
HAL Id: hal-04488233
https://hal.science/hal-04488233

Preprint submitted on 4 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verifying Performance Properties of Probabilistic
Inference

Eric Atkinson, Ellie Y. Cheng, Guillaume Baudart, Louis Mandel, Michael
Carbin

To cite this version:
Eric Atkinson, Ellie Y. Cheng, Guillaume Baudart, Louis Mandel, Michael Carbin. Verifying Perfor-
mance Properties of Probabilistic Inference. 2024. �hal-04488233�

https://hal.science/hal-04488233
https://hal.archives-ouvertes.fr


ar
X

iv
:2

30
7.

07
35

5v
1 

 [
cs

.P
L

] 
 1

4 
Ju

l 2
02

3

Verifying Performance Properties of Probabilistic Inference

Eric Atkinson1, Ellie Y. Cheng1, Guillaume Baudart2, Louis Mandel3, and Michael Carbin1

1 Massachussetts Institute of Technology, USA
2 École normale supérieure, PSL University, CNRS, Inria, France

3 IBM Research, USA

Introduction. Probabilistic inference is an NP-hard problem [5], meaning probabilistic inference systems can
have poor performance in general. Nevertheless, efficient inference techniques exist for many special classes
– including linear-Gaussian models [6], Bayesian networks that are polytrees [9], and Monte Carlo sampling
techniques that work well in widespread practical applications. Probabilistic Programming Languages (PPLs)
provide a general interface for developers to write a program to specify nearly any probabilistic inference problem.
This raises the question: how can developers using PPLs have confidence that their programs will achieve good
performance (e.g. by falling into one of the special classes)?

In this abstract, we discuss the opportunity to formally verify that inference systems for probabilistic pro-
gramming guarantee good performance. In particular, we focus on hybrid inference systems that combine exact
and approximate inference to try to exploit the advantages of each. Their performance depends critically on a)
the division between exact and approximate inference, and b) the computational resources consumed by exact
inference. We describe several projects in this direction:

– Semi-symbolic Inference (SSI) [2] and Delayed Sampling (DS) [8] are types of hybrid inference systems, with
SSI providing limited guarantees by construction on the exact/approximate division.

– Verifying the Exact/Approximate Division is ongoing work to extend SSI’s guarantees to a more complex
class of programs, requiring a program analysis to ensure the guarantees.

– Verifying Memory Consumption is prior work [1] on verifying that DS inference systems execute in bounded
memory.

Together, these projects show that verification can deliver the performance guarantees that PPLs need.

1 function outlier(yobs) {

2 x ← gaussian (0., 100.);

3 for i in 1 .. N {

4 x ← gaussian(x, 1.);

5 o ← bernoulli(.1);

6 if (o) { y ← gaussian(0., 100.); }

7 else { y ← gaussian(x, 1.); }

8 observe(y, yobs[i]);

9 }; x

10 }

Fig. 1. The outlier example. Note that we use
← to sample from a distribution and assume the
input yobs has length at least N.

Semi-Symbolic Inference and Delayed Sampling. SSI [2]
and its predecessor DS [8] are instances of hybrid inference where
the runtime performs exact inference on known efficient special
classes with symbolic distributions, and falls back on general ap-
proximate sampling when necessary.

Consider the outlier example (pseudocode in Fig 1, adapted
from [7, Section 2]). This models a latent random variable x that
evolves according to a Gaussian random walk (Lines 2 and 4).
Observations can be outliers with probability 10% (Line 5). At
each step with an outlier, the observation y is modeled with a
Gaussian unrelated to x (Line 6). Without an outlier, y is mod-
eled with a Gaussian distribution with mean x as in a standard
Kalman filter [6] (Line 7). The code returns x (Line 9), indicat-
ing inference of x from the last iteration, conditioned on all prior
observations of y as values in the array yobs.

For this program, the goal for SSI and DS during inference is to approximately sample values for o at each
step. Then, given concrete values for o, the symbolic distributions for the remaining variables form a linear-
Gaussian model that is amenable to exact inference. While both SSI and DS can implement this system on the
outlier example, one advantage of SSI is that it provides a guarantee: given any program where each variable
is either a) approximate, or b) linear-Gaussian, SSI will never approximate any of the linear-Gaussian variables
(see [2] for details, as well as examples where DS fails to provide this guarantee). This ensures that, under limited
circumstances, SSI achieves the optimal division between exact and approximate inference.

Verifying the Exact/Approximate Division. Despite its guarantees, SSI’s division between exact and
approximate inference within a program remains enigmatic. For example, in the outlier program, depending
on the internal structure of the symbolic state, SSI may choose to approximate o and compute x and y using
exact inference, or alternatively approximate all variables o, x, and y. In general, determining which random
variables SSI will choose to approximate can require in-depth knowledge of the algorithm, and the wrong choice
can significantly degrade performance [4,2].

http://arxiv.org/abs/2307.07355v1


2 E. Atkinson et al.

We propose the use of annotations to control the division of exact and approximate inference at the gran-
ularity of individual random variables. Developers force the runtime to approximate a random variable using
the approx annotation (this is similar to the value construct from prior work [8,4,2]). In the outlier example,
annotating o with approx would cause SSI to always approximate o, guaranteeing that SSI would perform exact
inference on x and y. A developer could further apply the exact annotation to x, which functions as an assertion
that the runtime will compute x exactly. Conversely, should the user fail to annotate o with approx, then an
exact annotation on x will raise an error.

We further propose to formally verify exact annotations at compile-time, and automate this verification with
an abstract-interpretation-based static analysis. Such an analysis would be provably sound – i.e. never consider
a variable exact that SSI approximates in any execution – and we hypothesize it will empirically be precise
enough for common examples. Thus, the analysis provides a certificate that a variable will be exact, which
serves as an enhanced version of SSI’s performance guarantee.

Verifying Memory Consumption. For both SSI and DS, the exact inference component of the system
maintains a symbolic distribution representation at runtime. This leads to the question: how large can this
representation grow? Developers would like their inference runtimes to maintain bounded memory, meaning
the size of the runtime state is a constant multiple of the number of variables in the program (see [1] for a
detailed definition). For example, in the outlier example of Fig. 1, although each iteration instantiates three
new random variables in the symbolic state (assigning them to the program variables x, o, and y) only a total
of three random variables are ever need at runtime (the ones pointed to by the program variables). In this case,
a bounded-memory runtime would use a constant amount of memory regardless of the value of N.

Whether or not DS runs in bounded memory depends on the probabilistic program in question [4,1]. The work
in [1] identified two program properties – the m-consumed property and the unseparated paths property – which
together form a necessary and sufficient condition for DS to be bounded-memory. These are dataflow properties
of the program that are unique to the bounded-memory inference problem. The work in [1] also presents how
to automatically verify these properties with a static analysis that is provably sound and empirically – across
a range of benchmarks – precise enough to verify bounded-memory execution of numerous programs. Overall,
this provides a provably sound way to ensure DS inference systems achieve good memory performance (we are
not yet aware of any work extending this to SSI).

Conclusion. We have discussed techniques to formally verify that hybrid inference systems will achieve good
performance on a program. We discussed SSI, its guarantee on the exact/approximate division, and ongoing
work to extend this guarantee. We also discussed how to formally verify DS runs in bounded memory.

We close by proposing several directions for future work. A natural direction is to extend the DS bounded-
memory guarantees to SSI. We hypothesize that the same DS properties are sufficient but not necessary for
bounded-memory SSI, suggesting that this endeavor will require more work. A related direction is to determine
bounds on SSI’s computational runtime to complement the memory bounds. We suspect computation bounds
to be related to tree-width as is the case for Bayesian networks. Finally, one of the major sources of performance
unpredictability in hybrid inference is the amount of approximation error. While reasoning about the error
from approximate inference is a challenging problem, we predict that recent work on efficiency analysis of
rejection sampling [3] can be adapted to formally verify the approximation error of hybrid inference systems.
Together, tools for verifying the exact/approximate division, memory consumption, computational runtime, and
approximation error would provide important guarantees for most if not all sources of performance issues in
hybrid inference systems for probabilistic programming.

1. Atkinson, E., Baudart, G., Mandel, L., Yuan, C., Carbin, M.: Statically bounded-memory delayed sampling for probabilistic streams. In:
ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications (2021). https://doi.org/10.1145/3485492

2. Atkinson, E., Yuan, C., Baudart, G., Mandel, L., Carbin, M.: Semi-symbolic inferene for efficient streaming probabilistic programming.
In: ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications (2022), https://doi.org/10.1145/3563347

3. Batz, K., Kaminski, B.L., Katoen, J.P., Mateja, C.: How long, O Bayesian network, will I sample thee? In: ESOP (2018)
4. Baudart, G., Mandel, L., Atkinson, E., Sherman, B., Pouzet, M., Carbin, M.: Reactive probabilistic programming. In: ACM SIGPLAN

Conference on Programming Language Design and Implementation (2020). https://doi.org/10.1145/3385412.3386009

5. Cooper, G.F.: The computational complexity of probabilistic inference using bayesian belief networks. Artificial intelligence 42(2-3),
393–405 (1990)

6. Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82(1), 35–45 (03 1960)
7. Minka, T.P.: Expectation propagation for approximate bayesian inference. In: UAI. pp. 362–369 (2001)
8. Murray, L.M., Lundén, D., Kudlicka, J., Broman, D., Schön, T.B.: Delayed Sampling and Automatic Rao-Blackwellization of Probabilistic

Programs. In: International Conference on Artificial Intelligence and Statistics (2018)
9. Pearl, J., Rebane, G.: The Recovery of Causal Poly-Trees from Statistical Data. In: UAI (1987)

https://doi.org/10.1145/3485492
https://doi.org/10.1145/3485492
https://doi.org/10.1145/3563347
https://doi.org/10.1145/3385412.3386009
https://doi.org/10.1145/3385412.3386009

	Verifying Performance Properties of Probabilistic Inference-.5em

