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Abstract: Imaging static Fourier transform spectrometry (isFTS) is used for pushbroom airborne
or spaceborne hyperspectral remote sensing. In isFTS, a static two-wave interferometer imprints
linear interference fringes over the image of the scene, so that the spectral information is
multiplexed over several instantaneous images, and numerical reconstruction is needed to recover
the full spectrum for each pixel. The image registration step is crucial since insufficient accuracy
leads to artefacts on the images and the estimated spectra. In order to investigate these artifacts,
we performed a theoretical study and designed a simulation program. We established that
registration errors create crenellated spatial patterns, the magnitude of which depends on the
radiance gradient of the scene, the amplitude of the registration error, and the wavelength. In the
case of sinusoidal perturbations, which may correspond for instance to mechanical vibrations of
the carrier, we established that spurious peaks appear on the spectrum, similarly to what happens
in dynamic FTS, but with spatial patterns specific to static interferometers.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Imaging static Fourier transform spectrometers (isFTS), in the "high étendue" configuration
[1], are hyperspectral instruments resulting of the association of a static interferometer and a
2D imaging system. They offer various advantages, including high flux collection, with no
slit or narrowband spectral filter, and absence of moving part, unlike classical (or dynamic)
imaging Fourier transform spectrometers [2]. These assets have spurred the development of such
instruments developed for ground-based [3–5], airborne [6–9] and spaceborne [10] applications,
including ocean and atmosphere observation as well as Earth surface observation. For example,
it has been used for precision agriculture and for measuring the speed of a plume from a volcano
[11].

Nevertheless, isFTS are far less common than dispersive imaging spectrometers. This can be
mainly explained by two factors. The first one is that isFTS offers low flexibility about spectral
range and resolution. Indeed, as Fourier transform spectrometers, they necessarily measure
spectra from 0 wavenumber to the maximum wavenumber, with a spectral resolution constant
in wavenumber and not in wavelength. Furthermore, as static interferometers, their spectral
resolution is limited by the number of pixels of the focal plane array, thus preventing from
reaching spectral resolution as fine as with classical FTS. The other main hindrance to the use
of isFTS is that they require heavy data processing algorithms: since they are "push-frame" or
"windowing" [12] spectral imagers, image registration is needed to obtain the interferogram of
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each pixel, and the interferograms have then to be Fourier inverted. The processing chain is
thus quite complex, and errors at any of these processing steps may result in spatial and spectral
artefacts on the hyperspectral cube.

In this article, we will specifically focus on the impact of image registration errors. Previous
studies have been conducted by research teams in the world on the effects of line-of-sight jitter in
dynamic iFTS, see for instance [13,14] or [15]. There are also publications about registration
errors with isFTS, however either they study only slit-based hyperspectral cameras [16,17], or
insist on the need of precise registration for "high étendue" isFTS [18,19], but without describing
in a general way the consequences of registration errors. Thus, in this article, we propose to
describe and quantify the impact of registration errors on the hyperspectral cube, and show
that they may create very specific spatial and spectral patterns. These results are validated by
simulated and experimental data.

In Section 2, we will present "high étendue" isFTS (which we will call from now only by
isFTS, even though all imaging static Fourier transform spectrometers are not of the "high
étendue" class), and emphasize how the registration step is crucial for the hyperspectral image
cube reconstruction, since it may lead to artefacts if not properly achieved. Then, in Section 3, we
will analytically develop a model for image formation and inversion, without image registration
errors. Section 4 will deal with registration error, in the general case and in the more specific
case of periodic errors, which may result from uncorrected and unknown micro-vibrations of the
carrier. Results will be compared with those obtained with dynamic iFTS. Lastly, in Section 5,
we will illustrate these results with experimental data, both from the laboratory and from airborne
instrument.

2. Principle of isFTS

2.1. General principle

As stated above, the isFTS instruments we are interested in are made up of a classical 2D
imaging system and of an interferometer. This latter splits the light coming from the source
in two arms, delays one with an optical path difference (OPD) with respect to the other arm,
and then recombines the two arms. Measuring the signal variation versus the OPD (i.e. the
interferogram) is equivalent to measure the autocorrelation of light, and thus the spectrum after
Fourier transform (see for instance page 42 of [20]). In its most ideal form, the relationship
between the interferogram I and the apparent spectrum S is:

I(δ) =
∫ σmax

σmin

S(σ) ×
1 + µ cos(2πσδ)

2
dσ (1)

with δ the OPD [m], σ [m−1] the wavenumber, and µ the interferometer contrast. In the
following, we will replace S by a radiometrically defined quantity, but at this stage the point is
that by "apparent", we mean that the detector relative efficiency and optical transmittance of the
instrument —apart from the interference term— are included in S. This relationship is a Fourier
(or Cosine) transform. It can be inverted to retrieve the spectrum from the modulated part (AC
part) of the interferogram:

S(σ) =
4
µ

∫ +∞

−∞

(︁
I (δ) − Ī

)︁
× cos(2πσδ) dδ (2)

with Ī the mean value (DC part) of the interferogram. Since the support of S(σ) is contained in
[−σmax,σmax], the interferogram must be sampled with a pitch finer than 1/2σmax —with the
exception of the specific case of narrow spectra which will not be discussed here. In practice,
the measured range of OPD is finite, limited by δmax, so that the retrieved spectrum is the
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true spectrum convolved by the Instrument Line Shape (ILS), a sinc function in the ideal case,
normalized so that

∫
ILS (σ) dσ = 1:

ILS (σ) = 2δmaxsinc (2δmaxσ) (3)

These general considerations about FTS will be useful for the rest of this article. Further
details, which are out of our scope, can be found in excellent dedicated books, like [20] or [21].

In dynamic imaging FTS, the field-of-view is fixed ("staring" mode), and the OPD scan is
performed by moving one or the two mirrors of a Michelson interferometer. Conversely, in
isFTS, the interferometer is designed so that the OPD varies linearly along one direction of
the field-of-view, viz. the along track (ALT) one. Thus, a scan of the scene ("push frame" or
"windowing" mode) in the direction of the variation of OPD provides the OPD scan for each
point of the scene. This scan is provided either by the natural movement of the carrier in airborne
or spaceborne applications, or by a rotating stage for ground-based applications. In any case, the
interferometer itself is not modified. This acquisition process is summarized on Fig. 1. On Fig. 1
(a), we see the image of the scene with the interference fringes created by the varying OPD. As
the carrier moves straight over the scene, a sequence of instantaneous images is taken, so that a
very point on the ground is seen through all the available OPDs. These images are then registered:
on the registered sequence, one ground point is on the same pixel in every image (Fig. 1 (b)). We
can thus extract the interferogram of each pixel from the stack of registered images. Each image
yields one sample to the interferograms. The last operation is to calculate the Fourier or Cosine
transform of each interferogram. The set of spectra corresponding to each scene point constitutes
the hyperspectral cube, an object with two spatial dimensions and one spectral dimension. The
hyperspectral cube can also be seen as a stack of spectral (or monochromatic) images (Fig. 1 (c)).

Fig. 1. Principle of isFTS (a) three instantaneous images of the same scene taken at different
moments. The yellow dot follows the same ground point; (b) the images are registered; (c)
three monochromatic images at different wavelengths.

2.2. Image registration

Image registration is a key step of the data processing. Registration errors cause a mixing of
interferograms from different ground points, this mixing depending on the OPD. The consequence
is thus not a mere blur, but also an alteration of the estimated spectra. A special care is therefore
required to register the images.

Registration may be performed by image processing or using line of sight (LoS) data. LoS data
have the advantage of providing directly the attitude of the instrument (translations and rotations),
which can be converted to image transformation with a robust instrument model, including
distorsion, and, in the case of airborne or spaceborne instruments, a digital elevation model
(DEM), to cope with non horizontal scenes. However, LoS accuracy at the camera frame rate
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may be insufficient for high spatial resolution imaging. On the contrary, image processing has
the advantage to provide directly the useful information, with an accuracy that may be much finer
than one pixel. But image processing alone suffers from drawbacks, it may especially be biased
by moving elements in the scene (e.g. vehicles) or by parallax errors due to different heights in
the scene (e.g. buildings), even though a DEM can also be provided by image processing [22].
The best solution may thus be to merge both approaches: for instance, LoS data provide an initial
set of registration parameters, which are then refined by image processing. This is illustrated on
Fig. 2 with images from the Sieleters infrared airborne isFTS [9] developed at Onera. On Fig. 2
(a), images have been registered only with LoS data, the accuracy of which being about a quarter
of pixel. Despite this subpixel accuracy, artefacts are clearly visible on the spectral images, in
the form of crenellations along the vertical edges. On Fig. 2 (b), image registration has been
improved by image processing, the estimated accuracy being far better than a tenth of a pixel: the
quality of the image is much better, with the disappearance of the artefacts.

a) b)

Fig. 2. Spectral image from the infrared airborne isFTS Sieleters, without (a) and with (b)
fine image registration. In the first case, spatial artefacts appear along near vertical edges,
indicated by the red ellipses.

However, even though the artefacts seem to have disappeared, it is useful to quantify the impact
of registration errors, either because image processing may not be possible (for instance if images
have to be processed onboard the aircraft or the satellite), or merely to specify the registration
accuracy needed to be compliant with the required spectral image quality. Such a quantification
is the topic of the next section, focusing on registration that can be described by mere translation,
i.e. displacement of the carrier at constant altitude, or roll or pitch. This covers a wide part of
the operational situations, and facilitates analytical calculation. We do not deal with unknown
altitude changes, even though the analytical image model we developed may be adapted to this
specific case.
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3. Hyperspectral image model

3.1. Notations and direct problem

To analyze in a theoretical way the effect of registration errors, we first need to know how raw
images are formed on the image sensor, and how the raw image stack is processed in order to
build the interferometric cube and then the hyperspectral cube. Since we focus in this article only
on image registration errors, we can make several simplifying assumptions.

• The scene is defined by its apparent spectral radiance Lσ ((x, y)S,σ) [photons.s−1.m−2.sr−1.m],
in a 2D coordinate system attached to the scene and thus marked by the S subscript, and at
wavenumber σ.

• The imaging system is perfectly stigmatic and without distorsion, and the detector coordinate
system is marked by subscript D. For the sake of simplicity, we will consider a magnification
factor of +1 between the scene and the detector coordinate systems.

• We assume that the scan can be modeled by a mere shift of the scene on the detector,
this shift being defined for image number k by the position

(︁
xP,k, yP,k

)︁
S of the center P

of the instrument field-of-view (which is the point of coordinates (0, 0)D in the detector
coordinate system). This means that, if a point is of coordinates (x, y)D in the detector
coordinate system, then this very point is of coordinate (x + xP,k, y + yP,k)S in the scene
coordinate system:

(x, y)D ⇄ (x + xP,k, y + yP,k)S (4)

The exact value of
(︁
xP,k, yP,k

)︁
S may be unknown: we thus define

(︁
x̂P,k, ŷP,k

)︁
S as the

estimated position of Pk in the scene coordinate system. We will further assume that the
estimated scan is in the y direction and at constant speed, so that:(︁

x̂P,k, ŷP,k
)︁
S = (0, k · ∆y) (5)

• The transmission of the instrument T ((x, y)D,σ) is reduced to the ideal transmission of
the interferometer (see Eq. (1)):

T ((x, y)D,σ) =
1 + µ cos (2πδ (x, y)D σ)

2
(6)

with δ (x, y)D the OPD map, assumed to be independent from σ. We will further assume
that this map varies linearly with y only:

δ(x, y)D = py · y (7)

• We note G [m2.sr] the optical étendue of one pixel, ∆t the integration time [s], and η the
detector quantum efficiency [electron.photon−1].

• We neglect any noise, either readout noise or photon noise, and we assume that the offset
and gain of each pixel are respectively 0 and 1.

With these assumptions, Ik (x, y)D [electrons], the kth image of the sequence, can be written by:

Ik(x, y)D =
G∆t η

2

∫ σmax

σmin

[︁
1 + µ cos(2πδ (x, y)D σ)

]︁
× Lσ

(︁ (︁
x + xP,k, y + yP,k

)︁
S ,σ

)︁
dσ (8)
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3.2. Hyperspectral cube estimation: inverse problem

We now have to extract the interferogram Î of each scene point (x, y)S from the stack of images Ik,
that is to estimate Î ((x, y)S, δk) with δk the sampled OPD. According to Eq. (4) and subsequent
comments, the estimated location of (x, y)S in frame Ik is (x − x̂P,k, y − ŷP,k)D —this is the key
registration step. We immediately deduce that:⎧⎪⎪⎨⎪⎪⎩

δk = δ
(︁
x − x̂P,k, y − ŷP,k

)︁
D

Î ((x, y)S, δk) = Ik(x − x̂P,k, y − ŷP,k)D
(9)

Note that (x − x̂P,k, y − ŷP,k)D may not be the center of one pixel of the matrix detector (or
Focal Plane Array, FPA): it means that image Ik has to be interpolated, but, in the frame of this
article, we will assume that no interpolation error occurs. If there is furthermore no registration
error, that is if

(︁
x̂P,k, ŷP,k

)︁
S =

(︁
xP,k, yP,k

)︁
S, then, thanks to Eqs. (8) and (9), we obtain:

Î ((x, y)S, δk) =
G∆t η

2

∫ σmax

σmin

[︁
1 + µ cos(2πδkσ)

]︁
× Lσ

(︁
(x, y)S ,σ

)︁
dσ (10)

By comparing this equation with Eq. (1), it appears clearly that Î ((x, y)S, δ) is the true
interferogram of spectrum Lσ

(︁
(x, y)S ,σ

)︁
, sampled at OPD δk. Thus, as stated in Section 2.1

with Eq. (2) and subsequent comments, we can retrieve the spectrum Lσ

(︁
(x, y)S ,σ

)︁
, convolved

by the ILS.
In the general case, this OPD sampling may not be regular, and specific algorithms may be

needed to invert the interferogram: we can either use any least squares solver for underdetermined
linear systems (like truncated SVD or conjugate gradients), or the more specific inverse non-
uniform Fourier transform algorithm [23] which exhibits lower computational complexity.
However, for the sake of simplicity of this registration study, we now assume that the OPD map is
linear (Eq. (7)) and that the scan is also at constant speed (Eq. (5)); δk are then regularly sampled
with step aδ = py ·∆y, and we can use the common Discrete Cosine Transform (DCT) to estimate
the spectrum. This latter, in the case of a double-sided interferogram (both negative and positive
OPD from −δmax to +δmax), is given by:

L̂σ ((x, y)S,σ) =
4aδ

G∆t η µ

∑︂
k

[︁
Î ((x, y)S, δk) − ¯̂I

]︁
· cos (2πδkσ) (11)

with ¯̂I the mean value of the interferogram. The sum over k is implicitely done over values of k
such that there exists a frame Ik where the scene point (x, y)S appears. The sum is therefore finite,
leading to the limitation of the spectral resolution by the ILS (see Eq. (3)).

Note that other interpolation schemes could be implemented: although we consider here only
frame-by-frame spatial interpolation, it is for instance also possible to take advantage of multiple
frames to interpolate the signal at both desired ground location and OPD, as proposed in Fig. 7
of [7], also described in [19] (Fig. 3.1). Nevertheless, in the framework of this article, we will
restrict ourselves to frame-by-frame interpolation as described above, since our past experience
has shown that it gives satisfactory enough results in most cases.
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Fig. 3. Top: at the left, the panchromatic scene, consisting of a bright rectangle over a
dark background, and then four examples of instantaneous images, inside the red rectangles.
For sake of clarity, the crossing of xD and yD axes has been set at the bottom left of the
field-of-view rather than at the center. For frame k0, the expected field-of-view is indicated
by the orange rectangle. Bottom: the stack of instantaneous images after registration. There
are no registration errors, save at frame k0. Outside from the frame field-of-view, we have
shown the true scene, to emphasize the registration error. At this frame k0, the two ground
points marked by the blue and green crosses erroneously lie inside the bright rectangle.

4. Hyperspectral cube estimation with registration errors

In the previous subsection we have shown that, without registration errors, we can correctly
estimate the hyperspectral cube, its spectral resolution being only limited by the finite OPD range.
In this section, we will quantify the consequences of registration errors.

4.1. General expression

In case of registration errors,
(︁
x̂P,k, ŷP,k

)︁
S ≠

(︁
xP,k, yP,k

)︁
S. Let us note ε⃗k this error:

ε⃗k =
(︁
εx,k, εy,k

)︁
=
(︁
x̂P,k − xP,k, ŷP,k − yP,k

)︁
(12)

According to Eqs. (8) and (9), we have:

Î ((x, y)S, δk) =
G∆t η

2

∫ σmax

σmin

[︁
1 + µ cos(2πδkσ)

]︁
× Lσ

(︁ (︁
x − εx,k, y − εy,k

)︁
S ,σ

)︁
dσ (13)

with δk = δ
(︁
x − x̂P,k, y − ŷP,k

)︁
D. Note that there is no error on the OPD: the OPD in the cosine

term of the integral is indeed δk. This holds because the OPD map is stuck to the detector, so we
exactly know which OPD is associated with any point of the FPA. But the interferogram intensity
is obviously erroneous with an error defined by:

∆Î ((x, y)S, δk) = Î ((x, y)S, δk) − I ((x, y)S, δk) (14)

where I ((x, y)S, δ) is the true interferogram of point (x, y)S at OPD δ.
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In order to more easily quantify this error, we will now introduce the hypothesis that the scene
radiance is a separable function of space and spectral variables:

Lσ ((x, y)S,σ) = L (x, y)S × Bσ(σ) (15)

with the additional condition that ∫ σmax

σmin

Bσ(σ) dσ = 1 (16)

to remove the ambiguity on the normalization of L and Bσ . L is thus the total radiance
[photons.s−1.m−2.sr−1]. Although this hypothesis would be far too simplifying for the hyper-
spectral cube estimation, it is a good approximation to describe the major gradients of the
interferometric image [24], gradients which convert the registration errors to errors on the
hyperspectral cube. With such an hypothesis, we can express the frame Ik as the product of a
panchromatic image Ipanchro (x, y)S and of a normalized interferogram ι(δ) identical for all the
scene points:

Ik(x, y)D = Ipanchro
(︁
x + xP,k, y + yP,k

)︁
S × ι (δ(x, y)D) (17)

with:
Ipanchro (x, y)S =

G∆t η
2

· L (x, y)S (18)

and
ι (δ) = 1 + µ

∫ σmax

σmin

Bσ(σ) · cos(2πδσ) dσ (19)

Assuming registration errors small enough so that Taylor expansion at first order is appropriate,
we obtain:

∆Î ((x, y)S, δk) = −ε⃗k · ⃗grad
(︁
Ipanchro

)︁
(x, y)S × ι (δk) (20)

We now assume that the nominal scan speed is constant, so that δk is still regularly sampled
and Eq. (11) can be used. Thus, according to Eq. (20) and discarding the mean value Ī of the
interferogram, we obtain the following expression for the error ∆L̂σ = L̂σ − Lσ on the estimated
spectrum:

∆L̂σ ((x, y)S,σ) = −
4aδ

G∆t η µ
×
∑︂

k
ε⃗k · ⃗grad

(︁
Ipanchro(x, y)S

)︁
× ι (δk) × cos (2πδkσ) (21)

δk being the sampled OPD with a constant sampling step aδ = py ∆y:

δk = py · y − k · py · ∆y (22)

Using the definition of Ipanchro (Eq. (18)), we can also express the radiance error with respect
to L :

∆L̂σ ((x, y)S,σ) = −
2aδ
µ

×
∑︂

k
ε⃗k · ⃗grad (L (x, y)S) × ι (δk) × cos (2πδkσ) (23)

4.2. Analysis of the general expression and illustration in the case of a single frame
registration error

From Eq. (21), we see that the larger the panchromatic scene gradient is, the larger the spectral
error is: even though this could have been anticipated, this is nonetheless a significant feature of
the impact of registration errors. A second interesting component of ∆L̂σ ((x, y)S,σ) in Eq. (23)
is cos (2πδkσ): with the y dependency of δk (Eq. (22)), this term is cos

(︁
2πpyyσ − 2πk · py · ∆y

)︁
.

With respect to y, it is therefore a sinusoid, with a period equal to the fringe spacing at wavenumber
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σ, independent from k. This explains the crenellated pattern visible on Fig. 2. Indeed, if we
follow an edge of the panchromatic image, i.e. ⃗grad

(︁
Ipanchro(x, y)S

)︁
being constant, and if we

assume a broad spectrum so that for most of OPD δ, ι(δ) is close to one, then ∆L̂σ ((x, y)S,σ) is
merely a sum of sinusoids of same spatial frequency pyσ: the result is also a sinusoid of same
frequency.

Leaving aside equations, this crenellated pattern can also be graphically explained. Let us
assume a very simple scene, a bright rectangle over a dark background (see Fig. 3). The scan
is uniform in the y direction, with only a single frame registration error, at frame k0, where the
field-of-view is slightly shifted from its nominal position (top layouts of Fig. 3): the expected
position is P̂k0 , but the true position is Pk0 . If we register the frames according to their nominal
(and not actual) position, an error occurs at frame k0, as it can be seen on the bottom layouts of
Fig. 3. If we now consider two points on the registered frame stack, marked by the green and
blue crosses, and close enough to the edge of the bright rectangle, they will suffer errors, both
at frame k0. However, as they are separated along the y axis, the corresponding OPD will be
different for the two points (see Fig. 4). Thus, the error on the spectrum for both points will be a
sinusoid, but not of same frequency in wavenumber. On the illustrated case, error occurs at a
dark fringe for the blue point, but at a bright fringe for the green, if we define the fringes by the
central wavenumber σ0. Thus, at this wavenumber, the error on the spectrum will be minimal (in
true/negative value, not in absolute value) for the blue point, while it is maximal for the green
point. This gives the crenellated pattern. It therefore appears that a single misregistered frame
damages the whole hyperspectral cube, as well spatially as spectrally. Consequently, it may be
difficult to correct the impact of registration errors on the hyperspectral cube itself, and that is
why a special care must be exercised to properly register images.

Fig. 4. Left: interferograms of the two points of Fig. 3, in thin black line the continuous
errorless interferograms, and with coloured dots, the sampled interferograms, with the impact
of the registration error at frame k0. Since the two points have distinct yD location, the same
frame number k correspond to different OPD. Right: the spectral errors for these two points.

4.3. Sinusoidal registration error

A specific case that may be of interest in pratical applications is the one of a sinusoidal error: it
results for instance from residual micro-vibrations of the platform, unestimated by the inertial



Research Article Vol. 32, No. 5 / 26 Feb 2024 / Optics Express 7021

measurement unit (IMU). Decomposition on a sinusoidal basis may also be easier than the
general expression of Eq. (21) for LoS or IMU specifications.

In such a case, the sinusoidal perturbation amplitude of Eq. (12) takes the following form:

ε⃗k =

|︁|︁|︁|︁|︁|︁|︁|︁
εx · cos

(︃
2π

k
K
+ φx

)︃
εy · cos

(︃
2π

k
K
+ φy

)︃ (24)

with K the period of the perturbation in number of frames. ε⃗k · ⃗grad
(︁
Ipanchro(x, y)S

)︁
can thus be

written as follows:

ε⃗k · ⃗grad
(︁
Ipanchro(x, y)S

)︁
= E0(x, y)S · cos

(︃
2π

k
K
+ φ(x, y)S

)︃
(25)

with:
E0 · eiϕ = εx ·

∂Ipanchro

∂x
· eiϕx + εy ·

∂Ipanchro

∂y
· eiϕy (26)

If we still assume the estimated scan speed constant and fringes equidistant, then this sinusoidal
registration error will also derive in a sinusoidal modulation error on the interferogram. Expressed
in OPD, the K frames period is K · py · ∆y. We thus expect to obtain two types of artifacts in the
estimated spectrum. Firstly, we will observe peaks at wavenumbers:

±σp = ±
1

K · py · ∆y
, (27)

because of the DC component of the interferogram. Secondly, we will observe replica of the
spectrum shifted by ±σp, because of the amplitude modulation of the AC component of the
interferogram. Indeed, using Eqs. (25) and (21), and taking advantage of the Fourier transform
relationship between ι and Bσ , one can show (see details in the appendix at the end of the article)
that, for positive wavenumbers:

∆L̂σ ((x, y)S,σ) = −
2E0(x, y)S
G∆t η µ

× cos
(︁
2πpyyσp + φ(x, y)S

)︁
×

[︄
2δmaxsinc

(︁
2δmax

(︁
σ − σp

)︁ )︁
+
µ

2
· B′

σ(σ − σp) +
µ

2
· B′

σ(σ + σp)

]︄ (28)

with δmax the maximum OPD and B′ the spectrum convolved by the sinc ILS (see Eq. (3)). The
three expected terms are well present.

4.4. Discussion and comparison with a dynamic FTS

The error in the estimated spectrum, ∆L̂σ ((x, y)S,σ) is the product of three terms: an amplitude
term depending on the scene geometry and the magnitude of the registration error, a spatially
varying term, and a spectral term. The first two have already been described in subsection
4.2: the perturbation amplitude is proportional to the radiance gradient in the direction of the
registration error, and the spatially varying term comes from the linearly varying OPD map.
Indeed, 2πpyyσp + φ(x, y)S = 2π y

K∆y + φ is the phase of the perturbation when (x, y)S was at the
zero path difference, that is for frame k = y

∆y . Due to the linear OPD map, this phase linearly
depends on the position along y axis. This is the main difference with dynamic iFTS systems: for
these latter, the registration error impinges the interferograms with the same phase, independent
—at least at first order— from the location on the FPA.
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The last term of Eq. (28) is a spectral term, itself consisting of three parts: a main peak due to
the modulation of the DC component, and two replica of the true spectrum due to the modulation
of the AC component. This spectral term is the same as for dynamic iFTS: the reader could for
instance compare it with equation (13) from [15], even though our notation is different. Thus, all
the discussion developed by Miecznik and Johnson in Section 3.1 of [15] about this spectral term
also applies to isFTS.

5. Experimental illustrations

In this Section, we propose to experimentally illustrate the analytical results presented above,
first with laboratory data, so that we can control the registration error, and then with airborne
data from the Sieleters instrument, to demonstrate the relevance of our results in operational
conditions.

5.1. Laboratory results

We designed and built a compact and robust isFTS instrument in the visible domain, specifically
targeted for lab investigations about basic principles and limitations. Especially, in order to avoid
some difficulties in the theoretical analyses, we sized it so that it fulfills the Shannon-Nyquist
criterion: we can thus assume that image interpolation will be errorless.

A picture of the setup and its layout are given on Fig. 5. On the right side, we see (from right
to left) the camera, its imaging lens and the compact interferometer ahead the lens, the whole
being mounted on a rotation stage in order to scan the scene. On the left side, we see the parts
that allow us to build a controlled scene located at infinity, with (from left to right) an integrating
sphere acting as a uniform source, a slide holder and a collimator, the assembly being fixed on
the breadboard in front of the rotating imaging interferometer.

Fig. 5. Experimental setup (top view). 1: integrating sphere, 2: target, 3: baffle, 4:
collimator, 5: polarizer, interferometer (made of two plates) and analyser, 6: imaging lens,
7: camera, 8: rotation stage.

The lateral shearing interferometer gives nearly straight and equidistant fringes located at
infinity. In our experiment, it is a birefringent interferometer, based on the configuration described
in [25]. It is compact, static, and does not require any alignement or tuning. It was designed in
order to give an OPD slope py of 67 nm/pixel, or a ±68 µm OPD excursion on the whole ALT
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field-of-view (±5.8◦) of the imaging system, even though we used only an OPD range reduced to
[-31 µm;+13 µm] in order to deal with lighter data. The birefringent device, manufactured by
Altechna corporation in Calcite material (two plates of thickness 6.30 mm and 3.40 mm), and the
Moxtek polarizers have been carefully designed and mounted in order to avoid any vignetting in
this useful part of the field-of-view. The lens —a C-mount Schneider-Kreuznach ApoXenoplan
35/2.0— has an effective focal length of 35 mm and is used on our experiment with a F-number
of 17 in order to fulfill the Shannon-Nyquist criterion at all useful wavelengths, as stated above.
We put the center of its (virtual) entrance pupil on the rotating stage axis to avoid vignetting
by the collimator when we scan the fixed scene. The panchromatic VisNIR silicon sensor is
an Allied Vision GT2450 camera, with a total of 2448x2050 pixels of 3.45 µm pitch, but only
images of 750 (across-track -ACT) x 700 (along-track -ALT) pixels are used. The optomechanics
of the hyperspectral camera are home-made, and this latter is set on a Thorlabs DDR100/M
rotation stage. Regarding the scene generation, it is a Thorlabs 4P3 100mm-diameter integrating
sphere, fed with an HeNe laser to measure the OPD map, or with a fiber-coupled red LED source
(M625F2) emitting around σLED = 15785 cm−1 for hyperspectral measurements. This integrating
sphere and the LED are used as a uniform back-illuminating stage for a transmittance target, a set
of multi-frequencies (Edmund Optics) Ronchi rulings with increasing spatial frequencies (see
Fig. 6), which is set at the object focal plane of the collimator lens (Thorlabs TTL200), allowing
us to have a spectrally and spatially well defined scene located at infinity in front of the imaging
interferometer.

Fig. 6. Monochromatic images of the scene without (left) and with (right) registration error,
at σLED = 15785 cm−1 (top) and at σp = 12820 cm−1 (bottom). The spectrum of points
marked A, B and C are plotted on Fig. 7.

The motion of the rotation stage is continuous. A single program controls both the camera and
the rotation stage. The total angular amplitude of rotation was set to ±5◦. The frame rate of the
camera is set to 2 Hz, and the rotation speed was set so that the displacement ∆y between two
consecutive images is 1.95 pixel, that is about a quarter of a fringe, much finer than the Nyquist
criterion: aδ = py ∆y = 130 nm. We thus obtained a sequence of 712 images cropped to 750x700
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pixels. A two-point Non-Uniformity Correction (NUC) is applied to these images, with a camera
gain previously measured without the interferometer.

These images are first registered assuming a constant angular scan speed. We thus obtain an
hyperspectral cube which we consider as the reference data. We then purposely add an ACT
sinusoidal perturbation of amplitude εx = 0.5 pixel, and of period K = 6 images, leading to
σp = 12820 cm−1.

Figure 6 shows "monochromatic" images, at two wavenumbers, σLED and σp, both without
and with registration errors: the crenellated artifact is clearly visible on the vertical edges of the
scene at σp. Its spatial period is 11.6 pixel, perfectly in line with the expected value given by the
cosine term of Eq. (21): 1

pyσp
.

The spectral extent and magnitude of the artefact are also consistent with the theoretical results,
as it can be seen on Fig. 7: we plotted on the bottom part on this figure ∆L̂σ for the three points
marked by a red circle on Fig. 6. The spurious peak has a sinc shape with a full bandwidth
(at first zero) indeed equal to the spectral resolution of the spectrometer 1

δmax
= 322 cm−1 with

δmax=31 µm. We indicated by a black star the expected value of the peak magnitude, computed
from Eq. (28) and using an estimation of the gradient of the panchromatic image by finite
difference. Agreement is quite good, and the tiny differences may be partly explained by the
errors due to the numerical estimation of the gradient.

Fig. 7. Top: spectra for the three points A, B and C marked on Fig. 6, without registration
error in blue, and with in red. For sake of readability, an offset is added to the spectra.
Bottom: error on the spectrum due to registration error. Here also, an offset has been added
to ease the figure understanding.

5.2. Airborne results

Another illustration of the theoretical results of the previous Section is provided by airborne
experimental data, acquired with the Sieleters instrument [9]. In this instrument, image registration
is performed with two steps, as indicated in SubSection 2.2: the LoS data give a first estimation,
refined by image correlation. We consider that, with respect to the LoS accuracy, image
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correlation provides the true registration parameters, and therefore the difference between these
parameters and LoS-based ones is the registration error.

In the same way as Fig. 6, we plotted on Fig. 8 Sieleters images at two distinct wavenumbers,
registration being performed with LoS data only or refined by image correlation. It clearly
appears that when using LoS data only, severe artefacts degrade the image at 2700 cm−1, but not
at 2630 cm−1.

Fig. 8. Monochromatic images from Sieleters when interferometric images are registered
with LoS data and image correlation (left), or with LoS data only (right), at 2632 cm−1 (top)
and 2702 cm−1 bottom. The spectrum of points marked A, B and C are plotted on Fig. 9.
On the right, we included a zoom to show the spatial period of the artefact, about 2.7 pixels,
as expected at 2700 cm−1. We also included the corresponding area of the panchromatic
image.

The explanation comes from Fig. 9. On the left, we plotted the difference between registration
with and without image correlation as a function of frame number. Except for a very smooth drift
on the y axis (probably coming from bias on the correlation image due to different elevations
in the scene), this difference is quite low, below 0.2 pixel. However, oscillatory components
are present, as revealed by the Fourier transform shown on the bottom right, with the frequency
axis expressed in wavenumber according to Eq. (27). Above this frequency analysis we have
shown the spectrum of the three points A, B and C, marked on Fig. 8, and the difference between
spectra estimated with LoS only or LoS plus image correlation registration: there is an undoubted
conformity between the peaks of the registration error and the spurious peaks in the spectra. This
proves, on an operational airborne instrument, how important very precise image registration is,
both to have geometrically clean images (suppression of the crenellated pattern which may for
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instance complicate image segmentation), and accurate spectra (suppression of spurious peaks,
which may for instance be interpreted as atmospheric lines).

Fig. 9. Left: registration error when using LoS data only, in the x (ACT) and y (ALT)
directions, as a function of frame number —note however that the slow drift along the y axis
may rather come from image correlation errors. Right: at the bottom, the Fourier transform
of the registration errors, with the frequency axis converted in wavenumber according to
Eq. (27), at the middle, the error on the spectrum for the three points marked on Fig. 8, and
at the top, the spectrum of these points, with and without registration errors. The dotted
lines have been set on the two main peaks of the Fourier analysis of the registration error.

6. Conclusion

Image registration is a key step of an isFTS processing chain, and registration errors may have
significant impacts on the hyperspectral image quality. We analytically established the existence
and significance of spatial and spectral artefacts on the edges of the scene. The spatial artefacts
are very specific to isFTS, with, on the spectral images, a crenellated pattern of same spatial
frequency as the interference fringes on the interferometric images. Spectral artifacts are similar
to those obtained by dynamic iFTS: each temporal frequency of the registration error adds a peak
in the spectrum and two ghost spectra. Experimental results, both from laboratory and from
airborne images, confirmed this analysis. We hope that this work will help the engineers who are
developing such isFTS in correctly designing their system, either in provisioning well-adapted
IMU, in establishing the required platform stability, or in deciding whether an image-based
registration is required.

Appendix: details of calculation of Eq. (28)

Thanks to Eqs. (21), (22) and (25), and defining Cst as:

Cst = −
4aδ

G∆t η µ
(29)
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with aδ = py · ∆y, we have:

∆L̂σ ((x, y)S,σ) = Cst ×Re

{︄∑︂
k

E0(x, y)S · cos
(︃
2π

k
K
+ φ(x, y)S

)︃
× ι (δk)× e2iπpyyσ × e−2iπkaδσ

}︄
(30)

We then introduce σp defined by Eq. (27) and we obtain:

∆L̂σ ((x, y)S,σ) =
Cst

2
× Re

{︄
E0(x, y)S · e+2iπpyyσ · e+iϕ(x,y)S ·

∑︂
k

e+2iπkaδ ·(σp−σ) · ι (δk)

+ E0(x, y)S · e+2iπpyyσ · e−iϕ(x,y)S ·
∑︂

k
e+2iπkaδ ·(−σp−σ) · ι (δk)

}︄ (31)

with δk = py y − k aδ .
According to Eq. (19), ι(δ) is such that ι (δ) = 1+ µ

2

∫ +∞
−∞

Bσ(σ) · e2iπδσ dσ with Bσ defined
by parity for negative wavenumbers. Thus:∫ +∞

−∞

ι(δ + δ0)e−2iπδσ dδ =
[︂
Dirac(σ) +

µ

2
Bσ(σ)

]︂
× e+2iπδ0σ (32)

and after regular sampling of step |aδ |, we get on the basic wavenumber cell [−σmax,+σmax]:∑︂
k
ι(δ0 − k aδ)e+2iπkaδσ =

1
|aδ |

[︂
Dirac(σ) +

µ

2
Bσ(σ)

]︂
×e+2iπδ0σ (33)

The OPD range being limited between −δmax and +δmax, the sum over k and the spectral
resolution are also finite:∑︂

k
ι(δ0 − k aδ)e+2iπkaδσ =

1
|aδ |

[︂
2δmaxsinc(2δmaxσ) +

µ

2
B′

σ(σ)
]︂
× e+2iπδ0σ (34)

B′ being B convolved with the ILS.
Using this result we have:∑︂

k
e+2iπkaδ ·(±σp−σ)·ι (δk) =

1
|aδ |

[︂
2δmaxsinc(2δmax

(︁
σ ∓ σp

)︁
)+
µ

2
B′

σ(σ∓σp)
]︂
× e+2iπpyy·(±σp−σ)

(35)
where we used the parity of sinc and of B′

σ . And consequently:

R

{︄
E0(x, y)S · e+2iπpyyσ · e±iϕ(x,y)S ·

∑︁
k e+2iπkaδ ·(±σp−σ) · ι (δk)

}︄
=

E0(x,y)S
|aδ |

· cos
(︁
2πpyyσp + φ(x, y)S

)︁
×

[︂
2δmaxsinc(2δmax

(︁
σ ∓ σp

)︁
) +

µ
2 B′

σ(σ ∓ σp)
]︂ (36)

Therefore, Eq. (31) becomes:

∆L̂σ ((x, y)S,σ) = Cst

2 ·
E0(x,y)S
|aδ |

· cos
(︁
2πpyyσp + φ(x, y)S

)︁
×

[︂
2δmaxsinc(2δmax

(︁
σ − σp

)︁
) + 2δmaxsinc(2δmax

(︁
σ + σp

)︁
) +

µ
2 B′

σ(σ − σp) +
µ
2 B′

σ(σ + σp)
]︂

(37)
and we can further simplify by neglecting the sinc(2δmax

(︁
σ + σp

)︁
) term, since it is a peak at

−σp while we are only interested in positive wavenumbers. Thus, we can write:

∆L̂σ ((x, y)S,σ) = −
2E0(x, y)S
G∆t η µ

· cos
(︁
2πpyyσp + φ(x, y)S

)︁
×

[︂
2δmax · sinc(2δmax ·

(︁
σ − σp

)︁
) +
µ

2
B′

σ(σ − σp) +
µ

2
B′

σ(σ + σp)
]︂ (38)
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which is Eq. (28).
As for Eq. (23), it may be sometimes more convenient to express ∆L̂σ with respect to L rather

than Ipanchro. We thus define E0 = E0 ×
2

G∆t η , which equivalent to:

ε⃗k · ⃗grad (L (x, y)S) = E0(x, y)S · cos
(︃
2π

k
K
+ φ(x, y)S

)︃
(39)

with:
E0 · eiϕ = εx ·

∂L

∂x
· eiϕx + εy ·

∂L

∂y
· eiϕy (40)

Then, we obtain:

∆L̂σ ((x, y)S,σ) = −E0(x, y)S · cos
(︁
2πpyyσp + φ

)︁
×[︂2δmaxsinc(2δmax

(︁
σ − σp

)︁
)

µ
+

B′
σ(σ − σp) +B′

σ(σ + σp)

2

]︂ (41)
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