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The SIAMESE family of cell-cycle
inhibitors in the response of
plants to environmental stresses
Jeanne Braat and Michel Havaux*

Aix Marseille University, CEA, CNRS UMR7265, Bioscience and Biotechnology Institute of Aix Marseille,
Saint-Paul-lez-Durance, France
Environmental abiotic constraints are known to reduce plant growth. This effect

is largely due to the inhibition of cell division in the leaf and root meristems

caused by perturbations of the cell cycle machinery. Progression of the cell cycle

is regulated by CDK kinases whose phosphorylation activities are dependent on

cyclin proteins. Recent results have emphasized the role of inhibitors of the

cyclin-CDK complexes in the impairment of the cell cycle and the resulting

growth inhibition under environmental constraints. Those cyclin-CDK inhibitors

(CKIs) include the KRP and SIAMESE families of proteins. This review presents the

current knowledge on how CKIs respond to environmental changes and on

the role played by one subclass of CKIs, the SIAMESE RELATED proteins (SMRs), in

the tolerance of plants to abiotic stresses. The SMRs could play a central role in

adjusting the balance between growth and stress defenses in plants exposed to

environmental stresses.
KEYWORDS

cell cycle, environmental stress, SIAMESE (SIM), SIAMESE-RELATED (SMR),
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1 Introduction

When exposed to environmental stress, plants reduce their vegetative growth, hence

conserving and redistributing resources and increasing their chance of survival (Mareri

et al., 2022). Plant organ growth relies on two main phenomena: cell proliferation and cell

expansion (Powell and Lenhard, 2012). The coordination of these two processes during leaf

and root growth ultimately determines leaf/root size and shape. In specialized zones of leaf

and root tissues called meristems, growth is driven exclusively by cell proliferation. When

cells leave the meristematic zone, they begin to exit the cell cycle and undergo

differentiation that is accompanied by increases in cell size. Biotic and abiotic stress

stimuli can negatively affect both cell division and cell expansion (Alves and Setter, 2004; Qi

and Zhang, 2020; Shimotohno et al., 2021). In the meristems, stress-induced inhibition of

cell proliferation occurs through perturbations of the cell cycle machinery (Shimotohno

et al., 2021).
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The regulation of cell cycle transitions in plants is similar to that

of animals (Dewitt and Murray, 2003; Inzé and De Veylder, 2006).

Transitions between stages of the cell cycle are controlled by a class

of Ser/Thr kinases known as cyclin-dependent kinases (CDKs). As

indicated by their name, the kinase activity of CDKs depends on

their interaction with regulatory cyclin (CYC) proteins. Cell cycle

progression is regulated by periodic expression of CYCs and their

ubiquitin-mediated proteolysis and by phosphorylation of a variety

of targets by CYC/CDK complexes. However, cell cycle progression

is also regulated by a panoply of inhibitors (CKIs) of CYC/CDK

constituted by the KIP-related proteins (KRPs) and the SIAMESE

family (SIM and SIAMESE RELATED SMRs) (Kumar and Larkin,

2017). It is generally believed that stress-induced cell cycle

inhibition is principally mediated by transcriptional upregulation

of those CKIs, leading to cell proliferation arrest and plant growth

inhibition. Here, we review this scenario, with a particular emphasis

on the involvement of SMRs in the response of plants to abiotic

stresses and in the modulation of their stress tolerance.
2 The cell cycle

To facilitate understanding of the link between CKIs and the

responses of plants to environmental changes, this review will first

present some general aspects of the cell cycle and its regulation.

More detailed descriptions of the plant cell cycle can be found in

several previous reviews (e.g. Mironov et al., 1999; Dewitt and

Murray, 2003; Inzé and De Veylder, 2006; Lang and Schnittger,

2020; Sablowski and Gutierrez, 2022). The cell cycle in eukaryotes

generally follows the same fundamental pattern across all species: It

is divided into four main phases, including the synthesis (S) and

mitosis (M) phases, which lead to the duplication of the genome

and its distribution into daughter cells, respectively. S and M are

separated by the pre-replicative Gap phase 1 (G1) and the post-

replicative Gap phase 2 (G2). During G1, the actively growing cell

synthesizes proteins and organelles necessary for cell division. Then

the cell reaches a checkpoint where it assesses environmental

conditions, cell size, and DNA integrity before entering the S

phase. Once the DNA is replicated, the cell enters the G2 phase,

during which cell growth continues, and proteins are synthesized in

preparation for mitosis. Eventually, the mother cell completes its

cell cycle by entering the mitotic phase, resulting in two daughter

cells that can differentiate, enter senescence or undergo further

division. Plant cells are embedded in a pecto-cellulosic wall and

hence the cytoplasmic division (cytokinesis) cannot occur through

constriction, as in the case of animal cells. Plant cytokinesis is

directed by an organelle called the phragmoplast, an array of

microtubules partially embedded in a protein matrix along which

Golgi vesicles carry the raw materials to synthesize a new cell plate

(Smith, 2002; Jürgens, 2005). The cell plate is a cellulose-rich

structure that forms at the center of the cell and is the precursor

to the definitive cell wall of the two daughter cells.

Coordination between cell division and growth is required for

proper development of multicellular organisms. In response to this

need, complex systems of cell cycle regulation have evolved in
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plants and animals. The proper progression of the cell cycle is

tightly controlled by a family of regulatory Ser/Thr kinases known

as ‘cyclin-dependent kinases’ (CDK) (Mironov et al., 1999; Joubès

et al., 2000). As kinases, the role of CDK is to phosphorylate

targeted proteins specific to different phases of the cell cycle by

activating or deactivating them, and thereby causing the

unidirectional progression of the cycle. Plant CDKs have been

classified into eight different classes: CDKA–CDKG and the

CDK-like kinases (CKL) (Joubès et al., 2000; Vandepoele et al.,

2002). Among them, CDKBs are specific to plants and, along with

CDKAs, they have a primary function in the cell cycle control (Inzé

and De Veylder, 2006). CDKA is considered as a functional

ortholog to yeast CDC2/CDC28 and mammalian CDK1, playing

a crucial role in facilitating transitions from G1 to S and G2 to M

phases in the cell cycle. On the other hand, the two types of CDKB,

CDKB1 and CDKB2, are exclusively expressed during the late S/M

and G2/M phases, respectively (Magyar et al., 1997; Umeda

et al., 1999).

Changes in structural conformation are necessary for the

activation of CDKs. CDKs are consistently expressed throughout

the cycle, and as their name suggests, the oscillations in their

activities depend on corresponding oscillations in the levels of

protein subunits known as cyclins. Cyclins are divided in two

groups: transcriptional cyclins and cell cycle cyclins also known

as canonical cyclins (Quandt et al., 2020). In plants, this last group is

composed of A-, B- and D-type cyclins that have been well

characterized (De Veylder et al., 2011; Van Leene et al., 2011).

Cyclins A and B have been described as mitotic cyclins, preparing

and regulating entry into mitosis. Cyclins D, on the other hand,

prepare and control entry into the S phase. In Arabidopsis, there are

at least 31 of these cyclins (10 cyclins A, 11 cyclins B, 10 cyclins D)

(Vandepoele et al., 2002). However, other cyclins have been

identified in Arabidopsis (C, H, L, P, T, U-type and SOLO

DANCERS cyclins) some of which like CYCH;1 have functions in

core cell cycle machinery (Wang et al., 2004; Van Leene et al., 2011).

By binding to CDKs, cyclins enable the displacement of the T-

loop blocking the active site of the kinase (Gould et al., 1991; Russo

et al., 1996). Throughout the cell cycle, the abundance of different

cyclins is oscillating leading to the formation of a series of cyclin-

CDK complexes (Morgan, 2007). These proteins are regulated not

only at the transcriptional level but also through rapid and specific

proteolysis by the ubiquitin 26S proteasome-dependent pathway.

The full activation of CDK not only requires cyclin binding but also

CDK phosphorylation mediated by cyclin-activating kinases

(CAK), with four such kinases in Arabidopsis (CDKD;1-3,

CDKF;1) (Umeda et al., 2005). CAK phosphorylates the complex

and alters its conformation, triggering an affinity for its substrates.

The cell cycle is also regulated by CAK antagonistic proteins

known as CDK inhibitors (CKI) (Kumar and Larkin, 2017). CKIs

inactivate cyclin-CDK complexes either by binding to the CDK

subunit and thereby modifying its conformation, or upstream of

complex formation, by binding directly to the cyclin binding site

(Sherr and Roberts, 1999). There are two CKI families in plants: the

KIP-related proteins (KRPs) and the SIAMESE family (SIM and

SIAMESE RELATED SMRs). Under certain conditions, CKIs can
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trigger a modified cell cycle process called endoreplication or

endoreduplication. Endoreplication is a variation of the

eukaryotic cell cycle which commonly appears in plants, in which

the stages of mitosis and cytokinesis are bypassed in favor of

repeated DNA replication, resulting in a polyploid cell (De

Veylder et al., 2011). Endoreplication occurs at multiple instances

during plant development and is often associated with

differentiating cells that have already exited the mitotic cycle. This

is why trichome cells in Arabidopsis thaliana are commonly used as

a model to study endoreplication (Walker et al., 2000; Schnittger

and Hülskamp, 2002). For example, endoreplication occurs during

the formation of endosperm in wheat grains or during the

formation of the pericarp in tomato fruits (Sabelli and Larkins,

2009; Chevalier et al., 2011).

Endoreplication in plants occurs also in response to biotic and

abiotic stresses. This process is seen as a specific pathway of

controlling gene expression: increasing the number of copies of

genes allow the plants to increase the copies of genes necessary for

passive and active defense against biotic and abiotic stresses. Thus

endoreplication can help plants to survive in a changing and often

very unfavorable environment (Kołodziejczyk et al., 2023).

Although the molecular mechanisms initiating this process are

increasingly understood especially due to the use of the model

organism Arabidopsis thaliana (De Veylder et al., 2002; Cook et al.,

2013), the physiological roles of endoreplication remain to be

clarified: often, endoreplication is positively associated with cell

growth and differentiation (Melaragno et al., 1993; Roeder et al.,

2010; Massonnet et al., 2011). In other cases, the relationship

between high polyploidy and increased cell growth is not

confirmed (Cookson and Granier, 2006; De Veylder et al., 2011;

Tsukaya, 2019).
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3 SMRs and other inhibitors of the
cell cycle
KRP and SMR are low-molecular-weight proteins with a size

ranging from 8 to 19 kDa for SIM/SMR proteins and from 19 to 32

kDa for KRP proteins. The KRP gene family was initially discovered

based on sequence similarities with mammal KIP genes, and the

SMR gene family was identified based on the mutant phenotype of

the SIM gene, which results in trichomes that divide instead of

endoreplicating (Walker et al., 2000).

Primary sequence alignments of SMR and KRP proteins among

several species have allowed the identification of a unique conserved

domain thought to be a cyclin-binding motif named motif C

(Churchman et al., 2006; Peres et al., 2007; Kumar et al., 2015).

The consensus sequence for motif C is EIERFF (Figure 1B). Motif C

is described as a domain of the rice SMR EL2 protein that interacts

with D-cyclin (Peres et al., 2007) and is also a domain of the KRP1

protein that interacts with CYCD3;1 (Wang et al., 1998;

Churchman et al., 2006). However, recent findings suggest that

motif C may not be universally critical for every CKI interaction. In

addition to motif C, SIM and SMR share two other conserved

domains, commonly referred as motifs A and B (Figure 1A). Kumar

et al. (2018) have demonstrated that mutations within SIM motif A

disrupted CDKA;1 binding, while mutations in motifs B and C have

minimal impact on the ability of SIM to bind CDKA;1.

Furthermore, a recent study has indicated that the same region

within motif A can also function as a CYCA2:3 binding motif,

challenging the notion that motif C is indispensable for binding to

this cyclin (Wang et al., 2020). This suggests that SMRs establish

interactions with cyclins not only through motif C but also through
A

B

FIGURE 1

Presentation of the five major motifs previously identified in SIM/SMR sequences. (A) SIM amino acid sequence, starting at residue 20, indicating the
location of the motifs and their consensus sequences adapted from Kumar et al. (2018). (B) Nomenclature assigned to these motifs according to
findings from 6 comprehensive functional analyses of SIM/SMR sequences. At, Arabidopsis thaliana; Os, Oryza sativa; Zm, Zea mays..
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motif A, and the relative importance of these motifs may vary

among different cyclin/SMR complexes.

Essential motifs other than A, B and C play a critical role in the

comprehensive functionality of SIM/SMR. Initially designated as a

cyclin-binding motif (Churchman et al., 2006), motif D in Figure 1

was later found to have no impact on SIM function when mutated

within the SIM protein (Kumar et al., 2015). Meanwhile, motifs 3

and 5, previously identified by Churchman et al. (2006), have been

redefined as NUCLEAR LOCALIZATION SIGNAL 1 (NLS1) and

NUCLEAR LOCALIZATION SIGNAL 2 (NLS2) (Kumar et al.,

2018) (Figure 1B). A construct lacking motif C, NLS1 and NLS2 was

unable to complement the simmutant, suggesting that at least NLS1

or NLS2 is required for the biological function and complete nuclear

localization of SIM. A study by Dubois et al. (2018) emphasized the

significance of the C-terminal segment of the SMR1 protein,

containing motif C, NLS1 and NLS2, in the nuclear localization

of SMR1. However, uncertainties persist regarding these motifs.

Specifically, it appears that the NLSs in SIMmay serve more specific

functions than targeting the protein to the nucleus (Kumar et al.,

2018). Furthermore, the authors suggest that additional C-terminal

sequences within the protein might also play a role in localizing SIM

to the nucleus or in modifying protein stability.

SIM/SMR are found in a wide range of land plant lineages,

including bryophytes, lycophytes, dicots and monocots (Kumar

et al., 2015). Thus, orthologs of the Arabidopsis At-SIM in the

monocotyledonous plant Oryza sativa have been identified under

the names EL2 and EL2-like (Peres et al., 2007). SIM/SMR

homologs are also known in Solanum lycopersicum (Sl-SMR1, Sl-

SMR2, Sl-SIP4), Solanum tuberosum (St-SMR1), Populus tremula

(Pt-SMR1), and Glycine max (Gm-SMR1) (Churchman et al.,

2006). Orthologs of KRP are found at least in 40 plant species,

including monocots (Oryza sativa, OS-KRP1 to 6) and dicots

(Solanum lycopersicum, Sl-KRP1 and 2, Populus tremula, Pt-ICK1

to 6) and also in 2 gymnosperms. There are no such homologues for

KRP and SMR genes in algae (Chlamydomonas reinhardtii and

Ostereococcus tauri).

Arabidopsis thaliana has 21 CKIs comprising 7 members of the

ICK/KRP family (KRP1 to 7) (Wang et al., 1997; De Veylder et al.,

2001; Wang et al., 2006), and 17 members of the SIM/SMR family:

SIAMESE (SIM, Walker et al., 2000), the SIAMESE RELATED

(SMR) from 1 to 13 and the putative SMR14, SMR15 and SMR16

(Churchman et al., 2006; Van Leene et al., 2010; Kumar et al., 2015).

While numerous studies address the structure, function, and

regulation of KRP proteins in the cell cycle and plant development,

the structural and functional characterization, as well as the

regulation of SIM/SMR proteins, are still in their early stages

of investigation.

Several interactomic approaches based on the techniques of

yeast two-hybrid, Bimolecular Fluorescence Complementation

(BiFC) and Tandem Affinity Purification (TAP) provide an

overview and an exhaustive list of 416 interactions detected

among key regulators of the cell cycle in Arabidopsis, including

31 involving KRP (Van Leene et al., 2011). The other interactomic

study presents 119 interactions between KRP and key cell cycle

regulators (Boruc et al., 2010). The KRP family, belonging to the

core machinery of the cell cycle, exhibits diverse functions in
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regulating cell number and size and more broadly in organ and

plant growth (Gonzalez et al., 2012). Notably, KRP5 has been

shown to be a multifunctional protein bridging cell elongation

and endoreplication (Jégu et al., 2013). KRP5 interacts with

CYCD3;1 leading to inhibition of CYCD/CDKA complexes.

KRP5 can also directly bind to chromatin and induce gene

transcription involved in endoreplication, such as CDC20,

encoding an activator of APC/C. KRP5 can also decondense

heterochromatin (Jégu et al., 2013). Another study showed that

KRP4 is critical for correcting cell size variability in the shoot stem

cell niche by adjusting the G1 phase duration before DNA synthesis

in the S phase (D’Ario et al., 2021).

Regulation of CKIs is believed to primarily take place post-

transcriptionally, with secondary regulatory mechanisms operating

at the transcriptional level (Liu et al., 2008; Ren et al., 2008; Jun

et al., 2013; Kumar and Larkin, 2017; Guo et al., 2023). It is probable

that SMRs undergo post-transcriptional activation following the

initiation of the S phase. Thus, these genes mostly interact with G2/

M-phase cyclins and CDK in Arabidopsis (Walker et al., 2000;

Churchman et al., 2006), suppressing the mitotic step in favor of

endoreplication. Similarly, the rice SMR protein, EL2, also interacts

with cyclins D and CDKA;1 (Peres et al., 2007).

While both SMR and KRP function as inhibitors of CDK and

cell division, they fulfill distinct roles in the cell cycle. It is generally

believed that KRPs and SMRs contribute to the establishment of cell

cycle checkpoints in G1 and G2, respectively (Figure 2). More

detailed descriptions of the differences between SMR and KRP roles

in cell cycle can be found in Kumar and Larkin (2017). KRPs are

primarily inhibitors of the CDKA;1 activity, the main Arabidopsis

G1/S CDK.

Modification of CKI levels strongly perturbs the plant

phenotype: mild overexpression of KRP1 and KRP2 in mitotically

active cells induces the onset of endoreplication resulting in a slight

reduction in leaf size. Conversely, high expression levels of KRP1

and KRP2 in transgenic plants hinder both DNA replication and

mitosis resulting in small serrated leaves and, in some cases, cell

death (Wang et al., 2000; De Veylder et al., 2001; Schnittger et al.,

2003; Verkest et al., 2005). In contrast, strong overexpression of

SIM/SMR has never been observed to inhibit DNA replication or

cause cell death (Churchman et al., 2006; Kumar et al., 2015). High

SMR4 or SMR5 overexpression also leads to serrated leaves and in

some cases in leaf biomass reduction (Yi et al., 2014) but in other

cases not (Braat et al., 2023).

Regarding the mutants, single loss-of-function SMR or KRP

mutants often lead to no phenotype which is commonly attributed

to the redundant functionality of SMR and KRP or a potential

compensatory mechanism between the gene family members

(Cheng et al., 2013; Sizani et al., 2019; Nomoto et al., 2022).

However, multiple loss-of-function CKI mutants have various

effects on plant growth. sim/smr1/smr2 and krp4/6/7 triple

mutations lead to increased leaf area (Kumar et al., 2015; Sizani

et al., 2019) whereas smr1/smr2/smr13, smr1/smr2/smr9/smr13 and

smr5/smr7/smr4 did not exhibit apparent phenotypes regarding the

overall plant growth (Hendrix et al., 2020; Yamada et al., 2022). The

early-stage growth of krp1/2/5/6/7 is accelerated when cultivated in

Petri dishes, but this enhancement gradually diminishes when the
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plants are transferred in soil (Cheng et al., 2013). These findings

suggest that the phenotype of KRP mutants is influenced by the

growth conditions. Similar observations were noted in SMR-

overexpressing lines, which displayed contrasting root length

phenotypes depending on the growth conditions, whether in vitro

or in soil (Braat et al., 2023).
4 CKIs and cell division under
environmental stresses

It is well known that adverse environments affect plant growth

(Mareri et al., 2022). This may simply be because the environmental

conditions are not optimal for growth. For instance, drought stress

inhibits plant growth because water is needed for cell turgor that

drives cell expansion (Ali et al., 2022). Cold stress reduces plant

growth because metabolism is slowed down and enzyme activities

are lower (Fürtauer et al., 2019). However, slower plant growth

under stress is not only a passive consequence of the adverse

environment. Plants also actively slow their growth by signaling

mechanisms in response to stress (Shimotohno et al., 2021). As

sessile organisms continuously exposed to changing environmental

conditions, plants display extraordinary developmental plasticity to

adjust their architecture to the environmental conditions. Proper

organogenesis under changing environments is achieved by actively

modulating the cell cycle machinery (Shimotohno et al., 2021).

Multilevel regulation of CDK activities and their combinational

capacities, as detailed above in chapters 2 and 3, appears to be

particularly well designed for an efficient spatiotemporal control of

the cell cycle in response to external signals. However, the

knowledge on the participation and mode of action of CKIs in
Frontiers in Plant Science 05
this process is still fragmented. The main observations on these

aspects are reviewed below for the responses of plants to abiotic

stresses and are summarized in Figure 3.

Phytohormones are central in the regulation of plant growth

and development, and the concentration of phytohormones is

affected by environmental stresses (Fahad et al., 2014; Waadt

et al., 2022). However, information on the link between

phytohormones and CKIs in the regulation of plant growth under

environmental stresses is scarce. Within CKIs, the KRPs appear to

be the most responsive to phytohormonal changes. Auxin, the

cardinal phytohormone in plant growth regulation, has been
FIGURE 3

Scheme of the induction of CKIs by environmental stresses.
A B

FIGURE 2

Simplified roles of SMR and KRP in the cell cycle regulation. The mitotic cell cycle proceeds through 4 phases: M (mitosis), G1 (gap 1), S (synthesis)
and G2 (gap 2). (A) During mitotic cycle, KRPs primarily inhibit CDKA;1, the main G1/S CDK. Thus KRP can block entry into both S and M phase. SMRs
are inactive throughout G1 and G1/S transition allowing S phase to proceed. They can block entry into M-phase only. (B) During endoreplication, the
cell cycle skips the M phase. KRP activity continues unchanged in establishing G1 checkpoint. In G2 phase, the increased expression of SIM/SMR
strongly inhibits M phase, resulting in a switch from mitotic to endoreplication cycles.
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shown to reduce the transcript levels of KRP1 and KRP2, and this

was associated with enhanced CDK activities (Himanen et al., 2002;

Himanen et al., 2004; Sanz et al., 2011). On the opposite, KRP1 and

KRP2 are highly expressed in the presence of an auxin transport

inhibitor (Himanen et al., 2002; Himanen et al., 2004). KRP2

overexpression decreases the number of lateral roots, as does

auxin deficiency (Himanen et al., 2002; Himanen et al., 2004;

Verkest et al., 2005). These observations indicate an inverse

relationship between KRP expression and auxin concentration,

consistently with the inhibitory effect of KRPs on plant growth.

Another class of phytohormones that regulates plant

development and appears to interfere with CKIs are the

gibberellins (GA). The Arabidopsis GA-deficient ga1-3 mutant

exhibits high expression of several genes encoding CKIs, and this

effect is cancelled by GA (Achard et al., 2009). DELLA proteins

constitute the link in the interaction between GA and CKIs. DELLA

proteins are negative regulators of GA signaling (Achard et al.,

2009), and GA promotes growth through cell expansion by

stimulating destruction of DELLA proteins (Olszewski et al.,

2002). DELLA enhances the expression of KRP2 and SIM

(Achard et al., 2009), and GA applications reduces their

expression (Meguro and Sato, 2014). This suggests that GA

signaling controls the cell cycle by suppressing KRP/SIM

expression (Achard et al., 2009; Lee et al., 2012). STUNTED

(STU) is an intermediate in this signaling process which conveys

the signal through DELLA (Lee et al., 2012). Degradation of the

DELLA repressor RGA by GA upregulates STU which in turn

decreases the expression of genes coding for CKIs. The GA effects

on growth are complex since they are also modulated by jasmonic

acid. The latter hormone interferes with GA signaling by inducing

DELLA proteins and delaying GA-mediated DELLA protein

degradation, resulting in the induction of CKIs and causing cell

cycle retardation (Cheng et al., 2011). On the other hand, the

negative regulatory phytohormone ABA has also been reported to

induce KRP expression in parallel with shoot growth inhibition in

rice (Meguro and Sato, 2014). In Arabidopsis too, abscisic acid

(ABA) triggers the expression of a gene (ICK1) of the ICK/KRP

family (Wang et al., 1998). In contrast, ABA does not

transcriptionally induce SMR1, although it appears to stimulate

the turnover of the protein (Dubois et al., 2018). Based on the effects

of the ethylene precursor on SMR1 levels, these authors suggested

that ethylene could act upstream of SMR1. Accordingly, inhibition

of cell proliferation in the Arabidopsis root meristem by ethylene

has been shown in previous studies (Thomann et al., 2009; Street

et al., 2015). Also, in young developing Arabidopsis leaves subjected

to osmotic stress, ethylene negatively balances cell cycle progression

via inhibition of CDK activity (Skirycz et al., 2011). Moreover, it

should be noted that SIM and SMR8 are targets of EIN3, a master

regulator of the ethylene signaling pathway, in etiolated seedlings

(Chang et al., 2013). The possible link between ethylene and SMR

regulation would deserve to be further studied in the future.

While phytohormones modulate cell cycle inhibitors of the KRP

family, SMR genes seem to be more directly responsive to the

environmental conditions. For instance, stress-induced DNA

damage is associated with the induction of SMR genes. DNA

damage is sensed by two kinases, ATM and ATR (ATAXIA-
Frontiers in Plant Science 06
TELANGIECTASIA-MUTATED and ATM and RAD3-RELATED),

which phosphorylate and activate the transcription factor SOG1

(SUPPRESSOR OF GAMMA RESPONSE 1) (Yoshiyama et al.,

2013; Hu et al., 2016). The latter regulator induces the expression of

hundreds of genes involved in DNA repair and cell cycle arrest. In

particular, SOG1 directly induces the genes for 3 CKIs: KRP6, SMR5

and SMR7 (Yi et al., 2014; Ogita et al., 2018). There are many reports

describing transcriptional changes of SIM/SMR genes in response to

environmental factors such as nitrate (Moreno et al., 2020), reactive

oxygen species (Yi et al., 2014), drought (Dubois et al., 2018; Braat

et al., 2023), DNA damage (Peres et al., 2007; Yi et al., 2014), cadmium

pollution (Hendrix et al., 2018), low/high temperature (Peres et al.,

2007; Zhang et al., 2020a) or salinity/osmotic stress (Peres et al., 2007;

Zhang et al., 2020a). Interestingly, in those previous studies, SMR5was

by far the most responsive SMR gene to the largest range of abiotic

stresses (Peres et al., 2007; Dubois et al., 2018). Thus, SIM/SMR

perceive environmental signals through transcriptional regulation,

suppressing CDK activities and hence inhibiting cell division and

promoting endoreplication.

The exact mechanism by which SMR transcription is modulated by

the abiotic stress conditions is still largely unknown. A recent work

(Braat et al., 2023) has shown that SMR5 is selectively induced by b-
cyclocitric acid, an oxidation product of b-carotene that accumulates in

plants exposed to climatic stresses such as drought or high light

(D’Alessandro et al., 2019). Exposure of Arabidopsis seedlings to b-
CCA concomitantly provoked a strong increase in SMR5 expression

and a down-regulation of many CYC and CDK genes (Braat et al.,

2023). This compound was also found to inhibit root growth and to

induce various genes of stress defense and cellular detoxification.

Additionally, high expression levels of SMR5 were associated with

the induction of several water-saving mechanisms such as suberin

deposition in roots and decrease in non-stomatal transpiration

(Figure 4). Thus, apocarotenoids could be molecular intermediates

that link ROS production under environmental stresses and the

adjustment of the balance between stress protection and growth

through SMR5 upregulation. The precursor of b-CCA, b-cyclocitral,
is also a signaling apocarotenoid which also enhances drought

tolerance (D’Alessandro et al., 2019). Similarly to b-CCA, b-
cyclocitral acts independently of stomatal closure (Ramel et al., 2012)

and inhibits root growth (Braat et al., 2023). In fact, b-cyclocitral is
oxidized into b-CCA in vivo, and exogenous application of volatile b-
cyclocitral on Arabidopsis seedlings resulted in a strong accumulation

of b-CCA in leaves and roots (Braat et al., 2023). Although the effect of

b-cyclocitral on SMR5 expression is not known, it is likely that the b-
cyclocitral-induced phytoprotection against drought stress largely

occurs through b-CCA. The receptor of the apocarotenoid molecule

in this signaling pathway has not yet been identified and constitutes a

major challenge for future research.
5 SMRs, new targets for improving
plant tolerance to abiotic stresses?

SMR1 is induced by moderate water stress, possibly

participating in the arrest of cell cycle progression and growth

of the stressed plants (Dubois et al., 2018). Accordingly,
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overexpressing SMR1 in Arabidopsis led to plant growth inhibition

(Dubois et al., 2018). In fact, SMR1 is a short-lived protein, which is

stabilized and accumulates under drought stress conditions.

Interestingly, a recent study has revealed a specific role for SMR1

in the leaf epidermis (Dubois et al., 2023). SMR1 is required for

differentiation of stomatal lineage ground cells into pavement cells,

hence steering the division and growth of epidermal cells and

modulating the stomatal density. In SMR1-overexpressing

Arabidopsis plants under drought stress, the number of stomata

per unit leaf area is decreased compared to the wild type, reducing

transpiration and resulting in enhanced drought tolerance. In the

absence of SMR1, smr1 mutant plants fail to maintain a low

stomatal density under drought conditions, resulting in enhanced

wilting. However, the lowering of the stomata-mediated gas-

exchange capacities of the leaves by high SMR1 expression levels

restrains photosynthesis, leading to stunted growth. Therefore,

exploitation of SMR1 overexpression to improve drought

tolerance of crop plants is questionable. Enhancing drought

resistance without compromising growth would require

appropriate approaches such as drought-inducible, leaf epidermis-

specific upregulation of SMR1.

Non-stomatal transpiration is another source of water losses in

plants, and its modulation can impact drought tolerance (Yeats and

Rose, 2013; Xue et al., 2017). Several parameters can affect non-

stomatal transpiration such as the amounts of cutin and waxes

deposited at the leaf surface or the density of trichomes. A necessary

step in trichome development is endoreplication (Walker et al.,

2000; Schnittger et al., 2003; Larkin et al., 2007). As explained above,
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DNA replication is repeated without mitosis or cytokinesis,

increasing DNA content and ploidy (Lang and Schnittger, 2020).

Endoreplication is believed to be an adaptive, plastic response to

attenuate the effects of stress (Carneiro et al., 2021). CKIs play a role

in the endoreplication process by suppressing CDK activities

(Shimotohno et al., 2021), and SIM was reported to be required

for this mechanism in trichome development (Churchman et al.,

2006). The morphology and density of trichomes help plants to

adapt to different abiotic stresses such as salt, temperature and

drought, by reducing transpiration and regulating leaf temperature

(Chen et al., 2022). Consequently, SIM could constitute a target for

improving plant tolerance to water stress and/or heat stress.

Unfortunately, SIM-overexpressing Arabidopsis plants have been

reported to have a dwarf phenotype, and their trichomes did not

differ significantly from those of the wild type in size or degree of

branching (Churchman et al., 2006), undermining this idea.

Moreover, SIM expression is not very sensitive to environmental

constraints (Yi et al., 2014), suggesting that its primary function is

not the resistance to abiotic stresses.

SMR5 is the most sensitive SMR gene to environmental stresses.

In particular, SMR5 expression is strongly stimulated by drought

stress conditions, much more than the expression of the other SMRs

including SMR1 (Yi et al., 2014; Dubois et al., 2018; Braat et al.,

2023). SMR5 overexpression was recently found to markedly

increase drought tolerance (Braat et al., 2023). Interestingly,

SMR5-induced protection was not associated with changes in

stomatal conductance and had a limited effect on shoot growth
FIGURE 4

Induction of SMR5 and its effects on plant growth and stress tolerance by the apocarotenoid b-CCA. CCD, carotenoid cleavage dioxygenase. b-CC,
b-cyclocitral, precursor of b-CCA.
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under optimal conditions. In contrast, high SMR5 expression levels

brought about a marked inhibition of root growth and pronounced

physiological changes in root tissues, such as suberin accumulation

and up-regulation of the cellular detoxification pathway. Moreover,

many marker genes for water privation were constitutively induced

in SMR5-overexpressing roots. Thus, high SMR5 levels are

somehow perceived by the plant as a drought stress signal.

The YAK1 kinase is involved in TOR-dependent transcriptional

regulation of SMR genes, including SMR5, hence impacting cell

cycle and meristem activity (Barrada et al., 2019). Interestingly, the

Arabidopsis yak 1mutant is more sensitive to drought than the wild

type (Kim et al., 2016). However, this decreased drought tolerance

of yak1 was attributed to the role of YAK1 in ABA-mediated

responses and in stomatal closure. This is not in line with the

absence of effects of SMR5 overexpression and b-CCA on the

stomatal functioning (Braat et al., 2023), making the participation

of YAK1 to the protective effects of SMR5 unlikely.

The global stimulation of stress defense mechanisms by SMR5

could make this protein a potential candidate for engineering

drought stress-resilient plants. In a transcriptomic analysis of

maize seedlings exposed to heat, cold, salt or drought, SMR was

also associated with the response to abiotic stresses and with seed

development (Zhang et al., 2020a). The concomitant effects on cell

division and cell protection suggest a role for SMRs in the regulation

of the growth-defense trade-off (Figure 4). Future strategies for

resetting the balance between stress resistance and growth to

engineer stress-resistant and high-yielding crops require the

understanding of how stress signaling regulates plant growth

(Zhang et al., 2020b). SMR5 and its inducer b-CCA are new

pieces of the puzzle which could possibly be used to develop one

of these strategies.
6 Future directions

The role of SMRs in the response of plants to environmental

stresses and in the balance between growth and stress defense is still

largely unexplored. Many important questions remain to be

investigated, which could constitute future research objectives:
Fron
- Is drought tolerance inducible by high SMR5 levels in crop

plant species?

- What are the upstream steps in the SMR5-induced pathway

leading to stress tolerance?

- What is the primary target of b-CCA and how the signal leads

to induction of SMR5 expression?

- Why roots are more affected by SMR overexpression than the

plant aerial parts? And how root growth inhibition is

related to drought stress tolerance?

- Rather surprisingly, single and multiple smr mutants of

Arabidopsis showed very little differences with the wild

type under normal and stress conditions (Hendrix et al.,

2020; Braat et al., 2023). Are there functional redundancies

within the SMR family which could explain this lack

of effects?
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- High expression levels of SMR5 and SMR4 led to a marked

enhancement of drought tolerance (Braat et al., 2023).

Considering that the SMR gene family is large, do also

other SMRs modulate plant tolerance to abiotic stresses?
Answering these questions will undoubtedly clarify the roles of

the SMR family in plant stress physiology and will hopefully open

new avenues for improving stress resilience of plants. This review

focuses on the role of SMR cell-cycle inhibitors in the responses of

plants to abiotic stresses. However, we would like to mention that

CKIs could also play a role in biotic stress responses (Kumar and

Larkin, 2017). Several observations point to a likely connection

between CKIs and plant immune responses (Wang et al., 2014;

Hamdoun et al., 2016). This aspect has been relatively understudied

and promises to be an interesting and exciting area of research in

the years to come.
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(2021). Plant CDKs-driving the cell cycle through climate change. Plants 10, 1804.
doi: 10.3390/plants10091804.

Chang, K. N., Zhong, S., Weirauch, M. T., Hon, G., Pelizzola, M., Li, H., et al. (2013).
Temporal transcriptional response to ethylene gas drives growth hormone cross-
regulation in Arabidopsis. eLife 2, e00675. doi: 10.7554/eLife.00675.022.

Chen, J.-J., Sun, Y., Kopp, K., Oki, L., Jones, S. B., and Hipps, L. (2022). Effects of
water availability on leaf Trichome density and plant growth and development of
shepherdia ×utahensis. Front. Plant Sci. 13, 855858. doi: 10.3389/fpls.2022.855858.

Cheng, Y., Cao, L., Wang, S., Li, Y., Shi, X., Liu, H., et al. (2013). Downregulation of
multiple CDK inhibitor ICK/KRP genes upregulates the E2F pathway and increases cell
proliferation, and organ and seed sizes in Arabidopsis. Plant J. 75, 642−655.
doi: 10.1111/tpj.12228.

Cheng, Z., Sun, L., Qi, T., Zhang, B., Peng, W., Liu, Y., et al. (2011). The bHLH
transcription factor MYC3 interacts with the Jasmonate ZIM-domain proteins to
mediate jasmonate response in Arabidopsis. Mol. Plant 4, 279–288. doi: 10.1093/mp/
ssq073.

Chevalier, C., Nafati, M., Mathieu-Rivet, E., Bourdon, M., Frangne, N., Cheniclet, C.,
et al. (2011). Elucidating the functional role of endoreduplication in tomato fruit
development. Ann. Bot. 107, 1159−1169. doi: 10.1093/aob/mcq257.

Churchman, M. L., Brown, M. L., Kato, N., Kirik, V., Hülskamp, M., Inzé, D., et al.
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Inzé, D., and De Veylder, L. (2006). Cell cycle regulation in plant development.
Annu. Rev. Genet. 40, 77–105. doi: 10.1146/annurev.genet.40.110405.090431.
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