtained at step 2.

Step 1
Let’s recall the characterization of subsumption in ℰℒ w.r.t. empty Tboxes [6]. First let’s define
what is the description tree of a concept.

Definition 9 (description tree [6]). Let 𝐶 be an ℰℒ concept. Its description tree 𝒢𝐶 is a tree
represented as a quadruple (𝑉,𝐸, 𝑣0, 𝑙) where 𝑉 is the set of vertices, 𝐸 ⊆ 𝑉 × r× 𝑉 is the edge
set, 𝑣0 ∈ 𝑉 is the root and 𝑙 : 𝑉 → 2C a function that labels vertices with sets of concept names
(the empty set stands for ⊤).

[6] explains 𝒢𝐶 is unique, how to obtain 𝒢𝐶 from 𝐶 , or 𝐶 from 𝒢𝐶 , and that 𝐶𝒢𝐶
≡ 𝐶 . Along

with the definition of an homomorphism between two description trees recalled below, they
characterize subsumption of concepts expressed with primitive concepts only.

Definition 10 (homomorphism of description trees [6]). A homomorphism from a description tree
𝒢𝐷 = (𝑉𝐷, 𝐸𝐷, 𝑤0, 𝑙𝐷) to a description tree 𝒢𝐶 = (𝑉𝐶 , 𝐸𝐶 , 𝑣0, 𝑙𝐶) is a mapping 𝜙 : 𝑉𝐷 → 𝑉𝐶

such that (1) 𝜙(𝑤0) = 𝑣0, (2) 𝑙𝐷(𝑤) ⊆ 𝑙𝐶(𝜙(𝑤)), ∀𝑤 ∈ 𝑉𝐷 , and (3) (𝜙(𝑤1), 𝑟, 𝜙(𝑤2)) ∈
𝐸𝐶 , ∀(𝑤1, 𝑟, 𝑤2) ∈ 𝐸𝐷 .

Theorem 1 ([6]). Let 𝐶 and 𝐷 be concepts and 𝒢𝐶 and 𝒢𝐷 their corresponding description trees.
Then:
𝐶 ⊑ 𝐷 iff there exists a homomorphism 𝜙 from 𝒢𝐷 to 𝒢𝐶 .

Note that, given a TBox 𝒯 , theorem 1 also holds with ⊑𝒯 instead of ⊑ when (𝐶,𝐷) ∈
(𝒯 prim

ℰℒ )2. Now, corollary 1 reformulates theorem 1 in terms of subdescriptions.



Corollary 1. Let 𝐶 and 𝐷 be concepts. Then :
𝐶 ⊑ 𝐷 iff there exists 𝐷′ ∈ subd𝐶 such that 𝐷′ can be obtained by applying anywhere in 𝐷

zero or many times the following syntactic rules (r1) and (r2) that amount to replacing their left
hand side by their right hand side:

(r1) ∃𝑟.𝐺 ⊓ ∃𝑟.𝐻 ⇝ ∃𝑟.(𝐺 ⊓𝐻)

(r2) ⊤⇝ 𝐻

with 𝑟 any role, and 𝐺 and 𝐻 any concepts.

Proof. We note:
△ 𝐶 ⊑ 𝐷
2 there exists a homomorphism 𝜙 from 𝒢𝐷 to 𝒢𝐶 .
♢ there exists 𝐷′ ∈ subd𝐶 such that 𝐷′ can be obtained by applying anywhere in 𝐷 zero

or many times rules (r1) and (r2).
We now show the proof of corollary 1 by showing ♢ implies △ and 2 implies ♢ .
Proof of ♢ implies △

This implication easily comes from the two following facts:

• 𝐶 ⊑ 𝐷′ since 𝐷′ ∈ 𝑠𝑢𝑏𝑑𝐶
• and 𝐷′ ⊑ 𝐷 since applying (r1) or (r2) to 𝐷 clearly results in a more specific concept.

Proof of 2 implies ♢
We prove the result by induction on size(𝐷).

• Base case: we assume size(𝐷) = 1 (i.e. 𝐷 ∈ C ∪ {⊤}). We assume 2 . Let’s show ♢ .
By definition of 𝒢𝐷 = (𝑉𝐷, 𝐸𝐷, 𝑤0, 𝑙𝐷), there is: 𝑙𝐷(𝑤0) = {𝐷} if𝐷 ∈ C or 𝑙𝐷(𝑤0) = ∅
if 𝐷 = ⊤. According to 2 and definition 10, we have (with 𝜙 a homomorphism from
𝒢𝐷 to 𝒢𝐶 ):

– if 𝐷 ∈ C: 𝑙𝐷(𝑤0) = {𝐷} ⊆ 𝑙𝐶(𝜙(𝑤0)) = 𝑙𝐶(𝑣0). So 𝐷′ = 𝐷 ensures ♢ (i.e. 𝐷′

can be obtained without applying neither (r1) nor (r2) and 𝐷′ ∈ subd𝐶 ).
– if 𝐷 = ⊤: any subdescription of 𝐶 can define 𝐷′ (applying rule (r2) to 𝐷) so that

♢ is true.

• General case: we assume size(𝐷) = 𝑛 + 1 with 𝑛 ≥ 1. We assume the induction
hypothesis (IH), i.e. for all concepts which size is at most 𝑛, there is: 2 implies ♢ . So
we assume 2 for 𝐷. Let’s show ♢ .

– Case 1: 𝐷 = 𝐷1⊓𝐷2 We obviously have ⋆ size(𝐷1) ≤ 𝑛−1 and size(𝐷2) ≤ 𝑛−1.
As 𝐷1 ∈ subd𝐷 and 𝐷2 ∈ subd𝐷 and there exists a homomorphism 𝜙 from 𝒢𝐷 to
𝒢𝐶 (since we assume 2 for 𝐷), then ⋆⋆ 𝜙 is a homomorphism from 𝒢𝐷1 to 𝒢𝐶 and
a homomorphism from 𝒢𝐷2 to 𝒢𝐶 . Thanks to ⋆ and ⋆⋆ , IH can be applied: there
exists 𝐷′

1 ∈ subd𝐶 (resp. 𝐷′
2 ∈ subd𝐶 ) that can be obtained by applying (r1) or (r2)

zero or many times anywhere in 𝐷. 𝐷′ can then be built so that its description tree
𝒢𝐷′ = (𝑉𝐷′ , 𝐸𝐷′ , 𝑣0, 𝑙𝐷′) is such that:
𝑉𝐷′ = 𝑉𝐷′

1
∪ 𝑉𝐷′

2
,

𝐸𝐷′ = 𝐸𝐷′
1
∪ 𝐸𝐷′

2
,



and 𝑙𝐷′ : 𝑉𝐷′ → 2C

𝑣′ ↦→ 𝑙𝐷′(𝑣′) with

𝑙𝐷′(𝑣′) =

⎧⎪⎨⎪⎩
𝑙𝐷′

1
(𝑣′) if 𝑙𝐷′

2
(𝑣′) not defined

𝑙𝐷′
2
(𝑣′) if 𝑙𝐷′

1
(𝑣′) not defined

𝑙𝐷′
1
(𝑣′) ∪ 𝑙𝐷′

2
(𝑣′) otherwise

In 𝒢𝐷′ , we thus have:
𝑉𝐷′ ⊆ 𝑉𝐶 since 𝑉𝐷′

1
⊆ 𝑉𝐶 and 𝑉𝐷′

2
⊆ 𝑉𝐶 ,

𝐸𝐷′ ⊆ 𝐸𝐶 since 𝐸𝐷′
1
⊆ 𝐸𝐶 and 𝐸𝐷′

2
⊆ 𝐸𝐶 ,

and ∀𝑣′ ∈ 𝑉𝐷′ , 𝑙′𝐷′(𝑣′) ⊆ 𝑙𝑐(𝑣
′).

So 𝐷′ ∈ subd𝐶 . Now the two following arguments show that 𝐷′ can be obtained
by applying (r1) or (r2) zero or many times anywhere in 𝐷:

- 𝐷′
1 (resp. 𝐷′

2) is a subdescription of 𝐷′ and can be obtained by applying (r1)
or (r2) zero or many times anywhere in 𝐷1 (resp. in 𝐷2) which is itself a
subdescription of 𝐷. Thus, all branches of 𝒢𝐷′ in which edges (𝑣1, 𝑟, 𝑣2) ∈ 𝐸𝐷′

only come from edges in either 𝒢𝐷′
1

or 𝒢𝐷′
2

correspond to subdescriptions of
𝐷′

1 or 𝐷′
2 that can be obtained by applying (r1) or (r2) zero or many times

anywhere in 𝐷.
- Now, for all (𝑣1, 𝑟, 𝑣2) ∈ 𝐸𝐷′ , if (𝑣1, 𝑟, 𝑣2) is both in 𝐸𝐷′

1
and 𝐸𝐷′

2
, it means

that there exists (𝑤1, 𝑟, 𝑤2) ∈ 𝐸𝐷1 and (𝑤3, 𝑟, 𝑤4) ∈ 𝐸𝐷2 (with 𝑤2 ̸= 𝑤4)
such that (𝑣1, 𝑟, 𝑣2) = (𝜙(𝑤1), 𝑟, 𝜙(𝑤2)) = (𝜙(𝑤3), 𝑟, 𝜙(𝑤4)). Now, in terms
of concepts, this amounts to apply rule (r2) in 𝐷 to couples of existential
restrictions that correspond to (𝑤1, 𝑟, 𝑤2) and (𝑤3, 𝑟, 𝑤4). Thus, all branches
of 𝒢𝐷′ in which some edges (𝑣1, 𝑟, 𝑣2) ∈ 𝐸𝐷′ come from both 𝒢𝐷′

1
and 𝒢𝐷′

2

correspond to subdescriptions 𝐷1 or 𝐷2 of 𝐷 to which (r2) has been applied.
As 𝐷1 and 𝐷2 are themselves obtained by applying (r1) or (r2) zero or many
times anywhere in 𝐷, them so is 𝐷′.

– Case 2: 𝐷 = ∃𝑟.𝐷1.
Clearly, ⋆ size(𝐷) = 𝑛 and 𝐷1 ∈ subd𝐷 .
According to 2 , there exists a homomorphism 𝜙 from 𝒢𝐷 to 𝒢𝐶 . Thus, there exists
a concept 𝐶 ′ such that ∃𝑟.𝐶 ′ ∈ subd𝐶 with ⋆⋆ 𝜙 being a homomorphism from
𝒢𝐷1 to 𝒢𝐶′ . Let’s assume that 𝑣0 is the root of 𝒢𝐶 and (𝑣0, 𝑟, 𝑣1) is the edge in 𝒢𝐶

starting in 𝑣0 and corresponding to the existential restriction in ∃𝑟.𝐶 ′ (i.e. 𝑣1 is the
root of 𝒢𝐶′ ).
Thanks to ⋆ and ⋆⋆ , we can apply IH: there exists 𝐷′

1 ∈ subd𝐶′ that can be obtained
by applying (r1) or (r2) zero or many times anywhere in 𝐷1. 𝐷′ can then be built so
that its description tree 𝒢𝐷′ = (𝑉𝐷′ , 𝐸𝐷′ , 𝑣0, 𝑙𝐷′) is such that:
𝑉𝐷′ = 𝑉𝐷′

1
∪ {𝑣0},

𝐸𝐷′ = 𝐸𝐷′
1
∪ (𝑣0, 𝑟, 𝑣1),

and 𝑙𝐷′ : 𝑉𝐷′ → 2C

𝑣′ ↦→ 𝑙𝐷′(𝑣′) =

{︃
𝑙𝐷′

1
(𝑣′) if 𝑣′ ∈ 𝑉𝐶′

𝑙𝐷(𝑤0) if 𝑣′ = 𝑣0 = 𝜙(𝑤0)

In other words, 𝐷′ = ∃𝑟.𝐷′
1. Then it is easy to see that 𝐷′ ∈ subd𝐶 .



Moreover, 𝐷′ can be obtained by applying (r1) or (r2) zero or many times anywhere
in 𝐷 since 𝐷′

1 can be obtained by applying (r1) or (r2) zero or many times anywhere
in 𝐷1, which is a subdescription of 𝐷.

Step 2
Let’s recall the definition of TSO:

𝐶�𝐷 =

{︃
𝑀𝑖𝑛⊑{concept 𝐸 | 1 𝐶 ⊑ 𝐸 and 2 br𝐸 = br} if br ̸= ∅
⊤ if br = ∅

with br = br𝐶 ∖
(︀
br𝐷 ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ br𝐶 , 𝑛 ≥ 0 |

∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷,𝑚 ≥ 0}
)︀

In the case where br ̸= ∅, 2 implies br𝐸 ⊆ br𝐶 . Now corollary 1 says that: 1 𝐶 ⊑ 𝐸 iff
there exists 𝐸′ ∈ subd𝐶 such that 𝐸′ can be obtained by applying anywhere in 𝐸 zero or many
times rules (r1) and (r2), with:

(r1) ∃𝑟.𝐺 ⊓ ∃𝑟.𝐻 ⇝ ∃𝑟.(𝐺 ⊓𝐻)

(r2) ⊤⇝ 𝐻

Since br𝐸 ⊆ br𝐶 , it means that𝐸′ is obtained from𝐸 without applying (r2). Now suppose𝐸′ has
been obtained from 𝐸 by applying at least once (r1). This means there is in 𝐸 a subdescription
𝑆1 = ∃𝑟1...∃𝑟𝑖−1.(∃𝑟𝑖.𝐺 ⊓ ∃𝑟𝑖.𝐻) and there is in 𝐶 a subdescription 𝑆2 = ∃𝑟1...∃𝑟𝑖.𝐽 , with
𝐽 obtained from 𝐺 ⊓ 𝐻 by applying zero or many times (r1). It is clear that 𝑆2 ⊑ 𝑆1. But
this contradicts the fact that 𝐸 is minimal w.r.t. ⊑ such that 1 and 2 . So 𝐸′ = 𝐸 and thus
𝐸 ∈ subd𝐶 . Since 𝐸 ∈ subd𝐶 implies 𝐶 ⊑ 𝐸, we have:

𝐶�𝐷 =

{︃
𝑀𝑖𝑛⊑{𝐸 | 1’ 𝐸 ∈ subd𝐶 and 2 br𝐸 = br} if br ̸= ∅
⊤ if br = ∅

with br = br𝐶 ∖
(︀
br𝐷 ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ br𝐶 , 𝑛 ≥ 0 |

∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷,𝑚 ≥ 0}
)︀

Since a set of branches determines a unique subdescription for the associated concept, we
have:

𝐶�𝐷 =

{︃
𝐸 | 1’ 𝐸 ∈ subd𝐶 and 2 br𝐸 = br if br ̸= ∅
⊤ if br = ∅

with br = br𝐶 ∖
(︀
br𝐷 ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ br𝐶 , 𝑛 ≥ 0 |

∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷,𝑚 ≥ 0}
)︀

Step 3
On the basis of the previous characterization of TSO, we now show 𝐶�𝐷 = tso(𝐶,𝐷) by
induction on the combined size of the inputs 𝐶 and 𝐷: this combined size is called 𝑠𝑖𝑛 and set
up as size(𝐶) + size(𝐷).

Base case: 𝑠𝑖𝑛 = size(𝐶) + size(𝐷) = 1 + 1 = 2

• Lines 1 and 2:



– If 𝐶 = 𝐷 = ⊤, br = {⊤} ∖ {⊤} = ∅ and thus 𝐶�𝐷 = ⊤, and tso(𝐶,𝐷) = ⊤ also.
– If 𝐶 = ⊤ (and 𝐶 ̸= 𝐷), br = {⊤} ∖ (br𝐷 ∪ {⊤}) = ∅ and thus 𝐶�𝐷 = ⊤, and

tso(𝐶,𝐷) = ⊤ also.
– If 𝐶 = 𝐷 (and 𝐶 ̸= ⊤), br = br𝐶 ∖ (br𝐶 ∪ ∅) = ∅ and thus 𝐶�𝐷 = ⊤, and

tso(𝐶,𝐷) = ⊤ also.

• Lines 4 to 10: this case does not apply since it only applies when size(𝐶) ≥ 3.
• Lines 11 and 12: this case does not apply since it only applies when size(𝐷) ≥ 3.
• Lines 13 to 19: this case does not apply since it only applies when size(𝐶) + size(𝐷) ≥ 4.
• Lines 20 and 21:

In this case, 𝐶 ̸= ⊤, 𝐶 ̸= 𝐷, 𝐶 and 𝐷 are not conjunctions and 𝐶 and 𝐷 are not
existential restrictions with the same initial role. Thus 𝐶 and 𝐷 can be either existential
restrictions with a different initial role and/or concept names. In any case, this leads to
br𝐶 ∩ br𝐷 = ∅, subd𝐶 ∩ subd𝐷 = ∅ and there is no couple of branches that begin with
the same role. Thus br = br𝐶 with
br = br𝐶 ∖

(︀
br𝐷 ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ br𝐶 , 𝑛 ≥ 0 |

∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷,𝑚 ≥ 0}
)︀

So 𝐶�𝐷 = 𝐶 . Besides, tso(𝐶,𝐷) = 𝐶 also.

General case: 𝑠𝑖𝑛 = size(𝐶) + size(𝐷) = 𝑛𝑟 + 1, with 𝑛𝑟 ≥ 3
We recall in this case, the induction hypothesis (IH) says: ∀𝐶 ′ and 𝐷′ with 𝑠′𝑖𝑛 = size(𝐶 ′) +
size(𝐷′) ≤ 𝑛𝑟, tso(𝐶 ′, 𝐷′) = 𝐶 ′�𝐷′.

• Lines 1 and 2:

– If 𝐶 = 𝐷 = ⊤, this case does not apply since size(𝐶) + size(𝐷) = 2.
– If 𝐶 = ⊤ (and 𝐶 ̸= 𝐷), br = {⊤} ∖ (br𝐷 ∪ {⊤}) = ∅ and thus 𝐶�𝐷 = ⊤, and

tso(𝐶,𝐷) = ⊤ also.
– If 𝐶 = 𝐷 (and 𝐶 ̸= ⊤), br = br𝐶 ∖ (br𝐶 ∪ ∅) = ∅ and thus 𝐶�𝐷 = ⊤, and

tso(𝐶,𝐷) = ⊤ also.

• Lines 4 to 10: in this case, we have 𝐶 =
d𝑘

𝑖=1𝐶𝑖, with 𝑘 ≥ 2 and each 𝐶𝑖 is not a
conjunction. So a br𝐶 =

⋃︀𝑘
𝑖=1 br𝐶𝑖 . Moreover, since size(𝐶𝑖) ≤ size(𝐶) − 2 we have

size(𝐶𝑖) + size(𝐷) ≤ 𝑛𝑟 − 2. Thus, by IH, there is:
b ∀𝑖 ∈ {1, . . . , 𝑘},

tso(𝐶𝑖, 𝐷) = 𝐶𝑖�𝐷

=

{︃
𝐸𝑖 | 1’ 𝐸𝑖 ∈ subd𝐶𝑖 and 2 br𝐸𝑖 = br𝑖 if br𝑖 ̸= ∅
⊤ if br𝑖 = ∅

with br𝑖 = br𝐶𝑖 ∖
(︀
br𝐷 ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ br𝐶𝑖 , 𝑛 ≥ 0 |

∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷,𝑚 ≥ 0}
)︀

Let’s study 𝐸 =
d𝑘

𝑖=1 tso(𝐶𝑖, 𝐷) since the output of the algorithm is built from it (modulo
lines 7 and 9). Thus br𝐸 = brd𝑘

𝑖=1 tso(𝐶𝑖,𝐷). According to b , there is:
∀1 ≤ 𝑖 ≤ 𝑘,



brtso(𝐶𝑖,𝐷) =

{︃
br𝑖 if br𝑖 ̸= ∅
{⊤} if br𝑖 = ∅

with
br𝑖 = br𝐶𝑖 ∖

(︀
br𝐷 ∪ {𝑆 = ∃𝑟1...∃𝑟𝑛.⊤ ∈ br𝐶𝑖 | ∃𝑆′ = ∃𝑟1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷}

)︀
So:
br𝐸 = brd𝑘

𝑖=1 tso(𝐶𝑖,𝐷) =
⋃︀𝑘

𝑖=1 brtso(𝐶𝑖,𝐷)

=

{︃⋃︀𝑘
𝑖=1 br𝑖 if

⋃︀𝑘
𝑖=1 br𝑖 ̸= ∅

{⊤} if
⋃︀𝑘

𝑖=1 br𝑖 = ∅
Now, let’s note

⋃︀𝑘
𝑖=1 br𝑖 = br. We have:

br =
⋃︀𝑘

𝑖=1

(︁
br𝐶𝑖 ∖

(︀
br𝐷 ∪ {𝑆 = ∃𝑟1...∃𝑟𝑛.⊤ ∈ br𝐶𝑖 |∃𝑆′ = ∃𝑟1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷}

)︀)︁
=

(︀⋃︀𝑘
𝑖=1 br𝐶𝑖

)︀
∖
(︀
br𝐷 ∪

⋃︀𝑘
𝑖=1{𝑆 = ∃𝑟1...∃𝑟𝑛.⊤ ∈ br𝐶𝑖 |∃𝑆′ = ∃𝑟1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷}

)︀
=

(︀⋃︀𝑘
𝑖=1 br𝐶𝑖

)︀
∖
(︀
br𝐷∪{𝑆 = ∃𝑟1...∃𝑟𝑛.⊤ ∈ (

⋃︀𝑘
𝑖=1 br𝐶𝑖)|∃𝑆′ = ∃𝑟1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷}

)︀
And thanks to a , this leads to:
br = br𝐶 ∖

(︀
br𝐷 ∪ {𝑆 = ∃𝑟1...∃𝑟𝑛.⊤ ∈ br𝐶 | ∃𝑆′ = ∃𝑟1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷}

)︀
and

br𝐸 =

{︃
br if br ̸= ∅
{⊤} if br = ∅

This is the proof of 2 for 𝐸.
Now, since 𝐸 =

d𝑘
𝑖=1 tso(𝐶𝑖, 𝐷), 𝐶 =

d𝑘
𝑖=1𝐶𝑖 and, according to b , tso(𝐶𝑖, 𝐷) ∈

subd𝐶𝑖 , we derive 𝐸 ∈ subd𝐶 . This is the proof of 1’ for 𝐸 (when br ̸= ∅).
• Lines 11 and 12: in this case, we have 𝐷 =

d𝑚
𝑗=1𝐷𝑗 , with 𝑚 ≥ 2 and each 𝐷𝑗 is not a

conjunction. We have then size(𝐷) = (
∑︀𝑚

𝑗=1 size(𝐷𝑗) + (𝑚− 1)). Besides, the output
of tso(𝐶,𝐷) is set to be
𝐸 = tso(tso((..tso(tso(𝐶,𝐷1), 𝐷2), ..), 𝐷𝑚−1), 𝐷𝑚).
We recall we have shown algorithm 1 always terminates with size(tso(𝐶,𝐷)) < size(𝐶)+
size(𝐷). Applied to 𝐸 this means there is:
size(tso(𝐶,𝐷1)) ≤ size(𝐶) + size(𝐷1)− 1
size(tso(tso(𝐶,𝐷1), 𝐷2)) ≤ size(tso(𝐶,𝐷1)) + size(𝐷2)− 1
...
size(tso(tso((...), 𝐷𝑚−2), 𝐷𝑚−1)) ≤ size(tso((...), 𝐷𝑚−2)) + size(𝐷𝑚−1)− 1
Thus, ∀𝑘 ∈ {2, ..,𝑚− 1}:
size(tso(tso(..., 𝐷𝑘−1), 𝐷𝑘))≤size(𝐶) + (

∑︀𝑘
𝑗=1 size(𝐷𝑗))− 𝑘

Since size(𝐷) = (
∑︀𝑚

𝑗=1 size(𝐷𝑗)+(𝑚−1)), 𝑚 ≥ 2 and 𝑠𝑖𝑛 = size(𝐶)+size(𝐷) = 𝑛𝑟+1,
we have ∀𝑘 ∈ {2, ..,𝑚− 1}:
size(tso(tso((...), 𝐷𝑘−1), 𝐷𝑘)) + 𝑠𝑖𝑧𝑒(𝐷𝑘+1)

≤ size(𝐶) + (
∑︀𝑘+1

𝑗=1 size(𝐷𝑗))− 𝑘
< size(𝐶) + size(𝐷) = 𝑠𝑖𝑛 = 𝑛𝑟 + 1

So we can apply the IH to get:
tso(𝐶,𝐷1) = 𝐶�𝐷1

tso(tso(𝐶,𝐷1), 𝐷2) = tso(𝐶,𝐷1)�𝐷2

...



tso(tso((...), 𝐷𝑚−2), 𝐷𝑚−1) = tso((...), 𝐷𝑚−2)�𝐷𝑚−1

𝐸 = tso
(︀
tso((...), 𝐷𝑚−1), 𝐷𝑚

)︀
= tso

(︀
(...), 𝐷𝑚−1

)︀
�𝐷𝑚

For a sake of clarity, we rename tso(tso((...), 𝐷𝑘−1), 𝐷𝑘) as tso𝑘, for all 𝑘 ∈ {2, ..,𝑚}.
This leads to :
tso1 = 𝐶�𝐷1

tso2 = tso1�𝐷2

...
tso𝑚−1 = tso𝑚−2�𝐷𝑚−1

𝐸 = tso𝑚 = tso𝑚−1�𝐷𝑚

Using the characterization of 𝐶�𝐷 obtained at step 2, this leads to:

tso1 =

{︃
𝐸1 | 1’ 𝐸1 ∈ subd𝐶 and 2 br𝐸1 = br1 if br1 ̸= ∅
⊤ if br1 = ∅

with br1 = br𝐶 ∖
(︀
br𝐷1 ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ br𝐶 , 𝑛 ≥ 0 |

∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷1 ,𝑚 ≥ 0}
)︀

tso2 =

⎧⎪⎨⎪⎩
𝐸2 | 1’ 𝐸2 ∈ subdtso1 and 2 br𝐸2 = br2

if br2 ̸= ∅
⊤ if br2 = ∅

with br2 = brtso1 ∖
(︀
br𝐷2 ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ brtso1 , 𝑛 ≥ 0 |

∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷2 ,𝑚 ≥ 0}
)︀

...
𝐸 = tso𝑚

=

{︃
𝐸𝑚 | 1’ 𝐸𝑚 ∈ subdtso𝑚−1 and 2 br𝐸𝑚 = br𝑚 if br𝑚 ̸= ∅
⊤ if br𝑚 = ∅

with br𝑚 = brtso𝑚−1 ∖
(︀
br𝐷𝑚 ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ brtso𝑚−1 , 𝑛 ≥ 0 |
∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷𝑚 ,𝑚 ≥ 0}

)︀
Since br𝐷 =

⋃︀𝑚
𝑗=1 br𝐷𝑗 , it follows straightforwardly that, if br ̸= ∅, then 1’ 𝐸 ∈

subd𝐶 and 2 br𝐸 = br, and if br = ∅, then 𝐸 = ⊤, with br = br𝐶 ∖
(︀
br𝐷 ∪ {𝑆 =

∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ br𝐶 , 𝑛 ≥ 0 | ∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷,𝑚 ≥ 0}
)︀
, i.e.

tso(𝐶,𝐷) = 𝐸 = 𝐶�𝐷.
• Lines 13 to 19: in this case, 𝐶 = ∃𝑟.𝐶 ′ and 𝐷 = ∃𝑟.𝐷′.

Clearly size(𝐶 ′) + size(𝐷′) = size(𝐶) + size(𝐷)− 2 ≤ 𝑛𝑟 . So the IH can be applied:

tso(𝐶 ′, 𝐷′) = 𝐶 ′�𝐷′ =

{︃
𝐸′ | 1’ 𝐸′ ∈ subd𝐶′ and 2 br𝐸′ = br′ if br′ ̸= ∅
⊤ if br′ = ∅

with br′ = br𝐶′ ∖
(︀
br𝐷′ ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ br𝐶′ , 𝑛 ≥ 0 |

∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷′ ,𝑚 ≥ 0}
)︀

Besides, it is also clear that br𝐶 = {∃𝑟.𝑆 | 𝑆 ∈ br𝐶′} and br𝐷 = {∃𝑟.𝑆 | 𝑆 ∈ br𝐷′}. Thus
if we define:
br = br𝐶 ∖

(︀
br𝐷 ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ br𝐶 , 𝑛 ≥ 0 |

∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷,𝑚 ≥ 0}
)︀



then br′ = ∅ iff br = ∅.
Moreover, we also have subd𝐶 = {∃𝑟.𝑆 | 𝑆 ∈ subd𝐶′} and subd𝐷 = {∃𝑟.𝑆 | 𝑆 ∈
subd𝐷′}. Thus, when br′ ̸= ∅, we conclude the concept 𝐸′ that follows 1’ 𝐸′ ∈
subd𝐶′ and 2 br𝐸′ = br′ defines a unique concept 𝐸 = ∃𝑟.𝐸 that follows 1’ 𝐸 ∈
subd𝐶 and 2 br𝐸 = br. This shows tso(𝐶,𝐷) = 𝐶�𝐷 for lines 16 and 18.

• Lines 20 and 21:
In this case, 𝐶 ̸= ⊤, 𝐶 ̸= 𝐷, 𝐶 and 𝐷 are not conjunctions and 𝐶 and 𝐷 are not
existential restrictions with the same initial role. Thus 𝐶 and 𝐷 can be either existential
restrictions with a different initial role and/or (different) concept names. In any case, this
leads to br𝐶 ∩br𝐷 = ∅, subd𝐶 ∩ subd𝐷 = ∅ and there is no couple of branches that begin
with the same role. Thus br = br𝐶 with
br = br𝐶 ∖

(︀
br𝐷 ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ br𝐶 , 𝑛 ≥ 0 |

∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷,𝑚 ≥ 0}
)︀

So 𝐶�𝐷 = 𝐶 . Besides, tso(𝐶,𝐷) = 𝐶 also.

𝑑. PTIME computational complexity In this proof, we assume that 𝑘 is the constant
execution time of elementary operations: concatenations of two concepts 𝐴 and 𝐵 with a ⊓
symbol to obtain 𝐴 ⊓𝐵, concatenations of an existential quantification ∃𝑟. with a concept 𝐴 to
obtain ∃𝑟.𝐴, variable assignments, comparisons of two concept or role names, and recursive
calls. We also assume that checking whether 2 concepts of sizes 𝑛1 and 𝑛2 are syntactically
identical can be done in linear time 𝒪(𝑀𝑖𝑛(𝑛1, 𝑛2)). Besides, checking whether a concept
is a conjunction or an existential restriction can be done in constant time since we suppose
concepts are represented/stored as syntactical trees.

Let 𝐶 and 𝐷 be two ℰℒ concepts. For a sake of clarity, we note size(𝐶) = 𝑛𝐶 and size(𝐷) =
𝑛𝐷 . We also note 𝑛 = 𝑛𝐶 + 𝑛𝐷 . When 𝐶 is a conjunction, we consider it has 𝑝 conjuncts (and
not 𝑛 as in algorithm 1 since 𝑛 is already equal to 𝑛𝐶 + 𝑛𝐷). When 𝐷 is a conjunction, we
consider it has 𝑚 conjuncts (as in algorithm 1). Let’s find an upper bound for 𝑇 (𝑛) which is the
execution time of algorithm tso on an input of size 𝑛, i.e. of the call tso(𝐶,𝐷).

We first recall algorithm 1 which computes tso(𝐶,𝐷).

Require: 𝐶 and 𝐷 two ℰℒ concepts.
Ensure: 𝐶�𝐷 (cf. def. 8)

1: if 𝐶 = 𝐷 or 𝐶 = ⊤ then
2: 𝑅𝑒𝑠𝑢𝑙𝑡 := ⊤ {Case 1 and case 2}
3: else
4: if 𝐶 = 𝐶1 ⊓ . . . ⊓ 𝐶𝑛 with 𝑛 ≥ 2 then
5: 𝑅𝑒𝑠𝑢𝑙𝑡1 := tso(𝐶1, 𝐷) ⊓ . . . ⊓ tso(𝐶𝑛, 𝐷)
6: if There is at least one conjunct ̸= ⊤ in 𝑅𝑒𝑠𝑢𝑙𝑡1 then
7: 𝑅𝑒𝑠𝑢𝑙𝑡 := 𝑅𝑒𝑠𝑢𝑙𝑡1 without any ⊤ conjunct. {Case 3}
8: else
9: 𝑅𝑒𝑠𝑢𝑙𝑡 := ⊤ {Case 4}

10: end if
11: else if 𝐷 = 𝐷1 ⊓ . . . ⊓𝐷𝑚 with 𝑚 ≥ 2 then
12: 𝑅𝑒𝑠𝑢𝑙𝑡 := tso(. . . (tso(tso(𝐶,𝐷1), 𝐷2), . . .), 𝐷𝑚) {Case 5}



13: else if 𝐶 = ∃𝑟.𝐶 ′ and 𝐷 = ∃𝑟.𝐷′ then
14: 𝑅𝑒𝑠𝑢𝑙𝑡1 := tso(𝐶 ′, 𝐷′)
15: if 𝑅𝑒𝑠𝑢𝑙𝑡1 = ⊤ then
16: 𝑅𝑒𝑠𝑢𝑙𝑡 := ⊤ {Case 6}
17: else
18: 𝑅𝑒𝑠𝑢𝑙𝑡 := ∃𝑟.𝑅𝑒𝑠𝑢𝑙𝑡1 {Case 7}
19: end if
20: else
21: 𝑅𝑒𝑠𝑢𝑙𝑡 := 𝐶 {Case 8}
22: end if
23: end if
24: return 𝑅𝑒𝑠𝑢𝑙𝑡

Since algorithm 1 is made of nested tests leading to 8 possible cases (as shown above), we
have 𝑇 (𝑛) is less or equal to the maximum of the following 8 cases:

𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) * 𝑘 Line 1: test 𝐶 = 𝐷
+𝑘, Line 2: variable assignment

}︂
case 1

(𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 1) * 𝑘 L1: test 𝐶 = 𝐷 and 𝐶 = ⊤
+𝑘, L2: variable assignment

}︂
case 2

(𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 1) * 𝑘 L1: 𝐶 = 𝐷 and 𝐶 = ⊤
+𝑘 L4: test 𝐶 = 𝐶1 ⊓ ... ⊓ 𝐶𝑝

+𝑝 * 𝑘 L5: 𝑝 recursive calls
+
∑︀𝑝

𝑖=1 𝑇 (size(𝐶𝑖) + 𝑛𝐷) L5: recursive calls execution time
+(𝑝− 1) * 𝑘 L5: building the answer by con-

catenating with ⊓
+𝑘 L5: variable assignment
+𝑝 * 𝑘 L6: 𝑝 tests conjuncts ̸= ⊤
+(𝑝− 1) * 𝑘 L7: removal of at worst 𝑝− 1 con-

juncts
+𝑘, L7: variable assignment

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

case 3

(𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 1) * 𝑘 L1: 𝐶 = 𝐷 and 𝐶 = ⊤
+𝑘 L4: test 𝐶 = 𝐶1 ⊓ ... ⊓ 𝐶𝑝

+𝑝 * 𝑘 L5: 𝑝 recursive calls
+
∑︀𝑝

𝑖=1 𝑇 (size(𝐶𝑖) + 𝑛𝐷) L5: recursive calls execution time
+(𝑝− 1) * 𝑘 L5: building the answer by con-

catenating with ⊓
+𝑘 L5: variable assignment
+𝑝 * 𝑘 L6: 𝑝 tests conjuncts ̸= ⊤
+𝑘, L9: variable assignment

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
case 4



(𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 1) * 𝑘 L1: 𝐶 = 𝐷 and 𝐶 = ⊤
+𝑘 L4: test 𝐶 = 𝐶1 ⊓ ... ⊓ 𝐶𝑝

+𝑘 L11: 𝐷 = 𝐷1 ⊓ ... ⊓𝐷𝑚

+𝑚 * 𝑘 L12: 𝑚 recursive calls
+𝑇 (𝑛𝐶 + size(𝐷1))
+𝑇 (size(𝑡𝑠𝑜(𝐶,𝐷1)) + size(𝐷2))
+...
+𝑇 (size(𝑡𝑠𝑜(...)) + size(𝐷𝑚−1))
+𝑇 (size(𝑡𝑠𝑜(...)) + size(𝐷𝑚))

L12: recursive calls execution
time

+𝑘, L12: affectation

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

case 5

(𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 1) * 𝑘 L1: 𝐶 = 𝐷 and 𝐶 = ⊤
+𝑘 L4: test 𝐶 = 𝐶1 ⊓ ... ⊓ 𝐶𝑝

+𝑘 L11: 𝐷 = 𝐷1 ⊓ ... ⊓𝐷𝑚

+2 * 𝑘 L13: 𝐶 = ∃𝑟.𝐶 ′ and 𝐷 = ∃𝑟.𝐷′

+𝑘 L14: recursive call
+𝑇 (𝑛𝐶 − 1 + 𝑛𝐷 − 1) L14: recursive call execution time
+𝑘 L14: variable assignment
+𝑘 L15: test 𝑅𝑒𝑠𝑢𝑙𝑡 = ⊤
+𝑘, L16: variable assignment

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
case 6

(𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 1) * 𝑘 L1: 𝐶 = 𝐷 and 𝐶 = ⊤
+𝑘 L4: test 𝐶 = 𝐶1 ⊓ ... ⊓ 𝐶𝑝

+𝑘 L11: 𝐷 = 𝐷1 ⊓ ... ⊓𝐷𝑚

+2 * 𝑘 L13: 𝐶 = ∃𝑟.𝐶 ′ and 𝐷 = ∃𝑟.𝐷′

+𝑘 L14: recursive call
+𝑇 (𝑛𝐶 − 1 + 𝑛𝐷 − 1) L14: recursive call execution time
+𝑘 L14: variable assignment
+𝑘 L15: test 𝑅𝑒𝑠𝑢𝑙𝑡 = ⊤
+𝑘 L18: building the answer by con-

catenating with ∃𝑟.
+𝑘 L18. variable assignment

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

case 7

(𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 1) * 𝑘 L1: 𝐶 = 𝐷 and 𝐶 = ⊤
+𝑘 L4: test 𝐶 = 𝐶1 ⊓ ... ⊓ 𝐶𝑝

+𝑘 L11: 𝐷 = 𝐷1 ⊓ ... ⊓𝐷𝑚

+2 * 𝑘 L13: 𝐶 = ∃𝑟.𝐶 ′ and 𝐷 = ∃𝑟.𝐷′

+𝑘 L21. variable assignment

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ case 8

After simplification, we get:

𝑇 (𝑛) ≤ 𝑀𝑎𝑥( (𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 1) * 𝑘,
}︀

case 1
(𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 2) * 𝑘,

}︀
case 2

(𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 2 + 4𝑝) * 𝑘 +
∑︀𝑝

𝑖=1 𝑇 (size(𝐶𝑖) + 𝑛𝐷),
}︀

case 3



(𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 3 + 3𝑝) * 𝑘 +
∑︀𝑝

𝑖=1 𝑇 (size(𝐶𝑖) + 𝑛𝐷),
}︀

case 4
(𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 4 +𝑚) * 𝑘
+𝑇 (𝑛𝐶 + size(𝐷1))
+𝑇 (size(tso(𝐶,𝐷1)) + size(𝐷2))
+...
+𝑇 (size(tso(...)) + size(𝐷𝑚−1))
+𝑇 (size(tso(...)) + size(𝐷𝑚))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
case 5

(𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 9) * 𝑘 + 𝑇 (𝑛− 2)
}︀

case 6
(𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 10) * 𝑘 + 𝑇 (𝑛− 2)

}︀
case 7

(𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 6) * 𝑘
}︀

case 8
)

We can see that there are cases with some recursive calls and cases without recursive calls.
Cases without recursive calls execute in linear time 𝒪(𝑛) since 𝑛𝐶 ≤ 𝑛 and 𝑛𝐷 ≤ 𝑛. Cases
with recursive calls have a linear time part and a recursive call part. Thus, a worst case happens
when the number of recursive calls is maximimal. Within cases having recursive calls, there are:

• cases 3 and 4 having 𝑝 recursive calls (𝑝 is the number of conjuncts of 𝐶),
• case 5 having 𝑚 recursive calls (𝑚 is the number of conjuncts of 𝐷)
• and cases 6 and 7 having a single recursive call.

As 𝑝 and 𝑚 are both greater than 2, then maximizing the number of recursive calls implies
getting into cases 3, 4 or 5. In other terms, for a given input size 𝑛, we have to maximize 𝑝 and
𝑚, which in turn implies to mimimize existential restrictions. This means that a worst case for
algorithm 1 happens when 𝐶 and 𝐷 are both conjunctions of concepts names, without any
existential restrictions. Moreover, in this worst case, concepts names in 𝐶 and 𝐷 must all be
pairwisely distinct and different from ⊤ in order not to go through case 1 and stop. It is easy to
see that we then have tso(𝐶,𝐷) = 𝐶 .

In this worst case, the execution runs as follows:

• the tso(𝐶,𝐷) main call is handled by case 3, i.e. goes through lines 4, 5, 6 and 7.
• line 5 triggers 𝑝 recursive calls tso(𝐶𝑖, 𝐷), 1 ≤ 𝑖 ≤ 𝑝.

– each recursive call tso(𝐶𝑖, 𝐷) is handled by case 5, i.e. goes through lines 1, 4, 11
and 12,

– line 12 triggers 𝑚 recursive calls tso(𝐶𝑖, 𝐷𝑗), 1 ≤ 𝑗 ≤ 𝑚. For all 𝑚 recursive calls,
the first argument stays 𝐶𝑖 since 𝐶 is not modified in the whole process.

∗ each recursive call tso(𝐶𝑖, 𝐷𝑗) is handled by case 8, i.e. goes through lines 1, 4,
11, 13 and 21.

As 𝐶 is a conjunction of 𝑝 concept names (of size 1), there is: 𝑛𝐶 = size(𝐶) = (
∑︀𝑝

𝑖=1 1)+𝑝−
1 = 2𝑝− 1. In the same way: 𝑛𝐷 = size(𝐷) = (

∑︀𝑚
𝑗=1 1)+𝑚− 1 = 2𝑚− 1. As 𝑛 = 𝑛𝐶 +𝑛𝐷 ,

we have 𝑛 = 2𝑝+2𝑚− 2 and thus 𝑝+𝑚 = 𝑛/2+ 1. We can now evaluate the execution time
of tso(𝐶,𝐷) in the worst case described above:
𝑇 (𝑛) = (𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 2 + 4𝑝) * 𝑘 +

∑︀𝑝
𝑖=1 𝑇 (size(𝐶𝑖) + 𝑛𝐷)

with



• for all 𝑖 in {1, .., 𝑝}:
𝑇 (size(𝐶𝑖) + 𝑛𝐷) = (𝑀𝑖𝑛(size(𝐶𝑖), size(𝐷)) + 4 +𝑚) * 𝑘
+𝑇 (size(𝐶𝑖) + size(𝐷1))
+𝑇 (size(𝐶𝑖) + size(𝐷2))
+...
+𝑇 (size(𝐶𝑖) + size(𝐷𝑚−1))
+𝑇 (size(𝐶𝑖) + size(𝐷𝑚))

• for all 𝑗 in {1, ..,𝑚}:
𝑇 (size(𝐶𝑖) + size(𝐷𝑗)) = (𝑀𝑖𝑛(size(𝐶𝑖), size(𝐷𝑗)) + 6) * 𝑘

By replacing size(𝐶𝑖) and size(𝐷𝑗) by 1 since they are concepts names, we get:
𝑇 (𝑛) = (𝑀𝑖𝑛(𝑛𝐶 , 𝑛𝐷) + 2 + 4𝑝) * 𝑘 + 𝑝 * (5 + 8𝑚) * 𝑘

= 𝑘 *𝑀𝑖𝑛(2𝑝− 1, 2𝑚− 1) + 4𝑘 * 𝑝+ 2𝑘 + 5𝑘 * 𝑝+ 8𝑘 *𝑚𝑝
Since 𝑘 is constant, 𝑇 (𝑛) is in 𝒪(𝑚𝑝). As 𝑚+ 𝑝 = 𝑛/2 + 1, 𝑚𝑝 is maximal when 𝑚 = 𝑝 =
𝑛/4 + 1/2. This enables us to deduce 𝑇 (𝑛) is in 𝒪(𝑛2).

.3. Proof of Proposition 2

Proposition 2. Let 𝒯 be a TBox and (𝐶,𝐷) ∈ (𝒯ℰℒ)2. There is:
𝑎. 𝐶 ⊖𝒯 𝐷 exists and is unique (up to ≡𝒯 ).
𝑏. 𝐶 ⊖𝒯 𝐷 = 𝒯 *(𝐶)�𝒯 *(𝐷) = cso(𝒯 , 𝐶,𝐷) (soundness).
𝑐. Computing cso(𝒯 , 𝐶,𝐷) is in EXPTIME in the sizes of 𝒯 , 𝐶 and 𝐷 and in PTIME in the sizes

of 𝒯 *(𝐶) and 𝒯 *(𝐷).

Proof.

𝑎. Existence and unicity In the case where char𝒯𝐶 ⊆ dcom𝒯
𝐶,𝐷, existence and unicity of

𝐶 ⊖𝒯 𝐷 are trivial. Otherwise, char𝒯𝐶 ̸⊆ dcom𝒯
𝐶,𝐷 is equivalent to ∃𝑆 ∈ char𝒯𝐶 | 𝐷 ̸⊑𝒯 𝑆. So

there always exists 𝐸 = 𝑆 such that 𝐶 ⊑𝒯 𝐸 and dcom𝒯
𝐸,𝐷 = ∅. Thus 𝐶 ⊖𝒯 𝐷 exists. Now,

since 𝐶 ⊖𝒯 𝐷 must be minimal w.r.t. to ⊑𝒯 , it is easy to see it is unique since it suffices to
take the conjunction of all elements of {𝐸 ∈ 𝒯ℰℒ | 𝐶 ⊑𝒯 𝐸 and dcom𝒯

𝐸,𝐷 = ∅} to have the
minimal one. Since defined concepts can be expanded w.r.t. 𝒯 , unicity is up to ≡𝒯 .

𝑏. Soundness Here, we have to show 𝐶 ⊖𝒯 𝐷 = 𝒯 *(𝐶)�𝒯 *(𝐷) with:

𝐶 ⊖𝒯 𝐷 =

{︃
𝑀𝑖𝑛⊑𝒯 {𝐸 ∈ 𝒯ℰℒ | 𝐶 ⊑𝒯 𝐸 and dcom𝒯

𝐸,𝐷 = ∅} if char𝒯𝐶 ̸⊆ dcom𝒯
𝐶,𝐷

⊤ if char𝒯𝐶 ⊆ dcom𝒯
𝐶,𝐷

and

𝒯 *(𝐶)�𝒯 *(𝐷) =

{︃
𝑀𝑖𝑛⊑{𝐸 ∈ 𝒯 prim

ℰℒ | 𝒯 *(𝐶) ⊑ 𝐸 and br𝐸 = br} if br ̸= ∅
⊤ if br = ∅

with br = br𝒯 *(𝐶) ∖
(︀
br𝒯 *(𝐷) ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ br𝒯 *(𝐶), 𝑛 ≥ 0 |
∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝒯 *(𝐷),𝑚 ≥ 0}

)︀
and with 𝑃 any concept name or ⊤ (except if m=0).



Remark: 𝐸 ∈ 𝒯 prim
ℰℒ as a consequence of 𝒯 *(𝐶) ⊑ 𝐸.

First we show: ⋆ char𝒯𝐶 ⊆ dcom𝒯
𝐶,𝐷 ⇔ br = ∅ ⋆⋆ .

⇒:
Let 𝑆 ∈ br𝒯 *(𝐶).

• Case 1: 𝑆 ∈ char𝒯𝐶 .
Thus 𝑆 ∈ brprim𝒯 . Besides, since ⋆ ⇔ ∀𝑆 ∈ char𝒯𝐶 , 𝐷 ⊑𝒯 𝑆, there is 𝐷 ⊑𝒯 𝑆. Since
𝑆 ∈ brprim𝒯 , we easily have 𝒯 *(𝐷) ⊑ 𝑆. By corollary 1, this is equivalent to the fact that
there exists 𝑆′ ∈ subd𝒯 *(𝐷) such that 𝑆′ can be obtained from 𝑆 by applying anywhere in
𝑆 zero or many times the following syntactic rules (r1) and (r2) that amount to replacing
their left hand side by their right hand side:

(r1) ∃𝑟.𝐺 ⊓ ∃𝑟.𝐻 ⇝ ∃𝑟.(𝐺 ⊓𝐻)

(r2) ⊤⇝ 𝐻

with 𝑟 any role, and 𝐺 and 𝐻 any concepts. For a sake of simplicity, from now on, we

note these transformations : 𝑆
(𝑟1),(𝑟2)
⇝ 𝑆′. As 𝑆 is a branch, 𝑆′ must also be a branch. So

there is: ∃𝑆′ ∈ br𝒯 *(𝐷) | 𝑆
(𝑟1),(𝑟2)
⇝ 𝑆′. Now, since 𝑆 is a branch, (r1) cannot be applied.

So ∃𝑆′ ∈ br𝒯 *(𝐷) | 𝑆
(𝑟2)
⇝ 𝑆′. Since (r1) can only be applied once to a branch, we have

the two following cases:

– either 𝑆 = 𝑆′

– or 𝑆 = ∃𝑟1...∃𝑟𝑛.⊤ and 𝑆′ = ∃𝑟1...∃𝑟𝑛.𝐻 , with 𝑛 ≥ 0 and 𝐻 ∈ brprim𝒯 .

By the definition of br, 𝑆 ̸∈ br in both cases.
• Case 2: 𝑆 ̸∈ char𝒯𝐶 .

Thus ∀𝐺 ∈ 𝒯ℰℒ | 𝐺 ≡𝒯 𝐶 and 𝑆 ∈ br𝐺, ∃𝐻 ∈ 𝒯ℰℒ | br𝐻 = br𝐺 ∖ {𝑆} and 𝐻 ≡𝒯 𝐶 .
As 𝑆 ∈ br𝒯 *(𝐶), it means that the concept 𝒯 *(𝐶)−𝑆 , defined with with br𝒯 *(𝐶)−𝑆 =

br𝒯 *(𝐶) ∖ {𝑆} and 𝒯 *(𝐶)−𝑆 ≡ 𝒯 *(𝐶), exists, is unique and is such that 𝒯 *(𝐶)−𝑆 ⊑ 𝑆.
Following the same kind of reasoning as in previous case, we then derive:
∃𝑆′ ∈ br𝒯 *(𝐶)−𝑆 |

– either 𝑆 = 𝑆′

– or 𝑆 = ∃𝑟1...∃𝑟𝑛.⊤ and 𝑆′ = ∃𝑟1...∃𝑟𝑛.𝐻 , with 𝑛 ≥ 0 and 𝐻 ∈ brprim𝒯 .

Since the complete expansion of a concept 𝐶 w.r.t. 𝒯 is a unique concept 𝒯 *(𝐶), we
see that br𝒯 *(𝐶) = char∅𝒯 *(𝐶) ⊆ char𝒯𝐶 . This means that 𝑆′ ∈ char∅𝒯 *(𝐶)−𝑆 . So the case

where 𝑆 = 𝑆′ is not possible otherwise we would have 𝑆 ∈ char𝒯𝐶 . Thus 𝑆 = ∃𝑟1...∃𝑟𝑛.⊤
and 𝑆′ = ∃𝑟1...∃𝑟𝑛.𝐻 , with 𝑛 ≥ 0 and 𝐻 ∈ brprim𝒯 . Since 𝑆′ ∈ char∅𝒯 *(𝐶)−𝑆 we have

𝑆′ ∈ char𝒯𝐶 . Now we have supposed ⋆ char𝒯𝐶 ⊆ dcom𝒯
𝐶,𝐷. So 𝑆′ ∈ dcom𝒯

𝐶,𝐷. So
𝐷 ⊑𝒯 𝑆′. Since 𝑆′ ∈ brprim𝒯 , we have 𝒯 *(𝐷) ⊑ 𝑆′. A same reasoning as before, based on
corollary 1, leads to: ∃𝑆′′ ∈ br𝒯 *(𝐷) | 𝑆′ = 𝑆′′. And then we derive 𝑆 ̸∈ br.

So, in both cases, 𝑆 ∈ br𝒯 *(𝐶) implies 𝑆 ̸∈ br. So br = ∅.



⇐:
We now suppose br = ∅. This means ∀𝑆 ∈ br𝒯 *(𝐶), either 1 𝑆 ∈ br𝒯 *(𝐷), or 2 𝑆 =
∃𝑟1...∃𝑟𝑛.⊤, with 𝑛 ≥ 0, and ∃𝑆′ = ∃𝑟1...∃𝑟𝑛...∃𝑟𝑛+𝑚.𝑃 ∈ br𝒯 *(𝐷), with 𝑚 ≥ 0.

Let 𝑆 ∈ char𝒯𝐶 . We have to show 𝑆 ∈ dcom𝒯
𝐶,𝐷. I.e. we have to show 𝐷 ⊑𝒯 𝑆. If 1 is

true, we have 𝒯 *(𝐷) ⊑ 𝑆 and thus 𝐷 ⊑𝒯 𝑆. If 2 is true, we have 𝒯 *(𝐷) ⊑ 𝑆′ ⊑ 𝑆 and thus
𝐷 ⊑𝒯 𝑆.

So, we have shown char𝒯𝐶 ⊆ dcom𝒯
𝐶,𝐷 ⇔ br = ∅.

Now we prove a lemma that is useful for the second part of the soundness proof.

Lemma 1. Let 𝐶 and 𝐷 be two concepts. The set br defined as follows:
br = br𝐶 ∖

(︀
br𝐷 ∪ {𝑆 = ∃𝑟1.∃𝑟2...∃𝑟𝑛.⊤ ∈ br𝐶 , 𝑛 ≥ 0 |

∃𝑆′ = ∃𝑟1...∃𝑟𝑛.∃𝑟𝑛+1...∃𝑟𝑛+𝑚.𝑃 ∈ br𝐷,𝑚 ≥ 0}
)︀

is such that:
br = {𝑆 ∈ br𝐶 | 𝐷 ̸⊑ 𝑆}

Proof.
𝑆 ∈ br
⇔ ∙ 𝑆 ∈ br𝐶 and

∙ 𝑆 ̸∈ br𝐷 and
∙ if 𝑆 = ∃𝑟1...∃𝑟𝑛.⊤, with 𝑛 ≥ 0

then ∀𝑆′ ∈ br𝐷, 𝑆
′ ̸= ∃𝑟1...∃𝑟𝑛+𝑚.𝑃 , for all 𝑚 ≥ 0 and 𝑃 concept

name or ⊤.
⇔ ∙ 𝑆 ∈ br𝐶 and

∀𝑆′ ∈ br𝐷 , 𝑆′ cannot be obtained by applying zero or one time rule (r2) to
𝑆.

𝑆 is a branch⇔ ∙ 𝑆 ∈ br𝐶 and
∀𝑆′ ∈ subd𝐷 , 𝑆′ cannot be obtained by applying zero or many times rules
(r1) and (r2) to 𝑆.

corollary 1⇔ ∙ 𝑆 ∈ br𝐶 and
𝐷 ⊑𝒯 𝑆

⇔ 𝑆 ∈ {𝑇 ∈ br𝐶 | 𝐷 ̸⊑ 𝑇}

Before lemma 1, we have shown char𝒯𝐶 ⊆ dcom𝒯
𝐶,𝐷 ⇔ br = ∅. Now, assuming the opposite,

i.e. char𝒯𝐶 ̸⊆ dcom𝒯
𝐶,𝐷 ⇔ br ̸= ∅, we have to show:

𝑀𝑖𝑛⊑𝒯 {𝐸 ∈ 𝒯ℰℒ |
𝐶 ⊑𝒯 𝐸 and dcom𝒯

𝐸,𝐷 = ∅}
= 𝑀𝑖𝑛⊑{𝐹 ∈ 𝒯 prim

ℰℒ |
𝒯 *(𝐶) ⊑ 𝐹 and br𝐹 = br}

Let 𝐹 ∈ 𝒯 prim
ℰℒ such that:

1 𝒯 *(𝐶) ⊑ 𝐹 and
2 br𝐹 = br and
3 𝐹 is minimal w.r.t. ⊑ such that 1 and 2 .

We have to show that:



a 𝐶 ⊑𝒯 𝐹 and
b dcom𝒯

𝐹,𝐷 = ∅ and
c 𝐹 is minimal w.r.t. ⊑𝒯 such that a and b .

First, since 𝐶 ≡𝒯 𝒯 *(𝐶), 1 implies 𝐶 ⊑𝒯 𝐹 . This is a .
Second, assuming 𝑆 ∈ char𝒯𝐹 , we have to show 𝐷 ̸⊑𝒯 𝑆. As 𝐹 ∈ 𝒯 prim

ℰℒ , we have char𝒯𝐹 ⊆ br𝐹 .
So 𝑆 ∈ br𝐹 = br. According to lemma 1, 𝑆 ∈ br𝒯 *(𝐶) and 𝒯 *(𝐷) ̸⊑ 𝑆. Thus 𝐷 ̸⊑𝒯 𝑆. This is
b .

Third, 3 ⇔ c comes from 𝐹 ∈ 𝒯 prim
ℰℒ .

𝑐. Complexity The result trivially comes from complexity of the complete expansion and of
algorithm 1.
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