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Synchronous languages are now a standard industry tool for critical embedded systems. Designers write

high-level specifications by composing streams of values using block diagrams. These languages have been

extended with Bayesian reasoning to program state-space models which compute a stream of distributions

given a stream of observations. However, the semantics of probabilistic models is only defined for scheduled

equations – a significant limitation compared to dataflow synchronous languages and block diagrams which

do not require any ordering.

In this paper we propose two schedule agnostic semantics for a probabilistic synchronous language. The

key idea is to interpret probabilistic expressions as a stream of un-normalized density functions which maps

random variable values to a result and positive score. The co-iterative semantics interprets programs as state

machines and equations are computed using a fixpoint operator. The relational semantics directly manipulates

streams and is thus a better fit to reason about program equivalence. We use the relational semantics to prove

the correctness of a program transformation required to run an optimized inference algorithm for state-space

models with constant parameters.

1 INTRODUCTION
Synchronous programming languages [Benveniste et al. 2003] were introduced for the design of

critical embedded systems. In dataflow languages such as Lustre [Halbwachs et al. 1991], system

designers write high-level specifications by composing infinite streams of values, called flows.

Flows progress synchronously, paced on a global logical clock. The expressiveness of synchronous

languages is deliberately restricted. Specialized compilers can thus generate efficient and correct-by-

construction embedded code with strong guarantees on execution time and memory consumption.

This approach was inspired by block diagrams, a popular notation to describe control systems.

Built on these ideas, Scade [Colaço et al. 2017] is now a standard tool in automotive and avionic

industries.

Probabilistic languages [Bingham et al. 2019; Cusumano-Towner et al. 2019; Ge et al. 2018;

Goodman and Stuhlmüller 2014] extend general purpose programming languages with probabilistic

constructs for Bayesian inference. Following a Bayesian approach, a program describes a proba-

bility distribution, the posterior distribution, using initial beliefs on random variables, the prior

distributions, that are conditioned on observations.

At the intersection between these two lines of research, ProbZelus [Baudart et al. 2020] is a

probabilistic extension of the synchronous dataflow language Zelus [Bourke and Pouzet 2013].

ProbZelus combines, in a single source program, deterministic controllers and probabilistic models

that can interact with each other to perform inference-in-the-loop. A classic example is the Simulta-

neous Localization and Mapping problem (SLAM) [Montemerlo et al. 2002] where an autonomous

agent tries to infer both its position and a map of its environment to adapt its trajectory.

The probabilistic model of the SLAM involves two kinds of parameters. The position is a state

parameter represented by a stream of random variables. At each instant, a new position must

be estimated from the previous position and the observations. The map is a constant parameter

represented by a random variable whose value is progressively refined from the prior distribution

with each new observation. This type of problem mixing constant parameters and state parameters

are instances of State-Space Models (SSM) [Chopin and Papaspiliopoulos 2020]. Any ProbZelus

program can be expressed as a SSM.
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Probabilistic semantics and scheduling. ProbZelus semantics [Baudart et al. 2020] is defined in

a co-iterative framework where expressions are interpreted as state machines. Following [Kozen

1981; Staton 2017], a probabilistic expression computes a stream of measures. The semantics of an

expression with a set of local declarations integrates the semantics of the main expression over all

possible values of the local variables. Unfortunately, this semantics yields nested integrals that are

only well defined if the declarations are scheduled, i.e., ordered according to data dependencies.

This is a significant limitation compared to synchronous dataflow languages where sets of

mutually recursive equations can be written in any order. Besides, the compiler implements a

series of source-to-source transformations which often introduces new variables in arbitrary

order. Scheduling local declarations is one of the very last compilation passes [Bourke and Pouzet

2013]. The semantics of ProbZelus is thus far from what is exposed to the programmer, and more

importantly, prevents reasoning about most program transformations and compilation passes.

In this paper, we show how to extend the schedule agnostic semantics of dataflow synchronous

languages [Bourke et al. 2017a; Caspi and Pouzet 1998] for probabilistic programming. The key

idea is to interpret a probabilistic expression as a stream of un-normalized density functions which

map random variable values to a result and a positive score.

Contributions. In this paper, we present the following contributions:

• We introduce in Section 4 a new density-based co-iterative semantics and show that sets of

mutually recursive equations in arbitrary order can be interpreted using a fixpoint operator.

We prove that this semantics is equivalent to the original ProbZelus semantics.

• We introduce in Section 5 an alternative relational semantics which abstracts away the

state machines and directly manipulates streams which simplifies reasoning about program

equivalence. We prove that this semantics is equivalent to the co-iterative semantics.

• We define in Section 6 a program transformation required to run an optimized inference

algorithm for state-space models with constant parameters. We use the relational semantics

to prove the correctness of the transformation.

2 EXAMPLE
To motivate our approach, consider the ProbZelus model of Figure 1 adapted from [Chopin and

Papaspiliopoulos 2020][Section 2.4.1]. The goal is to estimate at each instant the position of a

moving boat given noisy observations from a marine radar. A rotating antenna sweeps a beam of

microwaves and detects the boat when the beam is reflected back to the antenna. The radar then

estimates the position from noisy measurements of its angle and the echo delay.

The keyword proba indicates the definition of a probabilistic stream function. Line 1, the model

tracker takes as input a stream of observations y_obs and returns a stream of positions x. The
model uses a transition function f to estimate the current position (e.g., using a linear motion model),

and a projection function g to compute the observable quantities from the state (e.g., angle and echo

delay). Line 3 uses the sample operator to specify that x is Gaussian distributed around f(last x).
last x refers to the previous position of the boat initialized Line 2 with the init keyword. Line 5

uses the observe operators to condition the model assuming that the observations y_obs are

Gaussian distributed around y = g(x). The initial position x_init and the noise parameters sx
and sy are global constants.

2.1 Kernel-based co-iterative semantics
ProbZelus original semantics [Baudart et al. 2020] is a co-iterative semantics where expressions are

interpreted as state machines characterized by an initial state and a transition function. Given the

current state, the transition function of deterministic expression returns the next state and a value.
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1 proba tracker(y_obs) = x where

2 rec init x = x_init

3 and x = sample(gaussian(f(last x), sx))

4 and y = g(x)

5 and () = observe(gaussian(y, sy), y_obs)

7 node main(y_obs) = msg where

8 rec x_dist = infer (tracker (y_obs))

9 and msg = controller(x_dist)

1

αt
αt+1

δt

xt

xt+1

θ

Fig. 1. Tracking a moving boat with a marine radar in ProbZelus. 𝑥𝑡 is the position of the boat in Cartesian

coordinates. We assume a linear motion model 𝑓 (𝑥𝑡−1) = 𝑥𝑡−1 + 𝜃 , and 𝑔(𝑥𝑡 ) = (𝛼𝑡 , 𝛿𝑡 ) returns the radar
angle 𝛼𝑡 = atan(𝑥𝑡 [1]/𝑥𝑡 [0]), and the echo delay 𝛿𝑡 = 2 ∗ ∥𝑥𝑡 ∥/𝑐 where 𝑐 is speed of light.

Following [Staton 2017], the transition function of a probabilistic expression returns a measure

over all possible pairs (next state, value).

For instance, if f and g are deterministic and stateless, the transition function of tracker is the

following (omitting empty states for stateless expressions) where N is the normal distribution,

𝛿 the Dirac delta distribution, and pdf 𝑑 the probability density function of 𝑑 .

⦃tracker(y_obs)⦄
step

𝛾 (𝑝𝑥 ) =
∫
N(𝑓 (𝑝𝑥 ), 𝑠𝑥 ) (𝑑𝑥)

∫
𝛿𝑔 (𝑥 ) (𝑑𝑦) pdf N(𝑦,𝑠𝑥 ) (𝑦obs) ∗ 𝛿𝑥,𝑥

=

∫
N(𝑓 (𝑝𝑥 ), 𝑠𝑥 ) (𝑑𝑥) pdf N(𝑔 (𝑥 ),𝑠𝑥 ) (𝑦obs) ∗ 𝛿𝑥,𝑥 (1)

Given the current state 𝑝𝑥 (the previous value of x), the transition function integrates over all

possible values for x, then all possible values for y, weights each execution by the likelihood of the

observation (i.e., the value of the density function on y_obs), and returns a measure over the new

state 𝑥 (that will be used as the previous position in the next step), and the results 𝑥 .

Inference. In ProbZelus, the explicit infer operator computes the stream of distributions de-

scribed by a model. The state of infer is a measure over current states. The transition function

integrates the semantics of the model over all possible states, normalizes the resulting measure to

obtain a distribution, and splits it into a distribution of next states and a distribution of values. The

runtime iterates this process from a distribution of initial states to compute a stream of distributions.

In ProbZelus, inference can be composed with deterministic control to perform inference-in-

the-loop. For instance, Line 9, the distribution x_dist is exploited by a controller, e.g., to send a

message to guide the boat.

Scheduling. Local declarations such as x and y yield nested integrals in Equation (1) that are

only well-defined if these definitions are ordered according to data dependencies. The ProbZelus

semantics defined in [Baudart et al. 2020] thus focuses on a kernel language where local declarations

are all scheduled. But imposing a valid schedule is a significant limitation compared to synchronous

dataflow languages which manipulate mutually recursive equations in arbitrary order.

2.2 Density-based co-iterative semantics
In this paper we first propose a new density-based co-iterative semantics for ProbZelus inspired by

the semantics of the popular probabilistic language Stan [Gorinova et al. 2019] where a program

defines an un-normalized density function over the random variables. Instead of manipulating
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measures via integration, probabilistic expressions are now similar to deterministic expressions,

but the transition function now takes one additional argument — a random seed for all random

variables — and returns one additional output — a positive score, or weight, which measures the

quality of the output w.r.t. the model.

On the example of Figure 1 we have:

⦅tracker(y_obs)⦆
step

𝛾 (𝑝𝑥 , 𝑟 ) = let 𝜇𝑥 = N(𝑓 (𝑝𝑥 ), 𝑠𝑥 ) in
let 𝑥 = icdf 𝜇𝑥

(𝑟 ) in
let 𝜇𝑦 = N(𝑔(𝑥), 𝑠𝑦) in
𝑥, 𝑥, pdf 𝜇𝑦 (𝑦obs)

(2)

The additional argument 𝑟 corresponds to the random seed for the sample operator, i.e., an element

of [0, 1] that is mapped to a sample of a distribution 𝑑 using inverse transform sampling [Devroye

2006]. The model computes the sample 𝑥 associated to the random seed (icdf 𝑑 is the inverse of the

cumulative distribution function of 𝑑), and returns the new state 𝑥 , the result 𝑥 , and a weight which

captures the likelihood of the observation (the density of the distribution N(𝑔(𝑥), 𝑠𝑦) at 𝑦obs).

Inference. At each step, the infer operator first computes the un-normalized measure which

associates each pair (state, result) to its weight, i.e., for a model 𝑒 , if ⦅𝑒⦆𝛾 (𝑚, 𝑟 ) =𝑚′, 𝑣,𝑤 , infer(𝑒)

computes the measure

∫
[0,1]𝑝 𝑤 ∗ 𝛿𝑚′,𝑣 𝑑𝑟 where 𝑝 is the number of random variables in 𝑒 . On

the example of Figure 1, we can check that this measure corresponds to the original semantics of

Equation (1). ∫
[0,1]

let 𝑥, 𝑥,𝑤 = ⦅tracker(y_obs)⦆
step

𝛾 (𝑝𝑥 , 𝑟 ) in 𝑤 ∗ 𝛿𝑥,𝑥 𝑑𝑟

=

∫
[0,1]

let 𝑥 = icdf N(𝑓 (𝑝𝑥 ),𝑠𝑥 ) (𝑟 ) in pdf N(𝑔 (𝑥 ),𝑠𝑦 ) (𝑦obs) ∗ 𝛿𝑥,𝑥 𝑑𝑟

=

∫
N(𝑓 (𝑝𝑥 ), 𝑠𝑥 ) (𝑑𝑥) pdf N(𝑔 (𝑥 ),𝑠𝑦 ) (𝑦obs) ∗ 𝛿𝑥,𝑥

The semantics of infer is then similar to its interpretation in the original kernel-based semantics,

i.e., 1) integrate over all possible state, 2) normalize the measure, 3) split the result into a distribution

of next states and a distribution of values. We prove in Section 4.2 that this semantics is equivalent

to the kernel-based semantics, i.e., the infer operator yields the same stream of distributions.

Mutually recursive equations. The original co-iterative semantics for dataflow synchronous

languages [Caspi and Pouzet 1998] interprets mutually recursive equations in arbitrary order with

a fixpoint operator in a flat complete partial order (CPO) where variables are either undefined or

set to a value. In the density-based semantics, the transition functions of probabilistic equations

are similar to their deterministic counterparts with additional inputs/outputs. Compared to the

kernel-based semantics, there are no longer nested integrals and a fixpoint operator can be defined

to interpret sets of probabilistic equations.

Consider a variant of the example of Figure 1 where we swap Line 3 and Line 4. For a state

𝑝𝑥 and a random seed 𝑟 , the semantics of the local declarations in tracker is the fixpoint of the
following function 𝐹 starting from the least element [𝑥 ← ⊥, 𝑦 ← ⊥].

𝐹 (𝜌) = let 𝑦 = 𝑔(𝜌 (x)) in
let 𝜇𝑥 = N(𝑓 (𝑝𝑥 ), 𝑠𝑥 ) in
let 𝑥 = icdf 𝜇𝑥

(𝑟 ) in
[x← 𝑥, y← 𝑦]

𝜌0 = [𝑥 ← ⊥, 𝑦 ← ⊥]
𝜌1 = [𝑥 ← icdf 𝜇𝑥

(𝑟 ), 𝑦 ← ⊥]
𝜌2 = [𝑥 ← icdf 𝜇𝑥

(𝑟 ), 𝑦 ← 𝑔(icdf 𝜇𝑥 (𝑟 ))]
𝜌3 = [𝑥 ← icdf 𝜇𝑥

(𝑟 ), 𝑦 ← 𝑔(icdf 𝜇𝑥 (𝑟 ))]
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The fixpoint converges after 3 iterations. Using the resulting environment, the semantics of tracker
then computes the next state, the result, and the weight which, after simplification, yields the same

results as Equation (2).

⦅tracker(y_obs)⦆
step

𝛾 (𝑝𝑥 , 𝑟 ) = let 𝜌 = [𝑥 ← icdf 𝜇𝑥
(𝑟 ), 𝑦 ← 𝑔(icdf 𝜇𝑥 (𝑟 ))] in

let 𝑥 = 𝜌 (x) in
let 𝜇𝑦 = N(𝜌 (y), 𝑠𝑦) in
𝜌 (x), 𝜌 (x), pdf 𝜇𝑦 (𝑦obs)

(3)

Program equivalence. Since deterministic expressions are interpreted as state machines, to prove

program equivalence one must exhibit a bisimulation [Park 1981], i.e., a relation between the states

of the two state machines. Two deterministic expressions are equivalent if there exists a relation

such that 1) the initial states are in relation, and 2) given two states in relation the transition

function produces new states in relation and the same output. The proof is done by unfolding the

definition of the transition function.

Two probabilistic expressions are equivalent if they describe the same stream of measures.

Unfortunately, compared to deterministic expressions, the type of probabilistic expressions is

asymmetric: given a state, the transition function describes a measure over pairs (next state, value).

The corresponding stream of measures is obtained by integrating at each step the transition function

over all possible states computed at the previous step. The bisimulation must thus relate measures

of states through successive integrations, which is significantly harder to define and to check than

in the deterministic case.

2.3 Density-based relational semantics
An alternative is to directly manipulate streams of values. This is the approach used in the Vélus

project
1
to prove an end-to-end compiler for the dataflow synchronous language Lustre [Bourke

et al. 2017a, 2020, 2021]. The semantics of a stream function is defined as a relation between input

streams and output streams. In Vélus, most of the compilation passes are proven correct using this

relational semantics. The translation to state machines is one of the very last passes and focuses on

a normalized, scheduled subset of the language.

In this paper, we extend this relational semantics to probabilistic streams. The key idea is to

lift the density-based semantics to streams. Given an environment 𝐻 mapping variable names to

streams of values, and an array 𝑅 of random streams, the semantics of an expression returns a

stream of pairs (value, weight): 𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑣,𝑤).
In the example of Figure 1, 𝑅 is a single stream of independent random elements 𝑅0 · 𝑅1 · 𝑅2 · ...

in [0, 1], we can interpret tracker in an environment that contains the observations y_obs:

[y_obs← 𝑦
obs
], 𝑅 ⊢ tracker(y_obs) ⇓ (𝑥0,𝑤0) · (𝑥1,𝑤1) · (𝑥2,𝑤2) · ...

where 𝜇𝑥 = N(𝑓 (𝑥init), 𝑠𝑥 ) · N (𝑓 (𝑥0), 𝑠𝑥 ) · N (𝑓 (𝑥1), 𝑠𝑥 ) · ...
𝑥 = icdf 𝜇𝑥 0

(𝑅0) · icdf 𝜇𝑥 1

(𝑅1) · icdf 𝜇𝑥 2

(𝑅2) · ...
𝑦 = 𝑔(𝑥0) · 𝑔(𝑥1) · 𝑔(𝑥2) · ...
𝜇𝑦 = N(𝑦0, 𝑠𝑥 ) · N (𝑦1, 𝑠𝑥 ) · N (𝑦2, 𝑠𝑥 ) · ...
𝑤 = pdf 𝜇𝑦

0

(𝑦
obs0
) · pdf 𝜇𝑦

1

(𝑦
obs1
) · pdf 𝜇𝑦

2

(𝑦
obs2
) · ...

The semantics now directly manipulates streams. At each step, the result is similar to the expression

in Equation (2), but states are abstracted away. The result is a stream of pairs (value, weight).

1
https://velus.inria.fr

https://velus.inria.fr
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𝑑 ::= let 𝑥 = 𝑒 | node 𝑓 𝑥 = 𝑒 | proba 𝑓 𝑥 = 𝑒 | 𝑑 𝑑

𝑒 ::= 𝑐 | 𝑥 | (𝑒,𝑒) | op(𝑒) | last 𝑥 | 𝑓 (𝑒) | 𝑒 where rec 𝐸
| present 𝑒 → 𝑒 else 𝑒 | reset 𝑒 every 𝑒
| sample(𝑒) | factor(𝑒) | infer(𝑒)

𝐸 ::= 𝑥 = 𝑒 | init 𝑥 = 𝑒 | 𝐸 and 𝐸

Fig. 2. ProbZelus Syntax.

Inference. The semantics of infer now operates on a stream of pairs (value, weight): (𝑣0,𝑤0) ·
(𝑣1,𝑤1) · (𝑣2,𝑤2) · .... The infer operator 1) associates to each value 𝑣𝑘 the total weight of its prefix

using a cumulative product𝑤𝑘 = Π𝑘
𝑖=0𝑤𝑖 , 2) computes the un-normalized measure which associates

each pair (state, result) to its total weight, and 3) normalizes it to obtain a distribution of values.

The key difference with the density-based co-iterative semantics is that the integral is now over

the infinite domain of streams. We prove in Section 5.3 that this semantics is equivalent to the

co-iterative density-based semantics, i.e., the infer operator yields the same stream of distributions.

Mutually recursive equations. Given the random streams 𝑅, the semantics of a set of probabilistic

equations 𝐻, 𝑅 ⊢ 𝐸 :𝑊 checks that an environment mapping variable names to stream of values

𝐻 is compatible with all the equations in 𝐸, and that the combined weight of all sub-expressions

is the stream𝑊 . Since variables in an environment are not ordered, there is nothing special to

do to interpret mutually recursive equations. By construction the order of equations does not

matter which greatly simplifies reasoning about compilation passes that introduce new equations

in arbitrary order. Of course, compared to the co-iterative semantics, the relational semantics is not

executable since equations are only checked a posteriori for a given environment.

Program equivalence. In the relational semantics, states are abstracted away and a probabilistic

expression computes a stream of pairs (value, weight) where each element only depends on the

random streams. Two probabilistic expressions are equivalent if they describe the same stream

of measures obtained by integrating at each step the result of the relational semantics over all

possible random streams. Since, random streams are uniformly distributed, if we can map the

random streams of one expression to the random streams of the other, program equivalence can be

reduced to the comparison of the streams of pairs (value, weight) computed by each expression.

3 BACKGROUND
In this section we briefly summarize the key elements of the co-iterative semantics of ProbZelus.

Importantly, this semantics is only defined if all equations are ordered according to data dependen-

cies. We then recall the original co-iterative semantics of synchronous dataflow languages where

sets of mutually recursive equations in arbitrary order are interpreted using a fixpoint operator.

3.1 Syntax
The syntax of ProbZelus is presented in Figure 2. A program is a series of declarations 𝑑 . A

declaration can be a global variable let, a deterministic stream function node, or a probabilistic
model proba. Each declaration has a unique name. An expression can be a constant 𝑐 , a variable 𝑥 ,

a pair, an operator application op(𝑒), the previous value of a variable last 𝑥 , a function call 𝑓 (𝑒), a
local declaration 𝑒 where rec 𝐸 where 𝐸 is a set of mutually recursive equations, a lazy conditional

present 𝑐 → 𝑒1 else 𝑒2, or a reset construct reset 𝑒1 every 𝑒2. An equation is either a simple

definition 𝑥 = 𝑒 , an initialization init 𝑥 = 𝑒 (the delay operator last 𝑥 can only be used on initialized
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variables), or a set of equations 𝐸1 and 𝐸2. In a set of equations, every initialized variable must be

defined by another equation.

We add the classic probabilistic constructs to the set of expressions: sample(𝑑) creates a random
variable with distribution 𝑑 , factor(𝑠) increments the log-density of the model, and infer(𝑚)
computes the posterior distribution of a model𝑚. If 𝑑 is a distribution with a density function, we

use the syntactic shortcut observe(𝑑,𝑥) for factor(pdf 𝑑 (𝑥)) which conditions the model on the

assumption that 𝑥 was sampled from 𝑑 .

3.2 Co-iterative semantics
The semantics of ProbZelus presented in [Baudart et al. 2020] extends the co-iterative semantics

of dataflow synchronous languages [Caspi and Pouzet 1998; Colaco et al. 2023]. A type system

statically identifies deterministic and probabilistic expressions [Baudart et al. 2020, Section 3.2]

which have different interpretations.

In an environment𝛾 mapping variable names to values, a deterministic expression 𝑒 is interpreted

as a state machine characterized by an initial state ⟦𝑒⟧init𝛾 of type 𝑆 and a transition function ⟦𝑒⟧step𝛾

of type 𝑆 → 𝑉 × 𝑆 which given the current state returns a value and the next state. A stream of

values is then obtained by iteratively applying the transition function from the initial state.

(⟦𝑒⟧init𝛾0
=𝑚0)

⟦𝑒⟧step𝛾
1−−−−−−→ 𝑚1

𝑣1

⟦𝑒⟧step𝛾
2−−−−−−→ 𝑚2

𝑣2

⟦𝑒⟧step𝛾
3−−−−−−→ 𝑚3

𝑣3

→ ...

Following [Staton 2017], the semantics of a probabilistic expression is a state machine which

computes a stream of kernels. Given the current state, the transition function ⦃𝑒⦄
step

𝛾 of type

𝑆 → Σ𝑆×𝑉 → [0,∞) returns a measure over pairs (next state, value),
2
i.e., a function mapping

measurable sets of pairs (next state, value) to a positive score.

Figure 3 shows a simplified excerpt of the semantics of probabilistic expressions from [Baudart

et al. 2020]. In a probabilistic context, a deterministic expression is interpreted as the Dirac delta

measure on the pair (state, value) returned by the deterministic semantics.
3 sample evaluates its

argument into a new state𝑚′ and a distribution of values 𝜇, and returns a measure over pairs (new

state, value). factor evaluates its argument into a new state𝑚′ and a real value 𝑣 , and returns a

Dirac delta measure on the pair (𝑚′, ()) weighted by 𝑣 . To simplify the semantics, the type system

ensures that the arguments of the probabilistic operators are always deterministic expressions.

To illustrate local declarations, Figure 3 shows the semantics of a simple expression with two

local variables x and y. The state captures the previous value of the initialized variable 𝑥 , and

the state of all sub-expressions. The transition function starts in a context where the previous

value of 𝑥 is bound to a special variable 𝑥 .last, and integrates over all possible executions of the

sub-expressions to compute the main expression.

Inference. So far, probabilistic expressions describe a stream of un-normalized measures over

pairs (state, value). At each step, the infer operator normalizes the measure to obtain a distribution

(⊤ denotes the entire space), that is then split into a distribution of next states, and a distribution

of values. The corresponding stream of distributions is obtained by iteratively integrating the

transition function along the distribution of states.

(⦃𝑒⦄init𝛾0
= 𝜎0)

∫
𝜎0 (𝑑𝑚)⦃𝑒⦄step

𝛾
1
(𝑚)

−−−−−−−−−−−−−−−−−→ 𝜎1
𝜇1

∫
𝜎1 (𝑑𝑚)⦃𝑒⦄step

𝛾
2
(𝑚)

−−−−−−−−−−−−−−−−−→ 𝜎2
𝜇2

∫
𝜎2 (𝑑𝑚)⦃𝑒⦄step

𝛾
3
(𝑚)

−−−−−−−−−−−−−−−−−→ 𝜎3
𝜇3

→ ...

2Σ𝐴 denotes the Borel 𝜎-algebra over values of type 𝐴.
3𝛿𝑥 (𝑈 ) = 1 if 𝑥 ∈ 𝑈 and 0 otherwise.
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⦃𝑒⦄init𝛾 = ⟦𝑒⟧init𝛾

⦃𝑒⦄
step

𝛾 (𝑚) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in 𝛿𝑚′,𝑣 if 𝑒 is deterministic

⦃sample(𝑒)⦄init𝛾 = ⟦𝑒⟧init𝛾

⦃sample(𝑒)⦄
step

𝛾 (𝑚) = let 𝑚′, 𝜇 = ⟦𝑒⟧step𝛾 (𝑚) in
∫

𝜇 (𝑑𝑣) 𝛿𝑚′,𝑣

⦃factor(𝑒)⦄init𝛾 = ⟦𝑒⟧init𝛾

⦃factor(𝑒)⦄
step

𝛾 (𝑚) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in 𝑣 ∗ 𝛿𝑚′,( )

⦃

𝑒 where rec init 𝑥 = 𝑐
and 𝑥 = 𝑒𝑥
and 𝑦 = 𝑒𝑦

⦄init

𝛾

= 𝑐,

(
⦃𝑒⦄init𝛾 ,⦃𝑒𝑥⦄

init

𝛾 ,
⦃

𝑒𝑦
⦄

init

𝛾

)
⦃

𝑒 where rec init 𝑥 = 𝑐
and 𝑥 = 𝑒𝑥
and 𝑦 = 𝑒𝑦

⦄step

𝛾

(𝑝𝑥 , (𝑚,𝑚𝑥 ,𝑚𝑦)) =

∫
⦃𝑒𝑥⦄

step

𝛾+[𝑥.last←𝑝𝑥 ] (𝑚𝑥 ) (𝑑𝑚′𝑥 , 𝑑𝑣𝑥 )∫
⦃

𝑒𝑦
⦄

step

𝛾+[𝑥.last←𝑝𝑥 ,𝑥←𝑣𝑥 ] (𝑚𝑦) (𝑑𝑚′𝑦, 𝑑𝑣𝑦)∫
⦃𝑒⦄

step

𝛾+[𝑥.last←𝑝𝑥 ,𝑥←𝑣𝑥 ,𝑦←𝑣𝑦 ] (𝑚) (𝑑𝑚
′, 𝑑𝑣)

𝛿 (𝑣𝑥 ,(𝑚′,𝑚′𝑥 ,𝑚′𝑦 ) ),𝑣

⟦infer(𝑒)⟧init𝛾 = ⟦𝑒⟧init𝛾

⟦infer(𝑒)⟧step𝛾 (𝜎) = let 𝜈 =

∫
𝜎 (𝑑𝑚) ⦃𝑒⦄𝛾 (𝑚) in

let 𝜈 = 𝜈/𝜈 (⊤) in
(𝜋1∗ (𝜈), 𝜋2∗ (𝜈))

Fig. 3. A simplified excerpt of the original ProbZelus co-iterative probabilistic semantics [Baudart et al. 2020].

If the model is ill-defined, the normalization constant can be 0 or∞, which triggers an exception

and stops the execution. It is the programmer’s responsibility to avoid such error cases when

defining the model.

3.3 Equations and fixpoints
In the interpretation of local declarations in Figure 3, the nested integrals are only well defined if

equations are ordered according to data dependencies. The original semantics in [Baudart et al.

2020] thus focuses on a kernel language where local declarations are all scheduled: initializations are

grouped at the beginning and an equation 𝑦 = 𝑒𝑦 must appear after 𝑥 = 𝑒𝑥 if 𝑥 appears in 𝑒𝑦 outside

a last. In the compiler, a specialized type system, the causality analysis statically checks that a

program is causal, i.e., that all local declarations can be scheduled [Cuoq and Pouzet 2001]. The

kernel-based semantics is commutative, i.e., yields the same results for any valid schedule [Staton

2017], but imposing a scheduled order on equations is a significant limitation compared to block

diagrams or synchronous dataflow languages which manipulate set of equations in arbitrary order.

The original co-iterative semantics [Caspi and Pouzet 1998] and more recent works [Colaco et al.

2023] interpret mutually recursive equations using a fixpoint operator. Values 𝑣 ∈ 𝑉 are interpreted

in a flat domain 𝑉⊥ = 𝑉 + {⊥} with minimal element ⊥ and the flat order ≤: ∀𝑣 ∈ 𝑉 . ⊥ ≤ 𝑣 .

(𝑉⊥,⊥, ≤) is a complete partial order (CPO). This flat CPO is lifted to environments defining the
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⟦𝑥 = 𝑒⟧step𝛾 (𝑚) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in𝑚′, [𝑥 ← 𝑣]

⟦init 𝑥 = 𝑐⟧step𝛾 (𝑝𝑥 ) = 𝛾 (𝑥), [𝑥 .last← 𝑝𝑥 ]

⟦𝐸1 and 𝐸2⟧step𝛾 (𝑀1, 𝑀2) = let 𝑀′
1
, 𝛾1 = ⟦𝐸1⟧step𝛾 (𝑀1) in

let 𝑀′
2
, 𝛾2 = ⟦𝐸2⟧step𝛾 (𝑀2) in

(𝑀′
1
, 𝑀′

2
), 𝛾1 + 𝛾2

⟦𝑒 where rec 𝐸⟧step𝛾 (𝑚,𝑀) = let 𝐹 (𝜌) =
(
let 𝑀′, 𝜌′ = ⟦𝐸⟧step𝛾+𝜌 (𝑀) in 𝜌′

)
in

let 𝜌 = fix (𝐹 ) in
let 𝑀′, 𝜌 = ⟦𝐸⟧step𝛾+𝜌 (𝑀) in
let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾+𝜌 (𝑚) in
(𝑚′, 𝑀′), 𝑣

Fig. 4. Co-iterative semantics of deterministic equations with a fixpoint operator (based on [Pouzet 2021]).

same set of variables: ∀𝜌1, 𝜌2 such that dom(𝜌1) = dom(𝜌2) = 𝑋 , 𝜌1 ≤ 𝜌2 iff ∀𝑥 ∈ 𝑋, 𝜌1 (𝑥) ≤ 𝜌2 (𝑥)
and the least element is ⊥ = [𝑥 ← ⊥]𝑥∈𝑋 .

Figure 4 shows the semantics rules for deterministic equations adapted from [Colaco et al. 2023].

The initial state of an equation is the initial state of its defining expression. Given a state, the

transition function returns a new state and an environment. To interpret an expression with a set

of local declarations 𝑒 where rec 𝐸, the transition function first computes the environment defined

by 𝐸 with a fixpoint operator. Given a state𝑀 , the function 𝐹 (𝜌) = let 𝑀 ′, 𝜌 ′ = ⟦𝑒⟧step𝛾+𝜌 (𝑀) in 𝜌 ′

is continuous and has a minimal fixpoint 𝜌 = fix (𝐹 ) = lim𝑛→∞ (𝐹𝑛 (⊥)). After convergence,
the transition function evaluates ⟦𝐸⟧step𝛾+𝜌 (𝑀) once more to compute the next state 𝑀 ′ (leaving
𝜌 unchanged by definition of the fixpoint) and finally evaluates the main expression 𝑒 in the

environment 𝛾 + 𝜌 .
If the program is causal a valid schedule exists for 𝐸, and by monotony, each fixpoint iteration

computes the value of at least one variable and the fixpoint is reached after a finite number of

iterations [Colaco et al. 2023].

4 DENSITY-BASED CO-ITERATIVE SEMANTICS
In this section we detail the new density-based co-iterative semantics for probabilistic expressions.

We show that, in this semantics we can now interpret sets of mutually recursive equations with a

fixpoint operator as in the original co-iterative semantics. We then prove that the density-based

semantics is equivalent to the kernel-based semantics, i.e., describes the same stream of distributions.

4.1 Probabilistic co-iterative semantics with fixpoint
The key idea of the density-based semantics is to externalize all sources of randomness. Compared

to the deterministic case, the transition function of a probabilistic expression takes one additional

argument: an array of random seeds containing one random element for each random variable

introduced by sample. To capture the effect of the factor operator, the transition function also

returns a weight which measures the quality of the result w.r.t. the model.

Expressions. More formally, the initialization function of a probabilistic expression 𝑒 , ⦅𝑒⦆
init

𝛾 : 𝑆×N
returns the initial state and the number of random variables in 𝑒 . Loops and recursive calls are not

allowed in the language of Figure 2. The number of calls to sample can thus be statically computed.
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⦅𝑒⦆init𝛾 = ⟦𝑒⟧init𝛾 , 0

⦅𝑒⦆
step

𝛾 (𝑚, []) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in𝑚′, 𝑣, 1 if 𝑒 is deterministic

⦅sample(𝑒)⦆init𝛾 = let 𝑚 = ⟦𝑒⟧init𝛾 in𝑚, 1

⦅sample(𝑒)⦆
step

𝛾 (𝑚, [𝑟 ]) = let 𝑚′, 𝜇 = ⟦𝑒⟧step𝛾 (𝑚) in𝑚′, icdf 𝜇 (𝑟 ), 1

⦅factor(𝑒)⦆init𝛾 = let 𝑚 = ⟦𝑒⟧init𝛾 in𝑚, 0

⦅factor(𝑒)⦆
step

𝛾 (𝑚, []) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in𝑚′, (), 𝑣

⦅𝑓 (𝑒)⦆init𝛾 = let 𝑚𝑓 , 𝑝 𝑓 = 𝛾 (𝑓 .init) in
let 𝑚𝑒 , 𝑝𝑒 = ⦅𝑒⦆init𝛾 in

(𝑚𝑓 ,𝑚𝑒 ), 𝑝 𝑓 + 𝑝𝑒
⦅𝑓 (𝑒)⦆step𝛾 ((𝑚𝑓 ,𝑚𝑒 ), [𝑟 𝑓 : 𝑟𝑒 ]) = let 𝑚′𝑒 , 𝑣𝑒 ,𝑤𝑒 = ⦅𝑒⦆

step

𝛾 (𝑚𝑒 , 𝑟𝑒 ) in
let 𝑚′

𝑓
, 𝑣,𝑤 𝑓 = 𝛾 (𝑓 .step) (𝑣𝑒 ,𝑚𝑓 , 𝑟 𝑓 ) in

(𝑚′
𝑓
,𝑚′𝑒 ), 𝑣,𝑤𝑒 ∗𝑤 𝑓

Fig. 5. Density-based co-iterative semantics for ProbZelus expressions (full version in Figure 12 of the

appendix).

Given the current state and a value for all random seeds (an array of 𝑝 values in [0, 1] where 𝑝
is the number of random variables computed by initialization function) the transition function

⦅𝑒⦆
step

𝛾 : 𝑆 × [0, 1]𝑝 → 𝑆 ×𝑉 × [0,∞) returns a triple (next state, result, weight).
An excerpt of the density-based co-iterative semantics is presented in Figure 5. If 𝑒 is deterministic,

there is no random variable and no conditioning. The transition function takes an empty array of

random seeds, evaluates the expression, and returns the next state, the value, and a weight of 1.

sample defines one random variable. The transition function takes an array containing one random

seed, evaluates the argument into a distribution, converts the random seed into a sample of the

distribution, and returns the next state, the sample, and a weight of 1. factor updates the weight.

The transition function evaluates it arguments into a real value 𝑣 , and returns the next state, an

empty value (), and the score 𝑣 . The initialization of a function call 𝑓 (𝑒) evaluates the initialization
functions of 𝑓 and 𝑒 , combines the initial states and sums the numbers of random variables. The

transition function takes an array containing the random seeds for 𝑒 and 𝑓 ,4 evaluates the argument

𝑒 into a value 𝑣𝑒 and a weight 𝑤𝑒 , uses the value to evaluate the transition function of 𝑓 which

returns a result 𝑣 and a weight𝑤 𝑓 , and returns the combined next states, the result, and the total

weight𝑤𝑒 ∗𝑤 𝑓 .

Mutually recursive equations. The semantics of probabilistic equations is presented in Figure 6.

As for probabilistic expressions, the initialization function returns the initial states, and the number

of random variables. Given a state and an array of random seeds, the transition function returns a

tuple (next state, environment, weight). The equation 𝑥 = 𝑒 defines a single variable. The transition
function evaluates the defining expression 𝑒 into a tuple (next state, value, weight), and returns

the next state, an environment where 𝑥 is bound to the value 𝑣 , and the weight. The init 𝑥 = 𝑒
equation manages the special variable last 𝑥 which refers to the value of 𝑥 at the previous time

step. Compared to the original ProbZelus semantics, we do not require initial values to be constants.

The state contains the previous value of 𝑥 initialized with an undefined value of the correct type

4
We note [𝑟1 : 𝑟2 ] the concatenation of two arrays.
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⦅𝑥 = 𝑒⦆init𝛾 = ⦅𝑒⦆init𝛾

⦅𝑥 = 𝑒⦆
step

𝛾 (𝑚, 𝑟 ) = let 𝑚′, 𝑣,𝑤 = ⦅𝑒⦆
step

𝛾 (𝑚, 𝑟 ) in𝑚′, [𝑥 ← 𝑣],𝑤

⦅init 𝑥 = 𝑒⦆init𝛾 = let 𝑚0, 𝑝 = ⦅𝑒⦆init𝛾 in (nil,𝑚0), 𝑝
⦅init 𝑥 = 𝑒⦆

step

𝛾 ((nil,𝑚0), 𝑟 ) = let 𝑚′, 𝑖,𝑤 = ⦅𝑒⦆
step

𝛾 (𝑚0, 𝑟 ) in (𝛾 (𝑥),𝑚0), [𝑥 .last← 𝑖],𝑤
⦅init 𝑥 = 𝑒⦆

step

𝛾 ((𝑣,𝑚0), 𝑟 ) = (𝛾 (𝑥),𝑚0), [𝑥 .last← 𝑣], 1

⦅𝐸1 and 𝐸2⦆
init

𝛾 = let 𝑀1, 𝑝1 = ⦅𝐸1⦆
init

𝛾 in

let 𝑀2, 𝑝2 = ⦅𝐸2⦆
init

𝛾 in

(𝑀1, 𝑀2), 𝑝1 + 𝑝2
⦅𝐸1 and 𝐸2⦆

step

𝛾 ((𝑀1, 𝑀2), [𝑟1 : 𝑟2]) = let 𝑀′
1
, 𝜌1,𝑤1 = ⦅𝐸1⦆

step

𝛾 (𝑀1, 𝑟1) in
let 𝑀′

2
, 𝜌2,𝑤2 = ⦅𝐸2⦆

step

𝛾 (𝑀2, 𝑟2) in
(𝑀′

1
, 𝑀′

2
), 𝜌1 + 𝜌2,𝑤1 ∗𝑤2

⦅𝑒 where rec 𝐸⦆init𝛾 = let 𝑚, 𝑝𝑒 = ⦅𝑒⦆init𝛾 in

let 𝑀, 𝑝𝐸 = ⦅𝐸⦆init𝛾 in

(𝑚,𝑀), 𝑝𝑒 + 𝑝𝐸
⦅𝑒 where rec 𝐸⦆

step

𝛾 ((𝑚,𝑀), [𝑟𝑒 : 𝑟𝐸 ]) = let 𝐹 (𝜌) =
(
let 𝑀′, 𝜌,𝑤 = ⦅𝐸⦆𝛾+𝜌 (𝑀, 𝑟𝐸 ) in 𝜌

)
in

let 𝜌 = fix (𝐹 ) in
let 𝑀′, 𝜌,𝑊 = ⦅𝐸⦆

step

𝛾+𝜌 (𝑀, 𝑟𝐸 ) in
let 𝑚′, 𝑣,𝑤 = ⦅𝑒⦆

step

𝛾+𝜌 (𝑚, 𝑟𝑒 ) in
(𝑚′, 𝑀′), 𝑣,𝑤 ∗𝑊

Fig. 6. Density-based co-iterative semantics for ProbZelus equations (full version in Figure 13 of the appendix).

nil, and the initial state𝑚0 of the expression 𝑒 . There are two cases for the transition function. At

the first time step, or after a reset, the state contains nil and the transition function evaluates 𝑒

using𝑚0 to computes the initial value 𝑖 and the corresponding weight, and returns a new state

containing the current value of 𝑥 , an environment where 𝑥 .last is bound to 𝑖 , and the weight.

In any other case, the previous value 𝑣 of 𝑥 stored in the state is defined. The transition function

returns a new state containing the current value of 𝑥 , an environment where 𝑥 .last is bound to 𝑣 ,

and a weight of 1.

Compared to the original kernel-based semantics described in Section 3.2 which combines

measures via integration, the density-based semantics only manipulates deterministic values for

which the flat CPO on environments described in Section 3.3 is well defined. The initialization

function of an expression with a set of local declarations 𝑒 where rec 𝐸 combines the initial states

of 𝑒 and 𝐸 and returns the total number of random variables. The transition function takes an

array containing the random seeds for 𝑒 and 𝐸, computes the environment 𝜌 defined by 𝐸 with a

fixpoint operator, evaluates ⦅𝐸⦆𝛾+𝜌 (𝑀, 𝑟 ) once more to compute the next state𝑀 ′ and the weight

𝑊 , evaluates the main expression 𝑒 in the environment 𝛾 +𝜌 which returns the result 𝑣 and a weight

𝑤 , and returns the combined next states, the result, and the total weight𝑤 ∗𝑊 . The only difference

with the deterministic case is that the transition functions of 𝑒 and 𝐸 now take the random seeds as

arguments and return the weights.

Scheduling. To compare the density-based semantics with the kernel-based semantics, it is useful

to define an alternative semantics for a scheduled language without a fixpoint operator. This
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alternative semantics ⦅𝑒⦆
s step

exactly matches the density-based semantics except for the two

following rules:

⦅𝐸1 and 𝐸2⦆
s step

𝛾 ((𝑀1, 𝑀2), [𝑟1 : 𝑟2]) = let 𝑀′
1
, 𝜌1,𝑤1 = ⦅𝐸1⦆

s step

𝛾 (𝑀1, 𝑟1) in
let 𝑀′

2
, 𝜌2,𝑤2 = ⦅𝐸2⦆

s step

𝛾+𝜌1 (𝑀2, 𝑟2) in
(𝑀′

1
, 𝑀′

2
), 𝜌1 + 𝜌2,𝑤1 ∗𝑤2

⦅𝑒 where rec 𝐸⦆
s step

𝛾 ((𝑚,𝑀), [𝑟𝑒 : 𝑟𝐸 ]) = let 𝑀′, 𝜌,𝑊 = ⦅𝐸⦆
s step

𝛾 (𝑀, 𝑟𝐸 ) in
let 𝑚′, 𝑣,𝑤 = ⦅𝑒⦆

s step

𝛾+𝜌 (𝑚, 𝑟 ) in
(𝑚′, 𝑀′

1
, 𝑀′

2
), 𝑣,𝑤 ∗𝑊

Since all equations are scheduled, the environment produced by a set of equations can be computed

incrementally and there is no need for a fixpoint operator to interpret local declarations.

Proposition 4.1. For an expression where all equations are scheduled, the scheduled density-based

semantics is equal to the density-based semantics with a fixpoint.

Proof. This result is a consequence of the following lemma:

Lemma 4.1. For all scheduled equations set 𝐸, the scheduled semantics yields the same environment

as the fixpoint operator, i.e., for an environment 𝛾 , a state𝑀 and an array of random seeds 𝑟 :

fix (𝜆𝜌. let 𝑀 ′, 𝜌 ′,𝑤 = ⦅𝐸⦆
step

𝛾+𝜌 (𝑀, 𝑟 ) in 𝜌 ′) = let 𝑀 ′, 𝜌,𝑤 = ⦅𝐸⦆
s step

𝛾 (𝑀, 𝑟 ) in 𝜌

The proof is by induction on 𝐸. It is sufficient to focus on the case 𝐸1 and 𝐸2. Since equations are
scheduled, 𝐸1 does not depend on variables defined in 𝐸2 and we have for an environment 𝛾 , a state

(𝑀1, 𝑀2) and an array of random seeds [𝑟1 : 𝑟2]:

fix (𝜆(𝜌1 + 𝜌2). let 𝑀′
1
, 𝜌′

1
,𝑤1 = ⦅𝐸1⦆

step

𝛾+𝜌1+𝜌2 (𝑀1, 𝑟1) in
let 𝑀′

2
, 𝜌′

2
,𝑤2 = ⦅𝐸2⦆

step

𝛾+𝜌1+𝜌2 (𝑀2, 𝑟2) in 𝜌′
1
+ 𝜌′

2
)

= fix (𝜆(𝜌1 + 𝜌2) . let 𝑀′
1
, 𝜌′

1
,𝑤1 = ⦅𝐸1⦆

step

𝛾+𝜌1 (𝑀1, 𝑟1) in
let 𝑀′

2
, 𝜌′

2
,𝑤2 = ⦅𝐸2⦆

step

𝛾+𝜌1+𝜌2 (𝑀2, 𝑟2) in 𝜌′
1
+ 𝜌′

2
)

= let 𝜌′′
1
= fix (𝜆𝜌1 . let 𝑀′

1
, 𝜌′

1
,𝑤1 = ⦅𝐸1⦆

step

𝛾+𝜌1 (𝑀1, 𝑟1) in 𝜌′
1
) in

let 𝜌′′
2
= fix (𝜆𝜌2 . let 𝑀′

2
, 𝜌′

2
,𝑤2 = ⦅𝐸2⦆

step

𝛾+𝜌 ′′
1
+𝜌2 (𝑀2, 𝑟2) in 𝜌′

2
) in 𝜌′′

1
+ 𝜌′′

2

= let 𝑀′
1
, 𝜌′

1
,𝑤1 = ⦅𝐸1⦆

s step

𝛾 (𝑀1, 𝑟1) in
let 𝑀′

2
, 𝜌′

2
,𝑤2 = ⦅𝐸2⦆

s step

𝛾+𝜌 ′
1

(𝑀2, 𝑟2) in 𝜌′
1
+ 𝜌′

2

□

4.2 Inference
The infer operator first turns the result of the density-based semantics into an un-normalized

measure, and then performs the same operation as in the kernel-based semantics: 1) integrate over

all possible states, 2) normalize the measure, 3) split the result into a distribution of next states and

a distribution of values.
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⟦infer(𝑒)⟧d init𝛾 = let 𝑚, 𝑝 = ⦅𝑒⦆init𝛾 in 𝛿𝑚, 𝑝

⟦infer(𝑒)⟧d step𝛾 (𝜎, 𝑝) = let 𝜓 (𝑚) =
∫
[0,1]𝑝

let 𝑚′, 𝑣,𝑤 = ⦅𝑒⦆
step

𝛾 (𝑚, 𝑟 ) in 𝑤 ∗ 𝛿 (𝑚′,𝑣) 𝑑𝑟 in

let 𝜈 =

∫
𝜎 (𝑑𝑚) 𝜓 (𝑚) in

let 𝜈 = 𝜈/𝜈 (⊤) in
(𝜋1∗ (𝜈), 𝑝), 𝜋2∗ (𝜈)

(4)

The state of the infer operator contains the number of random variables in the model 𝑝 (which

remains constant) and a distribution of possible states. The initial distribution of states is a Dirac

delta measure over the initial state of the model. The transition function first computes a function

𝜓 mapping a state to the un-normalized measure which associates each pair (next state, value) to

its weight. The infer operator then integrates this function along all possible values of the state,

normalizes it, and splits it into a pair of distributions.

Correctness. The previous definition is very similar to its kernel-based semantics counterpart

where the function 𝜓 (𝑚) in Equation (4) plays the role of the semantics of the model. We now

show that these two notions coincide.

Proposition 4.2. For all probabilistic expression 𝑒 with 𝑝 random variables where all equations are

scheduled, the density-based semantics is the density of the measure computed by the kernel semantics,

i.e., for all environment 𝛾 and state𝑚:

∫
[0,1]𝑝

let 𝑚′, 𝑣,𝑤 = ⦅𝑒⦆
step

𝛾 (𝑚) in 𝑤 ∗ 𝛿𝑚′,𝑣 𝑑𝑟 = ⦃𝑒⦄
step

𝛾 (𝑚)

Proof. The kernel-based semantics is only defined for a scheduled language. We first prove

by induction on the structure of 𝑒 that the scheduled density-based semantics coincide with the

kernel-based semantics. We can then conclude with Proposition 4.1.

The case sample(𝜇) is a simple variable substitution 𝑥 = icdf 𝜇 (𝑟 ) where icdf 𝜇 is the inverse
of the cumulative function of 𝜇. Indeed, any real continuous distribution 𝜇 is the pushforward by

icdf 𝜇 of the uniform distribution over [0, 1] denoted 𝜆:

∫
[0,1]

𝛿
icdf 𝜇 (𝑟 ) 𝑑𝑟 =

∫
𝛿
icdf 𝜇 (𝑟 ) 𝜆(𝑑𝑟 ) =

∫
𝛿𝑥 icdf 𝜇∗ (𝜆) (𝑑𝑥) =

∫
𝛿𝑥 𝜇 (𝑑𝑥) = 𝜇

This property generalizes to discrete distributions, multivariate distributions, and any distributions

over Polish spaces. By analogy, we use the notation icdf 𝜇 in all cases.

The case 𝐸1 and 𝐸2 is a consequence of Fubini’s theorem.
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∫
⦃𝐸1⦄

step

𝛾 (𝑀1) (𝑑𝑀 ′
1
, 𝑑𝜌1)

∫
⦃𝐸2⦄

step

𝛾+𝜌1 (𝑀2) (𝑑𝑀 ′
2
, 𝑑𝜌2) 𝛿 (𝑀 ′

1
,𝑀 ′

2
),𝜌1+𝜌2

=
∫ (∫

[0,1]𝑝1 let 𝑀
′
1
, 𝜌1,𝑤1 = ⦅𝐸1⦆

step

𝛾 (𝑀1) in 𝑤1 ∗ 𝛿𝑀1,𝜌1 𝑑𝑟1

)
(𝑑𝑀′

1
, 𝑑𝜌1)∫ (∫

[0,1]𝑝2 let 𝑀
′
1
, 𝜌2,𝑤1 = ⦅𝐸2⦆

step

𝛾+𝜌1 (𝑀2) in 𝑤2 ∗ 𝛿𝑀2,𝜌2 𝑑𝑟2

)
(𝑑𝑀 ′

2
, 𝑑𝜌2)

𝛿 (𝑀 ′
1
,𝑀 ′

2
),𝜌1+𝜌2

=
∫
[0,1]𝑝1

∫
[0,1]𝑝2

∫ (
let 𝑀′

1
, 𝜌1,𝑤1 = ⦅𝐸1⦆

step

𝛾 (𝑀1) in 𝑤1 ∗ 𝛿𝑀1,𝜌1

)
(𝑑𝑀 ′

1
, 𝑑𝜌1)∫ (

let 𝑀′
1
, 𝜌2,𝑤1 = ⦅𝐸2⦆

step

𝛾+𝜌1 (𝑀2) in 𝑤2 ∗ 𝛿𝑀2,𝜌2

)
(𝑑𝑀 ′

2
, 𝑑𝜌2) 𝑑𝑟1𝑑𝑟2

𝛿 (𝑀 ′
1
,𝑀 ′

2
),𝜌1+𝜌2

=
∫
[0,1]𝑝1+𝑝2 let 𝑀′

1
, 𝜌1,𝑤1 = ⦅𝐸1⦆

step

𝛾 (𝑀1) in
let 𝑀′

2
, 𝜌2,𝑤2 = ⦅𝐸2⦆

step

𝛾+𝜌1 (𝑀2) in
𝑤1 ∗𝑤2 ∗ 𝛿 (𝑀 ′

1
,𝑀 ′

2
),𝜌1+𝜌2 𝑑𝑟1𝑑𝑟2

Other cases are similar. □

We can now state the main correctness theorem, i.e., the infer operator yields the same stream

of distributions in the density-based semantics and in the kernel based semantics.

Theorem 4.3 (Co-iterative semantics correctness). For all probabilistic model 𝑒 where all

equations sets are scheduled, for all environment 𝛾 , and for all distribution of state 𝜎 :

⟦infer(𝑒)⟧d init𝛾 = ⟦infer(𝑒)⟧step𝛾 , 𝑝

⟦infer(𝑒)⟧d step𝛾 (𝜎, 𝑝) = ⟦infer(𝑒)⟧step𝛾 (𝜎)

Proof. By construction, in the density-based semantics, the first element of the initial state of

infer is a Dirac delta measure on the initial state of the model which corresponds to the initial

state of infer in the kernel-based semantics.

By Proposition 4.2 the un-normalized measure defined by the density-based semantics matches

the measure computed by the kernel-based semantics. Given this measure, the rest of the transition

function of infer is the same in both cases. □

5 DENSITY-BASED RELATIONAL SEMANTICS
An alternative to the operational view of the co-iterative semantics where expressions are in-

terpreted as state machines is to define a relational semantics where expressions directly return

streams of values [Colaço and Pouzet 2003]. This formalism has been used in the Vélus project to

prove an end-to-end dataflow synchronous compiler within the Coq proof assistant [Bourke et al.

2017a, 2020, 2021].

In this section, we first present a relational semantics for the deterministic expressions of our

language. We then define a relational density-based semantics for probabilistic expressions and

prove that this semantics is equivalent to the co-iterative density-based semantics, i.e., the infer
operator yields the same stream of distributions.

Notations. In the following, 𝑉𝜔
is the type of infinite streams of values of type 𝑉 . The infix

operator (·) : 𝑉 → 𝑉𝜔 → 𝑉𝜔
is the stream constructor (e.g., 1 · 2 · 3 · ...). Constants are lifted to

constant streams (e.g., 1 = 1 · 1 · 1 · ...) and when the context is clear we write 𝑓 (𝑠) = 𝑓 (𝑠0) · 𝑓 (𝑠1) · ...
for map 𝑓 𝑠 , and (𝑠, 𝑡) = (𝑠1, 𝑡1) · (𝑠2, 𝑡2) · ... to cast a pair of streams into a stream of pairs.

5.1 Deterministic relational semantics
In the relational semantics, deterministic expressions compute streams of values. In a context

𝐻 which maps variables names to stream of values, the semantics of a deterministic expression
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𝐺,𝐻 ⊢ 𝑐 ↓ 𝑐 𝐺, 𝐻 ⊢ 𝑥 ↓ 𝐻 (𝑥)
𝐺,𝐻 ⊢ 𝑒1 ↓ 𝑠1 𝐺,𝐻 ⊢ 𝑒2 ↓ 𝑠2

𝐺,𝐻 ⊢ (𝑒1,𝑒2) ↓ (𝑠1, 𝑠2)
𝐺,𝐻 ⊢ 𝑒 ↓ 𝑠

𝐺, 𝐻 ⊢ op(𝑒) ↓ op(𝑠)

𝐻 (𝑥 .last) = 𝑠

𝐺, 𝐻 ⊢ last 𝑥 ↓ 𝑠
𝐺, 𝐻 ⊢ 𝑒 ↓ 𝑠𝑒 𝐺 (𝑓 ) = node 𝑓 𝑥 = 𝑒𝑓 𝐺, [𝑥 ← 𝑠𝑒 ] ⊢ 𝑒𝑓 ↓ 𝑠

𝐺, 𝐻 ⊢ 𝑓 (𝑒) ↓ 𝑠

𝐺, 𝐻 + 𝐻𝐸 ⊢ 𝐸 𝐺,𝐻 + 𝐻𝐸 ⊢ 𝑒 ↓ 𝑠
𝐺, 𝐻 ⊢ 𝑒 where rec 𝐸 ↓ 𝑠

𝐺, 𝐻 ⊢ 𝑒 ↓ 𝐻 (𝑥)
𝐺,𝐻 ⊢ 𝑥 = 𝑒

𝐺,𝐻 ⊢ 𝑒 ↓ 𝑖 · 𝑠 𝐻 (𝑥 .last) = 𝑖 · 𝐻 (𝑥)
𝐺,𝐻 ⊢ init 𝑥 = 𝑒

𝐺,𝐻 ⊢ 𝐸1 𝐺,𝐻 ⊢ 𝐸2
𝐺,𝐻 ⊢ 𝐸1 and 𝐸2

Fig. 7. Deterministic relational semantics (full version in Figure 14 of the appendix).

𝑒 returns a stream 𝑠: 𝐺,𝐻 ⊢ 𝑒 ↓ 𝑠 . The additional context 𝐺 stores global declarations (global

constants and function definitions). The semantics of a set of equations 𝐸 checks that the context

𝐻 is compatible with all the equations: 𝐺,𝐻 ⊢ 𝐸. The semantics of a set of equations thus defines a

relation between the streams stored in the context. Compared to the co-iterative semantics, the

relational semantics is not executable since the context must be guessed a priori and validated

against the equations.

Figure 7 presents the relational semantics for deterministic expressions and equations. A constant

is interpreted as a constant stream, and a variable returns the corresponding stream in the context.

The semantics of a pair evaluates each component independently and packs the results into a

stream of pairs. The application of an operator evaluates its argument into a stream of values and

maps the operator on the result. last 𝑥 fetches a special variable 𝑥 .last in the context. A function

call first evaluates its argument, and then evaluates the body of the function in a context where the

parameter is bound to the argument value.

To interpret an expressionwith a set of local declarations 𝑒 where rec 𝐸, equations 𝐸 are evaluated

in a new context 𝐻𝐸 that is also used to evaluate the main expression 𝑒 . The semantics of a simple

equation checks that a variable is associated to the stream computed by its defining expression.

The initialization operator init 𝑥 = 𝑒 prepends an initial value 𝑖 to the stream associated to 𝑥

and checks that the special variable 𝑥 .last is bound to this delayed version of 𝑥 . In the relational

semantics, context are un-ordered maps and scheduling equations does not change the semantics.

5.2 Probabilistic relational semantics
The key idea of the probabilistic relational semantics is similar to the density-based co-iterative

semantics: instead of manipulating streams of measures, probabilistic expressions compute streams

of pairs (value, score) using external streams of random seeds, and integration is deferred to the

infer operator.
Figure 8 presents the density-based relational semantics for probabilistic expressions and equa-

tions. In a context 𝐻 which maps variables names to values, the semantics of a probabilistic

expression 𝑒 takes an array of random streams 𝑅 and returns a stream of pairs (value, weight):

𝐺,𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑠,𝑤). The semantics of a set of equations 𝐸 takes an array containing the random

streams of all sub-expressions, checks that the contexts 𝐻 is compatible with all the equations, and

returns the total weight𝑊 of all sub-expressions: 𝐺,𝐻, 𝑅 ⊢ 𝐸 :𝑊 .



16 Guillaume Baudart, Louis Mandel, and Christine Tasson

𝐺,𝐻 ⊢ 𝑒 ↓ 𝑠
𝐺, 𝐻, [] ⊢ 𝑒 ⇓ (𝑠, 1)

𝐺,𝐻 ⊢ 𝑒 ↓ 𝑠𝜇
𝐺,𝐻, [𝑅] ⊢ sample(𝑒) ⇓ (icdf 𝑠𝜇 (𝑅), 1)

𝐺,𝐻 ⊢ 𝑒 ↓ 𝑤
𝐺,𝐻, [] ⊢ factor(𝑒) ⇓ ((),𝑤)

𝐺,𝐻, 𝑅𝑒 ⊢ 𝑒 ↓ (𝑠𝑒 ,𝑤𝑒 ) 𝐺 (𝑓 ) = proba 𝑓 𝑥 = 𝑒𝑓 𝐺, [𝑥 ← 𝑠𝑒 ], 𝑅𝑓 ⊢ 𝑒𝑓 ⇓ (𝑠,𝑤)
𝐺,𝐻, [𝑅𝑒 : 𝑅𝑓 ] ⊢ 𝑓 (𝑒) ⇓ (𝑠,𝑤 ∗𝑤𝑒 )

𝐺,𝐻 + 𝐻𝐸 , 𝑅𝐸 ⊢ 𝐸 : 𝑤𝐸 𝐺,𝐻 + 𝐻𝐸 , 𝑅𝑒 ⊢ 𝑒 ⇓ (𝑠,𝑤)
𝐺,𝐻, 𝑅𝐸 ⊢ 𝑒 where rec 𝐸 ⇓ (𝑠,𝑤 ∗𝑤𝐸 )

𝐺,𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝐻 (𝑥),𝑤)
𝐺,𝐻, 𝑅 ⊢ 𝑥 = 𝑒 : 𝑤

𝐺,𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑖 · 𝑠,𝑤𝑖 ·𝑤) 𝐻 (𝑥 .last) = 𝑖 · 𝐻 (𝑥)
𝐺,𝐻, 𝑅 ⊢ init 𝑥 = 𝑒 : 𝑤𝑖 · 1

𝐺,𝐻, 𝑅1 ⊢ 𝐸1 : 𝑤1 𝐺,𝐻, 𝑅2 ⊢ 𝐸2 : 𝑤2

𝐺,𝐻, [𝑅1 : 𝑅2] ⊢ 𝐸1 and 𝐸2 : 𝑤1 ∗𝑤2

𝑝 = RV(𝑒) [𝐺,𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑠,𝑤) 𝑤 = Π 𝑤]𝑅∈ ([0,1]𝜔 )𝑝
𝐺,𝐻 ⊢ infer(𝑒) ↓ integ𝑝 𝑤 𝑠

Fig. 8. Probabilistic relational semantics (full version in Figure 15 of the appendix).

The semantics of deterministic expressions (e.g., constant or variable) returns the expected

stream of values associated to a constant weight of 1. The semantics of sample takes an array

containing one random stream 𝑅, evaluates its argument into a stream of distributions 𝑠𝜇 , and

uses the random stream to compute a stream of samples associated to the constant weight 1:

(icdf 𝑠𝜇
0

(𝑅0), 1) · (icdf 𝑠𝜇
1

(𝑅1), 1) · .... The semantics of factor evaluates its arguments into a stream

of values𝑤 which is used as the weight associated to a stream of empty values: ((),𝑤0) · ((),𝑤1) · ....
The semantics of a function call is similar to the deterministic case, but the random streams are

split between the argument and the function body, and the total weight captures the weight of

the argument and the weight of the function body. Similarly, for an expression with a set of local

definitions the random streams are split between sub-expressions and the weight is the total weight

of all sub-expressions.

By construction, for any probabilistic expression 𝑒 , the size of the array of random streams is

the number of random variables defined in 𝑒 , i.e., the number of sample. This information can be

computed statically (as in the initialization functions of the co-iterative semantics in Section 4.1),

and in the following RV(𝑒) returns the number of random variables in 𝑒 .

5.3 Inference
As in the density-based co-iterative semantics, the infer operator is defined by integrating at each

step an un-normalized density function over all possible values of the streams of random seeds. The

semantics of a probabilistic model returns a pair of stream functions (value, weight) which both

depend on the random streams. Given the random streams, at each time step, the semantics of infer
first computes the total weight of the prefix to capture all the conditioning since the beginning of

the execution:𝑤 (𝑅) = Π 𝑤 (𝑅) = 𝑤0 (𝑅) · (𝑤0 (𝑅) ∗𝑤1 (𝑅)) · (𝑤0 (𝑅) ∗𝑤1 (𝑅) ∗𝑤2 (𝑅)) · .... Then the

function integ 1) turns 𝑣𝑛 and𝑤𝑛 into an un-normalized measures by integrating over all possible

values of the random streams, and 2) normalizes the result to obtain a stream of distributions of

values. If 𝑝 = RV(𝑒) is the number of random variables in the model and 𝜆
𝑝
𝜔 is the uniform measure
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over the cube of random streams ( [0, 1]𝜔 )𝑝 :

integ𝑝 (𝑤 ·𝑤𝑠) (𝑣 · 𝑣𝑠) =

(
let 𝜇 =

∫
𝑤 (𝑅)𝛿𝑣 (𝑅) 𝜆𝑝𝜔 (𝑑𝑅) in 𝜇/𝜇 (⊤)

)
· (integ 𝑤𝑠 𝑣𝑠) (5)

Cube of random streams. The uniform measure over the cube of random streams is defined as

follows. Let [0, 1]𝜔 be the countable product of the measurable spaces on the interval [0, 1] endowed
with the Lebesgue 𝜎-algebra, i.e., the coarsest 𝜎-algebra such that projections are measurable. We

define 𝜆𝜔 as the uniform distribution on the continuous cube defined by a Kolmogorov extension

such that for any 𝑘 ∈ N, the pushforward measure of 𝜆𝜔 along the projection 𝜋≤𝑘 : [0, 1]𝜔 → [0, 1]𝑘
on the first 𝑘 coordinates is the Lebesgue measure on [0, 1]𝑘 : 𝜆≤𝑘 = 𝜋≤𝑘 ∗ (𝜆𝜔 ). For any measurable

function 𝑔 : [0, 1]𝑘 → 𝑉 we have the following change of variable formula:∫
𝑔(𝜋≤𝑘 (𝑅)) 𝜆𝜔 (𝑑𝑅) =

∫
𝑔(𝑅≤𝑘 ) 𝜆≤𝑘 (𝑑𝑅≤𝑘 )

Integrating a function which only depends on the 𝑘 first coordinates of 𝑅 can thus be reduced to

integrating over these coordinates. We can then define the uniform measure on the cube of random

streams 𝜆
𝑝
𝜔 as the 𝑝-ary product measure of 𝜆𝜔 , and lift the change of variable formula.

Correctness. For a probabilistic expression 𝑒 , we first relate the relational semantics of Section 4.1

and the co-iterative semantics of Section 5.1. If 𝐻 is an environment mapping variables names to

streams of values, 𝐻𝑘 is the environment where streams are projected on their 𝑘-th coordinate and

𝐻≤𝑘 is the environment where streams are truncated at 𝑘 . We define similarly 𝑅≤𝑘 , and 𝑅𝑘 for an

array of random streams 𝑅.

Proposition 5.1. For a causal probabilistic model 𝑒 , if𝐺,𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑠,𝑤) there is a co-iterative
execution trace𝑚0 = ⦅𝑒⦆

init

𝐺 and ∀𝑘 > 0, (𝑚𝑘+1, 𝑣𝑘+1,𝑤
′
𝑘+1) = ⦅𝑒⦆

step

𝐻𝑘+1
(𝑚𝑘 , 𝑅𝑘+1) such that ∀𝑘 > 0,

𝑚𝑘 , 𝑣𝑘 ,𝑤
′
𝑘
only depend on 𝐻≤𝑘 and 𝑅≤𝑘 , and 𝑠𝑘 (𝐻 ) = 𝑣𝑘 (𝐻≤𝑘 , 𝑅≤𝑘 ) and𝑤𝑘 (𝐻 ) = 𝑤 ′

𝑘
(𝐻≤𝑘 , 𝑅≤𝑘 ).

Proof Sketch. This proposition states that if a program is causal, i.e., if all equations can be

scheduled, the co-iterative semantics and the relational semantics coincide.

First, we can show that if a relational semantics exists, there exists a state machine whose execu-

tion matches the relational semantics. A similar proof is at the heart of the Vélus compiler [Bourke

et al. 2017a]. While adapting this proof to the ProbZelus language with explicit scores is far from

easy, it does not offer any new insights. Second, the semantics of the compiled state-machines is

deterministic and corresponds to the co-iterative semantics of the normalized scheduled program

which does not require any fixpoint computation. Finally, the co-iterative semantics can be used to

prove that source-to-source transformations preserve the semantics, in particular the normalization

and scheduling passes [Colaco et al. 2023]. The semantics of the state machine thus corresponds to

the co-iterative semantics of the original program.

The property also states that at each instant, the output of a causal model only depends on past

inputs and states which can be proved by induction on the structure of the program. □

As in Section 4.2, we can now state the main correctness theorem, i.e., the infer operator yields

the same stream of distributions in the co-iterative semantics and in the relational semantics.

Theorem 5.2 (Relational semantics correctness). For a causal probabilistic model 𝑒 , and for

all environments 𝐺,𝐻 , if 𝐺,𝐻 ⊢ infer(𝑒) ↓ 𝜇 then the co-iterative execution trace yields the same

stream of distributions, i.e., 𝜎0, 𝑝 = ⟦infer(𝑒)⟧init𝐺 and ∀𝑘 > 0, (𝜎𝑘 , 𝑝), 𝜇𝑘 = ⟦infer(𝑒)⟧step
𝐻𝑘+1
(𝜎𝑘 , 𝑝).

Proof. If 𝑝 is the number of random variables in the model, we show ∀𝑘 > 0:
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𝜎𝑘+1 (𝐻𝑘+1, 𝜎𝑘 ) ∝
∫
( [0,1]𝑘 )𝑝

𝑤𝑘 (𝐻≤𝑘 , 𝑅≤𝑘 ) ∗ 𝛿𝑚𝑘 (𝐻≤𝑘 ,𝑅≤𝑘 )𝜆
𝑝

≤𝑘 (𝑑𝑅≤𝑘 )

𝜇𝑘+1 (𝐻𝑘+1, 𝜎𝑘 ) ∝
∫
( [0,1]𝑘 )𝑝

𝑤𝑘 (𝐻≤𝑘 , 𝑅≤𝑘 ) ∗ 𝛿𝑣𝑘 (𝐻≤𝑘 ,𝑅≤𝑘 )𝜆
𝑝

≤𝑘 (𝑑𝑅≤𝑘 )

By the induction hypothesis, ∀𝑘 , 𝐻 , 𝑅, 𝑠 (𝐻, 𝑅)𝑘 = 𝑣𝑘 (𝐻≤𝑘 , 𝑅≤𝑘 ) and 𝑤 (𝐻, 𝑅)𝑘 = 𝑤 ′
𝑘
(𝐻≤𝑘 , 𝑅≤𝑘 ).

From the definition of𝜓 in Equation (4) and Fubini’s theorem we have:

𝜈𝑘+1 =
∫

𝜎𝑘 (𝑑𝑚) 𝜓 (𝑚)

∝
∫
( [0,1]𝑘 )𝑝

𝑤𝑘 (𝐻≤𝑘 , 𝑅≤𝑘 ) ∗𝜓 (𝑚𝑘 (𝐻≤𝑘 , 𝑅≤𝑘 )) 𝜆𝑛≤𝑘 (𝑑𝑅≤𝑘 )

∝
∫
( [0,1]𝑘 )𝑝

∫
[0,1]𝑝

𝑤𝑘 (𝐻≤𝑘 , 𝑅≤𝑘 ) ∗𝑤𝑘+1 (𝐻𝑘+1, 𝑅𝑘+1)
∗ 𝛿𝑚𝑘+1 (𝐻≤𝑘+1,𝑅≤𝑘+1 ),𝑣𝑘+1 (𝐻≤𝑘+1,𝑅≤𝑘+1 ) 𝜆

𝑝 (𝑑𝑅𝑘+1)𝜆
𝑝

≤𝑘 (𝑑𝑅≤𝑘 )

∝
∫
( [0,1]𝑘+1 )𝑝

𝑤𝑘+1 (𝐻≤𝑘+1, 𝑅≤𝑘+1) ∗ 𝛿𝑚𝑘+1 (𝐻≤𝑘+1,𝑅≤𝑘+1 ),𝑣𝑘+1 (𝐻≤𝑘+1,𝑅≤𝑘+1 ) 𝜆
𝑝

≤𝑘+1 (𝑑𝑅≤𝑘+1)

The normalization and marginalization by 𝜋1∗ and 𝜋2∗ concludes the inductive case. Then using

the change of variable formula on the cube of random streams we get:

𝜇𝑘 ∝
∫

𝑤𝑘 (𝑅)𝛿𝑠𝑘 (𝑅)𝜆
𝑝
𝜔 (𝑑𝑅)

which corresponds to Equation (5) and concludes the proof. □

5.4 Program equivalence
Compared to the co-iterative semantics where proving the equivalence between two state machines

requires a bisimulation, in the relational semantics, to prove the equivalence between two programs

one need only check that they define the same streams.

Definition 5.3. Deterministic expressions 𝑒1 and 𝑒2 are equivalent if for all contexts 𝐺,𝐻 :

𝐺,𝐻 ⊢ 𝑒1 ↓ 𝑠 and 𝐺,𝐻 ⊢ 𝑒2 ↓ 𝑠

Two probabilistic expressions are equivalent if they describe the same stream of measures

obtained by integrating at each step the streams of pairs (value, weight) computed by the density-

based relational semantics.

Definition 5.4. Probabilistic expressions 𝑒1 and 𝑒2 with RV(𝑒1) = 𝑝1 and RV(𝑒2) = 𝑝2 are equiva-

lent if for any context 𝐺,𝐻 :

∀𝑘 > 0.

∫
𝑤1𝑘 (𝑅1) ∗ 𝛿𝑠1𝑘 (𝑅1 ) 𝑑𝜆

𝑝1
𝜔 (𝑅1) =

∫
𝑤2𝑘 (𝑅2) ∗ 𝛿𝑠2𝑘 (𝑅2 ) 𝑑𝜆

𝑝2
𝜔 (𝑅2)

where for all random streams 𝑅1, 𝑅2: 𝐺,𝐻, 𝑅1 ⊢ 𝑒1 ⇓ (𝑠1,𝑤1) and 𝐺,𝐻, 𝑅2 ⊢ 𝑒2 ⇓ (𝑠2,𝑤2).

In the relational semantics, for a given context, each pair (value, weight) is a function of the

random streams. Since, random streams are uniformly distributed, if we canmap the random streams

of expression 𝑒1 to the random streams of expression 𝑒2 while preserving uniform distributions,

program equivalence can be reduced to the comparison of the streams of pairs (value, weight)

computed by each expression.
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Proposition 5.5 (Probabilistic eqivalence). Probabilistic expressions 𝑒1 and 𝑒2 with RV(𝑒1) =
𝑝1 and RV(𝑒2) = 𝑝2 are equivalent if there is a measurable function 𝑓 : ( [0, 1]𝜔 )𝑝1 → ([0, 1]𝜔 )𝑝2
such that, for all contexts 𝐺,𝐻 :

• if 𝑓 (𝑅1) = 𝑅2 and 𝐺,𝐻, 𝑅𝑖 ⊢ 𝑒𝑖 ⇓ (𝑠𝑖 ,𝑤𝑖 ), then 𝑠1 (𝑅1) = 𝑠2 (𝑅2) and𝑤1 (𝑅1) = 𝑤2 (𝑅2), and
• 𝜆

𝑝2
𝜔 is the pushforward of 𝜆

𝑝1
𝜔 along 𝑓 , i.e., 𝜆

𝑝2
𝜔 = 𝑓∗ (𝜆𝑝1𝜔 ).

Proof. The proof is a direct application of the change of variable formula. For all contexts 𝐺,𝐻 ,

and 𝑘 > 0: ∫
𝑤2𝑘 (𝑅2) ∗ 𝛿𝑠2𝑘 (𝑅2 ) 𝜆

𝑝2
𝜔 (𝑑𝑅2) =

∫
𝑤2𝑘 (𝑓 (𝑅1)) ∗ 𝛿𝑠2𝑘 (𝑓 (𝑅2 ) ) 𝑓∗ (𝜆

𝑝1
𝜔 ) (𝑑𝑅2)

=

∫
𝑤1𝑘 (𝑅1) ∗ 𝛿𝑠1𝑘 (𝑅1 ) 𝜆

𝑝1
𝜔 (𝑑𝑅1)

□

Finding such a mapping is in general difficult. A useful simple case is when the two programs

involve the same random variables in different orders, e.g., a program and its compiled version

after a source-to-source transformation. In this case, the measurable function is a permutation of

the random streams, and two expressions are equivalent if they compute the same stream of pairs

(value, weight).

The relational semantics of an expression is described by a derivation tree where each relation

is a consequence of smaller relations on all the sub-expressions, up to atomic expressions. Two

expressions compute the same streams if from the derivation tree of the first, one can build a

derivation tree for the second and vice-versa.

Example. If 𝑥 and 𝑦 are not free variables in expressions 𝑒1 and 𝑒2:

sample(𝑒1) + sample(𝑒2) ∼ 𝑥 + 𝑦 where rec 𝑥 = sample(𝑒2) and 𝑦 = sample(𝑒1)

Let 𝑅𝑖 be the random streams associated to the expressions sample(𝑒𝑖). For all context 𝐺,𝐻 , if

𝐺,𝐻 ⊢ 𝑒𝑖 ↓ 𝜇𝑖 we define 𝑠𝑖 = icdf 𝜇𝑖
(𝑅𝑖 ). Then, the derivation tree for the lhs expression is:

𝐺,𝐻, 𝑅1 ⊢ sample(𝑒1) ⇓ (𝑠1, 1) 𝐺,𝐻, 𝑅2 ⊢ sample(𝑒2) ⇓ (𝑠2, 1)
𝐺,𝐻, [𝑅1 : 𝑅2 ] ⊢ sample(𝑒1) + sample(𝑒2) ⇓ (𝑠1 + 𝑠2, 1)

With 𝐻𝐸 = [𝑥 ← 𝑠2, 𝑦 ← 𝑠1], the derivation tree for the rhs expression is:

𝐺,𝐻 +𝐻𝐸 , [ ] ⊢ 𝑥 + 𝑦 ⇓ (𝑠2 + 𝑠1, 1)

𝐺,𝐻 +𝐻𝐸 , 𝑅2 ⊢ sample(𝑒2) ⇓ (𝑠2, 1)
𝐺,𝐻 +𝐻𝐸 , 𝑅2 ⊢ 𝑥 = sample(𝑒2) : 𝑤2

𝐺,𝐻 +𝐻𝐸 , 𝑅1 ⊢ sample(𝑒1) ⇓ (𝑠1, 1)
𝐺,𝐻 +𝐻𝐸 , 𝑅1 ⊢ 𝑦 = sample(𝑒1) : 𝑤1

𝐺,𝐻 +𝐻𝐸 , [𝑅2 : 𝑅1 ] ⊢ 𝑥 = sample(𝑒2) and 𝑦 = sample(𝑒1) : 𝑤1 ∗ 𝑤2

𝐺,𝐻, [𝑅2 : 𝑅1 ] ⊢ 𝑥 + 𝑦 where rec 𝑥 = sample(𝑒2) and 𝑦 = sample(𝑒1) ⇓ (𝑠2 + 𝑠1, 1)

Since both programs compute the same stream of pairs (value, weight), and the permutation

𝑓 ( [𝑅1 : 𝑅2]) = [𝑅2 : 𝑅1] preserves the uniform distribution, the two programs are equivalent.

6 APPLICATION: ASSUMED PARAMETERS FILTERING
ProbZelus probabilistic models are state-space models that can involve two kinds of random

variables. State parameters are represented by a stream of random variables which evolve over time

depending on the previous values and the observations. Constant parameters are represented by a

random variable whose value is progressively refined from the prior distribution with each new

observation.
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Fig. 9. Estimates of the theta parameter of the radar example over time with a particle filter (PF at the top)

and assumed parameter filter (APF at the bottom) . The true drift speed is indicated by a green cross. The

color gradient represents the dot density. The scale shrinks over time. Results may differ in between runs.

Example. Consider the example of Section 2 where the boat is drifting at a constant speed 𝜃 .

We want to estimate both the moving position (state parameter), and the drift speed (constant

parameter). The motion model f is now defined as follows (where the noise parameter st is a global
constant):

let proba f(pre_x) = pre_x + theta where

rec init theta = sample(gaussian(zeros, st))

and theta = last theta

Filtering. To estimate state parameters, Sequential Monte Carlo (SMC) inference algorithms

rely on filtering techniques [Chopin and Papaspiliopoulos 2020; Del Moral et al. 2006]. Filtering

is an approximate method which consists of deliberately losing information on the current ap-

proximation to refocus future estimations on the most significant information. These methods are

particularly well suited to the reactive context where a system in interaction with its environment

never stops and must execute with bounded resources. All ProbZelus inference methods are SMC

algorithms [Atkinson et al. 2022; Baudart et al. 2020, 2022]. Unfortunately, this loss of information

is harmful for the estimation of constant parameters which do not change over time.

The most basic SMC algorithm, the particle filter, approximates the posterior distribution by

launching a set of independent executions, called particles. At each step, each particle returns a

value associated to a score which measures the quality of the value w.r.t. the model. To recenter the

inference on the most significant particles, the inference runtime periodically resamples the set of

particles according to their weights. The most significant particles are then duplicated while the

least interesting ones are dropped.

Unfortunately, constant parameters are only sampled at the beginning of the execution of each

particle. After each resampling step, the duplicated particles share the same value for theta. The
quantity of information used to estimate constant parameters thus strictly decreases over time

until eventually, there is only one possible value left. The upper part of the Figure 9 graphically

illustrates this phenomenon.



Density-Based Semantics for Reactive Probabilistic Programming 21

Assumed Parameter Filter. To mitigate this issue, the Assumed Parameter Filter (APF) [Erol et al.

2017] split the inference into two steps: 1) estimate the state parameters, and 2) update the constant

parameters. The lower part of Figure 9 illustrates the results of APF on the estimation of the drift

speed for our radar example.

The APF algorithm assumes that constant parameters are well identified and that the model

is written in a form which makes it possible to update the constant parameters given the state

parameters. The constant parameters must be an input of the model, and their prior distributions

an input of a new inference operator APF.infer (the APF algorithm is described in Appendix B.1).

In this section, we present a program transformation which generates models that are exploitable

by the APF algorithm. First, a static analysis identifies the constant parameters and their prior

distributions. Then a compilation pass transforms these parameters into additional input of the

model. We use the relational semantics of Section 5 to prove the correctness of this transformation,

i.e., the transformation preserves the ideal semantics of the program.

Example. The compiled radar model for APF is the following:

let f_prior = gaussian(zeros, id)

proba f_model(theta, pre_x) = pre_x + theta

let tracker_prior = f_prior

proba tracker_model(theta, y_obs) = x where

rec init x = x_init

and x = sample(gaussian(f(theta, last x), sx))

and y = g(x)

and () = observe(gaussian(y, sy), y_obs)

node main(y_obs) = msg where

rec x_dist = APF.infer (tracker_model, tracker_prior, y_obs)

and msg = controller(x_dist)

6.1 Static Analysis
The goal of the static analysis is to identify the constant parameters of each probabilistic node,

i.e., initialized random variables (init 𝑥 = sample(𝑒)) that are also constant (𝑥 = last 𝑥). For

a program prog the judgement ∅, ∅ ⊢ prog : Φ,𝐶 builds the environment Φ which associates to

each probabilistic node a type 𝜙 which maps constant parameters to their prior distributions.

The environment 𝐶 contains the global constant variables that can be used to define the prior

distributions. The main type system is given in Figure 10.

Constants. The auxiliary judgement 𝐶 ⊢𝑐 𝐸 : 𝐶′ identifies constant streams 𝐶′ in the set of

equations 𝐸 given the constant variables 𝐶 . A stream 𝑥 is constant if it is always equal to its

previous value (𝑥 = last 𝑥) or if it is defined by a constant expression. The auxiliary judgement

𝐶 ⊢𝑐 𝑒 checks that an expression defines a constant stream. An expression with a set of local

declarations is constant if all the equations define constant streams.

Declarations. A global declaration let 𝑥 = 𝑒 typed in the environment Φ,𝐶 adds the name 𝑥 to

the global constant set 𝐶 if the expression 𝑒 is constant.

A probabilistic node proba 𝑓 𝑥 = 𝑒 is associated to the map𝜙 computed by the judgement𝐶 ⊢ 𝑒 : 𝜙 .

Expressions. Typing an expression collects the constant parameters of the sub-expressions. To

simplify the analysis, we associate a unique instance name 𝜃 to each function call and we assume
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𝐶 ⊢𝑐 𝑒
Φ,𝐶 ⊢ let 𝑥 = 𝑒 : Φ,𝐶 + {𝑥}

𝐶 ⊢ 𝑒 : 𝜙
Φ,𝐶 ⊢ proba 𝑓 𝑥 = 𝑒 : Φ + {𝑓 ← 𝜙},𝐶

𝐶 ⊢ 𝑒1 : 𝜙
𝐶 ⊢ present 𝑒1 → 𝑒2 else 𝑒3 : 𝜙

𝐶 ⊢ 𝑒2 : 𝜙
𝐶 ⊢ reset 𝑒1 every 𝑒2 : 𝜙 𝐶 ⊢ 𝑓𝜃(𝑒) : {𝜃 ← 𝑓 .prior}

𝐶 ⊢ 𝑒 : 𝜙𝑒 𝐶 ⊢𝑐 𝐸 : 𝐷 𝐶, 𝐷 ⊢ 𝐸 : 𝜙𝐸

𝐶 ⊢ 𝑒 where rec 𝐸 : 𝜙𝑒 + 𝜙𝐸

𝑥 ∈ 𝐷 𝐶 ⊢𝑐 𝑒
𝐶, 𝐷 ⊢ init 𝑥 = sample(𝑒) : {𝑥 ← 𝑒}

𝐶 ⊢ 𝑒 : 𝜙
𝐶, 𝐷 ⊢ 𝑥 = 𝑒 : 𝜙

𝐶 ⊢𝑐 𝑥 = last 𝑥 : {𝑥}
𝐶 ⊢𝑐 𝑒

𝐶 ⊢𝑐 𝑥 = 𝑒 : {𝑥}
𝑥 ∈ 𝐶
𝐶 ⊢𝑐 𝑥

𝐶 + dom(𝐸) ⊢𝑐 𝑒 𝐶 ⊢𝑐 𝐸 : dom(𝐸)
𝐶 ⊢𝑐 𝑒 where rec 𝐸

Fig. 10. Extract constant parameters and associated prior distributions (full type system in Appendix B.2).

that all variables and instances names are unique, e.g., 𝑓 (1) + 𝑓 (2) becomes 𝑓𝜃1 (1) + 𝑓𝜃2 (2). The rule
for 𝑓𝜃(𝑒) associates to 𝜃 the prior distribution of the constant parameters of the body of 𝑓 : 𝑓 .prior
which is defined as a global variable by the compilation pass. The rule for reset 𝑒1 every 𝑒2 focuses
only on the condition 𝑒2 because 𝑒1 can be re-initialized and thus is not constant. Similarly, the rule

for present 𝑒1 → 𝑒2 else 𝑒3 focuses only on the condition 𝑒1.

Equations. The typing of 𝑒 where rec 𝐸 identifies the set 𝐷 of constant variables in 𝐸 then types

the equations with the judgement 𝐶, 𝐷 ⊢ 𝐸 : 𝜙 where 𝐶 is the set of constant free variables in 𝐸. If

a variable 𝑥 is introduced by the equation init 𝑥 = sample(𝑒) and is constant (𝑥 ∈ 𝐷), then 𝑥 is a

constant parameter and the result type maps 𝑥 to the distribution 𝑒 .

Example. On our example, the variable theta is identified as a constant parameter of the node f
and is propagated through the node tracker that calls f. The final environment is:

Φ = {f← {theta← gaussian(...)}, tracker← {𝜃 ← f.prior}}

6.2 Compilation
To run the APF algorithm, constant parameters must become additional inputs of the model. The

inference runtime can thus execute the model multiple times with different values of the constant

parameters to update their distributions. The compilation function is defined in Figure 11 by

induction on the syntax and relies on the result of the static analysis. The compilation function C
is thus parameterized by the typing environment Φ for declarations and the type 𝜙 for expressions.

A model proba 𝑓 𝑥 = 𝑒 such that Φ(𝑓 ) = 𝜙 (i.e., 𝐶 ⊢ 𝑒 : 𝜙) is compiled into two statements:

• let 𝑓 .prior = im(𝜙): the prior distribution of the constant parameters in 𝑒 , and

• proba 𝑓 .model (dom(𝜙), 𝑥) = C𝜙 (𝑒): a newmodel that takes the constant parameters dom(𝜙)
as additional arguments.

The compilation function of an expression C𝜙 removes the definitions of the constant parameters

𝑥 ∈ dom(𝜙). The where/rec case effectively removes the constant parameters by keeping only

the equations defining variables 𝑥 ∉ dom(𝜙). The main difficulty is to handle constant parameters

introduced by a function call 𝑓𝜃 (𝑒).
• If the node is deterministic, there is no constant parameter.
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CΦ (proba 𝑓 𝑥 = 𝑒) = let 𝑓 .prior = im(𝜙) with 𝜙 = Φ(𝑓 )
proba 𝑓 .model (dom(𝜙),𝑥) = C𝜙 (𝑒)

C𝜙 (𝑒 where rec 𝐸) = C𝜙 (𝑒) where rec C𝜙 (𝐸)

C𝜙 (init 𝑥 = 𝑒) =

{
∅ if 𝑥 ∈ dom(𝜙)
init 𝑥 = C𝜙 (𝑒) otherwise

C𝜙 (𝑥 = 𝑒) =

{
∅ if 𝑥 ∈ dom(𝜙)
𝑥 = C𝜙 (𝑒) otherwise

C𝜙 (𝑓𝜃(𝑒)) =


𝑓 (C𝜙 (𝑒)) if 𝑓 is deterministic

𝑓 .model(𝜃, C𝜙 (𝑒)) if 𝜃 ∈ dom(𝜙)
𝑓 .model(𝜃, C𝜙 (𝑒)) where otherwise

rec init 𝜃 = sample(𝑓 .prior)
and 𝜃 = last 𝜃

C𝜙 (infer(𝑓 (𝑒))) = APF.infer(𝑓 .model, 𝑓 .prior, C𝜙 (𝑒))

Fig. 11. APF compilation (full definition in Appendix B.3).

• If the constant parameters of the callee are also constant parameters of the caller, we have

𝜃 ∈ dom(𝜙) and we just replace the call to 𝑓𝜃 with a call to 𝑓 .model using the instance name

for the constant parameters.

• Otherwise, the constant parameters of the callee are not constant for the caller because the

instance 𝑓𝜃 is used inside a reset/every or a present/else. In this case, we redefine these

parameters locally by sampling their prior distribution 𝑓 .prior.

Finally, the call to infer(𝑓 (𝑒)) is replaced by a call to APF.infer(𝑓 .model, 𝑓 .prior, 𝑒).

6.3 Correctness
We use the relational semantics to prove the correctness of the APF compilation pass. First, we prove

that any probabilistic expression is equivalent to its compiled version computed in an environment

which already contains the definition of the constant parameters. The main theorem which relates

infer(𝑓 (𝑒)) and APF.infer(𝑓 .model, 𝑓 .prior, 𝑒) then corresponds to the case 𝑓𝜃 (𝑒).

Definition 6.1. For a model 𝑓 that is compiled into 𝑓 .prior and 𝑓 .model, the ideal semantics of

APF.infer externalizes the definition of the constant parameters.

APF.infer(𝑓 .model, 𝑓 .prior, 𝑒)
≡

infer(𝑓 .model(𝜃, 𝑒) where rec init 𝜃 = sample(𝑓 .prior))

Notations. In the following,𝐺+ is the context𝐺 for global declarations augmented with the defini-

tion of 𝑓 .model and 𝑓 .prior for all probabilistic functions 𝑓 . To simplify the presentationwe use vec-

torized notations, e.g., icdf ®𝜇 (𝑅0) is a syntactic shortcut for the list [icdf ®𝜇 [0] (𝑅 [0]0), icdf ®𝜇 [1] (𝑅 [1]0), ...].

Theorem 6.2. For all probabilistic functions 𝑓 such that Φ(𝑓 ) = 𝜙 , for all expressions 𝑒 in the body

of 𝑓 such that 𝐶 ⊢ 𝑒 : 𝜙𝑒 , there is a permutation 𝑅 → [𝑅′ : 𝑅𝑝 ] such that

𝐺,𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑠,𝑤) ⇐⇒ 𝐺+, 𝐻 + 𝐻𝑓 , 𝑅
′ ⊢ C𝜙 (𝑒) ⇓ (𝑠,𝑤).

where ®𝑝 = dom(𝜙𝑒 ) is the list of constant parameters in 𝑒 , ®𝜇 = im(𝜙𝑒 ) are the corresponding prior

distributions and 𝐻𝑓 is the context that already contains the definitions of all the constant parameters

in 𝑓 including ®𝑝 , i.e., 𝐻𝑓 ( ®𝑝) = icdf ®𝜇 (𝑅
𝑝

0
).
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Proof. The proof is by induction on the expression and the size of the context, i.e., the number

of declarations before the expression. For each induction case, we give the mapping between 𝑅 and

𝑅′ + 𝑅𝑝
, and show that a semantics derivation for 𝑒 in a context𝐺,𝐻, 𝑅 is equivalent to a semantics

derivation for C𝜙 (𝑒) in the context 𝐺+, 𝐻 + 𝐻𝑓 , 𝑅
′
. We focus on the most interesting cases, i.e.,

expressions altered by the compilation function.

To simplify the proof we prove the following lemma for equations in parallel with Theorem 6.2.

Lemma 6.1. For all equations 𝐸 in the body of 𝑓 such that 𝐶, 𝐷 ⊢ 𝐸 : 𝜙𝐸 , there is a permutation

𝑅 → [𝑅′ : 𝑅𝑝 ] such that

𝐺,𝐻, 𝑅 ⊢ 𝐸 :𝑊 ⇐⇒ 𝐺+, 𝐻 + 𝐻𝑓 , 𝑅
′ ⊢ C𝜙 (𝐸) :𝑊 .

Case init 𝑥 = sample(𝑑) and 𝑥 = last 𝑥 where 𝑥 ∈ dom(𝜙). The permutation is [𝑅𝑥 ] → [] : [𝑅𝑥 ]
and with 𝑣𝑥 = icdf 𝜇 (𝑅𝑥 0)

𝐺,𝐻 ⊢ 𝑑 ↓ 𝜇 · 𝑠𝜇
𝐺,𝐻 + [𝑥 ← 𝑣𝑥 ], [𝑅𝑥 ] ⊢ init 𝑥 = sample(𝑑) : 1 𝐺,𝐻 + [𝑥 ← 𝑣𝑥 ], [ ] ⊢ 𝑥 = last 𝑥 : 1

𝐺,𝐻 + [𝑥 ← 𝑣𝑥 ], [𝑅𝑥 ] ⊢ init 𝑥 = sample(𝑑) and 𝑥 = last 𝑥 : 1

On the other hand, because 𝑥 is a constant parameter, C𝜙 (𝑑) = ∅ and 𝐻𝑓 (𝑥) = 𝑣𝑥 .

𝐻𝑓 (𝑥 ) = 𝑣𝑥 𝐺+, 𝐻 +𝐻𝑓 , [ ] ⊢ ∅ : 1

𝐺+, 𝐻 +𝐻𝑓 , [ ] ⊢ C𝜙 (init 𝑥 = sample(𝑑) and 𝑥 = last 𝑥 ) : 1

This results can then be generalized to arbitrary sets of equations where the two equations are not

necessarily grouped together at the cost of an additional permutation.

Case 𝑔𝜃(𝑒). By induction we have the two permutations 𝑅𝑒 → [𝑅′𝑒 : 𝑅
𝑝
𝑒 ] and 𝑅𝑔 → [𝑅′𝑔, 𝑅

𝑝
𝑔 ].

With proba 𝑔 𝑥 = 𝑒𝑔 and 𝐶 ⊢ 𝑒𝑔 : 𝜙𝑔, we can apply the induction hypothesis on 𝑒𝑔 because there is

no possible recursive call. The callee context for 𝑒𝑔 is thus strictly smaller than the caller context.

We also have 𝐻𝑔 = [ ®𝑝𝑔 ← ®𝑣𝑝 ] with ®𝑝𝑔 = dom(𝜙𝑔), ®𝜇𝑔 = im(𝜙𝑔), and ®𝑣𝑝 = icdf ®𝜇𝑔 (𝑅
𝑝
𝑔
0
).

𝐺+, 𝐻 +𝐻𝑓 , 𝑅
′
𝑒 ⊢ C𝜙 (𝑒 ) ⇓ (𝑠𝑒 , 𝑤𝑒 )

𝐺,𝐻, 𝑅𝑒 ⊢ 𝑒 ⇓ (𝑠𝑒 , 𝑤𝑒 )

𝐺+, [𝑥 ← 𝑠𝑒 ] + [ ®𝑝𝑔 ← ®𝑣𝑝 ], 𝑅′𝑔 ⊢ C𝜙𝑔 (𝑒𝑔 ) ⇓ (𝑠, 𝑤 )

𝐺, [𝑥 ← 𝑠𝑒 ], 𝑅𝑔 ⊢ 𝑒𝑔 ⇓ (𝑠, 𝑤 )

𝐺,𝐻, [𝑅𝑒 : 𝑅𝑔 ] ⊢ 𝑔𝜃 (𝑒) ⇓ (𝑠, 𝑤𝑒 ∗ 𝑤 )

On the other end, by construction we have𝐺 (𝑔.model) = proba 𝑔.model ( ®𝑝𝑔,𝑥) = C𝜙𝑔 (𝑒𝑔) and
there are two cases. If 𝜃 ∈ dom(𝜙), then the constant parameters are already in the context and

𝐻𝑓 (𝜃 ) = ®𝑣𝑝 . The permutation is [𝑅𝑒 : 𝑅𝑔] → [𝑅′𝑒 : 𝑅′𝑔] : [𝑅
𝑝
𝑒 : 𝑅

𝑝
𝑔 ] and we have:

𝐺+, 𝐻 +𝐻𝑓 , [ ] ⊢ 𝜃 ⇓ ( ®𝑣𝑝 , 1) 𝐺+, 𝐻 +𝐻𝑓 , 𝑅
′
𝑒 ⊢ C𝜙 (𝑒 ) ⇓ (𝑠𝑒 , 𝑤𝑒 )

𝐺+, 𝐻 +𝐻𝑓 , 𝑅
′
𝑒 ⊢ (𝜃,C𝜙 (𝑒 )) ⇓ ( ( ®𝑣𝑝 , 𝑠𝑒 ), 𝑤𝑒 ) 𝐺+, [𝑥 ← 𝑠𝑒 , ®𝑝𝑔 ← ®𝑣𝑝 ], 𝑅′𝑔 ⊢ C𝜙𝑔 (𝑒𝑔 ) ⇓ (𝑠, 𝑤 )

𝐺+, 𝐻 +𝐻𝑓 , [𝑅′𝑒 , 𝑅′𝑔 ] ⊢ 𝑔.model(𝜃, C𝜙 (𝑒 )) ⇓ (𝑠, 𝑤𝑒 ∗ 𝑤 )

𝐺+, 𝐻 +𝐻𝑓 , [𝑅′𝑒 , 𝑅′𝑔 ] ⊢ C𝜙 (𝑔𝜃 (𝑒 ) ) ⇓ (𝑠, 𝑤𝑒 ∗ 𝑤 )

Finally if 𝜃 ∉ dom(𝜙), the constant parameters are not in the context and the compilation adds a

defining equation for 𝜃 . The permutation is [𝑅𝑒 : 𝑅𝑔] → [𝑅′𝑒 : 𝑅′𝑔 : 𝑅
𝑝
𝑔 ] : [𝑅

𝑝
𝑒 ], and we have:
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...

𝐺+, 𝐻 +𝐻𝑓 + [𝜃 ← ®𝑣𝑝 ], [𝑅′𝑒 , 𝑅′𝑔 ] ⊢ 𝑔.model(𝜃, C𝜙 (𝑒 )) ⇓ (𝑠, 𝑤 )

𝐺+ (𝑔.prior) = ®𝜇𝑔

𝐺+, 𝐻 +𝐻𝑓 , 𝑅
𝑝
𝑔 ⊢ sample(𝑔.prior) ⇓ ( ®𝑣𝑝 , 1)

𝐺+, 𝐻 +𝐻𝑓 + [𝜃 ← ®𝑣𝑝 ], 𝑅𝑝
𝑔 ⊢ init 𝜃 = sample(𝑔.prior) : 1

𝐺+, 𝐻 +𝐻𝑓 , [𝑅′𝑒 , 𝑅′𝑔, 𝑅
𝑝
𝑔 ] ⊢ 𝑔.model(𝜃, C𝜙 (𝑒 )) where rec init 𝜃 = sample(𝑔.prior) ⇓ (𝑠, 𝑤 )

𝐺+, 𝐻 +𝐻𝑓 , [𝑅′𝑒 , 𝑅′𝑔, 𝑅
𝑝
𝑔 ] ⊢ C𝜙 (𝑔𝜃 (𝑒)) ⇓ (𝑠, 𝑤 )

□

We can now state and prove the correctness of the APF compilation pass.

Theorem 6.3 (APF compilation). For all probabilistic nodes 𝑓 ,

𝐺,𝐻 ⊢ infer(𝑓 (𝑒)) ↓ 𝑑 ⇐⇒ 𝐺+, 𝐻 ⊢ APF.infer(𝑓 .model, 𝑓 .prior, 𝑒) ↓ 𝑑

Proof. From Definition 6.1, we need to show that for all random streams 𝑅:

𝐺,𝐻, 𝑅 ⊢ 𝑓𝜃(𝑒) ⇓ (𝑠,𝑤) ⇐⇒ 𝐺+, 𝐻 + [𝜃 ← ®𝑣𝑝 ], 𝑅′ ⊢ 𝑓 .model(𝜃, 𝑒) ⇓ (𝑠,𝑤)

with𝐺+ (𝑓 .prior) = ®𝜇 and ®𝑣𝑝 = icdf ®𝜇 (𝑅
𝑝

0
). This corresponds to the case 𝑓𝜃(𝑒)with 𝜃 ∈ dom(𝜙). □

7 RELATEDWORK
Probabilistic Semantics. Measurable functions and kernels have been used to define the seman-

tics of first-order probabilistic programs as probability distribution transformers [Kozen 1981].

Probabilistic Coherent Spaces is a generalization of this idea to higher-order types but for discrete

probability [Danos and Ehrhard 2011]. This setting has been extended to continuous distributions

with models based on positive cones [Dahlqvist and Kozen 2020; Ehrhard et al. 2018], a variation

on Banach spaces with positive scalars [Selinger 2004]. To interpret the sampling operation, cones

have to be equipped with a measurability structure such that measures and integration can be

defined for any types [Ehrhard and Geoffroy 2023].

Quasi-Borel spaces (QBS) are another alternative to classic measurable spaces to define the

semantics of higher-order probabilistic programs with conditioning [Heunen et al. 2017; Staton

et al. 2016]. A probabilistic expression is interpreted as a quasi-Borel measure, i.e., an equivalence

class of pairs [𝛼, 𝜇] where 𝜇 is a measure over R, and 𝛼 is a measurable function from R to values.

Intuitively, the corresponding distribution is obtained as the pushforward of 𝜇 along 𝛼 . Recent work

extends this formalism to capture lazy data structures and streams in a functional probabilistic

language [Dash et al. 2023].

Our density-based semantics relies on a similar representation: probabilistic expressions are

interpreted by pushingforward a uniform measure over [0, 1]𝑛 along a measurable function. The

main difference is that we focus on a domain specific dataflow synchronous language. The set

of random variables can be computed statically, and integration is entirely deferred to the infer
operator. Importantly, we recover the fact that equations sets can be interpreted in any order, a key

property for dataflow synchronous languages.

Program Equivalence. Probabilistic bisimulation has been introduced for testing equivalence of

discrete probabilistic systems [Larsen and Skou 1989] and generalized to study Labelled Markov

Process (continuous systems) [Desharnais et al. 2002]. Following [Lago and Gavazzo 2019] which

defines a notion of bisimulation for a (higher-order) probabilistic lambda calculus, we could define

a notion of probabilistic bisimulation for the co-iterative semantics. One challenge is to adapt the

bisimulation to reactive state machines with explicit state.
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Probabilistic coupling, is an alternative classic proof technique for probabilistic programs equiv-

alence [Hsu 2017]. A coupling describes correlated executions by associating pairs of samples.

Proposition 5.5 that we use to prove the correctness of the APF compilation pass is an instance of

probabilistic coupling where the relation is made explicit through a measurable function.

Static analysis and compilation. The static analysis presented in Section 6.1 is inspired by static

analyses designed for dataflow synchronous languages, in particular the initialization analysis [Co-

laço and Pouzet 2004] which guarantees that all streams are well defined at the first time step, and

the typing of Zelus’ static arguments which checks that some value can be statically computed at

compile time [Bourke et al. 2017b].

The compilation pass presented in Section 6.2 turns constant parameters into additional argu-

ments of the model. An alternative, closer to our density-based semantics, would be to externalize

all random variables. This would give a lot of flexibility to the inference runtime to apply dif-

ferent inference strategies to different sets of variables. This approach is also reminiscent of the

compilation of Zelus’ hybrid models [Benveniste et al. 2011].

Inference. ProbZelus inference runtime relies on semi-symbolic sequential Monte Carlo sam-

plers [Atkinson et al. 2022; Baudart et al. 2020; Lundén 2017]. The posterior distribution is ap-

proximated by a set of independent executions, the particles. Each particle tries to compute a

closed form solution using symbolic computation, and only samples concrete values when sym-

bolic computations fails. For some models, symbolic computations can be used to compute the

distribution of constant parameters, and ProbZelus default inference algorithms thus outperforms

APF. Unfortunately symbolic computations are only possible with conjugate random variables and

affine transformations. APF is thus more robust for arbitrary models.

8 CONCLUSION
In this paper we proposed two semantics for a reactive probabilistic programming languages: a

density-based co-iterative semantics and a density-based relational semantics. Both semantics are

schedule agnostic, i.e., sets of of mutually recursive equations can be interpreted in arbitrary order,

a key property of synchronous dataflow languages. The relational semantics directly manipulates

streams which can significantly simplify program equivalence reasoning for probabilistic expres-

sions. We then defined a program transformation required to run an optimized inference algorithm

for state-space models with constant parameters and used the relational semantics to prove the

correctness of the transformation.
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⦅𝑒⦆init𝛾 = ⟦𝑒⟧init𝛾 , 0

⦅𝑒⦆
step

𝛾 (𝑚, []) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in𝑚′, 𝑣, 1 if 𝑒 is deterministic

⦅sample(𝑒)⦆init𝛾 = let 𝑚 = ⟦𝑒⟧init𝛾 in𝑚, 1

⦅sample(𝑒)⦆
step

𝛾 (𝑚, [𝑟 ]) = let 𝑚′, 𝜇 = ⟦𝑒⟧step𝛾 (𝑚) in𝑚′, icdf 𝜇 (𝑟 ), 1

⦅factor(𝑒)⦆init𝛾 = let 𝑚 = ⟦𝑒⟧init𝛾 in𝑚, 0

⦅factor(𝑒)⦆
step

𝛾 (𝑚, []) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in𝑚′, (), 𝑣

⦅𝑓 (𝑒)⦆init𝛾 = let 𝑚𝑓 , 𝑝 𝑓 = 𝛾 (𝑓 .init) in
let 𝑚𝑒 , 𝑝𝑒 = ⦅𝑒⦆init𝛾 in

(𝑚𝑓 ,𝑚𝑒 ), 𝑝 𝑓 + 𝑝𝑒
⦅𝑓 (𝑒)⦆step𝛾 ((𝑚𝑓 ,𝑚𝑒 ), [𝑟 𝑓 : 𝑟𝑒 ]) = let 𝑚′𝑒 , 𝑣𝑒 ,𝑤𝑒 = ⦅𝑒⦆

step

𝛾 (𝑚𝑒 , 𝑟𝑒 ) in
let 𝑚′

𝑓
, 𝑣,𝑤 𝑓 = 𝛾 (𝑓 .step) (𝑣𝑒 ,𝑚𝑓 , 𝑟 𝑓 ) in

(𝑚′
𝑓
,𝑚′𝑒 ), 𝑣,𝑤𝑒 ∗𝑤 𝑓

⦅present 𝑒 → 𝑒1 else 𝑒2⦆
init

𝛾 = let 𝑚1, 𝑝1 = ⦅𝑒1⦆
init

𝛾 in

let 𝑚2, 𝑝2 = ⦅𝑒2⦆
init

𝛾 in

(⟦𝑒⟧init𝛾 ,𝑚1,𝑚2), 𝑝1 + 𝑝2
⦅present 𝑒 → 𝑒1 else 𝑒2⦆

step

𝛾 ((𝑚,𝑚1,𝑚2), [𝑟1 : 𝑟2]) = let 𝑚′, 𝑣 = ⟦𝑒⟧step𝛾 (𝑚) in
if 𝑣 then let (𝑚′

1
, 𝑣1,𝑤) = ⦅𝑒1⦆

step

𝛾 (𝑚1, 𝑟1)
in (𝑚′,𝑚′

1
,𝑚2), 𝑣1,𝑤

else let (𝑚′
2
, 𝑣2,𝑤) = ⦅𝑒2⦆

step

𝛾 (𝑚2, 𝑟2)
in (𝑚′,𝑚1,𝑚

′
2
), 𝑣2,𝑤

⦅reset 𝑒1 every 𝑒2⦆
init

𝛾 = let 𝑚1, 𝑝 = ⦅𝑒1⦆
init

𝛾 in (𝑚1,𝑚1, ⟦𝑒2⟧init𝛾 ), 𝑝
⦅reset 𝑒1 every 𝑒2⦆

step

𝛾 ((𝑚0,𝑚1,𝑚2),𝑤, 𝑟 ) = let 𝑚′
2
, 𝑣2 = ⟦𝑒2⟧step𝛾 (𝑚2) in

let 𝑚′
1
, 𝑣1,𝑤 = ⦅𝑒1⦆

step

𝛾 ( if 𝑣2 then𝑚0 else𝑚1, 𝑟 ) in
(𝑚0,𝑚

′
1
,𝑚′

2
), 𝑣1,𝑤

Fig. 12. Density-based co-iterative semantics for ProbZelus probabilistic expressions.

A SEMANTICS
A.1 Density-based co-iterative semantics
The density-based co-iterative semantics is presented in Section 4. Figures 12 and 13 presents the

full semantics for expressions and equations. The additional rules are for present and reset.
The initialization of present 𝑒 → 𝑒1 else 𝑒2 allocates memory for 𝑒 , 𝑒1 and 𝑒2 and count the

number of random variables in 𝑒1 and 𝑒2 (𝑒 is deterministic and does not have any random variable).

The step function first executes 𝑒 and depending on its value executes 𝑒1 or 𝑒2. The initialization

of reset 𝑒1 every 𝑒2 duplicates the memory needed to execute 𝑒1. That way, in the step function,

only the second copy is updated by the transition and if 𝑒1 is reset, the execution restarts from the

initial memory state.
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⦅𝑥 = 𝑒⦆init𝛾 = ⦅𝑒⦆init𝛾

⦅𝑥 = 𝑒⦆
step

𝛾 (𝑚, 𝑟 ) = let 𝑚′, 𝑣,𝑤 = ⦅𝑒⦆
step

𝛾 (𝑚, 𝑟 ) in𝑚′, [𝑥 ← 𝑣],𝑤

⦅init 𝑥 = 𝑒⦆init𝛾 = let 𝑚0, 𝑝 = ⦅𝑒⦆init𝛾 in (nil,𝑚0), 𝑝
⦅init 𝑥 = 𝑒⦆

step

𝛾 ((nil,𝑚0), 𝑟 ) = let 𝑚′, 𝑖,𝑤 = ⦅𝑒⦆
step

𝛾 (𝑚0, 𝑟 ) in (𝛾 (𝑥),𝑚0), [𝑥 .last← 𝑖],𝑤
⦅init 𝑥 = 𝑒⦆

step

𝛾 ((𝑣,𝑚0), 𝑟 ) = (𝛾 (𝑥),𝑚0), [𝑥 .last← 𝑣], 1

⦅𝐸1 and 𝐸2⦆
init

𝛾 = let 𝑀1, 𝑝1 = ⦅𝐸1⦆
init

𝛾 in

let 𝑀2, 𝑝2 = ⦅𝐸2⦆
init

𝛾 in

(𝑀1, 𝑀2), 𝑝1 + 𝑝2
⦅𝐸1 and 𝐸2⦆

step

𝛾 ((𝑀1, 𝑀2), [𝑟1 : 𝑟2]) = let 𝑀′
1
, 𝜌1,𝑤1 = ⦅𝐸1⦆

step

𝛾 (𝑀1, 𝑟1) in
let 𝑀′

2
, 𝜌2,𝑤2 = ⦅𝐸2⦆

step

𝛾 (𝑀2, 𝑟2) in
(𝑀′

1
, 𝑀′

2
), 𝜌1 + 𝜌2,𝑤1 ∗𝑤2

⦅𝑒 where rec 𝐸⦆init𝛾 = let 𝑚, 𝑝𝑒 = ⦅𝑒⦆init𝛾 in

let 𝑀, 𝑝𝐸 = ⦅𝐸⦆init𝛾 in

(𝑚,𝑀), 𝑝𝑒 + 𝑝𝐸
⦅𝑒 where rec 𝐸⦆

step

𝛾 ((𝑚,𝑀), [𝑟𝑒 : 𝑟𝐸 ]) = let 𝐹 (𝜌) =
(
let 𝑀′, 𝜌,𝑤 = ⦅𝐸⦆𝛾+𝜌 (𝑀, 𝑟𝐸 ) in 𝜌

)
in

let 𝜌 = fix (𝐹 ) in
let 𝑀′, 𝜌,𝑊 = ⦅𝐸⦆

step

𝛾+𝜌 (𝑀, 𝑟𝐸 ) in
let 𝑚′, 𝑣,𝑤 = ⦅𝑒⦆

step

𝛾 ′ (𝑚, 𝑟𝑒 ) in
(𝑚′, 𝑀′), 𝑣,𝑤 ∗𝑊

Fig. 13. Density-based co-iterative semantics for ProbZelus equations.

A.2 Density-based relational semantics
Stream functions. The density-based relational semantics is presented in Section 5. The definition

of this semantics relies on a few stream functions.

tl : 𝐴𝜔 → 𝐴𝜔

tl (𝑎 · 𝑎𝑠) = 𝑎𝑠

map : (𝐴→ 𝐵) → (𝐴𝜔 → 𝐵𝜔 )
map 𝑓 (𝑎 · 𝑎𝑠) = 𝑓 (𝑎) · (map 𝑓 𝑎𝑠)

merge : B𝜔 → 𝐴𝜔 → 𝐴𝜔 → 𝐴𝜔

merge (𝑇 · 𝑐𝑠) (𝑎 · 𝑎𝑠) 𝑏𝑠 = 𝑎 · (merge 𝑐𝑠 𝑎𝑠 𝑏𝑠)
merge (𝐹 · 𝑐𝑠) 𝑎𝑠 (𝑏 · 𝑏𝑠) = 𝑏 · (merge 𝑐𝑠 𝑎𝑠 𝑏𝑠)

when : A𝜔 → B𝜔 → 𝐴𝜔

(𝑎 · 𝑎𝑠) when (𝑇 · 𝑐𝑠) = 𝑎 · (𝑎𝑠 when 𝑐𝑠)
(𝑎 · 𝑎𝑠) when (𝐹 · 𝑐𝑠) = 𝑎𝑠 when 𝑐𝑠

slicer : (𝐴𝜔 )𝜔 → B𝜔 → 𝐴𝜔

slicer ((𝑎 · 𝑎𝑠) · 𝑏𝑠 · 𝑠𝑠) (𝐹 · 𝑐𝑠) = 𝑎 · (slicer (𝑎𝑠 · 𝑠𝑠) 𝑐𝑠)
slicer (𝑎𝑠 · (𝑏 · 𝑏𝑠) · 𝑠𝑠) (𝑇 · 𝑐𝑠) = 𝑏 · (slicer (𝑏𝑠 · 𝑠𝑠) 𝑐𝑠)
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𝐺,𝐻 ⊢ 𝑐 ↓ 𝑐 𝐺,𝐻 ⊢ 𝑥 ↓ 𝐻 (𝑥)
𝑥 ∉ 𝐻

𝐺,𝐻 ⊢ 𝑥 ↓ 𝐺 (𝑥)
𝐺,𝐻 ⊢ 𝑒1 ↓ 𝑠1 𝐺,𝐻 ⊢ 𝑒2 ↓ 𝑠2

𝐺,𝐻 ⊢ (𝑒1,𝑒2) ↓ (𝑠1, 𝑠2)

𝐺,𝐻 ⊢ 𝑒 ↓ 𝑠
𝐺, 𝐻 ⊢ op(𝑒) ↓ op(𝑠)

𝐻 (𝑥 .last) = 𝑠

𝐺, 𝐻 ⊢ last 𝑥 ↓ 𝑠

𝐺, 𝐻 ⊢ 𝑒 ↓ 𝑠𝑒 𝐺 (𝑓 ) = node 𝑓 𝑥 = 𝑒𝑓 𝐺, [𝑥 ← 𝑠𝑒 ] ⊢ 𝑒𝑓 ↓ 𝑠
𝐺, 𝐻 ⊢ 𝑓 (𝑒) ↓ 𝑠

𝐺, 𝐻 + 𝐻𝐸 ⊢ 𝐸 𝐺,𝐻 + 𝐻𝐸 ⊢ 𝑒 ↓ 𝑠
𝐺, 𝐻 ⊢ 𝑒 where rec 𝐸 ↓ 𝑠

𝐺, 𝐻 ⊢ 𝑒 ↓ 𝑠𝑐 𝐺, (𝐻 when 𝑠𝑐 ) ⊢ 𝑒1 ↓ 𝑠1 𝐺, (𝐻 when not 𝑠𝑐 ) ⊢ 𝑒2 ↓ 𝑠2
𝐺,𝐻 ⊢ present 𝑒 → 𝑒1 else 𝑒2 ↓ merge 𝑠𝑐 𝑠1 𝑠2[

𝐺, (tl 𝑛 𝐻 ) ⊢ 𝑒1 ↓ 𝑠𝑛
]
𝑛∈N 𝐺,𝐻 ⊢ 𝑒2 ↓ 𝑠𝑐

𝐺,𝐻 ⊢ reset 𝑒1 every 𝑒2 ↓ slicer (𝑠0 · 𝑠0 · 𝑠1 · 𝑠2 · ...) 𝑠𝑐
𝐺,𝐻 ⊢ 𝑒 ↓ 𝐻 (𝑥)
𝐺,𝐻 ⊢ 𝑥 = 𝑒

𝐺,𝐻 ⊢ 𝑒 ↓ 𝑣𝑖 · 𝑠𝑖 𝐻 (𝑥 .last) = 𝑣𝑖 · 𝐻 (𝑥)
𝐺,𝐻 ⊢ init 𝑥 = 𝑒

𝐺,𝐻 ⊢ 𝐸1 𝐺,𝐻 ⊢ 𝐸2
𝐺,𝐻 ⊢ 𝐸1 and 𝐸2

Fig. 14. Deterministic relational semantics.

The function tl drops the first element of a stream (tl
𝑛
drops the 𝑛 first elements). The function

map 𝑓 𝑠 applies 𝑓 to each element of the stream 𝑠 . merge 𝑐𝑠 𝑎𝑠 𝑏𝑠 merges the streams 𝑎𝑠 and 𝑏𝑠

according to the condition 𝑐𝑠 . 𝑎𝑠 when 𝑐𝑠 keeps the values of 𝑎𝑠 only when the condition 𝑐𝑠 is true.

The function slicer 𝑠𝑠 𝑐𝑠 is used to define the semantics of reset 𝑒1 every 𝑒2. The first argument 𝑠𝑠

is a stream of streams where each stream represents 𝑒1 restarted at each time step, and 𝑐𝑠 the the

reset condition. When the condition is false, the first value of the first stream of 𝑠𝑠 is returned

and the second stream of 𝑠𝑠 is discarded. It means that we progress by one step in 𝑒1 and the

stream representing 𝑒1 restarted at the current iteration is not useful since the expression was

not reset. When the condition is true, the first stream of 𝑠𝑠 which represents the current state

of 𝑒1 is discarded and the execution restarts with the first value of the second stream of 𝑠𝑠 which

represents 𝑒1 restarted at the current step.

Environment. An environment 𝐻 is a map from variable names to streams of values, for any

bound variable 𝑥 ∈ dom(𝐻 ), 𝐻 (𝑥) : 𝐴𝜔
. When the context is clear, we write 𝑓 𝐻 for map 𝑓 𝐻 , e.g.,

for all 𝑥 ∈ dom(𝐻 ), (tl 𝐻 ) (𝑥) = tl (𝐻 (𝑥)).

Relational semantics. The full deterministic and probabilistic density-based relational semantics

including the rules for present and reset are given in Figures 14 and 15. The semantics of

present 𝑒 → 𝑒1 else 𝑒2 uses the when function on the environment 𝐻 such that the execution

of 𝑒1 and 𝑒2 respectively progress only when the condition is true or false. Then the value of these

two streams are merged using the merge function. The semantics of reset 𝑒1 every 𝑒2 is based
on the slicer function. [𝐺, (tl 𝑛 𝐻 ) ⊢ 𝑒1 ↓ 𝑠𝑛]𝑛∈N represents the stream of streams where 𝑠𝑛 is the

stream of values computed by 𝑒1 restarted at time step 𝑛. In the slicer, the stream 𝑠0 is duplicated

because reset 𝑒1 every 𝑒2 returns the same value whether or not 𝑒2 is true at the initial step.
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𝐺,𝐻, [] ⊢ 𝑐 ⇓ (𝑐, 1) 𝐺,𝐻, [] ⊢ 𝑥 ⇓ (𝐻 (𝑥), 1)
𝑥 ∉ 𝐻

𝐺,𝐻, [] ⊢ 𝑥 ⇓ (𝐺 (𝑥), 1)

𝐺,𝐻, 𝑅𝑒 ⊢ 𝑒 ↓ (𝑠𝑒 ,𝑤𝑒 ) 𝐺 (𝑓 ) = proba 𝑓 𝑥 = 𝑒𝑓 𝐺, [𝑥 ← 𝑠𝑒 ], 𝑅𝑓 ⊢ 𝑒𝑓 ⇓ (𝑠,𝑤)
𝐺,𝐻, [𝑅𝑒 : 𝑅𝑓 ] ⊢ 𝑓 (𝑒) ⇓ (𝑠,𝑤 ∗𝑤𝑒 )

𝐺,𝐻 + 𝐻𝐸 , 𝑅𝐸 ⊢ 𝐸 : 𝑤𝐸 𝐺,𝐻 + 𝐻𝐸 , 𝑅𝑒 ⊢ 𝑒 ⇓ (𝑠,𝑤)
𝐺,𝐻, [𝑅𝑒 : 𝑅𝐸 ] ⊢ 𝑒 where rec 𝐸 ⇓ (𝑠,𝑤 ∗𝑤𝐸 )

𝐺,𝐻, 𝑅𝑒 ⊢ 𝑒 ↓ 𝑠𝑐 𝐺, (𝐻, 𝑅1 when 𝑠𝑐 ) ⊢ 𝑒1 ⇓ 𝑠𝑤1 𝐺, (𝐻, 𝑅2 when not 𝑠𝑐 ) ⊢ 𝑒2 ⇓ 𝑠𝑤2

𝐺,𝐻, [𝑅1 : 𝑅2] ⊢ present 𝑒 → 𝑒1 else 𝑒2 ⇓ merge 𝑠𝑐 𝑠𝑤1 𝑠𝑤2[
𝐺, (tl 𝑛 𝐻, 𝑅1) ⊢ 𝑒1 ⇓ 𝑠𝑤𝑛

]
𝑛∈N 𝐺,𝐻, 𝑅2 ⊢ 𝑒2 ↓ 𝑠𝑐 (𝑠,𝑤) = slicer (𝑠𝑤0 · 𝑠𝑤0 · 𝑠𝑤1 · 𝑠𝑤2 · ...) 𝑠𝑐
𝐺,𝐻, [𝑅1 : 𝑅2] ⊢ reset 𝑒1 every 𝑒2 ⇓ (𝑠,𝑤)

𝐺,𝐻 ⊢ 𝑒 ↓ 𝑠𝜇
𝐺,𝐻, [𝑅] ⊢ sample(𝑒) ⇓ (icdf 𝑠𝜇 (𝑅), 1)

𝐺,𝐻 ⊢ 𝑒 ↓ 𝑤
𝐺,𝐻, [] ⊢ factor(𝑒) ⇓ ((),𝑤)

𝐺,𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝐻 (𝑥),𝑤)
𝐺,𝐻, 𝑅 ⊢ 𝑥 = 𝑒 : 𝑤

𝐺,𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑖 · 𝑠,𝑤𝑖 ·𝑤) 𝐻 (𝑥 .last) = 𝑖 · 𝐻 (𝑥)
𝐺,𝐻, 𝑅 ⊢ init 𝑥 = 𝑒 : 𝑤𝑖 · 1

𝐺,𝐻, 𝑅1 ⊢ 𝐸1 : 𝑤1 𝐺,𝐻, 𝑅2 ⊢ 𝐸2 : 𝑤2

𝐺,𝐻, [𝑅1 : 𝑅2] ⊢ 𝐸1 and 𝐸2 : 𝑤1 ∗𝑤2

𝑝 = RV(𝑒) [𝐺,𝐻, 𝑅 ⊢ 𝑒 ⇓ (𝑠,𝑤) 𝑤 = Π 𝑤]𝑅∈ ([0,1]𝜔 )𝑝
𝐺,𝐻 ⊢ infer(𝑒) ↓ integ𝑝 𝑤 𝑠

Fig. 15. Probabilistic relational semantics.

B ASSUMED PARAMETERS FILTERING
B.1 Algorithm
The inference methods proposed by ProbZelus [Atkinson et al. 2022; Baudart et al. 2020, 2022]

belong to the family of SMC algorithms. These methods rely on a set of independent simulations,

called particles. Each particle returns an output value associated with a score. The score represents

the quality of the simulation. A large number of particles makes it possible to approximate the

desired distribution.

More concretely, the sample(d) construct randomly draws a value from the d distribution, and

the factor(x) construct multiplies the current score of the particle by x. At each instant, the

infer operator accumulates the values calculated by each particle weighted by their scores to

approximate the posterior distribution.

If the model calls on the operator sample at each instant, for example to estimate the position

of the boat in the radar example (Section 2), the previous method implements a simple random

walk for each particle. As time progresses, it becomes increasingly unlikely that one of the random

walks will coincide with the stream of observations. The score associated with each particle quickly

goes down towards 0.

To solve this issue, sequential Monte Carlo methods (SMC) add a filtering step. Algorithm 1

describes the execution of one instant for a particle filter, the most basic SMC algorithm. At each

instant 𝑡 , a particle 1 ≤ 𝑖 ≤ 𝑁 corresponds to a possible value of the parameters (i.e., random
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Data: probablisitic model model, observation 𝑦𝑡 , and previous result 𝜇𝑡−1.
Result: 𝜇𝑡 an approximation of the distribution of 𝑝𝑡 .

for each particle 𝑖 = 1 to 𝑁 do
𝑝𝑖𝑡−1 = sample()
𝑝𝑖𝑡 ,𝑤

𝑖
𝑡 = model(𝑦𝑡 | 𝑝𝑖𝑡−1)

𝜇𝑡 =M({𝑤 𝑖
𝑡 , 𝑝

𝑖
𝑡 }1≤𝑖≤𝑁 )

return 𝜇𝑡

Algorithm 1: Particle Filter.

Data: probabilistic model model, observation 𝑦𝑡 , and previous result 𝜇𝑡−1.
Result: 𝜇𝑡 an approximation of the distributions of state parameter 𝑥𝑡 and constant

parameter 𝜃 .

for each particle 𝑖 = 1 to 𝑁 do
𝑥𝑖𝑡−1,Θ

𝑖
𝑡−1 = sample()

𝜃 𝑖 = sample()
𝑥𝑖𝑡 ,𝑤

𝑖
𝑡 = model(𝑦𝑡 | 𝜃 𝑖 , 𝑥𝑖𝑡−1)

Θ𝑖
𝑡 = Udpate(Θ𝑖

𝑡−1, 𝜆𝜃 . model(𝑦𝑡 | 𝜃, 𝑥𝑖𝑡−1, 𝑥𝑖𝑡))
𝜇𝑡 =M({𝑤 𝑖

𝑡 , (𝑥𝑖𝑡 ,Θ𝑖
𝑡 )}1≤𝑖≤𝑁 )

return 𝜇𝑡

Algorithm 2: Assumed Parameter Filter [Erol et al. 2017].

variables) 𝑝𝑖𝑡 of the model. We begin by sampling a new set of particles in the distribution obtained

at the previous step. The most probable particles are thus duplicated and the less probable ones are

eliminated. This refocuses the inference around the most significant information while maintaining

the same number of particles throughout the execution. Knowing the previous state 𝑝𝑖𝑡−1, each
particle then executes a step of the model to obtain a sample of the parameters 𝑝𝑖𝑡 associated with a

score𝑤 𝑖
𝑡 . At the end of the instant, we construct a distribution 𝜇𝑡 where each particle is associated

with its score.M({𝑤 𝑖
𝑡 , 𝑝

𝑖
𝑡 }1≤𝑖≤𝑁 ) is a multinomial distribution, where the value 𝑝𝑖𝑡 is associated

with the probability𝑤 𝑖
𝑡/
∑𝑁

𝑖=1𝑤
𝑖
𝑡 .

Unfortunately, this approach generates a loss of information for the estimation of constant

parameters. On our radar example, at the first instant, each particle draws a random value for the

parameter theta. At each instant, the duplicated particles share the same value for theta. The
quantity of information useful for estimating theta therefore decreases with each new filtering

and, after a certain time, only one possible value remains.

Rather than sampling at the start of execution a set of values for the constant parameters that will

impoverish with each filtering, in the APF algorithm, each particle computes a symbolic distribution

of constant parameters. At runtime, the inference then alternates between a sampling pass to

estimate the state parameters, and an optimization pass which updates the constant parameters.

This avoids impoverishment for the estimation of the constant parameters.

More formally, Algorithm 2 describes the execution of one step of APF. At each instant 𝑡 , a

particle 1 ≤ 𝑖 ≤ 𝑁 corresponds to a possible value of the state parameters 𝑥𝑖𝑡 and a distribution

of constant parameters Θ𝑖
𝑡 . As for the particle filter, we begin by sampling a set of particles in

the distribution obtained at the previous instant. We then sample a value 𝜃 𝑖 in Θ𝑖
𝑡−1. Knowing

the value of the constant parameters 𝜃 𝑖 and the previous state 𝑥𝑖𝑡−1, we can execute a step of

the model to obtain a sample of the state parameters 𝑥𝑖𝑡 associated with a score𝑤 𝑖
𝑡 . We can then
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𝐶 ⊢𝑐 𝑒
Φ,𝐶 ⊢ let 𝑥 = 𝑒 : Φ,𝐶 + {𝑥} Φ,𝐶 ⊢ node 𝑓 𝑥 = 𝑒 : Φ + {𝑓 ← ∅},𝐶

𝐶 ⊢ 𝑒 : 𝜙
Φ,𝐶 ⊢ proba 𝑓 𝑥 = 𝑒 : Φ + {𝑓 ← 𝜙},𝐶

Φ,𝐶 ⊢ 𝑑1 : Φ1,𝐶1 Φ1,𝐶1 ⊢ 𝑑2 : Φ′,𝐶′

Φ,𝐶 ⊢ 𝑑1 𝑑2 : Φ′,𝐶′

𝐶 ⊢ 𝑐 : ∅ 𝐶 ⊢ 𝑥 : ∅
𝐶 ⊢ 𝑒1 : 𝜙1 𝐶 ⊢ 𝑒2 : 𝜙2
𝐶 ⊢ (𝑒1,𝑒2) : 𝜙1 + 𝜙2

𝐶 ⊢ 𝑒 : 𝜙
𝐶 ⊢ op(𝑒) : 𝜙

𝐶 ⊢ 𝑒 : 𝜙
𝐶 ⊢ sample(𝑒) : 𝜙

𝐶 ⊢ 𝑒 : 𝜙
𝐶 ⊢ factor(𝑒) : 𝜙 𝐶 ⊢ last 𝑥 : ∅

𝐶 ⊢ 𝑒1 : 𝜙
𝐶 ⊢ present 𝑒1 → 𝑒2 else 𝑒3 : 𝜙

𝐶 ⊢ 𝑒2 : 𝜙
𝐶 ⊢ reset 𝑒1 every 𝑒2 : 𝜙 𝐶 ⊢ 𝑓𝜃(𝑒) : {𝜃 ← 𝑓 .prior}

𝐶 ⊢ 𝑒 : 𝜙𝑒 𝐶 ⊢𝑐 𝐸 : 𝐷 𝐶, 𝐷 ⊢ 𝐸 : 𝜙𝐸

𝐶 ⊢ 𝑒 where rec 𝐸 : 𝜙𝑒 + 𝜙𝐸

𝑥 ∈ 𝐷 𝐶 ⊢𝑐 𝑒
𝐶, 𝐷 ⊢ init 𝑥 = sample(𝑒) : {𝑥 ← 𝑒}

𝐶 ⊢ 𝑒 : 𝜙
𝐶, 𝐷 ⊢ init 𝑥 = 𝑒 : 𝜙

𝐶 ⊢ 𝑒 : 𝜙
𝐶, 𝐷 ⊢ 𝑥 = 𝑒 : 𝜙

𝐶, 𝐷 ⊢ 𝐸1 : 𝜙1 𝐶, 𝐷 ⊢ 𝐸2 : 𝜙2
𝐶, 𝐷 ⊢ 𝐸1 and 𝐸2 : 𝜙1 + 𝜙2

Fig. 16. Extract constant parameters and associated prior distributions.

𝐶 ⊢𝑐 𝑐
𝑥 ∈ 𝐶
𝐶 ⊢𝑐 𝑥

𝐶 ⊢𝑐 𝑒1 𝐶 ⊢𝑐 𝑒2
𝐶 ⊢𝑐 (𝑒1,𝑒2)

𝐶 ⊢𝑐 𝑒
𝐶 ⊢𝑐 op(𝑒)

𝐶 + dom(𝐸) ⊢𝑐 𝑒 𝐶 ⊢𝑐 𝐸 : dom(𝐸)
𝐶 ⊢𝑐 𝑒 where rec 𝐸

𝐶 ⊢𝑐 init 𝑥 = 𝑒 : ∅ 𝐶 ⊢𝑐 𝑥 = last 𝑥 : {𝑥}
𝐶 ⊢𝑐 𝑒

𝐶 ⊢𝑐 𝑥 = 𝑒 : {𝑥}
𝐶 ⊬𝑐 𝑒

𝐶 ⊢𝑐 𝑥 = 𝑒 : ∅

𝐶 +𝐶2 ⊢𝑐 𝐸1 : 𝐶1 𝐶 +𝐶1 ⊢𝑐 𝐸2 : 𝐶2

𝐶 ⊢𝑐 𝐸1 and 𝐸2 : 𝐶1 +𝐶2

Fig. 17. Constant expressions and equations.

update Θ𝑖
𝑡 by exploring the other possible values for 𝜃 knowing that the particle has chosen the

transition 𝑥𝑖𝑡−1 → 𝑥𝑖𝑡 . At the end of the instant, we construct a distribution 𝜇𝑡 where each particle

is associated with its score.M({𝑤 𝑖
𝑡 , (𝑥𝑖𝑡 ,Θ𝑖

𝑡 )}1≤𝑖≤𝑁 ) is a multinomial distribution where the pair of

values (𝑥𝑖𝑡 ,Θ𝑖
𝑡 ) is associated to the probability𝑤 𝑖

𝑡/
∑𝑁

𝑖=1𝑤
𝑖
𝑡 .

B.2 Static Analysis
Figure 17 presents the auxiliary type system identifying the constant expressions and extracting

the names of the constant variables. An expression is constant if it is a constant value 𝑐 , a variable

referring to a constant stream (𝑥 ∈ 𝐶), or an expression whose all sub-expressions are constants.

The judgement 𝐶 ⊢𝑐 𝐸 : 𝐶′ extracts all the name of all the streams of the set of equations 𝐸 that are

constant. So if 𝐶 ⊢𝑐 𝐸 : dom(𝐸), all the streams of 𝐸 are constants. An equation defines a constant
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C𝜙 (𝑐) = 𝑐

C𝜙 (𝑥) = 𝑥

C𝜙 ((𝑒1,𝑒2)) = (C𝜙 (𝑒1),C𝜙 (𝑒2))
C𝜙 (op(𝑒)) = op(C𝜙 (𝑒))
C𝜙 (last 𝑥) = last 𝑥

C𝜙 (present 𝑒1 → 𝑒2 else 𝑒3) = present C𝜙 (𝑒1) → C𝜙 (𝑒2) else C𝜙 (𝑒3)
C𝜙 (reset 𝑒1 every 𝑒2) = reset C𝜙 (𝑒1) every C𝜙 (𝑒2)
C𝜙 (sample(𝑒)) = sample(C𝜙 (𝑒))
C𝜙 (factor(𝑒)) = factor(C𝜙 (𝑒))
C𝜙 (𝑒 where rec 𝐸) = C𝜙 (𝑒) where rec C𝜙 (𝐸)

C𝜙 (init 𝑥 = 𝑒) =

{
∅ if 𝑥 ∈ dom(𝜙)
init 𝑥 = C𝜙 (𝑒) otherwise

C𝜙 (𝑥 = 𝑒) =

{
∅ if 𝑥 ∈ dom(𝜙)
𝑥 = C𝜙 (𝑒) otherwise

C𝜙 (𝑓𝜃(𝑒)) =


𝑓 (C𝜙 (𝑒)) if 𝑓 is deterministic

𝑓 .model(𝜃, C𝜙 (𝑒)) if 𝜃 ∈ dom(𝜙)
𝑓 .model(𝜃, C𝜙 (𝑒)) where otherwise

rec init 𝜃 = sample(𝑓 .prior)
and 𝜃 = last 𝜃

C𝜙 (infer(𝑓 (𝑒))) = APF.infer(𝑓 .model, 𝑓 .prior, C𝜙 (𝑒))

C𝜙 (𝐸1 and 𝐸2) = C𝜙 (𝐸1) and C𝜙 (𝐸2)

CΦ (let 𝑥 = 𝑒) = let 𝑥 = 𝑒

CΦ (node 𝑓 𝑥 = 𝑒) = node 𝑓 𝑥 = C∅ (𝑒)
CΦ (proba 𝑓 𝑥 = 𝑒) = let 𝑓 .prior = im(𝜙) with 𝜙 = Φ(𝑓 )

proba 𝑓 .model (dom(𝜙),𝑥) = C𝜙 (𝑒)

Fig. 18. APF Compilation.

streams if it is defined by a constant expression or by the equation 𝑥 = last 𝑥 . The full type system
presented in Section 6.1 is given in Figure 16.

B.3 Compilation
The entire compilation function to transformation a ProbZelus model into a model compatible

with APF.infer is given in Figure 18. Most cases simply call the compilation functions on all

sub-expressions. The interesting cases are presented in Section 6.2.
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