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Abstract. The document clustering process involves the grouping of similar un-
labeled textual documents. This task relies on the use of document embedding
techniques, which can be derived from various models, including traditional and
neural network-based approaches. The emergence of Large Language Models
(LLMs) has provided a new method of capturing information from texts through
customized numerical representations, potentially enhancing text clustering by
identifying subtle semantic connections. The objective of this paper is to demon-
strate the impact of LLMs of different sizes on text clustering. To accomplish
this, we select five different LLMs and compare them with three less resource-
intensive embedding methods. Additionally, we utilize six clustering algorithms.
We simultaneously assess the performance of the embedding models and clus-
tering algorithms in terms of clustering quality, and highlight the strengths and
limitations of the models under investigation.

Keywords: Large Language Models, Embeddings, Clustering.

1 Introduction

In the rapidly evolving area of natural language processing (NLP), the advent of Large
Language Models (LLMs) such as the GPT series [1–4] has significantly enhanced our
ability to process and analyze large volumes of texts. These models function by trans-
forming texts into high-dimensional vectors called embeddings, which are commonly
used for tasks such as translating or answering questions. Using them for clustering is
quite new and has not yet been extensively explored.

The objective of this article is to explore the emerging field of embeddings generated
by Large Language Models (LLMs) through a thorough comparative analysis. Our
study encompasses various models, including both smaller-scale models and larger
architectures like the GPT series. The main goal is to examine the impact of a language
model’s size on the quality of its embeddings for clustering similar texts.

Clustering, categorizing text based on similarity, is crucial in NLP. LLM-generated
embeddings could enhance this by capturing text’s semantic nuances. Our core hypothesis
posits that there might be a direct correlation between the size of an LLM and its
proficiency in creating effective embeddings. This could imply that larger models yield
more accurate embeddings, thereby improving clustering results. On the other hand,
there is a potential for a point of diminishing returns where increases in model size no
longer contribute to significant enhancements in clustering performance. In fact, overly
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large models may even detract from clustering quality due to overfitting on training
tasks.

This study compares small and large language models to find out if the larger ones
create better text groupings or if the smaller ones are equally effective while using
fewer resources. This research will help inform future work and real-world uses of these
models to sort and understand large textual datasets.

2 Related Work

The use of textual embeddings in NLP tasks has been extensively studied, with a pri-
mary focus on supervised tasks such as classification [5]. However, the use of textual
embeddings, especially those derived from LLMs, in unsupervised tasks such as clus-
tering remains underexplored. Despite the proven capabilities of LLMs in capturing
nuanced semantic relationships within text, their potential for clustering has not been
fully exploited or understood within the academic domain.

Previous research, including studies conducted by [6, 7], has focused on investigating
the effect of different embedding techniques on clustering results. These studies have
shown that the choice of embedding significantly affects the performance of algorithms.
Research in this area has mainly focused on comparing traditional embeddings, which are
static and contextualized embeddings. The contextualized embeddings are often limited
to BERT-based transformer models. The results of these studies have been diverse, with
some suggesting that traditional methods perform similarly or even better than newer
methods in specific situations.

Recent studies such as [8] acknowledge the strength of LLMs in enhancing clustering
but stop short of employing their embeddings directly, opting instead for keyword
enrichment strategies. This highlights a gap in the field, indicating that the full capabilities
of LLM embeddings have not been entirely harnessed for unsupervised clustering
applications. In [9], the authors benchmarked numerous models, including LLMs, for
clustering, providing a broad overview of performance but without comparing clustering
algorithms or delving into details.

This paper addresses this lacuna by comparing the clustering efficacy of embeddings
from variously sized LLMs. Our main objective is to determine whether these advanced
embeddings can greatly enhance clustering tasks.

3 Models and algorithms

3.1 Embedding models

Textual embeddings, a fundamental component in NLP for converting texts into numeri-
cal vectors, are varied in type and derivation method. Traditional embeddings use simple
techniques like TF-IDF. Static embeddings, exemplified by Word2Vec [10], maintain a
consistent vector per word regardless of context. In contrast, contextual embeddings,
such as those of BERT [11] and GPT [3], adjust vectors based on the context of word
usage, allowing nuanced language model training. In our contribution, we aim to evaluate
the effectiveness of textual embeddings derived from five LLMs, namely BLOOMZ-560m,
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BLOOMZ-3B [12], Mistral-7B [13], Llama-2-13B [14], and GPT besides a compact
transformer-based model, MiniLM [15], which serves as a standard for comparison. BERT
and JoSE [16] have also been considered in this study to determine whether the use of
energy-intensive models (LLMs) is justified or not. We study this effectiveness in the
context of unsupervised learning, particularly in the objective of document clustering.

The properties of the studied models are given in Table 1, with a comprehensive
examination presented in the following sections.

Table 1: Description of models.
Model #Parameters #Layers #Embedding size
JoSE - - 100

MiniLM-L12-v2 33 million 12 384
BERT 110 million 12 768

BLOOMZ-560m 560 million 24 1024
BLOOMZ-3B 3 billion 30 2560
Mistral 7.3 billion 32 4096
Llama 2 13 billion 40 5120

text-embedding-ada-002 - - 1536

Mistral 7B is a LLM developed by Mistral AI3 with 7.3 billion parameters. It outper-
forms competitors like Llama-2-13B on various evaluation criteria [13]. This model
employs innovative attention mechanisms such as Grouped Query Attention (GQA) for
faster inferences [17] and Sliding Window Attention (SWA) to handle longer sequences
more efficiently [18].

Fig. 1: Visualizing dual attention mechanisms: Grouped-Query and Sliding Window.

The SWA mechanism enhances efficiency by allowing each model layer to concen-
trate on a data segment within a sliding window. This approach conserves computing
resources, scaling with window size and data length. Additionally, SWA aids in retaining
and utilizing information beyond the current window through data layering.

The GQA mechanism allows for simultaneous focus on critical text parts. It organizes
question words into groups, guiding attention to text areas essential for answering. Per
Figure 1, GQA can process several questions at once by forming distinct groups of
vectors of the question word. This multigroup approach applies attention to input tokens,

3 https://mistral.ai/
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enabling the model to efficiently address multiple questions by concentrating on relevant
text portions simultaneously.

BLOOMZ is an enhanced iteration of the BLOOM model [19]. The original Bloom model
was developed through the collaboration of over a thousand AI experts with the aim
of creating a freely available and widely accessible LLM. It was trained on a diverse
dataset and its architecture is based on the Megatron-LM GPT-2 framework [20].

The BLOOMZ family of models undergoes a process known as instruction tuning or
multitask fine-tuning [21]. This process involves the refinement of the pre-trained Bloom
model with a diverse datasets across various NLP tasks such as question answering,
summarization, and translation. The datasets serve as a means to enhance the model’s
ability to interpret and act upon instructions encapsulated within prompts, thereby
improving its zero-shot task generalization capabilities. In essence, zero-shot learning
enables the model to adeptly perform tasks it has not been explicitly trained on, solely
based on its understanding derived from the prompts provided.

Llama 2 model, part of Meta’s Llama family of open-source LLMs, is an autoregressive
language model that uses an optimized transformer architecture and has parameter counts
ranging from 7 billion to 70 billion [14]. The largest variant, which incorporates GQA
(like Mistral), enhances inference speed without compromising quality. LLama models
have exhibited strong competitiveness compared to existing open-source models and
have achieved performance levels comparable to some proprietary models. However, it
is important to note that they still fall behind more advanced models like GPT-4.

text-embedding-ada-002 is a specialized variant of the GPT-3 architecture developed
by OpenAI for generating text embeddings4. It uses the transformer framework to create
vector representations of text that capture semantic meaning. This model is pre-trained
on a vast corpus of text data and subsequently fine-tuned for the specific purpose of text
embedding. Although it has fewer parameters than the more extensive GPT-3 models,
it retains the capability of the GPT framework, making it accessible to a wide range of
applications via API access.

MiniLM is a different kind of language model that emphasizes a smaller and more
efficient design compared to LLMs [15]. The main innovation in MiniLM is in its training
approach. It involves distilling the knowledge of a powerful, large teacher-language
model into a much smaller student model. This process, known as self-attention distil-
lation, involves training the student to imitate the behavior of the teacher as closely as
possible. The student model does this by learning to predict the teacher’s outputs from
its intermediate layers rather than just its final output. Despite its smaller size, MiniLM
manages to maintain a high level of language understanding and generation capabilities.

3.2 Clustering algorithms

In unsupervised learning, clustering methods are routinely employed in data embedding
to make new discoveries from large and complex data sets. Several clustering algorithms

4 https://platform.openai.com/docs/guides/embeddings
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Fig. 2: Deep self-attention distillation: student model training through advanced imitation
of teacher model’s final layer with enhanced value-relation transfer for self-attention
mechanisms, as implemented in MiniLM models.

exist; in our study, we use five algorithms in order to evaluate the different models. These
algorithms were chosen for their popularity in the community or for their use when
combining them with dimensionality reduction methods. Specifically, we focus on deep
clustering variants, which have demonstrated impressive results in image clustering [22].
Therefore, the selected clustering algorithms are the following. K-means from Scikit-
learn [23], Spherical K-means from the coclust framework [24], CAEclust from [25]
Deep K-means and Deep Clustering Network from [26].

K-means is a widely used algorithm for clustering. It aims to partition a dataset into
k non-overlapping clusters, minimizing the sum of squared distances between data
points and their respective cluster centroids. The process involves initializing centroids,
assigning points to the nearest centroid, updating centroids based on mean values, and
iterating until convergence.

Spherical K-means (SK-means) is a variant of K-means designed for data residing on
a unit hypersphere. Unlike K-means that uses Euclidean distance, Spherical K-means
employs cosine distance to measure dissimilarity between data points considering the
angle between them. This makes it suitable for scenarios where only direction or relative
orientation matters, such as text clustering.

A survey [27] describes a wide range of different deep representation learning
methods. Here, we focus on the AEs and its variants because combined with clustering
methods, they can lead to interesting results in various fields.

CAEclust is a Python package developed to implement consensus clustering [25]. It
relies on Autoencoders (AEs) and spectral clustering. It aims to facilitate deep clustering
by merging representations from various Denoising Autoencoders (DAEs), as shown
in Figure 3, without the need to define a specific architecture, as proposed by the same
authors in [22]. CAEclust has been successfully evaluated for image datasets. Thus, we
plan to test CAEclust’s performance on text data.

Representation learning followed by cluster analysis is often helpful in data science.
The K-means algorithm applied to data embedding derived from UMAP [28] or AEs, for
example, is a popular approach. This procedure is performed sequentially and is referred
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Fig. 3: Overview of CAEclust.

to as the tandem approach. However, AE may sometimes be an unsuitable method
to reduce the dimension before clustering; it can fail to retain information that could
be valuable for the clustering task. Thus, jointly optimizing for both tasks –RL and
clustering– is a good alternative. Thus, we propose two popular algorithms.

Deep K-means (DKM) combines jointly representation learning and clustering [26].
Its aim is to minimize both the reconstruction error and the clustering error in the
learned embedded space, by iteratively updating the autoencoder parameters and cluster
representatives. Figure 4 shows the steps of this algorithm.

Fig. 4: Overview of methods based on retraining using an AE, K-means, and a joint loss
function.

Deep Clustering Network (DCN) algorithm [29] also performs unsupervised clustering
using a deep autoencoder, but does not use an auxiliary distribution. Instead, it uses
an optimization objective that is a direct combination of a reconstruction error and a
clustering error, as depicted in Figure 5.

4 Numerical experiments

In this section, we elucidate the various components of our experimental setup.

4.1 Datasets

In the remainder of our experiments, we use the following datasets:

– BBC News5: a dataset sourced from the BBC News, encompasses a collection of
2,225 articles labeled across five categories: business, entertainment, politics, sport,
and tech.

5 http://mlg.ucd.ie/datasets/bbc.html
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Fig. 5: A typical network architecture for a deep clustering algorithm. Such an algorithm
uses an optimization objective that combines the reconstruction error and the clustering
error (joint optimization approach).

– 20 Newsgroups6: consists of 18,846 newsgroup documents, distributed across 20
different topical newsgroups. Originating from Usenet newsgroups in the late 1990s,
it encompasses a broad spectrum of themes such as politics, religion, and science.

– IMDb : a collection of movie reviews retrieved from the IMDb website used for
binary sentiment classification [30]. The dataset serves as a cornerstone for NLP re-
search and machine learning studies, designed to provide a substantial and balanced
collection of positive and negative reviews.

– Web Content7: a compilation of data created through an extensive scraping of various
websites. By extracting text from a myriad of web pages, this dataset offers a diverse
and rich set of information from different domains and types of content. This dataset
comprises a collection of 1,408 samples, meticulously categorized into 16 distinct
classifications reflecting a broad spectrum of Web Content. The categories span a
variety of sectors and interests, from education and news to e-commerce and sport.

Data preprocessing We select four datasets originating from various fields, each
with its own distinct attributes, thus necessitating customized preprocessing strategies.
The 20 Newsgroups and IMDb datasets undergo pre-processing, including removing
apostrophes, HTML tags, special characters, punctuation, URLs, and converting texts
to lowercase. In contrast, the BBC News dataset, which needs less cleaning, undergoes
only a conversion to lowercase. The Web Content dataset, already preprocessed, receives
no additional treatment. The characteristics of these datasets are detailed in Table 2.

Table 2: Description of datasets. The balance represents the ratio between the smallest
and largest class. #Tokens indicates the mean token count.

Datasets Characteristics
#Documents #Clusters Balance #Tokens

BBC News 2,225 5 0.75 390
20 Newsgroup 18,846 20 0.63 284

IMDb 50,000 2 1 231
Web Content 1,408 16 0.14 747

6 http://qwone.com/ jason/20Newsgroups/
7 https://www.kaggle.com/datasets/hetulmehta/website-classification
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4.2 Evaluation metrics

Using labeled datasets, we evaluate clustering algorithms performance with external
indices: Accuracy (ACC), Normalized Mutual Information (NMI) [31], and Adjusted
Rand Index (ARI) [32]. The ACC quantifies the degree to which each cluster contains
data points corresponding to their respective classes. NMI, which ranges from 0 to 1,
evaluates the information commonality between the suggested clustering and the ground
truth labels. Finally, ARI measures the similarity between two clustering, taking into
account both the cluster assignments and the ground truth labels, when available. The
ARI metric ranges from -1 to 1, where a higher value indicates better agreement between
the true labels and the clustering. Intuitively, NMI quantifies how much the estimated
clustering is informative about the true clustering, while the ARI measures the degree of
agreement between the estimated clustering and the reference partition. Both NMI and
ARI are equal to 1 if the resulting clustering partition is identical to the ground truth.

4.3 Experimental Settings

The experiments were conducted on a professional workstation with specific hardware
specifications: an Intel® Core™ i9-12950HX CPU running at 2.6GHz and 64 GB of
DDR5 memory operating at 4,800 MHz. It is important to note that the extraction of
embeddings for LLMs required GPU usage, which was carried out on the Pro version of
Google Colab equipped with an Nvidia A100 40 GB.

When it comes to clustering algorithms, K-means initialize using the K-means++
technique, which chooses the starting centroids by sampling based on their contribution
to total inertia. We cap the iterations at 300 and run 10 initial setups to strengthen the
clustering stability. The same parameters, 300 iterations and 10 starts, are applied to
Spherical K-means. As we are in an unsupervised setting, we employ default values
for Deep K-means, DCN, and CAEclust to maintain consistency. The performances of
the algorithms are detailed in Table 3.

For each experiment, the model is launched 10 times, and the best result according
to the objective function to optimize was selected (Inertia for KMeans, combined loss
for DCN, etc.). For the embeddings, a maximum size of 2,000 tokens was set for all
models except for BERT and MiniLM, where it was fixed at 512. Finally, as baselines, we
introduce two other models, namely BERT [11] and Joint Spherical Embedding (JoSE)
[16]. JoSE has been chosen for its parsimony and efficiency, outperforming popular
models such as Word2Vec, GloVe and BERT in tasks of clustering and textual similarity
while being simple and energy-efficient. To represent documents, an average of the
vectors produced by the embedding models was computed for each token. To access
the GPT-3 embeddings, we use the text-embedding-ada-002 model through OpenAI’s
API, which charges $0.0001 for every 1,000 tokens.

4.4 Results and discussion

Below are the essential points that result from numerous experiments:

– Undeniably, the GPT model is the best regardless of the nature of the datasets.
This is verified regardless of the clustering algorithms used. Furthermore, note that
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Table 3: Experimental results: For each dataset, the best score of each clustering algorithm
applied with all embedding models, is highlighted in bold, and second-best is underlined.
For instance for the Website content dataset, concerning K-means, the best score in term
of ACC is 83.85 obtained with GPT and the second 73.08 is obtained with MiniLM.

Website content 20 Newsgroup IMDb BBC News

Emb. Clus. ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Jo
SE

K-means 72.87 71.56 60.27 56.71 57.05 41.98 68.84 10.57 14.18 95.46 85.55 89.26
SK-means 77.41 73.30 65.12 53.73 55.41 40.59 69.08 11.34 14.55 69.17 66.98 60.81
UMAP K-means 77.63 76.26 68.00 52.81 61.03 46.16 50.54 00.01 00.01 95.70 86.98 89.99
DKM 76.28 70.60 62.91 56.73 56.07 42.87 55.96 01.06 01.40 90.52 74.77 77.90
DCN 66.62 59.60 48.83 56.78 54.57 41.90 61.08 03.69 04.89 81.35 60.68 61.12
CAEclust 72.80 70.04 60.63 44.68 51.90 33.53 51.36 00.04 00.05 95.60 86.59 89.60

BE
RT

K-means 41.05 40.08 22.21 34.94 38.64 20.45 54.08 00.51 00.65 94.29 83.43 86.82
SK-means 42.12 39.26 23.49 35.88 40.05 21.24 54.18 00.54 00.68 93.57 81.78 85.03
UMAP K-means 54.55 55.52 37.49 50.49 52.02 35.59 55.24 00.83 01.08 93.30 82.53 84.36
DKM 52.20 48.97 32.73 46.06 50.17 33.28 53.02 00.33 00.35 93.03 81.16 84.22
DCN 52.06 47.93 30.59 48.73 49.16 33.72 52.44 00.23 00.22 91.73 77.70 80.68
CAEclust 54.97 51.28 34.77 44.6 51.88 33.49 54.97 51.28 34.77 92.90 80.50 83.73

Mi
ni
LM

K-means 73.08 71.41 60.43 59.34 60.94 45.14 57.28 01.54 02.10 95.87 87.54 90.31
SK-means 66.48 67.91 55.33 58.09 60.12 43.61 57.30 01.62 02.11 72.09 64.47 60.37
UMAP K-means 82.60 77.91 72.34 64.56 66.29 50.29 60.52 03.27 04.41 95.64 86.94 89.55
DKM 77.34 72.30 63.77 61.72 61.06 47.40 58.82 02.26 03.09 91.28 78.41 80.73
DCN 74.01 67.91 59.24 60.20 59.48 45.89 64.54 06.77 08.44 77.21 53.47 55.16
CAEclust 74.36 72.42 63.68 60.72 60.68 44.52 60.46 03.19 04.36 95.06 85.71 88.47

BL
OO
MZ
-5
60
M K-means 24.64 27.43 13.48 24.54 27.90 12.22 60.48 03.20 04.37 89.12 73.84 74.81

SK-means 30.33 30.55 15.46 25.02 28.53 12.50 60.42 03.16 04.32 89.21 74.04 75.01
UMAP K-means 56.32 55.34 38.86 34.32 38.84 20.50 64.40 06.07 08.28 94.97 84.82 88.18
DKM 17.68 12.62 04.20 07.38 00.93 00.28 53.00 00.26 00.34 31.96 04.57 04.03
DCN 15.77 12.43 04.50 25.64 29.60 13.72 63.74 05.56 07.53 70.56 54.58 47.35
CAEclust 63.35 65.03 49.55 55.86 56.03 38.70 86.72 45.04 53.93 95.69 87.39 89.82

BL
OO
MZ
-3
B K-means 43.75 40.23 23.38 29.25 33.76 15.00 58.72 02.30 03.02 89.62 74.06 75.72

SK-means 45.03 41.35 26.38 28.98 33.83 15.13 58.76 02.32 03.05 89.57 73.97 75.61
UMAP K-means 55.68 53.68 37.41 38.45 43.94 24.33 58.40 02.09 02.80 95.42 86.77 89.38
DKM 47.94 46.42 28.84 15.14 23.18 07.78 57.12 01.66 02.01 92.27 78.83 81.77
DCN 39.63 36.43 20.40 34.54 39.72 20.57 58.80 02.33 03.08 89.48 72.32 75.82
CAEclust 63.42 63.40 48.78 44.30 50.50 31.30 83.72 36.24 45.47 70.88 72.88 62.70

Mi
st
ra
l-
7B

K-means 56.46 56.42 41.05 44.53 48.24 26.62 63.04 05.02 06.78 96.36 88.51 91.49
SK-means 58.10 59.60 43.96 42.98 47.30 26.10 63.00 04.99 06.74 71.15 69.94 64.03
UMAP K-means 72.94 72.75 61.32 54.75 60.65 41.44 69.08 10.77 14.54 97.12 91.23 93.13
DKM 65.70 64.85 51.39 56.34 59.34 41.00 64.10 08.41 07.94 87.33 77.94 73.80
DCN 55.18 54.89 38.11 53.92 55.82 36.23 62.02 04.49 05.76 89.84 77.01 77.23
CAEclust 59.80 60.56 44.10 40.73 48.64 29.22 77.18 22.59 29.54 94.65 87.19 88.42

Ll
am
a-
2-
13
B K-means 55.33 54.12 36.62 45.60 47.98 27.13 55.82 00.99 01.34 97.35 91.30 93.76

SK-means 47.73 53.12 37.40 43.39 47.66 25.79 55.76 00.97 01.31 88.63 80.68 76.97
UMAP K-means 72.16 70.54 58.73 54.18 61.45 42.52 54.30 00.55 00.72 71.37 80.33 66.29
DKM 70.10 68.17 55.84 56.85 60.69 39.74 52.64 01.15 00.27 88.09 79.78 75.62
DCN 55.61 56.43 41.24 51.40 56.82 37.39 60.66 03.36 04.53 87.37 78.23 74.14
CAEclust 56.61 58.82 41.56 53.19 55.25 35.00 74.48 18.04 23.96 97.35 92.04 93.70

GP
T

K-means 83.85 82.67 76.69 65.33 67.63 53.45 80.12 29.69 36.28 97.08 90.88 93.19
SK-means 74.34 79.09 67.81 64.28 68.04 52.22 80.58 30.71 37.39 96.99 90.82 92.99
UMAP K-means 84.20 83.78 78.18 70.77 72.17 60.02 71.74 14.20 18.89 96.99 90.49 92.79
DKM 82.63 83.24 76.09 67.68 69.07 56.48 74.30 17.93 23.60 96.04 89.42 90.93
DCN 78.98 78.32 70.09 63.93 66.84 52.58 75.54 19.76 26.08 88.90 75.37 75.80
CAEclust 75.41 75.79 63.96 73.32 74.83 62.75 76.66 22.27 28.42 96.67 90.05 92.21
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whatever datasets used, with GPT, K-means appears a simple and effective solution
for clustering. This was confirmed by a ranking test, which revealed that K-means is
the most efficient algorithm on GPT embeddings with an average rank of 2.4. It is
followed by UMAP K-means and SK-means, with ranks of 2.9 and 3.2, respectively.

– Unlike the BLOOMZ-560M, BLOOMZ-3B, Mistral-7B and Llama-2-13B models that
are sensitive to class imbalance, GPT and also MiniLM remain robust. This can
be seen on the Website Content dataset whose classes are very unbalanced, the
performance of the clustering methods remains very modest compared to GPT and
MiniLM. Furthermore, note that for BLOOMZ-560M, BLOOMZ-3B, Mistral-7B and
Llama-2-13B, all clustering algorithms fail, except for CAEclust.

– The performance of the BLOOMZ-560M, BLOOMZ-3B, Mistral-7B and Llama-2-13B
models fluctuates depending on the datasets, unlike the GPT model and MiniLM
model to a lesser extent. This is probably due to the imbalance and the degree of
overlap of the clusters. Indeed, these models seem only suitable when the classes
are easily distinguishable, as is the case with BBC News.

– The developers of the Mistral-7B model claim that it compares well to Llama-2-13B,
although it has fewer parameters. This claim is substantiated by comparing the per-
formance of clustering algorithms using embeddings from both models.

Fig. 6: UMAP: 2D Plot of obtained clusters by K-means using GPT embeddings.

– It does not appear that there is a relationship or correlation between the size of
the model and the effectiveness of these embeddings. Indeed, it’s observed that
Mistral-7B exhibits performance comparable to that of Llama-2-13B and that the
smaller model MiniLM outperforms models that are larger than it.

– One might wonder about the need to use all the dimensions generated by the models.
Indeed, this represents a cost which can be reduced by a non-linear dimensionality
reduction technique such as UMAP [28]; for all models, we fixed the dimension at
20 and the number of neighbors equal to 50. Thus, we can measure the impact of
K-means applied on the reduced matrix. In Table 3 we observe that for all models
except GPT and Llama-2-13B, the use of UMAP often leads to improved performance,
as illustrated in Figure 6. However, we noted that by increasing the number of
neighbors to 90, we can improve the clustering for GPT and Llama-2-13B. Such
a suitable number of neighbors was detected based on the within-cluster sum of
squares minimized by K-means as a function of the neighbours. In this way, we
respect the context of unsupervised learning.
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– Note that the performance of the JoSE Model is interesting; it is often better than
BERT while embeddings do not require large resources.

– Finally, except for the GPT model, the deep clustering methods DKM, DCN and
CAEclust are not always more efficient than a simple K-means.

5 Conclusion and perspectives

In this paper, our objective was to evaluate several LLM models in an unsupervised
learning context. We evaluated six clustering algorithms from benchmarks with different
characteristics in terms of the degree of mixing (class distribution), the number of classes
that can be balanced or not. Unquestionably, the GPT model is the best followed by
Mistral-7B and MiniLM; all clustering algorithms record very good scores compared
to the other models. Even if our objective is not to compare clustering algorithms, we
can note that despite its simplicity, K-means can be used without concern for such
embeddings. Furthermore, we noted that the deep CAEclust algorithm also proves
interesting on such data. On the other hand, since we chose BERT and JoSE as Baselines
models, it is interesting to emphasize the good performance of the JoSE model, which is
a parsimonious model.
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