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Automatic Rao-Blackwellization for Sequential Monte Carlo
with Belief Propagation

Waı̈ss Azizian 1 Guillaume Baudart 2 Marc Lelarge 3

Abstract
Exact Bayesian inference on state-space mod-
els (SSM) is in general untractable, and unfortu-
nately, basic Sequential Monte Carlo (SMC) meth-
ods do not yield correct approximations for com-
plex models. In this paper, we propose a mixed
inference algorithm that computes closed-form
solutions using belief propagation as much as pos-
sible, and falls back to sampling-based SMC meth-
ods when exact computations fail. This algorithm
thus implements automatic Rao-Blackwellization
and is even exact for Gaussian tree models.

1. Introduction
In this paper, we focus on online Bayesian inference for
state-space models (SSM). A characteristic example is an
agent which relies on a tracker model to continuously es-
timate its position from noisy observations, and use the
current estimation to decide its next action.

This work focuses on Sequential Monte Carlo (SMC) infer-
ence algorithms (Chopin & Papaspiliopoulos, 2020) intro-
ducing a small probabilistic programming language (PPL)
to validate new algorithms. We implemented the simplest
SMC method: the bootstrap particle filter (Gordon et al.,
1993) requiring only simulation of the prior distribution.
While widely applicable, it is suboptimal with respect to
Monte Carlo variance in situations where analytical relation-
ships between random variables (such as conjugate priors or
affine transformations) can be exploited. Within SMC, this
translates into improvements such as Rao-Blackwellization
(Doucet et al., 2009), and this paper seeks to automate it for
the user of our PPL.

This paper presents the following contributions: 1) A Ju-
lia domain specific language OnlineSampling.jl to describe
SSM focusing on reactive models, i.e., streaming probabilis-
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tic models based on the synchronous model of execution. 2)
A new algorithm mixing approximate SMC methods with
exact belief propagation for online Bayesian inference.

In Section 2, we briefly discuss the specificities of our PPL
(for general purpose PPL in Julia see Turing.jl (Ge et al.)
or Gen.jl (Cusumano-Towner et al.)). In Section 3, we
present our new algorithm based on belief propagation for
the Rao-Blackwellization. Some experiments are presented
in Section 4 and related work in Section 5.

The code is available at:
https://github.com/wazizian/OnlineSampling.jl.

2. Reactive probabilistic programming
To program reactive probabilistic models, we designed
a Julia embedded domain specific language inspired by
ProbZelus (Baudart et al., 2020). Following the dataflow
synchronous approach (Benveniste et al., 2003), programs
execute in lockstep on a global discrete logical clock. In-
puts and outputs are data streams, and programs are stream
processors.

A stream function is introduced by the macro @node. Inside
a node, the macro @init declares a variable as a memory.
Another macro @prev accesses the value of a memory vari-
able at the previous time step (@prev macros can be nested
to access values arbitrarily back in time).

In the line of recent probabilistic programming lan-
guages (Tolpin et al., 2016; Goodman & Stuhlmüller, 2014;
Murray & Schön, 2018; Bingham et al., 2019), our lan-
guage is extended with two probabilistic constructs: 1)
x = rand(D) introduces a random variable with prior dis-
tribution D, 2) @observe(x, v) conditions the models as-
suming the random variable x takes the value v.

2.1. Running example

As a running example, consider a simple tracker model
which continuously estimates the position of a runner on a
trail from noisy observations of its speed and altitude and a
map of the trail. This model can be implemented as follows
(a mathematical description is provided in Equation (2)):
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1 @node function model()
2 @init s = rand(Normal(0, σs

0))
3 @init x = rand(Normal(0, σx

0 ))
4 s = rand(Normal(@prev(s), σs))
5 x = rand(Normal(@prev(x) + @prev(s), σx)
6 a = alt(x)
7 return x, s, a
8 end

10 @node function tracker(s_obs , a_obs)
11 x, s, a = @nodecall model()

12 t = rand(Normal(s, σt))

13 b = rand(Normal(a, σb))
14 @observe(t, s_obs)
15 @observe(b, a_obs)
16 return x
17 end

The stream function model describes the generative model
of the runner and returns at each time step t ∈ N the current
state, i.e., position xt, speed st, and altitude at. The speed
follows a Gaussian random walk (Line 4). The position is
Gaussian distributed around the (discrete) integral of the
speed (Line 5). The altitude can then be deduced from the
map using the function alt, which maps a position to an
altitude (Line 6). All parameters σ are constant.

The stream function tracker then conditions this model
on noisy observations from a speedometer (s_obs) and an
altimeter (a_obs). Line 11 specifies that the position, speed,
and altitude are r.v. generated according to the model. We as-
sume that both observations are Gaussian distributed around
the estimations computed by the model (Lines 12 to 15).
Remark 2.1. For ease of presentation, we separate the model
for the generative model and the tracker for the inference.
As a result, here, observations are made “after” the model,
but we will see later that making observations inside the
model can be helpful, and this is doable in our framework.

2.2. Mixed inference with SMC

For such models, inference is a discrete process that returns
the posterior distribution of state at the current time step
given the observations so far. Unfortunately, for complex
models, there is no closed-form solution for the posterior
distribution. For instance, in our example, the call to the alt
function makes the problem intractable. Basic Sequential
Monte Carlo (SMC) methods on the other hand do not yield
correct approximations for complex models.

To mitigate these issues, mixed inference algorithms (Mur-
ray et al., 2018; Baudart et al., 2020; Atkinson et al., 2022)
extend an SMC sampler with the ability to perform exact
computations on subsets of random variables. The SMC
sampler launches N independent simulations of the model,
or particles. Each particle performs exact computations
as much as possible and, when it fails, samples concrete
values for a few random variables before resuming the com-

putations. These methods thus implement automatic Rao-
Blackwellization.

Following these ideas, we propose a new mixed inference
algorithm that uses Gaussian belief propagation (Weiss &
Freeman, 1999) for exact computations. Inference is thus ex-
act for all models (or parts of a model) that can be expressed
as Gaussian Trees. For instance, in the runner example, it
is possible to compute exact distributions for s and x and
sample a to perform the last observation.

3. Rao-Blackwellization with belief
propagation

We describe in the next section the subroutine used to do
exact marginalization for Gaussian trees thanks to belief
propagation and show in the following section how it applies
to our dynamic online setting.

3.1. Belief propagation for Gaussian trees

Static probabilistic model: we consider a rooted tree T =
(V,E, r) where (V,E) is a tree, i.e. an acyclic graph, and
r ∈ V is a particular node of the tree called the root. In a
rooted tree, there is a natural notion of parent and children:
for each node v ∈ V \{r}, there is a unique node in the tree
closest to the root in the neighbors of v. This node is called
the parent of v and denoted by π(v; r).The other neighbors
of v in the tree are called the children and are denoted by
c(v; r) ⊂ V . We also define the children of the root c(r; r)
as the set of neighbors of the root r. For v ∈ c(r; r), we
denote by Tv the tree rooted at v obtained when the root r
is removed from the original tree T .

For a rooted tree T = (V,E, r), we associate with each
v ∈ V , a random variable xv such that the distribution
satisfies:

p((xv)v∈V ) = p(xr)
∏

v∈V \{r}

p(xv|xπ(v;r)). (1)

A Gaussian tree corresponds to the particular case where
p(xr) = N (µr,Σr) is the density of a Gaussian random
variable and all conditional probabilities p(xv|xu) with u =
π(v; r) correspond to linear Gaussian models:

p(xv|xu) = N (xv|A(v|u)xu + b(v|u),Σ(v|u)),

with fixed matrices A(v|u),Σ(v|u) and vector b(v|u).

For a Gaussian tree, marginalization of the root is straight-
forward. From (1), we see that

p((xv)v∈V ) = p(xr)
∏

v∈c(r;r)

p((xu)u∈Tv |xr)

= p(xr)
∏

v∈c(r;r)

p(xv|xr)
∏

u∈Tv\{v}

p(xu|xπ(u;v))︸ ︷︷ ︸
Gaussian tree Tv

,
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so that if we observe a realization of the random variable
xr, we can compute its likelihood with p(xr), and we are
left with a forest of Gaussian trees (note that p(xv|xr) is
a Gaussian distribution and we have π(u; v) = π(u; r) for
v ∈ c(r; r) so that the (other) conditional probabilities are
the same as in (1)).

In a Gaussian tree, it is possible to marginalize easily at any
v ∈ V thanks to the conjugacy properties of the Gaussian:

Proposition 3.1. Given a Gaussian tree T with root r and
a neighbor of the root denoted r′, we have

p((xv)v∈V ) = p(xr′)
∏

v∈V \{r′}

p(xv|xπ(v;r′)),

where p(xr′) =

N
(
xr′ |A(r′|r)µr + b(r′|r),Σ(r′|r) +A(r′|r)ΣrA

T
(r′|r)

)
and for v ̸= r, r′, we have p(xv|xπ(v;r′)) = p(xv|xπ(v;r))

and, p(xr|xr′) = N
(
xr|A(r|r′)xr + b(r|r′),Σ(r|r′)

)
,

with A(r|r′), b(r|r′) and Σ(r|r′) given by the standard
conditional Gaussian distributions (see Appendix 6.1).

Our algorithm to marginalize for a rooted Gaussian tree
at any vertex v ∈ V is now straightforward: thanks to
Proposition 3.1 applied on the path from the root r to v,
compute the joint probability (1) with v as the new root; after
marginalization at the new root v, we obtain a forest of new
rooted Gaussian trees so that we can iterate marginalization
with the same procedure on each of them.
Remark 3.2. A more classic presentation of belief propaga-
tion consists in marginalizing all nodes thanks to a message-
passing algorithm on the tree. Here, we compute the mes-
sage passing only on the required path from the old root to
the new one.

3.2. Rao-Blackwellized sequential Monte Carlo

We first show how our algorithm allows us to recover the
Kalman filter. We consider the very simple Hidden Markov
Model (HMM) given by: x0 is a Gaussian r.v. and for t ≥ 0,

xt+1 = xt + ϵxt , and yt+1 = xt+1 + ϵyt ,

where ϵxt and ϵyt are independent Gaussian r.v. Clearly for
any T > 1, the law of (xt, yt)t≤T is given by a Gaussian
tree where all the xt’s are connected through a line when
t is increasing and the yt are leaves connected to the cor-
responding xt. In the typical setting for the Kalman filter,
we observe the yt and estimate the corresponding state xt.
Applying belief propagation on the Gaussian tree, when we
observe yt, we move the root to yt, and marginalize it. Since
the root where we marginalize is a leaf connected to xt, we
obtain a new Gaussian tree rooted at xt with an explicit

Gaussian distribution for xt. When we observe yt+1, we
can run the same algorithm. It is easy to check that we obtain
the same analytic expression as the standard Kalman filter
(and the extension to a linear model instead of the simple
random walk model presented here is straightforward).

Note that as t increases, we have a larger and larger Gaussian
tree (indeed a line in this case). Indeed, if we kept this grow-
ing tree, we could implement a smoothing algorithm to com-
pute exactly the distribution p(x0, x1, . . . , xt|y1, . . . , yt)
(but the memory requirement would grow with t). Here
we are interested in filtering i.e., computing the distri-
bution p(xt|y1, . . . , yt). In this case, since (xt)t is a
Markov chain, we can compute p(xt+1|y1, . . . , yt+1) from
p(xt|y1, . . . , yt) and ignore all the tree structure involving
x0, x1, . . . , xt−1. In our algorithm, once the tree is rooted at
xt, we never access the nodes corresponding to x0, . . . , xt−1

so that we can indeed remove them. In our implementation,
this will be done automatically, thanks to the garbage col-
lector of Julia, ensuring a bounded memory footprint.

We now consider the model presented in Section 2.1, where
symbolic and numeric computations are done. The initial
speed s0 and position x0 of the runner are Gaussian r.v. and
the model is given by:

st+1 = st + ϵst (2)

sobs
t+1 = st+1 + ϵobs,s

t (3)
xt+1 = xt + st (4)
at+1 = alt(xt+1) (5)

aobs
t+1 = at+1 + ϵobs,a

t , (6)

where st is the speed of the runner, xt his position on the
trail and at his corresponding altitude. The variables with
superscript obs are noisy measurements of the speed and
altitude. We assume that the alt function (giving the altitude)
is known (but not linear).

This SSM is non-linear, and there is no tractable formula
to compute estimates for the state (position, speed, and alti-
tude). As a result, our algorithm will rely on sampling if this
model is coded as presented in Section 2.1. But, we can use
Remark 2.1 and ”mix” the model and the inference by in-
serting observations inside the model: contrary to the code,
we included an observation of the speed before computing
the new position (which is possible within our framework).
As a result, we see that equations (2) and (3) correspond
exactly to the Kalman filter described previously. By ig-
noring the altitude observation, we have a Gaussian linear
model for the speed for which computations can be made
analytically. As a result, our algorithm will compute exactly
p(st|sobs

t ) and rely on sampling for the remaining xt and at.
Our experiments below, show that this approach is much
more efficient than a standard SMC.
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4. Experiments
For our first experiment, we checked that our algorithm
recovered the Kalman filter for linear SSM. To do so, we
compared our numerical values with two Julia packages:
Kalman.jl1 (specifically built to run Kalman filter) and Re-
activeMP.jl2 (an efficient reactive message passing based
variational inference engine). We found that all three meth-
ods agree numerically. We then compared the execution
times and found (see Figure 3 in Appendix 6.2) that the
package built specifically for Kalman filter is the fastest,
and that our algorithm is slower but can handle much more
complex models.

Figure 1. Covariance matrix computed by our Gaussian belief prop-
agation for a (discretized) Brownian bridge.

In our second experiment, we checked that our algorithm
could mix analytical computation and observations (see
Remark 2.1): we modeled a simple random walk starting
at zero and conditioned it to finish at time T at zero by
adding an observation for the last value of the random walk.
We know that when the step size goes to 0, the limit is a
Brownian bridge B(t) with covariance structure given by
Cov(B(s), B(t)) = min(s, t)−st/T . We checked that our
algorithm computed this covariance matrix (Figure 1).

In our third experiment, we implemented the tracker model
presented above. We simulate a runner to generate the
observations and to make the problem more interesting,
observations are only available every five timesteps. We
generate runs of length 5000, and for each simulation, the
measure of performance of the inference algorithm is the
time at which the tracker diverges i.e., the runner is far away
from the estimated position. Hence the longer this time is,
the better the tracker. Figure 2 shows the results comparing
standard SMC (particle) and our algorithm sbp as explained
in Section 3.2. Each column is a boxplot for the times of

1https://github.com/mschauer/Kalman.jl
2https://github.com/biaslab/ReactiveMP.jl which has now been

subsumed into https://github.com/biaslab/RxInfer.jl

divergence of the algorithms over 100 simulations and for
different numbers of particles used for sampling: column
1 with 2 particles, then 5, 10,20,40 particles. We see that
even with 40 particles, the standard SMC diverges before
the end of the run. However, already with 10 particles, our
algorithm is tracking the runner until the end of the run for
almost all simulations.

Figure 2. Diverging times for regular SMC (particle) and our al-
gorithm (SBP) as a function of the number of particles with
2, 5, 10, 20, 40 particles.

5. Related work
Our symbolic belief propagation method bears resemblance
to delayed sampling (DS) (Murray et al., 2018). This al-
gorithm also attempts to perform most computations sym-
bolically. However, it maintains chains instead of trees
and cannot invert parent-children relationships. As a conse-
quence, it sometimes has to sample random variables that
our algorithm would not and thus be less precise. More
recently, semi-symbolic inference (Atkinson et al., 2022)
is a generalization of delayed sampling that is able to per-
form exact computations on closed families of distributions
(e.g., linear Gaussian, or finite discrete models) at the cost
of an increased overhead. While less general, our solu-
tion is based on a well-known, efficient algorithm which
can already compute the exact solution on a large class of
models.

Our domain-specific language revolves around reactive
probabilistic programming, which was introduced with
ProbZelus (Baudart et al., 2020). A major difference is that
our library integrates itself fully with the Julia ecosystem:
models can both contain arbitrary Julia code and be called
by any Julia code. To achieve this, we rely on and lever-
age the extensive metaprogramming abilities of Julia and
in particular, its macro system. An interesting avenue for
future work is the deeper integration of our framework with
other metaprogramming libraries in Julia, such as automatic
differentiation tools (Innes et al., 2019).
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6. Appendix
6.1. Technical Formulas

Proposition 6.1. Given a Gaussian tree T with root r and
a neighbor of the root denoted r′, we have

p((xv)v∈V ) = p(xr′)
∏

v∈V \{r′}

p(xv|xπ(v;r′)),

where p(xr′) = N
(
xr′ |A(r′|r)µr + b(r′|r),Σ(r′|r) +A(r′|r)ΣrA

T
(r′|r)

)
and for v ̸= r, r′, we have p(xv|xπ(v;r′)) = p(xv|xπ(v;r))

and, p(xr|xr′) = N
(
xr|A(r|r′)xr + b(r|r′),Σ(r|r′)

)
, with

A(r|r′), b(r|r′) and Σ(r|r′) given by the standard conditional
Gaussian distributions:

A(r|r′) = Σ(r|r′)

(
AT

(r′|r)Σ
−1
(r′|r)

)
,

b(r|r′) = Σ(r|r′)

(
Σ−1

r µr −AT
(r′|r)Σ

−1
(r′|r)b(r′|r)

)
,

Σ(r|r′) =
(
Σ−1

r +AT
(r′|r)Σ

−1
(r′|r)A(r′|r)

)−1

.

6.2. More experiments

Figure 3. Execution times as a function of the number of observa-
tions. Comparison of our algorithm SBP (Stream belief propaga-
tion) and Kalman.jl and ReactiveMP.jl
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