N

N

Complex Traits Heritability is Highly Clustered in the
eQTL Bipartite Network
Katherine Stone, John Platig, John Quackenbush, Maud Fagny

» To cite this version:

Katherine Stone, John Platig, John Quackenbush, Maud Fagny. Complex Traits Heritability is Highly
Clustered in the eQTL Bipartite Network. 2024. hal-04488556

HAL Id: hal-04488556
https://hal.science/hal-04488556

Preprint submitted on 4 Mar 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License


https://hal.science/hal-04488556
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.27.582063; this version posted March 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Complex Traits Heritability is Highly Clustered
in the eQTL Bipartite Network

Katherine Stone'?, John Platig®*>, John Quackenbush'2®, and Maud Fagny'>’

lDepartmt—:‘nt of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
2Department of Data Science and Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
3Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA.
“Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA.
>Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
SChanning Division of Network Medicine, Brigham and Women'’s Hospital, Boston, Massachusetts, United States
"Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Genetique Quantitative et Evolution - Le Moulon, Gif-sur-Yvette 91190 France

Single Nucleotide Polymorphisms (SNPs) associated with traits
typically explain a small part of the trait genetic heritability—
with the remainder thought to be distributed throughout the
genome. Such SNPs are likely to alter expression levels of bi-
ologically relevant genes. Expression Quantitative Trait Locus
(eQTL) networks analysis has helped to functionally character-
ize such variants. We systematically analyze the distribution
of SNP heritability for ten traits across 29 tissue-specific eQTL
networks. We find that heritability is clustered in a small num-
ber or tissue-specific, functionally relevant SNP-gene modules
and that the greatest occurs in local “hubs’ that are both the
cornerstone of the network’s modules and tissue-specific regu-
latory elements. The network structure could thus both amplify
the genotype-phenotype connection and buffer the deleterious
effect of the genetic variations on other traits. Together, these
results define a conceptual framework for understanding com-
plex trait architecture and identifying key mutations carrying
most of the heritability.
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Introduction

Many recent studies have shown that SNPs associated with
complex traits and diseases in genome-wide association stud-
ies co-localize with SNPs associated with the expression
level of nearby genes (expression quantitative trait loci,
eQTLs)and thus likely to play important regulatory role, po-
tentially influencing traits by modifying gene expression as
cis-acting eQTLs (1, 2). This is consistent with the obser-
vation that more than 90% of the SNPs identified by GWAS
are localized outside of coding regions (3, 4). Partitioning
heritability for these traits across various annotations while
correcting for linkage disequilibrium has confirmed that cis-
eQTLs as a group explain more of complex trait heritability
than would be expected by chance (5-7) but still fail to ex-
plain a majority of disease heritability (8). Others have shown
that including trans-eQTLs may capture additional heritabil-
ity and explain important pathologic mechanisms (9), but this
is rarely done because trans-eQTL studies are generally un-
derpowered.

Given the number of loci and the number of potential interac-
tions involved, gene regulatory networks provide an efficient
tool for understanding the biological interactions behind trait

heritability(10). We have proposed a way to integrate both
cis- and trans-eQTL results using a bipartite eQTL network
representation (11, 12), that relies on summary statistics from
eQTL studies and is relatively insensitive to a high false dis-
covery rate, allowing one to partially compensate for the lack
of power of trans-eQTL studies; an update to this method
allowed us to weigh SNP-gene regulatory relationships by
eQTL effect sizes (13). These analyses have shown that
highly structured eQTL networks can reliably identify, in a
tissue-specific manner, the biological functions disrupted by
traits-associated SNPs (11, 14), and further defined network
topological features that are useful in explaining in part the
link between genotype and phenotype in complex traits.

In this study, we build on eQTL networks to investigate how
complex trait heritability is spread within the tissue-specific
eQTL networks to better understand the genetic architecture
of complex traits. We used GWAS summary statistics from
ten complex traits and diseases, and built 29 tissue-specific
cis- and trans-eQTL networks using the GTEx dataset. We
then partitioned heritability across various features, includ-
ing network node topological summary statistics, to identify
key determinants of trait heritability. Finally, we investigated
whether heritability for each trait is clustered in particular
subparts (regulatory modules, also sometimes referred to as
communities) of the eQTL networks, and identified the bio-
logical functions explaining most of the heritability of each
trait. Importantly, we found that heritability is not scattered
uniformly across the genome but rather “clustered” in eQTL
modules that represent trait-relevant functions.

Results

Local and global hubs carry a large part of
trait heritability. We considered a total of ten traits
and diseases (see Supplementary Tab. S1) present-
ing varying levels of polygenic determinism and esti-
mated genetic heritability. ~ For each trait or disease,
we obtained summary statistics including SNP chro-
mosome, position, allele 1 and 2, x2, and Z-score.
GWAS data were obtained from https://alkesgroup.
broadinstitute.org/LDSCORE/all_sumstats/.
We wanted to understand how heritability is distributed
across the network and whether there are particular eQTL
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network topological features that correlate with a greater-
than-expected ability to explain the heritability of a partic-
ular trait. We investigated ten polygenic traits or diseases
(see Methods and Supplementary Tab S1) chosen for their
medical or evolutionary relevance in populations of European
descent. We conditioned on European descent because of
the demographics of GTEx. Breast Cancer (BRC), Ovarian
Cancer (OVC) and Prostate Cancer (PRC), Alzheimer’s Dis-
ease (ALZ), Multiple Sclerosis (MS), Schizophrenia (SCZ),
high HDL levels (HDL), and Type 2 diabetes (TIID; diabetes)
are all increasing in populations of European descent and are
known to exhibit partial genetic heritability. Smoking Cessa-
tion (SMC) is a measure of smoking dependency that is partly
explained by genetic factors and is linked to a host of pul-
monary and other diseases. Schizophrenia (SCZ) is a highly
heritable but poorly understood polygenic disease. Finally,
Height (HGT) is the canonical example of a polygenic trait,
and some consider it a natural selection target in populations
of European descent. These traits and diseases also represent
a wide range of global genetic heritability, as reported in the
literature, from 25% for type 2 diabetes, to up to 80-90% for
schizophrenia and Alzheimer’s. A complete description of
these traits and diseases and their GWAS summary statistics
is reported in the Supplementary Tab. S1.

We used RNA-seq and genotyping data from GTEx to per-
form eQTL analyses and built 29 tissue-specific weighted bi-
partite eQTL networks and identified highly connected mod-
ules within each network based on CONDOR'’s bipartite
modularity maximization (12) (see Methods, Supplementary
Text and Supplementary Fig. S1 and Tab. S2). We then
computed two different summary statistics characterizing the
topological properties of SNPs within each network: outde-
gree and core score. The outdegree measures the centrality of
a SNP within the entire network. SNPs within the top 25% of
outdegree distribution were considered as global hubs. The
core score measures the contribution of SNPs to the modu-
larity of the network module in which it arises. SNPs within
the top 25% of core score distribution were considered local
hubs (core SNPs).

We investigated whether trait heritability was distributed
evenly across all SNPs or instead concentrated in SNPs with
local or global centrality. Using a likelihood ratio test ac-
counting for linkage disequilibrium and module size (see
Methods), we found for each trait we considered that the
SNPs explaining greatest portion of the heritability (top 5%
of Z2, or high heritability SNPs) are more likely to have
both high outdegree and core scores (Supplementary Fig. S2
for outdegrees and Supplementary Fig. S3c for core scores).
Using the Whole-Blood network as a model, we found that
this enrichment in high heritability SNPs increases with the
threshold chosen to define high outdegree and core score
(from the top 90% to the top 5%, Supplementary Figure
S4A.).

Given the demonstrated importance of eQTL network topol-
ogy, we explored whether the increased heritability was
driven simply by being in the network (a proxy for being an
eQTL), being a global hub, or being a local hub. These an-
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notations are overlapping and reflect potentially confounding
factors such as underlying chromatin annotations (for exam-
ple, global hubs are enriched for non-genic enhancers, while
local hubs are enriched for genic enhancers and promoters
(11)). For this reason, we partitioned heritability across vari-
ous functional annotations while accounting for linked mark-
ers using stratified LD Score regression(15, 16) (see Meth-
ods), using the 97-levels baseline annotation model, to which
we added our three annotations: belonging to eQTL network,
being in the top quartile of outdegrees (global hubs), or of
core scores (local hubs). The total proportion of heritability
explained by SNPs as estimated using the LDScore software
is reported in Supplementary Tab. S1. We found that these
proportions are not always perfectly correlated with the esti-
mated global genetic heritability reported in published twin
and pedigree studies (see Supplementary Tab. S1), but our
estimate of the total heritability of traits explained by SNPs
as computed by the LDScore regression is coherent with pre-
vious reports (see (17) for breast, ovarian and prostate cancer
examples).

The LDScore regression confirmed the results we obtained
above using likelihood ratio tests: SNPs with high core scores
or high outdegrees are enriched for trait heritability, and this
enrichment increases with the threshold chosen to define high
scores (Supplementary Fig. S4B). The detailed results for
enrichment in h2 among each annotation for each of the ten
traits and diseases are reported in Supplementary Tab. S3.
We performed a meta-analysis across the ten uncorrelated
traits and diseases for each tissue-specific network. An ex-
ample of enrichment in h? among each annotation for the
Whole-Blood network is shown in Fig. 2A. As noted earlier,
SNPs that are within the eQTL networks tend to be signifi-
cantly enriched in h? independent of tissue (Fig. 2B). How-
ever, the enrichment in h? is even greater for both high out-
degree SNPs and high core score SNPs in all networks except
Artery - Coronary and Liver. In many ways, this trend is ex-
actly what one would expect: SNPs that fall within the eQTL
networks have increased heritability because they are poten-
tially capable of affecting the expression of multiple genes,
a trend that increases as the SNPs become increasingly con-
nected in the eQTL networks.

SNPs associated at the genome-wide level with traits
or diseases are clustered in a few modules. We had pre-
viously reported that GWAS SNPs for chronic obstructive
pulmonary disease, cancers, and other traits are concentrated
in a small number of modules that are enriched for genes that
are associated with trait-relevant GO Term biological func-
tions (12). Consequently, we tested whether SNPs that carry
the highest proportion of heritability are evenly distributed
across the entire network or appear preferentially in specific
network modules. We used the summary statistic Z2 as a
proxy for the per-SNP heritability, and SNPs with a GWAS
Z? in the top 5% were named “high heritability SNPs”. We
found that the high heritability SNPs cluster in a small num-
ber of network modules (Supplementary Tab. S4). As an
example, the breast cancer-associated SNPs appear in only
29 (12.6%) of the 230 network modules in the SKN (Skin -
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Not sun-exposed—Suprapubic) eQTL network (Fig. 3A) rep-
resenting a substantial concentration of heritability. We find
similar results for other diseases and other tissues, with some
combinations exhibiting even more substantial clustering of
heritability in a limited number of clusters (Fig. 3B).
Because the highest heritability SNPs often only explain a
small proportion of the heritability of associated traits (par-
ticularly when the trait is highly polygenic) we examined
the distribution of per-SNP heritability across the different
eQTL network modules. We found that heritability is not dis-
tributed evenly across modules (Kruskal-Wallis test p=0 for
all pairs of tissue-specific networks and traits tested). As an
example, consider Z 2 calculated for Alzheimer’s disease in
Brain - Nucleus Accumbens (basal ganglia) networks, which
is plotted in Fig. 3C; all the results are in Supplementary
Tab. S4). Comparing the distribution of Z?2 for each module
with the rest of the network, we found that less than a third of
the modules contain high heritability SNPs (54[5-84] mod-
ules representing about 23.7%][5.6-33.1] of the total number
of modules depending on tissue-specific network/trait pair,
with Benjamini-Hochberg-corrected Mann-Whitney U tests
p < 0.01 - see Supplementary Tab. S5).

Heritability is enriched in trait-specific, functionally
relevant modules. Finally, we investigated whether the her-
itability for different, uncorrelated traits was clustered in the
same or different modules in the tissue-specific eQTL net-
works. Depending on the tissue-specific network, about 40%
[28-53] of the modules were not enriched for high heritabil-
ity SNPs associated with any traits, 29% [24-35] were en-
riched for high heritability SNPs from only one trait and can
be considered trait-specific, and 3%][1-8] were enriched for
high heritability SNPs from at least 5 of the 10 traits and can
be considered as shared across (many) traits (Fig. 4A and
Supplementary Fig. S5).

We performed a pairwise comparison of traits in each of
the tissue-specific networks between modules enriched for
high heritability SNPs. Using 10,000 resamplings, we found
that top-heritability SNPs for two independent traits did not
cluster in the same modules more than expected by chance
in most cases. Indeed, among the 1305 pairwise compar-
isons possible — (') comparisons x29 tissues — only 28
show significant enrichment in overlap compared to what
would expected by chance (Benjamini-Hocheberg-corrected
p < 0.01). In half of these cases, the excess of overlap was
observed between high HDL, height, and/or type 2 diabetes
in various tissue-specific networks (see Supplementary Tab.
S6).

We also investigated the biological functions represented by
genes with the modules enriched for high heritability SNPs.
We performed a GO term enrichment analysis for each mod-
ule using Bioconductor R topGO package (see Methods); the
results are presented in Supplementary Tab. S7. This al-
lowed us to identify modules that were tissue-specific (see
Methods). We then focused on trait- and tissue-specific mod-
ules, defined as those enriched for high heritability SNPs
from one or two traits and enriched for tissue-specific GO
Terms (Supplementary Tab. S8)—with the goal being to ex-
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plain the specificity of each trait and/or disease heritability
and underlying molecular mechanisms. We found that these
modules were enriched in genes involved in biologically and
trait-relevant functions.

For example, heritability for Alzheimer’s disease and multi-
ple sclerosis were both clustered in module 5 of the brain —
nucleus accumbens (basal ganglia) network; module 5 is en-
riched in genes involved in catecholamine metabolic process
(Fig. 4B), a class of molecules whose concentrations are al-
tered in symptomatic Alzheimer’s and multiple sclerosis dis-
eases, both of which are amyloid plaque diseases (18, 19).
Heritability for schizophrenia was most strongly clustered in
module 100 of the same tissue, a molecule that is enriched
for dopamine receptor signaling pathway genes (Fig. 4G),
and this pathway is known to be functionally disrupted in the
brain striatum in schizophrenia patients (20).
Unsurprisingly, heritability for cancers, including breast can-
cer, ovarian cancer, and prostate cancer, are enriched in
epithelial tissues (skin—not sun-exposed exposed, skin—sun-
exposed, colon—transverse) in network modules consisting
of genes enriched for immune response (prostate cancer and
module 76 of skin, not sun-exposed), response to cellular
hypoxia (breast cancer, prostate cancer and module 157 of
skin—sun-exposed), DNA break repair, cell cycle, apoptosis,
and epithelium differentiation and growth (breast cancer and
module 149 of skin—sun-exposed, and module 191 of skin
(not sun-exposed), ovarian cancer and module 199 and skin,
prostate cancer and modules 78, 97 of skin and module 149 of
skin—sun-exposed). Particularly interesting, prostate cancer
heritability is clustered in module 149 of the colon-transverse
network, enriched for TRAIL-activated apoptotic signaling
pathway genes, a long-known signaling pathway involved in
cancer progression (21) (Fig. 4C). Breast and ovarian cancer
heritability are also clustered in modules involved in estrogen
metabolism and signaling (breast cancer and module 180 of
skin—sun-exposed, ovarian cancer and module 182 of skin—
not sun-exposed).

Metabolic traits such as high blood levels of HDL (high-
density lipoprotein) and Type 2 Diabetes tend to cluster in
modules enriched for lipid and carbohydrate metabolism.
High HDL level heritability is enriched in module 142 of
adipose—visceral omentum, enriched for genes involved in
very-low and high-density lipoprotein particle assembly, re-
modeling, and clearance (Fig. 4D). Type 2 diabetes heritabil-
ity clusters in module 17 of whole blood, enriched in genes
involved in glycogen metabolism (Fig. 4F). Finally, heritabil-
ity for height, a trait primarily related to development and, in
particular, bone and muscle growth, is clustered in module 90
of muscle—skeletal, enriched for genes involved in muscle tis-
sue morphogenesis, endochondral ossification, bone mineral-
ization, and chondrocyte and osteoblast differentiation (Fig.
4E).

Conclusions

Of the SNPs found through GWAS to be associated with
complex traits, most (up to 90%) fall outside of gene cod-
ing regions suggesting that they likely play a regulatory role.
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Bipartite eQTL networks have allowed us to explore how
these SNP loci work together to regulate the many genes
involved in the biological processes underlying the trait, in
a tissue- or cell-type-specific manner (11, 12, 14). Using
eQTL networks, we found that not only do SNPs act in both
cis- and trans- to influence the expression of complex net-
works of genes, but that these networks have a robust, modu-
lar structure consisting of SNP-gene modules with properties
that help explain the polygenic influences that underlie most
common traits. Specifically, the modules in eQTL networks
are enriched for functionally related groups of genes and nu-
cleated around "core SNPs" that are not only local (module)
hubs but are also those SNPs with strong GWAS associations
with various phenotypes (including disease) (11, 12).

Concurrent with our development of this eQTL network-
based model, Boyle, Li, and Pritchard proposed the om-
nigenic model in which trait association signals are spread
across most of the genome in a way that includes many genes
lacking an obvious connection to a particular trait and they
suggest that most heritability can be explained by effects on
genes outside core pathways but that alter the functioning of
those pathways (22, 23). This model was important in that it
helped bridge the gap between the missing heritability found
in many diseases and the growing number of traits in which
hundreds, if not thousands, of small effect-size genetic vari-
ants contribute to particular traits.

Although it has previously been reported that global hubs in
eQTL networks are enriched for tissue-relevant trait heritabil-
ity (13), as are gene modules appearing in various types of
networks(10), there has not been a systematic exploration of
these two complementary and important conceptual advances
in understanding genetic effects in complex traits. Here we
present an analysis of ten polygenic traits representing a wide
range of genetic heritability to determine the distribution of
trait heritability across 29 tissue-specific €QTL networks.

We found that while heritability is widely distributed as sug-
gested by the omnigenic model, the greatest heritability is
concentrated in network modules that contain genes repre-
senting trait-specific and biologically relevant functions. This
makes logical sense as phenotypic traits arise through al-
terations of specific biological processes relevant to individ-
ual traits. Further, we found that trait heritability was more
likely to be explained by SNPs occupying key positions in the
eQTL networks, especially among the “core SNPs” that are
local hubs in their functional modules. These same SNPs,
which we had previously shown to be enriched in tissue-
specific activated regulatory elements(11), are thus likely to
determine a significant proportion of the heritability of com-
plex traits.

The clustering of heritability in modules is not evenly dis-
tributed across traits and differs between tissues. We find that
heritability in each phenotype tends to be clustered in a small
number of biologically relevant modules within the highly
modular eQTL networks that are relevant for understanding
the phenotype in question. As previously noted, these mod-
ules tend to be trait-specific even when traits are not genet-
ically correlated. This module-dependent concentration of

4 | bioRxiv

heritability, coupled with the enrichment of heritability in
core SNPs of those same modules, could help explain why
even highly connected regulatory networks (22, 23) are ro-
bust to the genetic perturbations of deleterious genetic vari-
ants. Indeed, the highly modular structure of eQTL networks
provides a means by which the disruptive effect of regulatory
mutations can be buffered in a tissue-specific manner against
altering the broader functionality of the wider regulatory net-
works active in living cells.

Overall, our results both demonstrate the concordance be-
tween the eQTL network and omnigenic views of how ge-
netic variants work together to influence traits and provide
some important extensions of each that address their respec-
tive shortcomings. The value of such a synthesis can be seen
in the results derived from the collection of complex traits
we chose to analyze, including cancers, metabolic diseases,
and auto-immune neurodegenerative diseases. In each of
these traits, we can see genetic risk factors identified through
GWAS perturbing tissue-specific functional modules (while
affecting others), while those modules are simultaneously af-
fected by many other genetic variants of smaller overall ef-
fect size. Together, these results define a conceptual frame-
work for understanding disease risk in which one can attempt
to prioritize therapeutic targets and consider ways in which
treatments can be adjusted to allow for the genetic landscape
that lays the groundwork for the phenotypes we manifest.

Methods

GTEx data set. We used genotyping and gene expres-
sion level data from the NHGRI GenotypeTissue Expression
(GTEx) project version 8.0 (24). For appropriate statistical
power in downstream analyses and network stability, we fil-
tered out tissues for which the number of individuals with
both genotyping and RNA-Seq data available was less than
200; sex-specific tissues were not included. This left 29 tis-
sues for analyses, as can be found in (Supplementary Tab.
S2). Genotyping data were downloaded from the database
of Genotypes and Phenotypes (dbGaP): phs000424.v8.p2.
Genotyping data were preprocessed on the Bridges system
at the Pittsburgh Supercomputing Center (PSC) and the Can-
non cluster supported by the Faculty of Arts and Sciences
Division of Science, Research Computing Group at Harvard
University (see (13)).

The sequencing data were processed in plink 1.90 to retain
only SNPs, and we removed variants with genotype missing-
ness greater than 10% or minor allele frequency less than 0.1
(25). SNP imputation was then performed using Eagle2 (26).
Fully processed, filtered, and normalized RNA-Seq data
were obtained from the GTEx Portal (www . gtexportal.
org). The GENCODE 26 model was used to col-
lapse transcripts and quantify expression using RNA-
SeQC (https://www.gencodegenes.org/human/
release_26.html#).

Bipartite eQTL networks inference. Expression quantita-

tive trait loci (eQTLs) were obtained from (13). Rapidly, with
the R MatrixEQTL package (27), the association between
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SNP genotypes and gene expression was modeled using lin-
ear regression (Eq. 1) that included potential confounding
factors as covariates (28): the two first principal components
for population structure, sex, age and RIN that measures
RNA quality. If G is an 7 x m matrix of gene expression
and S is an r X n matrix of SNP genotypes, each with r rows
representing observations and columns representing n SNPs
and m genes, respectively, X is a covariate matrix, the eQTL
of a particular SNP 7 on a locus’s gene expression j is then :

Gj :XToH-ﬁijSi. @

Associations were evaluated for SNPs in both cis — SNPs
within 1MB of a gene’s transcription start site — and trans.
The eQTL associations between all pairs of SNPs and genes
were then represented as a sparse, weighted bipartite net-
work. Each SNP and gene was considered a node in the
network. Using a fixed cutoff ¢ = 0.2 on the false discov-
ery rate (FDR) of the eQTL regression (11, 12), the edge
weight a; ; between SNP 7 and gene j were defined by the
function I; ;{F DR < q}|B;;|. Thus, when the estimated
FDR of the eQTL regression was below the threshold of 0.2,
then a; ; = | ;] indicating there was an edge connecting the
nodes, and a; ; = 0 otherwise.

Network summary statistics. The module structure
of each tissue-specific network was determined us-
ing the bipartite modularity maximization approach
(12), allowing for a balance between computation
time and memory usage. This new implementa-
tion (CONDOR:condorSplitMatrixModularity) has
been published in the R netzooR package fork of
https://github.com/maudf/.

g
ki =S L {FDR < q}(85] @)
j=1

The SNP core score was defined as the SNP’s contribution to
the modularity of its module, it measures the centrality of the
SNP in the module (12). If m = s X g is the total number of
possible edges in a network made of s SNPs and g genes, @;;
is the observed edge value between SNP 7 and gene j. Here,
dj is the gene i indegree defined as d; = >;_, I; ;{FDR <
q}|Bi;|, then, for SNP i in module h, its core score, Q;p,, is
defined by Eq. 3:

1 kz X d;
Qin = mZ(dij - ])5(Ci,h)5(cj,h) 3
J

GWAS data. GWAS data were obtained from the Alkes
group (see Supplementary Tab. S1). We considered a total of
ten traits and diseases presenting varying levels of estimated
genetic heritability. For each trait or disease, we obtained
summary statistics including SNP chromosome, position, al-
lele 1 and 2, XQ, and Z-score.
We used Z? as a proxy for normalized heritability explained
by each SNP. High heritability SNPs were defined as those
with a Z? in the 95th percentile of the distribution.
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GWAS Outdegree and Core Score enrichment among
high heritability SNPs. We compared the distribution of
SNP outdegrees and core scores between the high heritabil-
ity SNPs and the rest of the SNPs in the network using a
likelihood-ratio test (LRT), correcting for linkage disequilib-
rium. To control for LD between SNPs, we generated lists
of SNPs falling into the same LD block, using the plink1.9
—blocks option, a 5-Mb maximum block size, and an r2 of
0.8. In each module, for each LD block, we extracted the
median of either outdegrees (k;) or core scores (Q;3,) for high
and non-high heritability SNPs separately and used these val-
ues as input in the linear regressions.

The LRT we used assesses whether a linear model that in-
cludes GWAS status (Eq. 5) fits the observed data better than
a linear model that does not include this variable (Eq. 4).
As the distribution of SNP @);}, is not uniform across mod-
ules, we added module identity as a covariate in the linear
regression when computing LTR for core scores. In Egs. 4
and 5, Score; is the score of SNP 4 (either outdegree or core
score), I(GW AS = 1) is an indicator function equal to 1 if
the SNP is a high heritability SNP and equal to 0 otherwise,
and I(Cy = 1) is an indicator function equal to 1 if the SNP
belongs to module k£ and equal to 0 otherwise:

n—1
Score; ~ [Z ICy=1)|4+e @&
k=1
n—1
Score; ~ (GWAS =1)+ | > I(Cr=1)| +e (5
k=1

Genetic correlation between traits and heritability en-
richment analyses among local and global hubs. We
computed partitioned heritability with the 97 annotation
baseline-LD model from (29, 30) for each of the ten traits
and diseases selected above. This allowed us to estimate the
enrichment and standardized effect size of the baseline anno-
tations and three additional parameters on the heritability: be-
longing to the network (being an eQTL), having a high outde-
gree, and having a high core score (29, 30). We considered a
binary annotation to ensure sufficiently stable estimates. For
outdegrees and core scores, annotations were set equal to 1 if
k; and QQ;;, were in the top quartile of the distribution and 0
otherwise.

Given that approximately 85% of the GTEx study popula-
tion consists of individuals of European descent, we used
LD scores computed from the 1000 Genomes Project data
from individuals with European ancestry using the GRCh38
genome version and regression weights that exclude the HLA
region; p-values were computed using a block-jacknife.
Meta-analyses were then performed across uncorrelated traits
using the meta.summaries function from the R rmeta package
v.3.0, with random-effect weights. To identify uncorrelated
traits and diseases, pairwise genetic correlations between the
ten traits and diseases were first computed using stratified LD
score regression (S-LDSC). Traits and diseases with a pair-
wise genetic correlation of less than 0.3 were considered un-
correlated.
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High heritability SNP enrichment among modules.
High heritability SNP enrichment among modules was per-
formed using a y2-test on data corrected for linkage disequi-
librium. Using the same LD-blocks as previously described,
we considered that an LD block was a high heritability block
if at least one SNP in this LD block had a Z? in the top
95th percentile. For each module, we counted the number
of high and non-high heritability LD blocks in and outside of
the modules and used these data to perform a y-test.

Gene Ontology enrichment analyses and identification
of tissue-specific modules. We performed Gene Ontology
enrichment analyses using the Bioconductor R topGO pack-
age v.2.44 (31), using the elim method; this method is more
efficient than Fisher’s Exact test (32). The GO categories
are tested sequentially, following the GO tree structure from
bottom to top: if one GO category is found to be signifi-
cant, the genes involved are removed from the parent nodes
before they are tested. The tests are thus not independent,
and no multiple testing correction can be applied. Following
the guidelines in the topGO users’ manual, we filtered uncor-
rected p-values using a stringent threshold of 0.01. We also
filtered out GO categories that did not include at least three
genes in the gene set of interest. The gene ontology database
used in this analysis was the one from the R bioconductor
org.Hs.eg.db package v.3.13.0. For each test, the background
gene set contains all the genes of the network and the gene set
of interest contains all the genes from the module of interest.
We identified common and tissue-specific modules in the
eQTL networks based on pairwise comparisons of GO Term
Assignments. For each module of a first network, the GO ID
enriched in the module was compared to the GO ID enriched
in each of the modules in a second network using Jaccard
Index. The best matching module was determined based on
the highest Jaccard Index, and if the best Jaccard Index was
> (0.3, the modules were considered as similar and otherwise
different. Then, for each module in each tissue-specific net-
work, we counted the number of similar modules in the other
28 networks. If this number of similar functional modules
was < 2, we considered it a tissue-specific module.

Data and code availability. All the code used to an-
alyze the data is available at https://github.
com/maudf/heritability. The new CON-
DOR:condorSplitMatrixModularity ~ is  available  at
https://github.com/maudf/netZooR The data
used for the analyses described in this manuscript were
obtained from: the GTEx Portal on 12/17/19 and dbGaP
accession number phs000424.v8 on 12/17/19 for RNA-seq
and Genotyping data, and from https://alkesgroup.
broadinstitute.org/LDSCORE/all_sumstats/

for GWAS data.
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Fig. 4. Heritability is clustered in trait-specific, biologically significant modules. A. Average proportion of modules enriched in
high heritability SNPs for one to ten traits or diseases across all tissue-specific modules. To remove artifacts due to the high genetic
correlation between the three schizophrenia studies, only one schizophrenia study was taken into account in the analysis. The 0
category represents the modules that are not enriched in high heritability SNPs for any trait or disease. For a split by tissue-specific
network, see Supplementary Fig. S5. B-G. Gene Ontology enrichment analyses results on gene content for a few tissue-specific
modules enriched for high heritability SNPs for one or two traits and diseases. B-C. Bubble plots for top ten terms or terms with p-
value < 0.01 for B. Brain (nucleus accumbens - basal ganglia) module 5, enriched for high heritability SNPs for Alzheimer’s Disease
and multiple sclerosis. C. Colon - Transverse module 149, enriched for high heritability SNPs for Prostate Cancer. D-G. Word clouds
representing word frequencies in gene ontology terms enriched in D. Adipose - visceral omentum, module 142, enriched for high
heritability SNPs for HDL; E. Muscle - skeletal, module 90, enriched for high heritability SNPs for height; F. Whole blood, module 17,
enriched for high heritability SNPs for type 2 diabetes; G. Brain (nucleus accumbens - basal ganglia) module 100, enriched for high
heritability SNPs for schizophrenia.
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Supplementary Information
Supplementary Text.

eQTL networks are highly structured. Using RNA-seq and genotyping data from 29 tissues with > 200 matching samples
from the GTEx data, we performed eQTL studies (see Methods). Including all associations with a Benjamini-Hochberg cor-
rected p-value < 0.2, we built 29 tissue-specific weighted bipartite €QTL networks, using |£3;;|, the coefficient of the linear
regression for SNP i and gene j as weights.

The structure of each eQTL network in terms of modules was then inferred using a new implementation of the bipartite maxi-
mization algorithm that balances computation time and memory usage (see Methods). All of the networks are highly structured,
with modularity values ranging from 0.92 to 0.98 (Supplementary Fig. S1A). To note, as previously shown (11), eQTL network
structure does not recapitulate local linkage disequilibrium, but rather summarizes the genetic component of gene expression
regulation across the genome, with most modules presenting genes and SNPs from at least 2 different chromosomes (Supple-
mentary Fig. S1B). The description in terms of the number of nodes (SNPs and genes) and edges can be found in Supplementary
Fig. SIC-E.

Supplementary Tables.
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Table S1. Description of GWAS data. See GWASDescription.txt.

Table S2. Description of GTEx tissues

Tissues Abbreviations Sample Counts
Adipose - Subcutaneous ADS 581
Adipose - Visceral (Omentum) ADV 469
Adrenal Gland ADG 233
Artery - Aorta ATA 387
Artery - Coronary ATC 213
Artery - Tibial ATT 584
Brain - Cerebellum BCR 209
Brain - Cortex BCO 205
Brain - Nucleus accumbens (basal ganglia) BNA 202
Cells - Cultured fibroblasts FIB 483
Colon - Sigmoid CLS 318
Colon - Transverse CLT 368
Esophagus - Gastroesophageal Junction EGJ 330
Esophagus - Mucosa EMC 497
Esophagus - Muscularis EMS 465
Heart - Atrial Appendage HRA 372
Heart - Left Ventricle HRV 386
Liver LIV 208
Lung LNG 515
Muscle - Skeletal MSK 706
Nerve - Tibial TNV 532
Pancreas PAN 305
Pituitary PIT 237
Skin - Not Sun Exposed (Suprapubic) SKN 517
Skin - Sun Exposed (Lower leg) SKS 605
Spleen SPN 227
Stomach STM 324
Thyroid THY 574
Whole Blood WBL 670

Table S3. Enrichment of /2 in various annotations obtained with LDSC See results LDSCORE_all_scores.txt.

Table S4. Enrichment of each module in high mean Z? and high heritability SNPs. See all_signif_enrichment_bycluster.txt.

Table S5. Number of modules enriched with per-SNP |Z2 and high heritability SNPs for each trait / tissue-specific network
pair. See summary_signif_enrichment_bycluster.txt.

Table S6. Pairwise comparison between traits of modules enriched in high heritability SNPs. See overlap-
ping_enrichment_bycluster_FDR.txt.

Table S7. Gene Ontology enrichment analysis results for each module in each tissue-specific network. See topGO_results.txt.

Table S8. Gene Ontology enrichment analysis results for each module in each tissue-specific network. See tissue-specific_trait-
specific_enriched_modules.txt.

Supplementary Figures.
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Fig. S1. eQTL networks are highly structured and reflect regulatory relationships A. Modularity of each tissue-specific eQTL
network. B. Most modules from eQTL networks contain SNPs and genes from several modules and are not driven by linkage disequi-
librium. C-E. Number of nodes and edges of each tissue-specific eQTL network. C. SNPs. D. Genes. E. Edges at FDR < 0.2.
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tissue-specific networks. p-values were obtained using a likelihood ratio test correcting for linkage disequilibrium.
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Fig. S3. High heritability SNPs have higher core scores. Effect size of being a high heritability SNP on core score in each of the
tissue-specific networks. p-values were obtained using a likelihood ratio test correcting for linkage disequilibrium and module size. As
core scores depend on the number of nodes in a module, core scores were corrected for module identity.
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Fig. S4. Local and global hubs explain a larger share of heritability than expected by chance. Enrichments were computed
using different thresholds to define high core scores and high outdegree in the whole-blood eQTL network from the first 9 deciles to
the top percentile. A. Enrichment of high heritability SNPs among local and global hubs obtained using a likelihood ratio test. B.
Enrichment of k2 explained by global and local hubs obtained using stratified LD Scores and the basal model. A-B. Diamonds = core

scores (local hubs). Circles = degrees (global hubs). Colored points = significant enrichment computed using a meta-analysis across
10 uncorrelated traits and diseases.
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Fig. S5. Proportion of modules enriched for heritability for 0 to 10 traits
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