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Executive Summary

The present document constitutes the D2.3 - Moving Block Verification and Validation (D2.3),
which is part of WP2 - Modelling and Analysis of Moving Block Specifications (WP2) of the
project PERformance-based Formal modelling and Optimal tRaffic Management for mov-
INGblock RAILway signalling (PERFORMINGRAIL).
D2.3 elaborates on the formal modelling activities that have been conducted based on three
selected Operational Scenarios (OPSs) related to the Moving Block System (MBS). It also
describes the analysis performed to investigate a number of properties relevant to these
OPSs. The selection and relevance evaluation of Moving Block (MB)-related OPSs were
achieved in Task 2.2 - Moving block system and scenarios characterization (T2.2) of PER-
FORMINGRAIL, and detailed in D2.1 - Modelling guidelines and Moving Block Use Cases
characterization (D2.1). Particularly, the significance of the OPSs for the railway sector and
the safety challenges involved were investigated.
The formal modelling work detailed in the present deliverable is based on the System Mod-
elling Language (SysML) semiformal specifications of the MB system functional and be-
havioural aspects. Such specifications were derived in light of the elaborated modelling
framework described in D2.2 - Moving Block Specification Development (D2.2), along with
the preparatory activities for analysing formal properties and preliminary formal models. The
formal modelling activities are the results of Task 2.4 - Formal Development for moving-
block and virtual coupling train operations (T2.4). The semiformal specifications are related
to eight selected ETCS Use Case (EUC)s and twelve Functional Component (FC)s, whose
nine are on the Trackside side and three are On-board-related. These EUCs and FCs are rel-
evant for modelling the global MB signalling system according to the following three selected
OPSs: “Loss of Train Integrity”, “Points Control” and “Loss/Restore of Communications”. The
Verification and Validation (V&V) activities described in the present deliverable report on the
activities conducted in Task 2.5 - Verification and Validation of moving block systems (T2.5),
which are related to the analysis of safety and functional features.
The formal models obtained in T2.4 allow us to depict the MB system behavioural aspects.
The modelling activities were conducted using the modelling guideline defined in the project
and the modelling approach defined in D2.2. The selected formalisms, namely extended
Timed Automata (TA) and Stochastic Activity Networks (SANs), can cope with the analysis
of quantitative and qualitative properties, especially those pertaining to safety.
This deliverable makes the following contributions:

• elaboration of modelling methodology to help elaborate the formal models, integrate
them and implement the V&V process;

• development of formal models for different functional blocks;
• integration of the various models developed in a multi-partnership way
• development of formal models for performance evaluation;
• definition of a number of relevant functional, safety properties;
• carrying out V&V for the defined properties;
• carrying out a performance study through sensitivity analysis.

GA 101015416 Page 6 | 87



Abbreviations and acronyms

Abbreviation / Acronym Description
4SECURAIL FORmal Methods and CSIRT for the RAILway sector
AD Activity Diagram
ALSP Axle Load Speed Profile
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D1.1 D1.1 - Baseline system specification and definition for Moving Block

Systems
D1.2 D1.2 - Best practice, recommendations and standardisation to definition

of the Railway Minimum Operational Performance Standards
D2.1 D2.1 - Modelling guidelines and Moving Block Use Cases characteriza-

tion
D2.2 D2.2 - Moving Block Specification Development
D2.3 D2.3 - Moving Block Verification and Validation
D4.2 D4.2 - Guidelines for a safe and optimised moving-block traffic manage-

ment system architecture
DoW Description of Work
EBNF Extended Backus–Naur Form
EC European Commission
EGNSS European Global Navigation Satellite System (Galileo & EGNOS)
ERTMS European Railway Traffic Management System
ETCS European Train Control System
ETCS-L2 European Train Control System - Level 2
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IBD Internal Block Diagram
IP2 Innovation Programme 2
LOS Line Of Sight
LTI Loss of Train Integrity
LTL Linear Temporal Logic
MA Movement Authority
MARTE Modeling and Analysis of Real-Time and Embedded Systems
MARTE-DAM Modeling and Analysis of Real-Time and Embedded Systems - De-

pendability Analysis and Modeling
MB Moving Block
MBS Moving Block System
MDE Model-Driven Engineering
MOVINGRAIL Moving Block and Virtual Coupling Next Generations of Rail Signalling
MaxSFE Maximum Safe Front End
minSFE Minimum Safe Front End
OBU On-Board Unit
OCRA Othello Contracts Refinement Analysis
OMG Object Management Group
OPS Operational Scenario
OS On-Sight
PD Package Diagram
PERFORMINGRAIL PERformance-based Formal modelling and Optimal tRaffic Manage-

ment for movINGblock RAILway signalling
PNs Petri Nets
PVT Position Velocity Time
RAT Requirement Allocation Table
RBC Radio Block Center
RD Requirement Diagram
RSM RailSystemModel
S2R Shift2Rail
SAN Stochastic Activity Network
SD Sequence Diagram
SLR Systematic Literature Review
SM State Machine
SMC Stochastic Model Checking
SMD State Machine Diagram
SR Staff Responsible
SSP Static Speed Profile
STA Stochastic Timed Automata
STPN Stochastic Timed Petri Nets
SoM Start of Mission
SysML System Modelling Language
T1.3 Task 1.3 – Recommendations and standardisation to definition of the

Railway Minimum Operational Performance Standards for moving block
systems

T2.1 Task 2.1 - Modelling approach and guidelines
T2.2 Task 2.2 - Moving block system and scenarios characterization
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T2.3 Task 2.3 - Specifications for safe and reliable moving-block signalling
T2.4 Task 2.4 - Formal Development for moving-block and virtual coupling

train operations
T2.5 Task 2.5 - Verification and Validation of moving block systems
TA Timed Automata
TIMS Train Integrity Monitoring System
TLU Train Localisation Unit
TMS Traffic Management System
TPR Train Position Report
TSA Track Status Area
TSR Temporary Speed Restriction
TTD Trackside Train Detection
UC Use Case
UCD Use Case Diagram
UES Unconditional Emergency Stop
UML Unified Modelling Language
UTA UPPAAL Timed Automata
VBD Virtual Block Detector
VBF Virtual Block Function
VC Virtual Coupling
VSSs Virtual Sub-Sections
VTD Validated Train Data
V&V Verification and Validation
WP Work Package
WP1 WP1 - Specification for minimum MB performance
WP2 WP2 - Modelling and Analysis of Moving Block Specifications
WP3 WP3 - Fail Safe Train Locationing
WP4 WP4 - Integrated Moving Block architecture for safe and optimised traf-

fic operations
X2Rail-1 Start-up activities for Advanced Signalling and Automation Systems
X2Rail-2 Enhancing railway signalling systems based on train satellite position-

ing, on-board safe train integrity, formal methods approach and stan-
dard interfaces, enhancing Traffic Management System functions

X2Rail-3 Advanced Signalling, Automation and Communication System (IP2 and
IP5) – Prototyping the future by means of capacity increase, autonomy
and flexible communication

X2Rail-5 Completion of activities for Adaptable Communication, Moving Block,
Fail safe Train Localisation (including satellite), Zero on site Testing,
Formal Methods and Cyber Security

XML eXstensible Markup Language
XSD XML Schema Definition
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1. Introduction

1.1. Scope and Objectives

The main objective of the present deliverable (D2.3) is to report on the activities carried
out within the framework of T2.5. Namely, a thorough description of the formal modelling
activities will be provided. Then, the process of verifying of safety and functional properties
will be exposed.
From the activities undertaken in WP1 - Specification for minimum MB performance (WP1)
and Task 2.1 - Modelling approach and guidelines (T2.1) and T2.2 of WP2, it is plain to
say that the specifications of the MBS show how much railway Control-Command and Sig-
nallings (CCSs) are complex, involving numerous interacting and communicating systems.
Developing formal models for the whole system is obviously infeasible within the scope of the
project. The main objective of the work undertaken within tasks T2.4 and T2.5 is to provide
a proof of concept on how formal models can be derived for some parts of the behaviour of
the MB system, and how formal methods can be advantageously brought into play to explore
a number of behavioural aspects, namely safety, functional and performance features.
It is important to highlight that, although the scope of the formal modelling activities under-
taken by the consortium within tasks T2.4 and T2.5 was limited to a number of functions
and operational scenarios, this work showed to be very complex, being given the intensive
interleaving between the various actors involved in the targeted behaviours in the modelling
activities. Moreover, modelling strictly the behaviour of the involved actors would not be rel-
evant, since they have to react to the stimulus they receive from their environment (other
components, or the external system environment). Therefore, besides the models of the
components that are included in the modelling scope, stricto sensu, it is necessary to elab-
orate further models that allow the emulation of these interactions. Another aspect that is
worth mentioning is related to the fact that the formal modelling work was a multi-partnership
activity. In fact, each partner that is involved in this activity has his own modelling practices
and choices. Moreover, the various models have to exchange data and communicate via
different signals, which required to find out some consensus in terms of notations, and mod-
elling logic. All the aforementioned aspects made it even more challenging to integrate the
different models that are developed by the various partners. Overall, the effort that was re-
quired to fulfil the work of tasks T2.4 and T2.5 exceeded by far the estimated effort during
the project setting up phase.
The modelling and V&V activities are also characterized by a focus on the FCs, taken from
the developed functional architecture (see details in the following), and these specific OPSs
involving different FCs which interact with each others and with the environment. This will
be further detailed in the various relevant sections:

• Trains Manager (FC)
• Communication Manager (FC)
• Points Control (FC)
• Track Status Manager (FC)
• Route Manager (FC)
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• Points Management (OPS)
• Loss of train integrity (OPS)
• Loss/Restore of Communications (OPS) - considered twice according to two different

modelling and analysis purposes.

1.2. Background

In a multi-modelling-based approach, the system under development is described by several
models that represent various perspectives and concerns. Obviously, these partial represen-
tations are less complex than the global model, but they need to be composed to address
verification and synchronization tasks. The model composition is a crucial model-driven
development operation, but it remains a tedious and error-prone activity.
Assuming a component-based system design perspective, there are several approaches
that address composition and reasoning of formal models of components, most being cen-
tred on the so-called contract-based reasoning [1,2], also known as assume-guarantee ver-
ification. Traditional assume-guarantee reasoning methods rely on the notion of contract. In
its basic form, contracts were introduced within the Eiffel programming language as a set of
pre- and post-conditions between a caller and a method, and class invariants [3].
This idea is further extended in the form of assume-guarantee contracts, such that a com-
ponent makes assumptions regarding its context, required to hold for the guarantees to be
provided [1]. A contract is a pair of assertions C =< A,G >, where the component’s as-
sumptions on its environment are denoted by A, and the component’s offered guarantees
by G. Contract semantics are defined in terms of environments and implementations. It
is said that an environment satisfies a contract C =< A,G > if it provides all the contract
assumptions A. An implementation satisfies a contract C, if provided that assumptions A
hold, it satisfies the guarantees G.
Cimatti and Tonetta [2] propose a framework backed by tool support in Othello Contracts Re-
finement Analysis (OCRA), for the synchronous or asynchronous decomposition of a compo-
nent into subcomponents, complemented with the corresponding refinement of its contracts.
The properties to verify can be interpreted as Linear Temporal Logic (LTL) formulas, for
instance, the response to a certain event.
Interface theories are an interesting alternative to assume-guarantee contracts, to be used
in model composition. They aim at providing a merged specification of the implementations
and environments associated with a contract via the description of a single entity, called
an interface. Interface theories generally use (a mild variation of) Lynch Input/Output Au-
tomata [4] as their framework for components and environments. The first interface theory
able to capture the timing aspects of components is Timed Interfaces [5]. Timed Interfaces
allow specifying both the timing of the inputs a component expects from its environment and
the timing of the outputs it can produce. Compatibility of two timed interfaces is then defined
and refers to the existence of an environment such that timing expectations can be met.
Since in this deliverable the underlying assumption is that timed models describe the be-
haviour of components that have to exchange data and communicate via different signals,
the employed composition approach relies exactly on identifying and defining the data and
signals at the interface of the communicating components that form a subsystem, based on
the existing Moving Block functional architecture. The respective subsystems need to meet
functional but also timing requirements, which are then checked by verification by simulation
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or model checking. The overall model composition approach is described in Section 4.2.

1.3. Relationships with other PERFORMINGRAIL deliverables

Fig. 1.1 represents the dependency between D2.3 and other PERFORMINGRAIL deliver-
ables, highlighting deliverables that are input and others that are output for D2.3.

WP4

D4.2

D2.3

D2.1

WP1

D1.2

D2.2

Fig. 1.1. Relationship between D2.3 and other deliverables.

Specifically:
• from D2.1 [6], the description of the OPSs are considered, to choose the slice of the

European Train Control System - Level 3 (ETCS-L3) to specify, model and analyse in
this deliverable;

• from D2.2 [7], this deliverable inherits the whole structure of the ETCS-L3 specification
in SysML as well as the formal models that are here reviewed and expanded.

On the other hand, this deliverable will directly influence the following:
• the experiences and lesson learnt in modelling ETCS-L3 will be collected in D1.2 - Best

practice, recommendations and standardisation to definition of the Railway Minimum
Operational Performance Standards (D1.2);

• the specific results of analysis oriented to understand the impact of the different pa-
rameters on the capacity of an ETCS-L3 line will be useful for D4.2 - Guidelines for a
safe and optimised moving-block traffic management system architecture (D4.2).

1.4. Structure of the deliverable

This deliverable is structured as the following. Chapter 2 describes the specification-
modelling-analysis approach proposed in the deliverable. Chapter 3 describes the high-level
specifications of the OPSs. Chapter 4 describes the results of the formal modelling effort and
introduces the model library of formal models. Chapter 5 reports the results of the analysis
of the described scenarios. Chapter 6 ends the deliverable, summarizing the contributions
and discussing current limitations.

GA 101015416 Page 12 | 87



2. The Modelling Methodology

This chapter describes the approach related to the SysML specification of the OPSs. The
chapter is structured as follows: Section 2.1 reports the key elements of the OPSs to model;
Section 2.3 describes how to model OPSs according to the SysML model reported in [7]
while Section 2.3.1 makes the discussion concrete by illustrating presented concepts by a
small running example.

2.1. Key elements of an OPS

It could be useful to begin from the high-level description of a generic OPS, as reported in
[6] and represented in Figure 2.1.

Use Cases

Operational Scenario

Parameters HazardsBehaviourEng/Op Rules

A

B

C

Assert

Configuration

Event

Performance
Indicators 

Variants

Report

Fig. 2.1. High-level view of an OPS

The full introduction of the concept of OPS is reported in D2.1: in such a deliverable, all
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the concepts presented in the figure are fully described. Here, the key elements needed to
represent an OPS are summarized:

• parameters: representing variables whose value can be, in general, initially tuned, the
different values a parameter can assume can affect the behaviour of the system;

• behaviour : describing the behaviour of the participating Hardware (HW) and functional
components of the ETCS-L3;

• steps: they represent the single elementary acts an OPS performs (e.g., an interaction
between functional components, a sending/receiving of a message, a change of the
internal state of a functional components);

• events: they are internal or external acts that happen during the OPS (e.g., a breaking
of a physical component, a receiving of a message from an external actor). They may
induce the system to change its internal state;

• branches: since the system may usually have different evolutions, according to the
specification of the use cases on which the OPS is based, the inclusion of alternative
branches becomes necessary. A branch is one of the possible sequences of steps the
system may follow, depending on one or more conditions that might occur;

• asserts: describing predicates that are expected to be true in certain points of the
scenario. they may be: pre- / post-conditions (that are expected to be true before/after
OPS’s steps) or invariants (that are expected to be true in a portion/the whole of the
OPS);

• variants: alternative versions of the scenario, where possible small changes do not
affect the main behaviour of the scenario itself;

• performance indicators: are observable quantities that allow for evaluating whether
operational scenarios reach the intended threshold. They may be logical, functional,
availability/reliability, safety, performance.

2.2. The Overall Approach

The approach of the modelling and the analysis of the OPS can be summarised in Fig. 2.2.
The approach follows the one already defined in [7], related to the specification and of the
modelling of the ETCS-L3. Similarly to that process model, in this approach there are both
the phases of specification and modelling. The first clarifies the scope and the general aim
of the OPS while the second is related to the formal modelling of the OPS.
Starting from this general similarity, some differences are instead present in both the activi-
ties, i.e., in the conducted sub-activities. Both the specification and modelling of the OPSs,
in fact, start from existing SysML and formal models developed during the tasks Task 2.3 -
Specifications for safe and reliable moving-block signalling (T2.3) and T2.4.
From the perspective of the specification, constructing a SysML model for an OPS means to
simply specify a scenario in a model where behaviours, actors and functional components
are already specified. In this context, a SysML model of an OPS can be seen as a different
rearrangement of elements already present in the model.
On the other hand, the modelling approach aims at generating integrated formal models for
each of the OPSs. Such integration does not start from scratch; a meaningful background
is already present, considering the models developed during T2.4. Such models are in this
task integrated among them.
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Fig. 2.2. OPS modelling and analysis: the followed approach

To conclude the approach followed in this deliverable, an analysis phase is conducted, taking
the model developed during the modelling phase and verifying it against a property derived
from the OPS specification.
It is important to underline that the scope of the modelling and analysis approach is not ori-
ented to the construction of a global model claiming to represent all the possible behaviours
of the ETCS-L3 systems. Such “one-above-all” formal model would be unfeasible not only
during the analysis phase but also during its construction since the variability of such kinds
of systems. One realistic objective, that constitutes the aim of the entire WP2, is instead to
develop as many formal models as the number of considered OPS.
The entire approach would guarantee concreteness (due to its “scenario-driven” nature)
without being too “custom” (due to the reuse of general specifications and models developed
in the previous tasks).
The last similarity between the two general processes — the one presented in this deliver-
able and the one of [7] — is constituted by the iterative nature of the approach. Generally
speaking, in a model-driven approach, models are prime citizens whose development never
ends, but each iteration improves the results of the previous ones.
The details on the specification, modelling and analysis phases are reported respectively in
Section 2.3, Section 4.2 and Chapter 5.

2.3. OPSs specification approach

According to the specification methodology described in [7], this section wants to provide
some elements in the definition of a SysML model for the OPS. Fig. 2.3 reports the extension
of the figure reported in [7]. That figure reports the main ETCS-L3 concepts considered in
WP2 as well as the SysML concepts and diagrams used to depict such concepts.
Constructed on top of the previous one, Fig. 2.3 focuses on integrating the elements that
are relevant for the OPS specification, that are:

• Entity: an OPS may involve ETCS-L3 external actors as Train Integrity Monitoring
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Fig. 2.3. OPS specification: an overview

System (TIMS) or the driver;
• Functional Component: an operational scenario mainly involves internal software func-

tional components of both the trackside and/or the on-board;
• EUC: some EUCs can be partially covered by the sequence of the actions reported

into an EUC;
• Hazard: some of the steps of the OPS can bring the system into one or more hazards;
• Requirements: the OPS is built considering one or more system requirements.

To this aim, both SysML’s Sequence Diagrams (SDs) and SysML’s Activity Diagrams (ADs)
are candidate diagrams, able to represent an OPS; these SysML diagrams can be consid-
ered two of the best ones to highlight interactions between entities. The guidelines on how
to construct both SDs and ADs are reported in the following paragraphs. No details on
SysML are here reported: D2.1 describes all the basic elements of the language needed to
understand this deliverable also reporting literature references [6].

Sequence Diagrams: Fig. 2.4 represents a generic SD, informally annotated with the
concepts of ETCS-L3 of Fig. 2.3.
The figure clearly explains which of the language elements of the SD can be used. No formal
specification approach is used for SysML, involving meta-modelling techniques as Unified
Modelling Language (UML) profiles and/or Extended Backus–Naur Form (EBNF) grammars.
Under this perspective, the parameters of the OPS are listed in a SysML’s note as well as
the assertions: both are written in natural language. Each lifeline is a FC or an HW element
of ETCS-L3. The exchanges of messages are related to the call of a proper signal of the
receivers. Self messages are internal calls of a FC while external events are reported in the
model as UML’s found messages. Branches in the evolution of the OPSs are represented by
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alt

a :Functional
Component

b :Functional
Component

signal_b()

signal_a()

x :Entity

signal_x()

internal_b()

signal_a2()

event

[else]

[cond]

assert

{performance
indicator}

parameters

Fig. 2.4. OPS specification by means of SysML SD

alternative (alt) compound box, respectively reporting the condition and the default case.

Activity Diagrams: Fig. 2.4 represents a generic AD, informally annotated with the con-
cepts of ETCS-L3 of Fig. 2.3. The figure clearly explains which of the language elements of
the AD can be used. More in the details, the same considerations of the previous paragraph
for parameters, asserts and performance indicator constraints. Since there is not an easy
way to specify sending of messages in ADs, they are represented by a couple of sending/re-
ceiving activities whose sender element is tagged with the triggered signal. On the contrary,
ADs fit better to model branches as there is a proper construct. Involved HW parties and/or
FCs are represented by swimlanes.
In general, to understand with are the FCs, the HW components, the signals and the internal
changes of state of FCs, please refer to D2.2 — in particular, the functional architecture.

2.3.1. A small example

The OPS described in these few lines, highlights the application example reported in [7]. In
this document, a small example is reported to show the modelling methodology of ETCS-
L3. Starting from this example, let us imagine the case of a non-successful sending of the
acknowledgements of the train to the trackside in response to the sending of a Unconditional
Emergency Stop (UES) message.
The scenario wants to depict the case of a hazard related to the non application of a braking
action to the engine when the sending of any message from the train to the trackside is not
accomplished. Of course, this scenario is not feasible in practice: the case here presented
just wants to be an example of the specification approach described in this deliverable.
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a: Functional Component

signal_b

performance
constraint 

b: Functional Component

internal_b

Event

signal_a

signal_xsignal_a2

[else] [cond]

x_ Entity

assert

parameters

Fig. 2.5. OPS specification by means of SysML AD

Tables 2.1 to 2.10 report a description of the example according to the description template
used in [8].
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Table 2.1: Running example: General Description
Operational Scenario - small example

Title: Communication failure in emergency messages

Abstract:

The scenario wants to verify the presence of a hazard related to the locking
of the command to the braking mechanism in case of blocked emergency
message acknowledgements.

Description:

The case is of the train controller receiving an emergency message, but the
acknowledgement is not sent. If the Braking Supervision function does not
schedule a braking command before sending the acknowledgement, the train
never starts to brake until the message is not sent.

Table 2.2: Running example: Applicable Use Cases
Applicable Use Case(s)

1 Braking Supervision

Table 2.3: Running example: Performance Indicators
Performance Indicators

Name Type Property Threshold/Range Description

Non Braking
Train Qualitative Safety —

In case of unidirec-
tional network parti-
tion, the train never
brakes.

Table 2.4: Running example: Configuration
Signalling Type System Type Track Information
High Speed Line Any Linear segment

Table 2.5: Running example: Involved HW Components
HW components
Controller
Brake

Table 2.6: Running example: Involved Functions
Trackside Function(s) ETCS On-Board Function(s)
— Braking Supervision
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Table 2.7: Running example: Parameters
Parameters

Name Value/Range Description Reference

Timer(s) Timeout [10-30] secs

Timeout between
two attempts of
communication
from train to track-
side

—

Speed Tspeed [30-300] km/h
Speed of the train
when receiving the
UES

—

Communication Nretry unbounded
Number of (re-)tries
in sending the UES
messages

—

Pfailure 1
Probability the
train-to-trackside
communication fails

—

Table 2.8: Running example: Behaviour
Behaviour

Branch Pre-conditions Post-conditions Trigger Invariants/Assertions/. . .

The train is running
in Full Supervision
(FS) at Tspeed km/h

The trackside
sends a UES
message to the
train.

The network is failing,
allowing the delivery
of the messages from
trackside to the train but
not vice versa.

Desc.
#1 The trackside sends a UES to the train.
#2 The train sends an acknowledgement before activating the emergency brake.
#3 The acknowledge message is lost with probability Pfailure.
#4 After Timeout seconds, the train repeats step #2.

#5 After communication success or when the number of trials is greater than
Nretry, the train activate the emergency brake.

Table 2.9: Running example: Hazards
Hazards

ID Description Reference
KERNEL-8 Emergency Message Acknowledgement Failure [9]

TI-1 Service brake / emergency brake not commanded
when required [9]
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Table 2.10: Running example: Applicable Requirements
ID Requirement Reference

REQ-1
Given a running train, when the Braking Supervision receives an
emergency stop message, then it activates the emergency brake. —

REQ-3

Given the Controller has sent an emergency stop message, when
the Braking Supervision function receives such a message, then it
sends back to the Controller an acknowledgment message. —
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Once the OPS is described in an extensive way, a compact and clear view can be depicted
by a SysML SD: the one representing the chosen example OPS is in Fig. 2.6.

Fig. 2.6. Running example OPS - SysML SD

GA 101015416 Page 22 | 87



3. Specifying Operational Scenarios

This chapter is devoted to the description of the OPS considered in this deliverable. There
are three different OPS: Loss of Train Integrity, Points Control and Loss/Restore of Commu-
nication. The last one has been analysed twice due to the different perspective from which
it is specified, modelled and analysed. This deliverable is aligned with the results of D2.1
[6]; the chosen scenarios are the first three in terms of the industrial relevance. For each
scenario, a specification is described in a proper section of this chapter, reporting: (1) the
tabular description, (2) a proper SysML diagram1.

3.1. Loss of Train Integrity

3.1.1. OPS short description

Table 3.1: Loss of Train Integrity: General Description
Operational Scenario - Loss of Train Integrity

Title: Loss of Train Integrity

Abstract: In this operational scenario, a connected train moving under the supervision
of an ETCS-L3 train loses its integrity.

Description:

The final aim of this operational scenario is to protect the rear end of the train
and other trains from collision in the case when a train has lost its integrity.
This may occur for different reasons, but if a train splits unintentionally, the
Dispatcher needs to take relevant steps to prevent potentially hazardous sce-
narios. It is worth mentioning here that the lack of Train Integrity information
has a significant impact on the performance of the line.

Table 3.2: Loss of Train Integrity: Applicable Use Cases
Applicable Use Case(s)

1 Loss of Train Integrity
2 Normal Train Movement
3 Staff Responsible (SR) movement
4 On Sight(OS) movement
5 Loss/restore of communication

1Some tables and/or diagram may be missing. In this case, the description is very close to the one reported
in [6] or the model is very close to some EUC diagrams in [7].
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Table 3.3: Loss of Train Integrity: Performance Indicators
Performance Indicators

Name Type Property Threshold/Range Description

Loss of
integrity dura-
tion

Quantitative Performance

Duration MGH- that the
train had lost its in-
tegrity needed to de-
tect the loss of integrity.

Probability of
train integrity
loss

Quantitative Safety Probability that the
train integrity is lost.

Table 3.4: Loss of Train Integrity: Configuration
Signalling Type System Type Track Information
General Full MB (FMB)

Table 3.5: Loss of Train Integrity: Involved Hw Components
Hw components
Train
Train Integrity Management System (TIMS)
Traffic Management System
Trackside Train Detection

Table 3.6: Loss of Train Integrity: Involved Functions
Trackside Function(s) ETCS On-Board Function(s)
Trains Management Integrity Information Management
Communication Management Train Position Reporting
Track Status Management Speed and Distance Supervision
Reserved Status Management Dynamic Speed Profile Management
Route Management
TTD Management
MA Management

3.1.2. Identification of missing formal models

To model the Loss of Train Integrity (LTI) OPS, and from previous designed models described
in [7], two formal models are missing: the first is related to the movement of the train and the
second is related to the function Movement Authority (MA) management. Indeed, if a train
loses its integrity, the MA of the following train is updated; thus MA management function is
required. In addition, considering the initial condition related to LTI EUC2 implies the need

2”The train is moving under full supervision mode, and it is situated in the middle of the track ” as described in
Table 7.6 of [7]
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Table 3.7: Loss of Train Integrity: Hazards
Hazards

ID Description Reference/new possible haz-
ard

[X2R3 D4.2 H-
Movements-
005]

Undetected movement of a part of the train
after loss of integrity, leading to collision. [X2R3 D4.2]

[X2R3 D4.2 H-
Movements-
003]

Undetected movement entering the L3
area, leading to collision PERFORMINGRAIL WP1

[X2R3 D4.2 H-
Clearing-003]

Track Status Area erroneously cleared after
deactivation of a shunting area, leading to
collision.

PERFORMINGRAIL WP1

[X2R3 D4.2
H-TTDfailure-
001]

TTD erroneously indicates a Clear Track
Status Area, leading to collision or derail-
ment

PERFORMINGRAIL WP1

[X2R3 D4.2 H-
Level2-003]

Derailment after loss of train integrity
causes adjacent tracks to become occu-
pied, leading to collision.

[X2R3 D4.2]

of a model representing the movement of the train. This model is also required to consider
the switching conditions related to the computation of train integrity information (refer to the
conditions 3 and 9 in Table 3.10, which enumerates the switching conditions). The newly
designed formal models are described in Section 4.3.
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Table 3.8: Loss of Train Integrity: Applicable Operational Rules
ID Operational Rule Reference
[X2R3 D4.2
OPE-LossTI-
2]

When advised of loss of train integrity, the Dispatcher
shall, in accordance with non-harmonised rules, protect
the area in which a train division may have occurred.

[X2R3 D4.2]

[X2R3 D4.2
OPE-LossTI-
2]

When advised of loss of train integrity through an in-cab
indication, the Driver shall follow non-harmonised rules. [X2R3 D4.2]

[X2R3
D4.2 OPE-
LevelTrans-2]

When TIMS is not working or the train is not reporting
train integrity confirmed, and the Level 3 trackside is en-
gineered not to authorise such trains to enter, the Dis-
patcher shall apply non-harmonised rules whether to au-
thorise a train to enter a Level 3 Only area.

[X2R3 D4.2]

[X2R3 D4.2
OPE-Generic-
2]

The Driver shall only confirm train integrity in accordance
with non-harmonised Operational Rules. [X2R3 D4.2]

[X2R3
D4.2 OPE-
StartTrain-2]

Non-harmonised Operational Rules shall define under
which circumstances the Driver is allowed to move a train
which can not report integrity confirmed.

[X2R3 D4.2]
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Table 3.9: Loss of Train Integrity: Applicable Requirements
ID Requirement Reference

[X2R3 D4.2
REQ-LossTI-1 ]

When receiving a position report from a train with the
information ‘Train integrity lost’, the L3 Trackside shall
change the Track Status Area associated with this train
to Unknown.

[X2R3 D4.2]

[X2R3 D4.2
REQ-LossTI-2]

When the L3 Trackside considers that the integrity is lost
for a train, the L3 Trackside shall change the Track Sta-
tus Area associated with this train to Unknown.

[X2R3 D4.2]

[X2R3 D4.2
REQ-LossTI-3]

When the L3 Trackside considers that the Train Integrity
is lost for a train, the L3 Trackside shall react as config-
ured.

[X2R3 D4.2]

[X2R3 D4.2
REQ-LossTI-4]

The L3 Trackside shall consider the Train Integrity as lost
when ‘No train integrity information’ is reported longer
than a configurable time (Integrity Wait Timer).

[X2R3 D4.2]

[X2R3 D4.2
REQ-LossTI-5]

When receiving a message from a train with the infor-
mation ‘Train integrity confirmed by external device’, the
L3 Trackside shall start/restart the Integrity Wait Timer.

[X2R3 D4.2]

[X2R3 D4.2
REQ-LossTI-6]

When receiving a message from a train with the informa-
tion ‘Train integrity confirmed by Driver’, if the L3 Track-
side is configured to accept confirmation by Driver and
the Integrity Wait Timer is running, then the L3 Trackside
shall stop the Integrity Wait Timer.

[X2R3 D4.2]

[X2R3 D4.2
REQ-LossTI-7]

After a loss of integrity, the driver shall be made aware
of the situation via an indication in the cab. [X2R3 D4.2]

[X2R3 D4.2
REQ-LossTI-8]

The L3 Trackside shall be able to be configured whether
to accept Train Integrity confirmation by the driver. [X2R3 D4.2]

[X2R3 D4.2
REQ-LossTI-9]

The L3 Trackside shall be configurable as to whether it
authorises a Movement Authority for a train that has lost
Integrity.

[X2R3 D4.2]

[X2R3 D4.2
REQ-LossTI-
10]

If the L3 Trackside receives Validated Train Data for a
train with a train length different from previously reported
within the same communication session, then the L3
Trackside shall consider the train as having lost Integrity.

[X2R3 D4.2]
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Table 3.10: Switching Conditions
SWITCH ID Content of the conditions
[1] No valid Train data is available
[2] (Train is at standstill) AND (valid Train Data is available and has

been acknowledged by the RBC) AND (the train integrity is con-
firmed by the driver)

[3] (The information “Train integrity confirmed” is received from an
external device) AND (valid Train Data is available and has been
acknowledged by the RBC) AND (Train Data regarding train
length has not changed since the time the train was last known
to be integer) AND (the train position is valid and is referred to
an LRBG) AND (the train position was valid and was referred
to an LRBG at the time the train was last known to be integer)
AND (no reverse movement is currently performed nor has been
performed since the time the train was last known to be integer)
AND (the distance between the min safe rear end at the time the
train was last known to be integer and the current estimated train
position does not exceed the range of the safe train length infor-
mation)

[4] (The information ”Train integrity lost” is received from an external
device) AND (valid Train Data is available since the time the train
integrity was last known to be lost)

[5] A position report indicating that the train integrity is confirmed is
sent to the RBC

[6] The information ”Train integrity status unknown” is received from
an external device

[7] Train Data regarding train length is changed
[8] A reverse movement is performed
[9] The distance between the min safe rear end at the time the train

was last known to be integer and the current estimated train po-
sition exceeds the range of the safe train length information
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3.2. Points Control

3.2.1. OPS short description

Table 3.11: Points Control: General Description
Operational Scenario - Points Control

Title: Points Control

Abstract:
Points control operational concerns the moving, locking and releasing of
points related to two subsequent trains requesting to pass over different
points.

Description:

In this scenario, the situation is considered in which two trains running under
normal moving block conditions cross a point successively, with the second
train requiring the point to move to a different position. Movement of this
point is not allowed as long as the first train occupies the associated track
area. Also, the point cannot be moved when the point is already reserved for
the second train.These point movement timing restrictions apply due to the
hazard of moving a point while a train is passing, or about to pass, over it,
possibly leading to derailment of the train.

Table 3.12: Points Control: Applicable Use Cases
Applicable Use Case(s)

1 Points control
2 Normal train movement
3 Sweeping

Table 3.13: Points Control: Performance Indicators
Performance Indicators

Name Type Property Threshold/Range Description

Headway time Quantitative Performance Time between train
heads over points

Table 3.14: Points Control: Configuration
Signalling Type System Type Track Information
General Full MB (FMB)

3.2.2. Identification of missing formal models

For the modelling the Points Control OPS, some channels miss from the models designed in
[7]; such channels are needed to communicate with other automata. The missing details in
this automaton are “MainAutomaton”, “CallRoute” and “SetandLock” and have made signif-
icant changes to this automaton as compared to the models present in [7]. These updated
and new models are described in Section 4.4.
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Table 3.15: Points Control: Involved Hw Components
Hw components
Train
Train Integrity Management System (TIMS)
Traffic Management System
Trackside Train Detection

Table 3.16: Points Control: Involved Functions
Trackside Function(s) ETCS On-Board Function(s)
Points Management Train Position Reporting
Track Status Management Integrity Information Management
Reserved Status Management Speed and Distance Supervision

Trains Management
Route Management
MA Management

Table 3.17: Points Control: Parameters
Parameters

Name Value/Range Description Reference

Timer(s) Track section
timer To be defined

Train L TRAIN To be defined Length of the train

M MODE

0: FS
1: OS
2: SR
3: SH
6: SB
12: LS

On-board operating
mode

Speed V TRAIN To be defined Train speed

Track
Track configu-
ration: location
of points

To be defined

Point control
processing
time (Interlock-
ing)

To be defined
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Table 3.18: Points Control: Hazards
Hazards

ID Description Reference/new possible haz-
ard

H-Points-001

A point is moved in an Unknown / Occupied
/ Reserved Track Status Area with a train
over it, or when it is about to pass over it,
leading to derailments.

[X2R3 D4.2]

Table 3.19: Points Control: Applicable Operational Rules
ID Operational Rule Reference

OPE-Generic-
1

Where the system permits, the Dispatcher shall, in accor-
dance with non-harmonised rules, remove an area with
track status Unknown.

[X2R3 D4.2]
[MR D1.1]

OPE-Generic-
6

The Dispatcher shall, in accordance with non-harmonised
rules, create or extend an Unknown Area flagged as
“Sweepable” or “Non-sweepable”.

[MR D1.1]

OPE-Generic-
7

The Dispatcher shall, in accordance with non-harmonised
rules, be able to move a set of points partially or com-
pletely located in an Occupied or Unknown Area.

[X2R3 D4.2]

OPE-OS-1
When sweeping an area in ETCS Level 3 On Sight mode,
the Driver shall, in accordance with non-harmonised
rules, follow operational procedures.

[MR D1.1]

OPE-OS-2

When asked to confirm the line is Clear, the Driver shall, in
accordance with non-harmonised rules, observe the track
and confirm the status of sections of track joining/diverg-
ing from the line over which the train is passing.

[MR D1.1]

OPE-OS-3

When advised by the Driver that a section of line has been
examined and observed clear, the operator shall, in ac-
cordance with non-harmonised rules, clear the status of
sections of track joining/diverging from the line over which
the train passed where the system allows.

[MR D1.1]

OPE-OS-4
The operator shall, in accordance with non-harmonised
rules, advise the Driver of any specific checks before au-
thorising a move in ETCS Level 3 On Sight mode.

[MR D1.1]

GA 101015416 Page 31 | 87



Table 3.20: Points Control: Applicable Requirements
ID Requirement Reference

REQ-PTS-1

The L3 Trackside shall prevent movement of points
within an Unknown or Occupied Track Status Area, or
within a Reserved Status Area, unless using an opera-
tional procedure.

[X2R3 D4.2]

REQ-PTS-2

The L3 Trackside shall be configured with Release
Points to enable Points to be moved when the area of
track containing the Points has Consolidated Track Sta-
tus Clear and does not contain any part of a Reserved
Status Area.

[X2R3 D4.2]

REQ-PTS-3
On request from the TMS, the L3 Trackside shall be able
to move points for which all or parts of it is in an area
with Track Status Unknown or Occupied, or both.

[X2R3 D4.2]

REQ-PTS-4

When a train is sweeping a set of points, the L3 Track-
side shall remove or reduce a Sweepable Unknown
Track Status Area from the alternate leg of the points
as far as the Fouling Point, in addition to the path that
the train takes.

[X2R3 D4.2]
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3.3. Loss/Restore of Communications - Scenario (a)

3.3.1. OPS short description

Table 3.21: Loss/Restore of Communication: General Description
Operational Scenario

Title: Loss/Restore of Communication — case A

Abstract:
In this Operational Scenario, a connected train moving under the supervision
of ETCS L3 train may lose communication with the Trackside and may restore
it before the session expires.

Description:

The aim of this operational scenario is to monitor the communication session
with a train and in case of loss to guarantee appropriate management of the
reconnection. In case communication with the train is lost, three possible
cases can occur:

A) connection is re-established before session timeout;

B) connection is re-established before session timeout, with changes in train
id/length;

C) the train fails to reconnect before session timeout.

Table 3.22: Loss/Restore of Communication: Applicable Use Cases
Applicable Use Case(s)

1 Loss/Restore of Communication
2 Normal Train Movement
3 Staff Responsible (SR) movement
4 Sweeping
5 Loss of Train Integrity

Table 3.23: Loss/Restore of Communication: Configuration
Signalling Type System Type Track Information

General Full MB (FMB)

3.3.2. Identification of missing formal models

In order to model the operation scenario Loss & Restore of Communication (a) (OS LRC), a
formal model is missing among the ones described in a previous deliverable [7]. This model
is a stub for the Train Management System that needs to synchronise with the Train Manager
upon reception of a new position of the train.
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Table 3.24: Loss/Restore of Communication: Involved Hw Components
Hw components

Train
Train Integrity Management System (TIMS)
Traffic Management System
Trackside Train Detection

Table 3.25: Loss/Restore of Communication: Involved Functions
Trackside Function(s) ETCS On-Board Function(s)

Communication Manager TPR Manager
Trains Manager Speed Distance Supervisor
Track Status Manager Integrity Information Manager

Route Manager

Table 3.26: Loss/Restore of Communication: Parameters
Parameters

Name Value/Range Description Reference

Timer(s) MUTE TIMER 2

Defines a timeout
for a given train with
which L3 Trackside
has an active com-
munication session.
When this timer ex-
pires, the communi-
cation with this train
is considered lost.

[X2R3 D4.2]
[10]

SESSION
EXPIRED
TIMER

10

Timer of the train
after which a com-
munication session
is considered termi-
nated.

[X2R3 D4.2]
[10]

Train NID ENGINE To be specified

Identifies a train.
Used to identify a
train when restoring
communications
with a new session
after entering the
Radio Hole area.

[X2R3 D4.2]
[10]

L TRAIN To be specified Length of the train. [X2R3 D4.2]
[10]
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Table 3.27: Loss/Restore of Communication: Hazards
Hazards

ID Description Reference/new possible haz-
ard

H-Clearing-
001c

Track Status Area erroneously cleared dur-
ing L3 Trackside initialisation by dispatcher
leading to a collision. The hazard applica-
ble to this use case is mainly related to the
incorrect clearing of tracks after the recov-
ery of communication (after the Mute Timer
timeout).

[X2R3 D4.2] [10]

Table 3.28: Loss/Restore of Communication: Applicable Operational Rules
ID Operational Rule Reference

[X2R3
D4.2 OPE-
LossComms-
1]

The Dispatcher shall, in accordance with non-harmonised
rules, protect the movement of a non-communicating
train. The movement of a non-communicating train must
be safe and controlled by the Driver and the Dispatcher
working together.

[X2R3 D4.2]
[10]
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Table 3.29: Loss/Restore of Communication: Applicable Requirements
ID Requirement Reference

[X2R3
D4.2 REQ-
LossComms-1]

To timely react to the potential loss of communications
with ETCS On-board, the L3 Trackside, if configured to
do so, shall be able to supervise a defined timeout (a
MUTE TIMER) for each train with which it has an active
communication session.

[X2R3 D4.2]
[10]

[X2R3
D4.2 REQ-
LossComms-2]

L3 Trackside shall reset the MUTE TIMER for a train
upon receiving of a message from said train.

[X2R3 D4.2]
[10]

[X2R3
D4.2 REQ-
LossComms-3]

The L3 Trackside shall maintain the communication ses-
sion with ETCS On-board as active even when the
MUTE TIMER has expired until also the maximum time
(SESSION EXPIRED TIMER) to maintain a communi-
cation session has expired.

[X2R3 D4.2]
[10]

[X2R3
D4.2 REQ-
LossComms-4]

When the Mute timer expires for a train which has not
been sent Reversing Area Information, nor entered an
announced Radio Hole, then the L3 Trackside shall
change the Track Status Area associated with the train
to Unknown and extend this Area until the end of the
Reserved Status Area for the train.

[X2R3 D4.2]
[10]

[X2R3
D4.2 REQ-
LossComms-5]

If the Mute timer is not considered for use on a particular
application, the L3 Trackside shall react when the ses-
sion timer expires by setting the Track Status Area as-
sociated with the train to Unknown and extend this Area
until the end of the Reserved Status Area for that train.

[X2R3 D4.2]
[10]

[X2R3
D4.2 REQ-
LossComms-6]

When the L3 Trackside considers the communication
session with a train is terminated, then the L3 Trackside
shall remove any Reserved Status Area associated with
that train.

[X2R3 D4.2]
[10]

[X2R3
D4.2 REQ-
RecoveryMgmt-
1]

L3 Trackside shall consider a train which starts commu-
nicating with the L3 Trackside within the same commu-
nications session as previously used for the train as the
same train, so long as no change in train data has oc-
curred. This happens when a train leaves a Radio Hole
area before the Radio Hole timer expires.

[X2R3 D4.2]
[10]
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Table 3.30: Loss/Restore of Communication: Applicable Requirements
ID Requirement Reference

[X2R3
D4.2 REQ-
RecoveryMgmt-
2]

L3 Trackside shall consider a train reconnecting with a
new communication session as the same train of a pre-
vious communication session if (a) the two trains have
the same ID (NID ENGINE) and (b) the two trains have
the same length (L TRAIN).

[X2R3 D4.2]
[10]

[X2R3
D4.2 REQ-
RecoveryMgmt-
3]

If the L3 Trackside determines that the same train has
reconnected and confirmed Integrity, the L3 Trackside
shall update the Unknown Track Status Area associated
with this train, resulting from the Loss of Communica-
tions due to the expiry of the Radio Hole timer to an Oc-
cupied Track Status Area with an extent corresponding
to the new train location.

[X2R3 D4.2]
[10]
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3.4. Loss/Restore of Communication - Scenario (b)

3.4.1. OPS short description

This scenario has the aim of investigating the trade-off between performance (e.g., capacity,
line throughput) and quality of service (e.g., number of acceleration, number of brake ac-
tivations) when the communication between the onboard unit and the trackside is lost and
then restored. The scenario is developed to perform a different kind of analysis, with other
objectives, with respect to the Loss/Restore of Communication scenario introduced in the
previous subsection. The simulation approach taken for this scenario is the same initially
planned for the Virtual Coupling scenario, deleted according to the JU indication.

Table 3.31: Loss/Restore of Communication -b- : General Description
Operational Scenario

Title: Loss/Restore of Communication -b-

Abstract:

In this Operational Scenario, one train belonging to a fleet moving under the
supervision of the ETCS-L3 trackside loses communication with the track-
side at a specific instant of time and restores it before the session expires.
Different from the previous scenario, the connection is re-established before
the session timeout.

Description:

The aim of this operational scenario is to study the effects of a loss and a
subsequent restoration of the communication on both the railway network
throughput, also taking as parameters train mechanical features due to dif-
ferent market segments. In addition, it would be possible to investigate the ef-
fects on the passengers’ comfort due to continuous accelerations and brakes.

Table 3.32: Loss/Restore of Communication -b-: Applicable Use Cases
Applicable Use Case(s)

1 Loss/Restore of Communication
2 Normal Train Movement
3 Loss of Train Integrity

Table 3.33: Loss/Restore of Communication -b-: Performance Indicators
Performance Indicators

Name Type Property Threshold/Range

# Trains Quantitative Capacity [0-num vehicles]
number of trains exit-
ing the line in the given
time interval

# brakings Quantitative Quality of ser-
vice >0

number of activation of
a braking in the given
time interval
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Table 3.34: Loss/Restore of Communication -b-: Configuration
Signalling Type System Type Track Information
General Full MB (FMB) Straight line

Table 3.35: Loss/Restore of Communication -b-: Involved Hw Components
Hw components

Communication Network
Track
Trackside
Traffic Management System
Train
Train Integrity Management System (TIMS)

Table 3.36: Loss/Restore of Communication -b-: Involved Functions
Trackside Function(s) ETCS On-Board Function(s)

Communication Management Train Position Reporting
Trains Management Speed and Distance Supervision
Track Status Management Integrity Information Management

MA Management Dynamic Speed Profile Management

3.4.2. Identification of missing formal models

The model described in [7] is a general performability model whose extension is required
to fit this OPS; this model also provides proper inputs to WP4 - Integrated Moving Block
architecture for safe and optimised traffic operations (WP4). Regarding that model, the
following modifications have been made:

• Braking curves and related braking events have been introduced. The current model
considers the following braking events: emergency, indication, service and warning.

• The driver has been explicitly modelled to introduce his/her reaction time. The driver
is the actor in charge of activating the indication, service and warning braking. The
emergency braking is up to the onboard system and stops the train with the maximum
deceleration.

• The function of extending Track Status Areas performed by the trackside has been
modelled in a more accurate way, defining the maximum possible extent.

• A specific function has been added to simulate the loss of communication of a single
train for a determined time interval and the subsequent restoration.

It is worth noting that this scenario requires a number of data to be simulated, which allows
us to set the scenario for different system configurations and perform sensitivity analyses.
These data are partially reported in deliverable [7], and further data have been considered
due to the above-mentioned modifications. They are summarized in Section 4.6.
Finally, here the parameters NID ENGINE, L TRAIN and P COMM are not considered be-
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Table 3.37: Loss/Restore of Communication -b-: Parameters
Parameters

Name Value/Range Description Reference

Timer MUTE TIMER 2 seconds

Defines a timeout
for a given train with
which L3 Trackside
has an active com-
munication session.
When this timer ex-
pires, the communi-
cation with this train
is considered lost.

[X2R3 D4.2]

SESSION
EXPIRED
TIMER

Timer
10 seconds

Timer of the train
after which a com-
munication session
is considered termi-
nated.

[X2R3 D4.2]

Line Headway
(Scheduling)

According to the
market segment

Temporal distance
between trains en-
tering the line.

N.A.

Table 3.38: Loss/Restore of Communication -b-: Variants

Variant Description Alternatives Main case Impact/Affected
Steps

Market
seg-
ment

Passenger-related
market segments.

high-speed, main-
line, regional, urban
and freight railways

high-speed

The market seg-
ments are charac-
terized by different
values of some pa-
rameters, there is no
impact of the steps
of the scenario

Table 3.39: Loss/Restore of Communication -2-: Applicable Operational Rules
ID Operational Rule Reference

[X2R3
D4.2 OPE-
LossComms-
1]

The Dispatcher shall, in accordance with non-harmonised
rules, protect the movement of a non-communicating
train. The movement of a non-communicating train must
be safe and controlled by the Driver and the Dispatcher
working together.

[X2R3 D4.2]

GA 101015416 Page 40 | 87



cause the first two are model data (the fleet has more than one train; this number may vary
in different simulations) whereas P COMM is related to the Radio Hole Use Case that is not
considered by the developed scenario.
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4. Formal Modelling of Operational Scenarios

4.1. Overview on Moving Block Formal Models

This section reports on the formal models of the MB system developed in the context of
WP2. Regarding what described in [7], more work is needed by the modelling needs of the
considered OPSs: new formal models have been developed, or existing models are updated
to better capture specific behaviours. The need for new models and/or updates is reported
in Chapter 3 for each scenario.
The work described in this section is the outcome of a joint work performed by the working
group. In this work, a long internal analysis of the scenarios and of the existing formal
models is performed, with the objective of model integration and with the side effect of a joint
cross-review of the models developed in isolation.
Specifically, UPPAAL models are possibly integrated according to the composition approach
described in the next section. Of course, it is not possible to integrate UPPAAL and SAN
models1. The SAN model consists of more subcomponents that have been already identified
and integrated in the first version described in D2.2 [7]. Hence, in the following, the updates
of these models are described.
Composition of formal models is never a trivial task, in particular two main aspects deserve
great attention: properties and complexity. The integration produces a new model whose
properties must be checked carefully, and whose complexity could make the analysis unfea-
sible.
In addition, the proposed composition approach includes the development of so-called stub
models. As in software development, a stub is used to stand in for some not modelled
functionality: a stub simply provides the implemented models with their needed inputs or
receive/consume their outputs if necessary. Nonetheless, stubs are models too, even simple,
they must be composed with the fully developed models as well.
Table 4.1 summarizes the developed Moving Block models available for composition and
discussed in the rest of the chapter. In the column ”type”, the word ”Full” means that the
model is not a stub, but still, the modelled behaviour is at the (high) level of abstraction
allowed by this modelling activity.

1For brevity, details about UPPAAL TA and SANs and their solver Möbius are reported in D2.1 [6].
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Table 4.1: PERFORMINGRAIL Formal Model Library (cont.)

Model Form.
Lang.

Tool Type MB Component

TIMS TA UPPAAL Full TIMS
Driver TA UPPAAL Stub Driver
Localization Unit TA UPPAAL Full Train
Data management TA UPPAAL Stub Train
TimeStep TA UPPAAL Full System
Train Movement TA UPPAAL Full Train
Train Movement Main TA UPPAAL Full Train
On-Board Init TA UPPAAL Stub Train On-Board

IIM Status Management TA UPPAAL Full Train On-Board
(Int. Inf. Management)

IIM Updating TA UPPAAL Full Train On-Board
(Int. Inf. Management)

TPR Management TA UPPAAL Full Train On-Board
(Train Position Management)

Speed Distance Supervision TA UPPAAL Full Train On-Board
(Speed Distance Supervision)

MA Management TA UPPAAL Full Trackside
(MA Management)

Points Control (main) TA UPPAAL Full Trackside
(Points Management)

Call Route TA UPPAAL Full Trackside
(Points Management)

SetandLock TA UPPAAL Full Trackside
(Points Management)

Report Point Status TA UPPAAL Stub Trackside
(Points Management)

Signals TA UPPAAL Full Trackside
(Points Management)

Left-Right Point Position TA UPPAAL Full Trackside
(Points Management)

Track Status Clear TA UPPAAL Full Trackside
(Points Management)
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Table 4.2: PERFORMINGRAIL Formal Model Library (end)

Model Form.
Lang.

Tool Type MB Component

Communication Manager TA UPPAAL Full Trackside
(Communication Management)

Train Manager (Main) TA UPPAAL Full Trackside
(Communication Management)

Train Manager (ReqTPR) TA UPPAAL Full Trackside
(Communication Management)

Train Manager (AckVTD) TA UPPAAL Full Trackside
(Communication Management)

Train Manager (IntChk) TA UPPAAL Full Trackside
(Trains Management)

Track Status Manager TA UPPAAL Full Trackside
(Track Status Management)

Route Manager TA UPPAAL Stub Trackside (Route Management)
Traffic Management System TA UPPAAL Stub Trackside (Traffic Management)
Trackside SAN Möbius Full Trackside
On-Board and Comm. Net. SAN Möbius Full Train On-Board, Comm. Network
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4.2. Composition approach and artefacts

In this section, the Moving Block formal models composition approach is detailed, and next,
the models are specialised by using the syntactic and semantic constructs of the UPPAAL
timed automata formalism.
The composition approach follows the following steps:

• Step 1. Based on the functional architecture of the European Train Control System
(ETCS)-L3 system, identify dependency relations between blocks, i.e., blocks that
communicate with each other directly, via signals;

• Step 2. Create “sub-systems for verification”, by grouping the blocks identified above,
and considering the defined OS;

• Step 3. For each sub-system, replace the constituent architectural blocks with their
respective formal-model-based behavioural descriptions;

• Step 4. Define a common set of variables and data structures used by all formal
models, across the entire functional architecture;

• Step 5. Identify the composition operator and apply it onto the formal models involved
in a sub-system, to create its corresponding composed formal model;

• Step 6. Identify the communication mechanism between the corresponding formal
models within a sub-system, e.g., shared variables, message passing etc.

• Step 7. Specify formally the sub-systems’ properties for verification.
Since the formal models consider for integration are all defined as UPPAAL Timed Automata
(UTA), UTA mechanisms are used to instantiate Steps 5 and 6.
To model concurrent timed systems, several UTAs can be composed in an automata system.
UPPAAL uses the CCS parallel composition operator [11] to build a system or a network of
UTA. CCS allows individual components to carry out internal actions (i.e., interleaving), as
well as pairs of components to perform hand-shake synchronization. For a network of UTA,
particular automata in the network synchronize using channels and values can be passed
between them using shared (global) variables.
A state of a network of UTA is defined by the locations of all automata in the network and
the values of clocks and discrete variables. Let S be a set of channel names, then the set of
synchronization actions of the network of UTA is defined as Σ = {a? | a ∈ S} ∪ {a! | a ∈ S}.
An edge with a synchronization action a? ∈ Σ is only enabled if another automaton in the
network simultaneously can perform a complementary action a! ∈ Σ. The symbol name(a)
denotes the channel name of a, defined by name(a?) = name(a!) = a. Binary channels are
used to synchronize one sender with a single receiver, and broadcast channels are used to
synchronize one sender with an arbitrary number of receivers.
The above-mentioned UTA parallel composition operator is used, per each identified sub-
system, with respect to the operational scenarios defined in section 3, to create the respec-
tive formal model of each sub-system, on which verification can be carried out. To give
an example, formal models of functional blocks Route Manager, Track Status Manager, Re-
served Status Manager, and Points Manager are composed in parallel, and form the network
of UTA on which verification of the requirements related to the Points Control OPS can be
performed. Similarly, a network of UTA, corresponding to all relevant sub-systems of the
functional architecture, is defined.
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Step 4 of the above methodology becomes concrete as a defined Shared Declarations.xml
file, which is stored in the repository referenced in this deliverable. The file contains the def-
initions of all global variables, including shared channels, of the moving block formal models
enumerated in Section 4.1, and represents the integration-communication mechanism of
each sub-system.

4.3. Loss of Train Integrity

In this section, both the outcomes of internal and cross review, and the new designed models
are discuessed.

4.3.1. Internal and cross Review

The internal and cross review allowed to:
• fix some missing updates of variables, for example, the local variable
LOC CurrentIntegrityStatus which contains the current integrity status of the train.

• add some improvements in the formal models in order to provide a closer match on
state names between the UPPAAL timed automata and the SysML state machines.

4.3.2. New designed and updated models

The structure of the formal models representing the Operation Scenario Loss of Train In-
tegrity is composed of fourteen automata. The behaviour of each automaton is described as
below

• “Ext TIMS” automaton which emulates the behaviour of the TIMS block by
sending three signals: ′TIIreceived Unknown′, ′TIIreceived Confirmed′ and
′TIIreceived Lost’. For this model, only the names of channels are updated from the
previous version. This automaton is represented in Fig. 4.1.

Fig. 4.1. “Ext TIMS” automaton

• “Ext Driver” automaton which emulates the behaviour of the Driver block by sending
signal ′integrityDriver”. For this model, only the name of the channel is updated from
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the previous version. This automaton is represented in Fig. 4.2.

Fig. 4.2. “Ext Driver” automaton

• “Ext TrainLocalizationUnit” automaton, which emulates the behaviour of
the external actor Train Localization Unit. It regularly receives from
the automaton “Ext TrainMovement MAIN” the location and speed of the
train (′LOC sendLocationSpeed′). When, it receives from the automaton
“OB TPRManagement” requests for location ′positionRequest’, it records the last
received train information related to speed and location and sends it back to
“OB TPRManagement” automaton (′positionReceived′). This automaton is updated
from the previous version, and it represented in Fig. 4.3.

Fig. 4.3. “Ext TrainLocalizationUnit” automaton

• “Ext TrainDataManagement” automaton represents a part of the behaviour of
train which is related to train data management. Train data is required to
compute integrity status (please refer to conditions 1, 2, 3, 4, and 7 in
the Table 3.10). “Ext TrainDataManagement” automaton receives a request
(′LOC RequestTrainData′) from “OB SpeedDistanceSupervision” automaton to send
train data. It fills train data structure and sends it back (′trainData′). This automaton
is updated from the previous version where Train data was re-sent each timeout. This
does not depict the real behaviour. To have a profound understanding of train data
management, one can refer to [7] (figure 6.6 page 51), to [12] (part 7 page 41, part 3
page 178 and part 5 page 19). “Ext TrainDataManagement” automaton is represented
in Fig. 4.4.

• “Ext TimeStep” automaton is a simple model to manage the incrementation of the inte-
ger variables. If the clock LOC C FREQ is equal to time step (LOC FREQ), the broad-
cast channel ′LOC NextT imeStep′ is issued. This channel ensures the synchroniza-
tion with “Ext TrainMovement” and “Ext TrainMovement MAIN” automata which update
the integer variables according to the defined execution frequency. This automaton is
a new model. It is inspired from [13] and it is represented in Fig. 4.5.

• “Ext TrainMovement MAIN” automaton represents a part of the behaviour of train
movement. In this automaton, the function initialise() initializes the value of all train
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Fig. 4.4. “Ext TrainDataManagement” automaton

Fig. 4.5. ‘Ext TimeStep automaton

movement variables: current speed (V int[id T ]), current position (P int[id T ], current
acceleration (A int[id T ]), destination (destination[id T ]), the initial reaction of the train
movement through the boolean variables Brake[id T ] and Accelerate[id T ]. Boolean
variables are also required to switch from one state to another in “Ext TrainMovement”
automaton. The function updateTrainInfo() prepares train information to be sent to
“Ext TrainLocalizationUnit” automaton using the channel ′LOC sendLocationSpeed′.
Train information includes the value of current speed (V int[id T ]), the value of current
position (P int[id T ]) and the identifier of last referenced balise group. For the first po-
sition report, train information, is sent, just after their initialization (function initialise())
in order to send the start location and the initial speed of the train. Then, they are
sent each freqLU (frequency of sending train information). The function computeAc-
celeration int() computes the value of train acceleration represented by the variable
A int[id T ] and the reaction of the train movement in the next time step represented
by the value of the boolean variables Brake[id T ] and Accelerate[id T ]). The value of
variables (A int[id T ], Brake[id T ] and Accelerate[id T ]) depend on the value of move-
ment authority ma int, the value of current speed (V int[id T ]), the value of current
position (P int[id T ]) and the distance to break. “Ext TrainMovement MAIN” automa-
ton receives the channel ′MAupdate′ and updates the value of movement authority
ma int and the train mode mode[id T ] accordingly. This automaton is a new model. It
is inspired from [14] and it is represented in Fig. 4.6.

• “Ext TrainMovement” automaton represents a part of the behaviour of train movement.
In this automaton, functions ComputeA(), ComputeV () and ComputeP() allow updating
the train acceleration, velocity and position values. The initial state is ’Wait First MA’
state. The train waits for its first MA. In the state ’Start Move’, depending on the value
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Fig. 4.6. “Ext TrainMovement MAIN” automaton

of train acceleration (A int[id]), the train will accelerate if the acceleration value is
positive (A int[id] > 0) and in this case, the next state is ’AcceleratingTrain’. If the
acceleration value is negative (A int[id] < 0), the train will brake and the next state is
’BrakingTrain’. Finally, if the acceleration value is zero (A int[id] == 0), the train will
run at a constant speed and the next state is ’ConstantSpeed’. The switching from one
state to another is then performed each time step (′LOC NextT imeStep′) following the
values of boolean variables Brake[idT ] and Accelerate[idT ]. This automaton is a new
model. It is inspired from [13] and it is represented in Fig. 4.7.

Fig. 4.7. “Ext TrainMovement” automaton

• “OB IIMStatusManagement” automaton represents a part of the behaviour of the on-
board function “Integrity Information Management”. It intercepts TIMS and Driver sig-
nals, and according to the current status of integrity and other conditions described
in Table 3.10, performs the switching from one state to another. In this version, all
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switching conditions are implemented, while in the previous one, conditions 3 and 9
were missing. This automaton is represented in Fig. 4.8.

Fig. 4.8. IIM StatusManagement automaton

• “OB IIMUpdating” automaton represents a part of the behaviour of the on-board
function “Integrity Information Management”. At initial state, it waits for IN-
TEGRITY CHECK TIMEOUT. Then, it sets the value of the variable LOC sentII
to the value of the variable LOC CurrentIntegrityStatus and sends this infor-
mation (LOC sentII) to “OB TPRManagement” automaton through the channel
′integrityInfoRecv′. “OB IIMUpdating” automaton is slightly modified from the pre-
vious version and is represented in Fig. 4.9.

• “OB TPRManagement” automaton represents the behaviour of the on-board func-
tion “Train Position Management”. This automation is responsible for sending
to the “TS TrainManagement” automaton a train position report which includes,
mainly, the train position, the train speed and the train integrity information. It
receives from “TS TrainManagement” automaton a request for Position Report
′getTPRRequest′ and it receives the integrity status from “IIM updating” automaton
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Fig. 4.9. ‘̀OB IIMUpdating” Automaton

′integrityInfoRecv′. It sends a request for location to “Ext TrainLocalizationUnit”
automaton. In the state Wait Train Localization Unit Position, it waits for a re-
ply. When receiving ′positionReceived′ from “Ext TrainLocalizationUnit” automaton,
it fills the variable msgTPRReceived which contains the train position report and
sends it to “TS TrainManagement” automaton using the channel ′TPRReceived′.
“OB TPRManagement” automaton is deeply modified from the previous version and
is represented in Fig. 4.10.

Fig. 4.10. “OB TPRManagement” Automaton

• “OB SpeedDistanceSupervision” automaton represents the behaviour of the
on-board function “Speed Distance Supervision”. The boolean variable
LOC start[ID Train] is a local variable allowing to receive train data for the
first time by sending a request to “Ext TrainDataManagement” automaton. If
LOC start[ID Train] is false, train data are already received. The variables
LOC Available Train Data[ID Train] and LOC Ack Train Data RBC[ID Train]
are initialized by “InitOnBoard” automaton. If no valid train data is avail-
able (!LOC Available Train Data[ID Train]) and the train is at a standstill
(TrainSpeedSentToTPR[IDT rain] == 0), the “OB SpeedDistanceSupervision”
automaton sends a request to “Ext TrainDataManagement” automaton to re-sent train
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data (′LOC RequestTrainData′). After reception of train data (′trainData′), it sends
validated train data (′V TDReceived′ ) to send to “TS TrainManagement” automaton
and waits for an acknowledgement from this latter (′V TDAck′). This automaton is
deeply improved from the previous version, and it is represented in Fig. 4.11.

Fig. 4.11. “OB SpeedDistanceSupervision” automaton

• “InitOnBoard” automaton is designed to initialize onboard variables. The current in-
tegrity status is set to confirmed by TIMS using the function CONFIRMED Update().
Train data are initialized according to the initial conditions defined in Table 7.21
page 138 in [7]: valid train data are always available and valid Train Data have
been acknowledged by the RBC. To emulate the generic behaviour of train data
and not only the initial conditions, initial values are defined as parameters of the
automaton (int ID Train, bool initV alueTrainData, bool initV alueACKTrainData,
bool initV alueLastLostTrainData, bool initV alueLastConfirmedTrainData). Then,
“InitOnBoard” automaton stores the value of the variable LOC CurrentIntegrityStatus
representing the current integrity status in the variable LOC sentII and issues a chan-
nel ′integrityInfoRecv′ to send this value to “OB TPRManagement” automaton. This
automaton is a new model, and it is represented in Fig. 4.12.

Fig. 4.12. “InitOnBoard” automaton

• “TS TrainManagement” automaton represents a part of the behaviour of the trackside
function “Trains management”. It receives the train position report (′TPRReceived′)
from “OB TPRManagement” automaton, receives validated train data (′V TDReceived′)
from “OB SpeedDistanceSupervision” automaton, sends an acknowledgement upon
reception of train data (′V TDAck′) and sends a request for train position report
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(′getTPRRequest′) from “OB TPRManagement” automaton if the min safe front end
of the train exceeds a specific value expressed as the destination of the train
destination[ID Train]. This automaton is updated for previous version and it is repre-
sented in Fig. 4.13.

Fig. 4.13. “TS TrainManagement” automaton

• “TS MAManagement” automaton is a new model designed to emulate the behaviour
of the trackside function “Movement Authority Management”. It is inspired from[14].
In “TS MAManagement” automaton, the Movement Authority (MA) is computed after
reception of Train Position Report (′TPRReceived′) from “OB TPRManagement” au-
tomaton because MA needs the position of all trains to compute future MA. Once MA
is computed, a channel ′MAupdate′ is sent to “Ext TrainMovement MAIN” automaton.
“TS MAManagement” automaton is represented in Fig. 4.14.

Fig. 4.14. “TS MAManagement” automaton

4.3.3. Deleted models

From previous version, some automata are deleted: the impact of such a deletion on the
overall behaviour is here discussed.

• “Train mode” automaton which emulates the switching between the different ETCS op-
eration modes of the train is deleted. It was designed particularly in order to consider
the condition 8 3.10. In the new version, only the FULLSUPERV ISION ETCS op-
eration mode is considered. This information is included in the mode profile which is
part of the MA structure which is sent by the automaton “MAManagement”.
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• “Train speed” automaton which emulates the speed of the train by sending the train
speed information to the automaton “Speed and Distance supervision” is deleted. It is
substituted by “Train Movement automata”.

4.4. Points Control

This section describes the internal and cross review of the model and improvements done
after the review phase.

4.4.1. Internal and cross Review

The internal and cross review of the models has allowed us to improve existing models.
Major changes are made to the “MainAutomaton”, “CallRoute” and “SetandLock” automata,
while the rest of the automata are new developed. The description of each automaton is
provided as below.

4.4.2. New designed and updated models

The current formal model for Points Control consists of eight automata: “MainAutomaton”,
“CallRoute” and “SetandLock” automata are modified from the ones presented in D2.2; oth-
ers are newly built and first presented in this deliverable. The description for each of these
automata is given below:

• “MainAutomaton” This automaton communicates with the three other automata, shown
in Fig. 4.15. This automaton is updated from the one discussed in D2.2 by adding new
conditions under which it communicates with ’Nominal’, ’Degraded’ and ’Sweepable’
scenarios (see Fig. 4.15).

Fig. 4.15. “Points Control Main” automaton

• “CallRoute” is updated from the one presented in [7]; it is also named as “CallRoute”
now instead of “CreateRoute”. In this automaton, the presence of the involved points in
the route to call in an area that is Occupied/Unknown (Track Status) or that is Reserved
(Reserved Status), is checked. When the ID of the lock point returns a false value and
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Fig. 4.16. “CallRoute” automaton

track status is clear, the automaton synchronizes with the “SetandLock” automaton,
via the synchronization channel setandlock. The updated model for “CallRoute” is
presented in Fig. 4.16.

• “SetandLock” The “SetandLock” automaton present in [7] has been updated. The vari-
able EndPosition captures the point’s position at rest, which can either “Left” or “Right”.
After that, the automaton moves to either location PointPositionLeft or location Point-
PositionRight by checking the position of point at location EndPos. From both locations
PointPositionLeft or PointPositionRight automaton moves to location NoEndPosition
and stays there until the maximum time is not reached. Once the time is maximum
time is reached, then the automaton moves to location NewPos. The updated “Se-
tandLock” is shown in Fig. 4.17.

Fig. 4.17. “SetandLock” automaton
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• “ReportPointStatus” automaton emulates the Points Manager, sending the set of
locked points to the Route Manager automaton as shown in Figure 4.18.

Fig. 4.18. “ReportPointStatus” automaton

• “Signals” This automaton is used to tell the status of the track status area which can
be ’Occupied’, ’Free’ or ’Release’ as shown in Fig. 4.19.

Fig. 4.19. “Signals” automaton

• “LeftRightPP” automaton sets the initial position of a point which can be either ’Left’ or
’Right’ as shown in Fig. 4.20.

Fig. 4.20. “LeftRightPP” automaton

• “TrackStatusClear” automaton sets the track status area value to clear as shown in Fig.
4.21.
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4.4.3. Deleted models

The “Degraded” timed automaton from the Deliverable D2.2 has been deleted, as this
scenario has not been considered in the updated UPPAAL model.

Fig. 4.21. “TrackStatusClear” automaton

4.5. Loss/Restore of Communications

In this section, the revision and integration process of the formal models from D2.2 is re-
ported, focusing on the Loss & Restore of Communication operational scenario (a), made
according to the internal and cross review. The main areas of intervention of the review and
integration processes are listed below:

• standardisation of data types, variables and communication channels compliant with
the data model of D2.2;

• encoding of complex triggers and actions by Boolean functions to improve the read-
ability and maintainability of artefacts;

• concrete implementation of triggers, previously left unspecified, according to a formal
specification of the data model;

• revision of the automata, e.g., TrainManager, TrackStatusManager, and Communica-
tionManager, to solve incompletely specified behaviours and to allow for their integra-
tion in the operational scenario;

• modelling of the scenario by replacing some stubs with refined automata.
As a by-product of the above activities, most of the limitations of the formal models reported
in Deliverable 2.2 have been overcome.

4.5.1. Updated formal models (OnBoard)

For the description of the formal models of the OnBoard functions for the Operational Sce-
nario Loss & Restore of Communication, refer to Section 4.3.

4.5.2. Updated formal models (TrackSide)

The structure of the formal model of the TrackSide functions for the Operational Scenario
Loss & Restore of Communication comprises six automata and two stubs. The description
of each automaton is reported below.
The model is intended to have a process instantiation for each train. In other words, each
living train will have its own CommunicationManager, TrainsManager, TrackStatusManager,
each having the train identifier as a parameter.
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The CommunicationManager function is required to notify the TrainsManager upon expira-
tion of the connection timers, signalling a loss of communication to the Trackside. Due to the
nature of the function, the model was developed taking its interactions with the Trackside into
consideration. For this reason, five secondary automatons have been included, with partic-
ular attention towards those that represent the track status management and, of course, the
train management.
The TrainsManager function is responsible for managing a train, more specifically, by com-
municating with the onboard functions, it determines the location of the train and sends
the proper signals (i.e., the Occupied, Unknown, and Release signals) to the Track Status
Manager so that the Status Area occupied by the train can be suitably updated.
The TrackStatusManager function is responsible for managing the Track Status within its
Area of Control. The Track Status represents the information held within the trackside about
which parts of the track have an occupied, unknown, or clear status. The collection of all the
instances of the TrackStatusManagers, one for each train, provides the Consolidated Track
Status of the entire track within a given Area of Control.

4.5.2.1. The CommunicationManager automaton

Fig. 4.22. Communication Manager Automaton

The main automaton — depicted in Fig. 4.22 — starts in the initial state where it waits for a
validated Train Data Message (see signal VTDReceived[i]?) that sets up the communica-
tion session and moves to the state WaitForTPR where it processes the possible messages
from the train, either train position reports (TPRs) or validated train data (VTDs), as long as
the Mute Timer (and the Session Timer ) does not expire. Each time a message is received
before a time-out, it is considered valid, and the two timers are reset. If the Mute Timer is
not configured and the Session Timer expires, an alert is sent to the TrainManager, which
manages the situation accordingly, and moves to a safe state (GoToASafeState), after
setting a flag signalling that the communication went down (CommunicationDown()).
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If, on the other hand, the Mute Timer is configured and its timer expired, it alerts
the TrainManager that a timeout event has occurred and moves to the state
WaitForReconnection and sets the flag signalling that the communication went down
(CommunicationDown()). The automaton, then, stays in that state until either a message
from the train is received or the Session Timer expires. The invariant associated with that
state ensures that, upon expiration of the Session Timer, the automaton signals the time-out
event to the TrainManager and terminates by moving to a safe state. If a valid message
from the same train is received (a VTD or a TPR, where the train ID and the train length are
those of the original train, msgVTDOK() or msgTPROK()) before the Session Timer expires,
then it moves back to the state WaitForTPR, after resetting the timers and flag signalling
that the communication is up again (CommunicationUp()). If the message is not valid,
however, it terminates by moving to a safe state.

4.5.2.2. The TrainsManager automaton

The TrainManager automaton — depicted in Fig. 4.23 — handles the
ValidatedTrainData and TrainPositionReport messages sent directly by the
Train together with the timeoutEvent message sent by CommunicationManager
on the connection status of the train. From the initial state, after the reception of a
ValidatedTrainData message, the local train data are set to the prescribed values and,
consequently, the automaton moves to the Waiting state. In this state, the automaton is
able to perform a series of actions, able to be grouped in three different blocks, those con-
cerning the communication status, those relevant to the update of the TrackStatusArea
after the reception of a TrainPositionReport message, and, finally, the ones associated
with the modification of the Train length after the reception of a ValidatedTrainData
message. The different blocks are separately described below.

• If a timeoutEvent message is received, depending on whether the Mute Timer
is configured or not, the automaton either transits to the WaitForReconnection
state or sends a clearRSA message to the RouteManager and terminates in the
GoToASafeState state. In the first case, the reception of a timeout signal repre-
sents a mute timer expiration, while, in the second case, is the session timer that is
considered expired. At the WaitForReconnection state, the automaton is waiting
for proper ValidatedTrainData and TrainPositionReport messages in order
to attempt reconnection. If this happens before the expiration of the session, it pro-
ceeds to one of the phases described below. If the received messages are consid-
ered invalid (see conditions !msgTRPOK() and !msgVTDOK()) or the session expires,
the connection is considered permanently lost and the automaton terminates in the
GoToASafeState state after sending a clearRSA message to the RouteManager.

• When a TrainPositionReport message is received, the local train data are
updated accordingly (including the MaxSFE), a TSAoccupy message is sent to
the TrackStatusManager, and a recvTrainLocation message is sent to the
TrafficManagementSystem. if the integrity of the train is confirmed (see condition
IntegrityConfirmed()), the CRE is updated as well and a TSArelease message
is sent to the TrackStatusManager. Otherwise, a TSAunknown message is sent to
the same machine. At this point, if the position is considered correct, the automaton
returns to the Waiting state, else, it terminates in the GoToASafeState state.

• When a ValidatedTrainData message is received, the new Train length is eval-
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Fig. 4.23. Train Manager Automaton

uated. If it shorter than the previous one, then the train data are updated and a
TSArelease message is sent to the TrackStatusManager. If it is longer, in-
stead, a check of the extensions is performed (see condition ExtensionOK()). If
it considered correct, the train data is updated accordingly, a request for a new
TrainPositionReport is sent to the Train, and then the automaton returns to the
Waiting state. Otherwise, it terminates in the GoToASafeState state.

4.5.2.3. The TrackStatusManager automaton

The TrackStatusManager automaton — depicted in Fig. 4.24 — manages the track status
information for the track status associated with trains (array variable varTrackStatus[]).
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Fig. 4.24. Track Status Automaton

The status is updated in accordance with the interaction with the TrainsManager. Each area
can be either in a Occupied or Unknown state. The automaton can be initialized with an
area in one of the two states. In Occupied state, when a message is received on the
TSAreleaseToTSM channel, the starting point of the occupied area is updated to the cur-
rent CRE of the train. Otherwise, if a message on the TSAoccupy channel is received,
the ending point of the occupied area is updated to the current MaxSFE of the train and a
following check on the raising of a possible conflict with areas occupied by other trains is per-
formed. In case of a conflict, the GoToASafeState is entered. The Occupied status com-
mutes to Unknown when a message is sent by the TrainsManager on channel SetUnknown
and the train is not located in an active shunting area. An additional side effect is the update
of the starting point of the area to the current CRE and, in case a loss of communication has
occurred, the end point of the unknown area is set to EoA. If, instead, the train is located
in an active shanting area, then the status is commuted to Removed and the start and end
points of the area are updated as in the previous case. An area in Unknown status change
to an Occupied status because of a TrainsManager request (after a restoring of the lost
communication) if an additional check of integrity is fulfilled. A request of release issued by
the TrainsManager in the Unknown status may lead to the same side effect on the extent of
the area as in the Occupied status if the extension is admissible, and it leads to a Removed
status, otherwise.

4.5.2.4. The RouteManager and TrafficManagerSystem automata

RouteManager and TrafficManagerSystem (see Fig. 4.25) are two automata are simple
stubs for the sole purpose of keeping the other automatons alive by intercepting messages
sent by the automata described above to the corresponding functions.
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(a) Route Manager Automa-
ton

(b) Traffic Manager Automa-
ton

Fig. 4.25. Additional Stubs

4.6. Loss/Restore of Communication - Scenario (b)

4.6.1. Internal and cross Review

The internal cross review aimed at reviewing the entire SAN model, including both structural
elements (places, transitions, input and output gates) and C++ code, to validate the modelled
behaviours regarding realistic situations (the SAN formalism is described in [6]). The cross
review mainly consisted of the generation and the analysis of simulation traces of some
simple situations that could be easily understandable and handled, such as the service of
one and two trains. This allowed us not only to correct some bugs, but also to increase the
level of detail of the considered behaviour by mainly updating the C++ code. In addition, SAN
model has been extended to represent the Loss and Restore of Communication - Scenario
(b), as described in the following. The cross-review of this model involved TUD in joint
collaborative work between WP2 and WP4 to revise the modelled behaviour and the values
needed to instantiate the model.

4.6.2. Updated model

The SAN introduced in [7] models the movement of the trains along a straight line. The
model consists of composed sub-models, including more instances of the train on-board
unit and communication model (one per train in the fleet) and just one instance of the track-
side model. The changes described in Section 3.4 impact the on-board and communication
model. The updated model is shown in Figure 4.26. These changes required extending the
model with the elements enclosed in the red box. This portion of the model mainly consid-
ers the presence of a driver who is asked to activate a braking, as well as the continuous
supervision performed on-board and possible activation of the emergency braking.
The function modelling the loss and restore of communication is associated with the
TPRNetworkDelay activity. Let us recall that the extended places (the orange circles) repre-
sent global variables and that the composition of the trackside and the on-board sub-models
is mainly realized through these shared variables. The trackside sub-model is shown in Fig-
ure 4.27 to facilitate the understanding of the modelled behaviour. In this model, the output
gate named updateTSAsAndgiveMAs is updated; this gate models the function of extending
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Fig. 4.26. SAN on-board unit + communication atomic updated model

Track Status Areas. As described in Section 3.4, the revised version of the model considers
a more accurate behaviour, where the update of Track Status Areas is performed regarding
the free area in front of the train, up to a certain maximum extent.

Fig. 4.27. SAN trackside model

In the following, the two sub-models are described in more details.

4.6.2.1. The on-board and communication sub-model

The modelled behaviour is partially presented in [7]. In the left part of the model, a unique
ID is assigned to each train (NID ENGINE). Then two paths go in parallel. Along the lower
path of Figure 4.26 models a step-by-step movement of the train on the line. The upper path
models the communication with the trackside.
As for the train movement, at each instant of time, the train evaluates its current position.
Then it computes its distance to the EoA and the speed that it has to take at the next step.
When the train reaches the end of the line, it has to exit it.
The extension of this behaviour here introduced considers some braking curves and the
driver’s reaction time: periodically, the train evaluates the Emergency Braking and the Indi-
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cation Braking distances (the current model simulates a uniformly decelerated motion). If
the distance to the EoA is higher than the Indication Braking distance, the train continues its
movement. If the train is at the Indication Braking point, the driver is asked to brake (after
a certain reaction time). When the driver intervenes, the train follows the related braking
curve (indication, service or warning in the current version of the model). If the train is at
the Emergency Braking point, the onboard unit enables the emergency brake and the train
stops along the line.
The onboard unit continuously generates the Train Position Report message. As for the com-
munication between the onboard and the trackside along the upper path of the model, the
communication delay on the messages exchanged between the train and the trackside are
considered. The main difference between the updated model and the version discussed in
[7] is that the function associated with one of the cases of the transition TPRNetworkDelay
models the loss and restore of the communication.
In addition, a Fault Tree approach has been considered with TU-DELFT, aiming at integrating
a Fault Tree Analysis (FTA) with the SAN model [15]. At the current state of this research, the
following failure probabilities are expected to be evaluated by an FTA: a) the communication
network does not deliver a message (TPR or MA), and b) the train does not confirm its
integrity.

4.6.2.2. The trackside sub-model

The trackside sub-model is not changed regarding what was presented in [7], except for
the introduction of a more accurate function for the update of the Track Status Areas. It
does not model the full complexity of the trackside, but it generates the events needed for
the onboard sub-models. Briefly, the trackside sub-model is responsible for evaluating the
TPR messages received by the train, processing them, updating the Track Status Areas and
sending back MA messages to the train.

4.6.2.3. Model data

The model requires the availability of some data beyond the parameters strictly identified for
the Loss and Restore of Communication scenario described in Section 3.4 as the proposed
model simulates the march of the trains along a straight line. Some model data has been
already identified in [7]. They are summarized for clarity’s sake in Table 4.3. The new ones,
introduced according to the changes done to fit the objectives of the scenario, are in bold.
The ranges of the model data may be changed as needed, the values used to perform the
simulations are reported in the next section, where some studies are described analysing the
Loss and Restore of Communication impact on the system capacity and quality of service.
Model data are mainly related to the components identified in Section 3.4: the trains, the
track, the trackside and the communication between the trains and the trackside. Of course,
the scenario is modelled at the system level but allows studying of the impact of different
system configurations at a high level of abstraction. Note that values related to times are in
seconds and distances in meters in the values reported in Table 4.3.
The Loss of Communication scenario required the addition of new parameters to the analy-
sis. They are reported in Table 5.1.

4.6.2.4. Variants

As described in Section 3.4, this scenario also requires the analysis of possible variants
based on different market segments. These variants have been defined together with TUD
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Table 4.3: Loss and Restore of Communication - SAN model data
Component Model Name Description

Communication
Network netNotDeliveryProb Probability that a message is lost

Communication
Network MAnetDelay Trackside to Train communication time

Communication
Network TPRnetDelay Train to Trackside communication time

Communication
Network TPRUpdatePeriod Train Position and Integrity Report update

time (may include GNSS)

Track lineLength Length of the track

Trackside RBCprocessingTime Trackside computation time

Traffic Management
System TrainScheduling Time between two successive trains

Traffic Management
System safetyMargin Additional safety distance between sub-

sequent trains

Train (Onboard) EVCProcessingTime On-board unit computation time

Train (Rolling stock) trainLength Length of the train

Train (Rolling stock) maxTrainSpeed Maximum Train Speed

Train (Rolling stock) maxTrainAcceleration Maximum train acceleration

Train (Rolling stock) indicationBraking Indication train deceleration

Train (Rolling stock) serviceBraking Service train deceleration

Train (Rolling stock) warningBraking Warning train deceleration

Train (Rolling stock) emergencyBraking Emergency train deceleration

Train Integrity Man-
agement System integrityNotConfirmedProb Probability that the train integrity is not

conformed by TIMS

Train Integrity Man-
agement System nTrains Number of trains moving on the track

Driver driverReactionTime Speed visualization time + human time to
interpret and react to the indication

Step movement positionUpdatePeriod Duration of a step
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Table 4.4: Loss and Restore of Communication - additional model data
Component Model Name Description

Communication
Network LossComm trainId Id if the train affected by the loss of com-

munication, in the interval [0, ..., nTrains[

Communication
Network LossComm startTime Starting time of the communication loss

(the train is muted from this time instant)

Communication
Network LossComm duration

Duration of the loss of communication (af-
ter this this time interval the train sends
the TPR to the trackside)

and include high-speed, mainlines, regional, urban and freight. Each scenario considers
different features of the convoys and of their service. In the SAN model, the setting up of
a scenario is obtained by setting a subset of model data at the values specific for a given
market segment. Table 4.5 reports the parameters used for the studied variants. As many
different values for these parameters are available from different sources, it is important to
underline that the objective here is to perform a sensitivity analysis by varying the values
of the parameters of interest, and that Table 4.5 does not claim to report the conventional
signalling and rolling stock values. The maximum speed and the acceleration values are
from [16].

Table 4.5: Market-Segment dependent model data
HS Mainlines Regional Urban Freight

trainLength sample [m] 327.6 115 96 130 192.8
trainHeadway [s] 481.2 182.5 156.0 114.4 350.1
maxTrainSpeed [m/s] 83 39 33 22 28
maxTrainAcceleration (maxSpeed) [m/s2] 0.069 0.139 0.450 0.697 0.060
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5. Verification & Validation

This chapter is devoted to the Verification & Validation of the designed models considered in
this deliverable. Three different OPSs are considered: Loss of Train Integrity, Points Control
and Loss/Restore of Communication (both cases (a) and (b)).
For what concerns the analysis of the first three scenarios, some properties have been
analysed. The integration process of the models is complex, and the resulting composed
models present a high level of complexity, which makes formal analysis hard to accomplish.
Notwithstanding such a complexity, some verification activities have been performed also
taking into account formal analysis. Results of this activity are reported in Section 5.1.
The case (b) of the last scenario differs from the previous cases since it is modelled by
means of the SAN formalism and analysed by creating a reward model as described in the
following. For this scenario, a satisfactory level of analysis has been reached. The results
are described in Section 5.2.

5.1. Formal verification of Timed Automata

This section presents some preliminary results related to the verification and validation of
some designed models following the composition approach defined in Section 4.2. The first
step consists in defining for UPPAAL models a global declaration file. In this file, all variables
required for designing formal models are included. The file contains data types, message
types, trackside data, onboard data, shared data, trackside channels, onboard channels and
shared channels. This file is used then for the integration, which is based on shared data
and channels.
Local properties check the required behaviour of some automata in just one OPS. Global
properties are analysed by putting together many automata from different operation scenar-
ios, also checking if the composition is correct.
For the verification process, using UPPAAL, first, the automata that will be instantiated with
the required parameters for each automaton is defined in system composition. Then, the
verification process is explained. Finally, using the verification process, the result of the
verification of each property and how it is verified (simulation or verification) is described.

5.1.1. Description of global declaration file

The global declaration was defined with respect to the data model defined in [7]. This file
is mandatory to facilitate the integration part. Thus, a naming convention is needed for all
the model elements that are shared between two or more models. Indeed, it is necessary
that a sender and a receiver of a message use the same name of the channels. The follow-
ing naming convention for channels is needed to avoid conflicts in the case of two signals
having the same name but related to different functional components: name as in sysml +
”To”+ acronym of the receiving functional component (e.g. TSAreleaseToTSM). For global
variables, the followed convention is to use the same name of the SysML model. In the
case of channels and variables that are ”internal” to a specific UPPAAL model, the idea is
to avoid conflicts with global names and, at the same time, to allow a quick identification of
such items. The agreed solution was to prefix such items with the prefix ”LOC”.
The global declaration file includes all variables required for designing formal models. Vari-
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ables can be classified into the following categories: data types, message types, track-
side data, onboard data, shared data, trackside channels, onboard channels and shared
channels. For data types, the structure of data is defined. For example, the data type
TrainIntegrity is a structure that contains two attributes: Q LENGTH which contains in-
tegrity status and L TRAININT which contains the safe train length. In message types,
the structure of message exchanged while sending synchronisation channels is defined.
For example, the message MSGPositionReport contains the structure of the message po-
sition report. It contains two attributes: msg structure which contains the ID of the train (int
NID ENGINE) and PositionReport structure which contains all variables required in a posi-
tion report. Trackside data contains data required shared only between trackside automata.
For example, the variable LOC communicationT imerExpired in trackside variable required
to state if the communication timer is expired or not. The same reasoning is followed to
define the rest of the variables (onboard data, shared data, trackside channels, onboard
channels and shared channels).
Listing 5.1 contains an excerpt of the declaration file. The complete file is stored — as all
other artefacts here described — at the referenced repository.

Listing 5.1: Global declaration file (excerpt)
typedef struct {

...
M_MODE_Type M_MODE;
TrainIntegrityStatusQualifier integrityConfSource;

} PositionReport;

typedef struct {
...
int L_TRAININT;

} TrainIntegrity;

typedef struct {
...
TrainIntegrity trainIntegrity;

} Location;

typedef struct {
...
AreaExtent extent;
bool sweepable;

} TrackStatusArea;

typedef struct {
int NID_ENGINE;
...
TrackStatusArea trackStatusArea;
Location location;
PositionReport positionReport;

} TrainData;

5.1.2. Loss of Train Integrity & Loss/Restore of communication

This section is devoted to two OPSs: Loss of Train Integrity & Loss/Restore of communi-
cation. It can be noticed that the designed models for Loss of Train Integrity OPS which
are deeply described in Section 4.3, represent the moving block onboard part. However,

GA 101015416 Page 68 | 87



the designed models for Loss/Restore of communication, OPS which are deeply described
in Section 4.5, represent the moving block trackside part. The main properties checked on
both operation scenarios are reachability properties, which are described in Section 5.1.2.1
and Section 5.1.2.2

5.1.2.1. Local Properties

Some local properties can be verified only in the operation scenario, Loss of Train Integrity.
Verifying local properties in the operation scenario Loss/Restore of communication is not
possible. Indeed, this OPS requires information from the on-board system, such as validated
train data and train position report. Without such information, it is not possible that the train
manager automata computes, for example, the max safe front end of a train.
As highlighted in section 3.1.2, the main new designed models for the operation scenario
Loss of Train Integrity are models related to the movement of the train and to the function
“MA Management”.
Some local properties are verified on Loss of Train Integrity operation scenarios in order to
assess its soundness:

1. Is it possible that the end of authority (EoA) in the movement authority MA for the first
train (Id = 0) is different from 0? This means that the “TS MAManagement” automaton
receives from “OB TPRManagement” automaton a train position report and computes
accordingly the MA. If MA[0].EoA == O means that no MA is computed.
This property is expressed in UPPAAL as E <> MA[0].EoA! = 0.

2. Is it possible to reach the state Integrity Confirmed By Driver in the automaton
“OB IIMStatusManagement”? This property is expressed in UPPAAL as
E <> IIM Process A.Integrity Confirmed By Driver &&LOC AbsT ime > 60.

3. Is it possible to reach the state No Integrity Information in the automaton
“OB IIMStatusManagement”? This property is expressed in UPPAAL as
E <> IIM Process A.No Integrity Information &&LOC AbsT ime > 60.

4. Is it possible to reach the state Lost By TIMS in the automaton
“OB IIMStatusManagement”? This property is expressed in UPPAAL as ‘
E <> IIM Process A.Lost By TIMS &&LOC AbsT ime > 60.

5. Is it possible to reach the state Confirmed By TIMS in the automaton
“OB IIMStatusManagement”? This property is expressed in UPPAAL as ‘
E <> IIM Process A.Confirmed By TIMS &&LOC AbsT ime > 60.

6. Is it possible to reach the state SendTPR in the automaton “OB TPRManagement”?
This property is expressed in UPPAAL as
E <> TPR Process A.SendTPR &&LOC AbsT ime > 60.

7. Is it possible to reach the state SendMA in the automaton “TS MAManagement”? This
property is expressed in UPPAAL as
E <> MA Process A.SendMA &&LOC AbsT ime > 60.

8. Is it possible to reach the state Failure ACK” in the automaton
“OB SpeedDistanceSupervision”? This property is expressed in UPPAAL as
E <> SDS Process A.Failure ACK .

9. Is it possible that the train reaches its destination? This property is expressed in UP-
PAAL as E <> (P int[0] == 700000 &&LOC AbsT ime > 60).

10. How speeds of trains evolve over time? This property is expressed in UPPAAL as
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simulate [LOC AbsT ime <= 300; 1]{V int[0] ∗ 0.1, V int[1] ∗ 0.1}.
11. How trains speeds received by train management evolve over time? This property is

expressed in UPPAAL as
simulate[LOC AbsT ime <= 300; 1]{(msgTPRReceived[0].positionReport.V TRAIN)∗
0.1, (msgTPRReceived[1].positionReport.V TRAIN) ∗ 0.1}

12. How locations of trains evolve over time? This property is expressed in UPPAAL as
simulate [LOC AbsT ime <= 2000; 1]{P int[0] ∗ 0.1, P int[1] ∗ 0.1}.

In general, the reachability of all states for all the automata composing the LTI OPS is
checked.

Focusing on the property: ”it possible to reach the state Integrity Confirmed By Driver
in the automaton “OB IIMStatusManagement”?”, its checking thisrequires that condition
2 in table 3.10, presented as a guard in the automaton “OB IIMStatusManagement”,
is true. LOC AbsT ime > 60 is to express that time elapses, and the initial conditions
are not valid anymore. Condition 2 (table 3.10) seems simple, but implementing and
verifying such a condition, requires many interactions between many designed automata.
Indeed, Train is at standstill means that the speed of the train is 0. This requires an
interaction between “Ext TrainMovement MAIN” automaton which represents a part of the
behaviour of train movement, the “Ext TrainLocalizationUnit” automaton which receives train
speed from “Ext TrainMovement MAIN” automaton and sends it to “OB TPRManagement”
automaton. V alid Train Data is available and has been acknowledged by the RBC
requires an interaction between ‘Ext TrainDataManagement” automaton which
sends train data to “OB SpeedDistanceSupervision” automaton, this latter sends
it back to “TS TrainManagement” automaton and waits for acknowledgement.
Train integrity is confirmed by the driver requires an interaction “Ext Driver” au-
tomaton, which issues the channel ′integrityDriver′ received by the automaton
“OB IIMStatusManagement”. This example is just to show that verifying some reach-
ability properties requires a big interaction between designed models, and it is not a trivial
activity.

5.1.2.2. Global properties

Global properties are verified on the integration of all FCs that and interest both the OPSs:
• Is it possible to reach the state Waiting in the automaton “TrainManager”? This property

is expressed in UPPAAL E <> TS TM M0.Waiting. This means that the trackside
receives from onboard system Train data and train position report and the initialisation
of the trackside system is succeeded.

• Is it possible to reach the state tprRequested in the automaton “TS Initialiser”? This
property is expressed in UPPAAL E <> TS Init0.tprRequested.

• Is it possible that the track status associated to a train is occupied and the in-
tegrity status in the received TPR is integrity confirmed MONITORINGDEV ICE?
This property is expressed in UPPAAL as E <> ((varTrackStatusArea[0].status ==
OCCUPIED)&&(msgTPRReceived[0].positionReport.trainIntegrity.Q LENGTH ==
MONITORINGDEV ICE))

• Is it possible that the track status associated to a train is occupied and
the integrity status in the received TPR is lost LOST? This property
is expressed in UPPAAL as E <> ((varTrackStatusArea[0].status ==
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OCCUPIED) &&(msgTPRReceived[0].positionReport.trainIntegrity.Q LENGTH ==
LOST ))

• Is it possible do not reach for all paths the state GoToASafeState in the automa-
ton “TrainManager”, in the automaton “Communication Manager and in the automa-
ton track status Manager. The system moves to this state if a conflict is de-
tected. This property is expressed in UPPAAL as E[](!TS CM0.GoToASafeState
!TS TM M0.GoToASafeState!TS TSM0.GoToASafeState). CM means Communi-
cation Manager, TSM means Track Status Manager and TM means Train Manager;

5.1.2.3. Verification process

The verification can be performed either by simulation or by checking properties with the
verifier of UPPAAL tool. Local properties instantiate the models involved in the LTI OPS, and
verification is performed using a verifier. For the last three local properties, two trains are
instantiated. For simulate properties, all channels are broadcast. For global properties, the
automaton “TS TrainManagement” is deleted and all other automata forming both OPSs are
instantiated.

5.1.2.4. V&V results

For the first seven local properties, they are all satisfied, which means that the composition
of automata works good. For each satisfied property, a trace was generated. All generated
traces are checked and they produce the expected behaviour.

Fig. 5.1. Verification of first 7 local properties using verifier

Property 8 is not satisfied, which means that the system never moves to a failure state. This
is the expected behaviour. The “TS TrainManagement”, “OB SpeedDistanceSupervision”
and ‘Ext TrainDataManagement” automata are involved in this analysis and, hence, are in-
stantiated in system composition to verify the property.

Fig. 5.2. Verification of local property number 8 using verifier

Property 9 can not be verified due to memory exceptions.

For the last three properties, which focus on train movement, it is important to mention the
start position and the start speed for all trains. The initial speed is zero for all trains. Initial
positions are defined with reference to the first balise. The initial position for the first train
(ID=0) is located 8000 m and its destination is set to the position located at 16000 m. The
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Fig. 5.3. Verification of local property number 9 using verifier

second train, its initial position is set to 1000 m and its destination is set to 13000 m. The
braking distance is 5000 m. The last three properties are satisfied (see Fig. 5.4)

Fig. 5.4. Verification of 3 last local properties using verifier

Fig. 5.5 represents the speed of both trains over time, highlighting that:
• the trains accelerate together as braking distance is respected, and then they brake;
• the first train brakes before the second, considering the travelled distances respectively

of 8000 m and 12000 m;
• the curves are continuous curves as the speed is updated each 0.1 s.

Fig. 5.5. Verification of local property number 10 using verifier

Fig. 5.6 represents the speed of both trains over time received by train management. It can
be seen that the speed curves are represented as a step curves. Indeed, the speed value is
updated each 5 seconds (interval between two position reports).
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Fig. 5.6. Verification of local property number 11 using verifier

Fig. 5.7 represents the location of both trains over time. The curves are continuous curves
as the location is updated each 0.1 s. It can be seen as instantaneous locations. The
location of the first train tends to 16000 (its destination) and for the second, it tends to 13000
(also its destination). This is the expected behaviour.

Fig. 5.7. Verification of local property number 12 using verifier

For global properties, they are all satisfied, which means that the integration works good.
Due to lack of time, it was not possible to study verification and validation properties in
combined OPSs with many running trains.
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Fig. 5.8. Global properties verification using verifier

5.1.3. Points Control

The Points Management UPPAAL model introduced previously allows the formal verification
of important safety-critical properties, by employing the UPPAAL verifier. The first verified
property concerns checking that no point belonging to an occupied track is moved to a new
position, which is formalized in Computation Tree Logic (CTL) as follows:

A[]not((TrackStatus == Occupied and lockpoint1.NewPos)

or (TrackStatus == Occupied and lockpoint2.NewPos)

or (TrackStatus == Occupied and lockpoint3.NewPos)

The second property refers to checking that a clear status of the track will eventually be
followed by the corresponding points being locked. In CTL this property is:

E <> (TrackStatus == Clear imply

(lockpoint[1] == true and lockpoint[2] == true and lockpoint[3] == true))

Both properties are verified by model checking the Points Management network of UPPAAL
TA described above, and are satisfied by the model (see Figure 5.9).

Fig. 5.9. Verification of 2 Points Control local properties using UPPAAL verifier

The second property verifies the reachability of TrackStatus == Clear, to avoid the
property’s trivial satisfaction. The properties are verified by considering the signals
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tsarelease ch[N TRAINS] and tsaoccupy ch[N TRAINS] sent by TrackStatusManager to
PointsManager; the former uses them to set the track status to Clear, and Occupied, re-
spectively.
Due to lack of time, a full verification of the integration scenario involving the UP-
PAAL formal models of the PointsManager, TrackStatusManager, RouteManager, and
ReservedStatusManager has not been carried out yet.

5.2. Loss/Restore of Communication - Scenario (b)

The SAN model introduced in [7] and further developed and discussed in this document
provides a practical mean to analyse the MB system behaviour at a high level of abstraction
regarding different parameters, to evaluate the performance of the line. The analysis also
provides indications about some quantitative aspects that may raise issues in the system.
Although SANs are a stochastic extension of Petri Nets, simulation is used as the MB model
is not restricted to be of the type of stochastic processes that are analysable by analytic
solvers. Some details about the simulation in the Möbius tool [17] are due, to better describe
the experimental trials.

5.2.1. Simulating the MB SAN model

The model description in Section 4.6 reports how the SAN model catches the high-level
behaviour of the MB systems and introduces the structural elements of the model. The
dynamics of the model is defined by providing input and output gates with functions that are
implemented in C++ code. Once the composed model has been defined, the following steps
must be performed:

• Reward model definition: measures must be specified to quantify the model’s be-
haviour through the definition of reward variables. Two types of rewards are possible:
Impulse reward, associated with state changes (at activity completion), and Rate re-
wards assigned to markings. A difference is given between Interval-of-Time or Instant-
of-Time measures. In particular, for Rate rewards, the former measures accumulate
over the interval of time that the model spends in those markings, whereas the Instant-
of-Time measure gives the rate reward associated with the markings at time t.

• Study model specification: this step creates studies and experiments. At this aim,
single values or a range of values can be assigned to each global variable. Indeed,
the aim is to study the behaviour of the system for several values: they represent the
parameters of the model. If a range for a variable is provided, separate experiments will
be created for each value. So, for example, if two variables may assume two different
values, four experiments are created.

• Simulator generation: discrete event simulation is performed. Confidence intervals
are generated for the performance variables defined in the Reward model using the
replication method for terminating simulation. The simulator will run several batches to
generate data for the confidence interval. It will continue to run more batches until all
the reward variables have converged to their specified confidence interval or the max-
imum number of batches is reached. A minimum number of batches can be specified
to cope with rare events.
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5.2.2. Main objectives of the analysis

In the following, some experiments are presented aiming at providing indications about the
impact of a loss of communication on different configurations of the MB system. The per-
formed analyses aim at evaluating the impact of loss/restore of communication on the be-
haviour of the train with respect to brake events and the number of trains able to exit the
line.
In the analysis, a twenty convoys fleet entering the line is considered. A first experiment
is done, reporting results in case the communication between the trackside and the train
on-board unit is never lost.
In all the subsequent experiments, just one train in the fleet losses the communication with
the trackside at the specified instant of time. It is supposed to be the second train entering
the line and that the communication is restored after a given delay. Therefore, the first
train acts as a forerunner and the impact of the loss of communication is evaluated on the
following trains.
According to the operational scenario, the conducted analysis evaluates the following per-
formance indicators defined in Section 3.4 Table 3.33:

• #Trains: number of trains exiting the line in the time interval;
• #Emergency: number of times that trains exceed the speed imposed by the specific

ETCS “emergency” braking curve, within the total simulation time;
• #Warning: number of times that trains exceed the speed imposed by the specific

ETCS “warning” braking curve, within the total simulation time;
• #Permitted: number of times that trains exceed the speed imposed by the specific

ETCS “permitted” braking curve, within the total simulation time;
• #Indication: number of times that trains exceed the speed imposed by the specific

ETCS “indication” braking curve, within the total simulation time.

5.2.3. A baseline simulation

In this section, the railway system configuration adopted in WP4 is used to describe the
different steps introduced above and provide a baseline for the subsequent simulations. In
the next section, the results from the analyses performed over the MB variants specified in
Section 3.4 are presented.

5.2.3.1. Baseline Reward model

The Reward model specifies the measures associated with the performance indicators.
Therefore, five performance variables are defined in the Reward model, they are shown
in Fig. 5.10.
The performance variables related to braking events are Rate rewards on the markings of
the on-board sub-model, as specified in their reward functions. In Fig. 5.10 the reward
function associated to the emergencyBrakings performance variable is shown: as the rate
rewards is defined to be an instant-of-time measure, it returns the marking of the place
emergencyBrakingActivated at time t for each instance of the on-board sub-model. The
same definition is given for the three performance variables that measure the number of
times the train exceeds the speed limit of the other ETCS braking curve (indication, permitted
and warning).
The performance variable trainExitingLine, measuring the number of train exiting the line
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in the time interval, is instead an Interval-of-time Rate reward, it provides the throughput of
the transition trainExit in the given interval of time, over all the instances of the on-board
model.
The Instant-of-Time reward function is evaluated at the specified points in time. The Interval-
of-Time variables returns the weighted sum of all of the values of the reward function, where
each value is weighted by the amount of time the value is present between the starting and
ending times of the specified interval.
Fig. 5.11 shows the time points for Instant-of-Time measures, and the interval of time se-
lected for all the experiments described in this section: 20 time points have been considered,
150 seconds apart from each other, in the time interval [0 : 3200sec.]. Therefore, the braking
related performance variable will be evaluated at each time point, whereas the Interval-of-
Time Rate reward will be evaluated at the instant of time 3200.

Fig. 5.10. SAN model - reward model

5.2.3.2. Sample Study model

This first analysis was performed considering the case study used in WP4, which is a double-
track railway line having a total length of 24 km (24000 m.) with a maximum speed of 80
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Fig. 5.11. SAN model - reward model

m/sec. (i.e. 288 km/h). A total of 20 trains are analysed which operate along one single
direction of movement, having a minimum technical running time of 300 sec. (24.000 m
/ 80 m/sec.) from origin to destination. Trains run at a scheduled headway of 150 sec.,
which results in a distancing of 12 km (80 m/sec · 150 sec.). When running in undisturbed
nominal conditions, all twenty trains are able to reach their destination at 3150 s (300 s + 19
· 150 s). This means that the nominal timetable cycle is set to 3150 s and the observation
time interval (simulated time) of [0 : 3200], obtained by adding a spare interval of 50 sec is
enough to ensure the exit of the last train.
Fig. 5.12 reports the study definition for the simulations that have been executed, where
the scheduled headway is reported as trainScheduling in the parameter list, and a range
of values is provided for the duration of the loss of communication, ranging from 2 to 10
sec., with a step of 1 seconds. Hence, this study generates nine different experiments. In
addition, the experiment in which no loss occurs has been also executed. The parameter
LossCommunication StartInstant and LossCommunication TrainId, whose values are re-
spectively to 200 and 1, say that the communication loss starts at the time instant 200s for
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the train whose ID is 1 (the trains are numbered from 0 to 19). The values of time durations in
Fig. are always in seconds and the distances in meters. For example, the RBC processing
time in this study is set to 0.5 sec.

Fig. 5.12. SAN model - baseline study

5.2.3.3. Baseline Simulator

A simulator is automatically generated by the Möbius tool according to the provided simula-
tion execution parameters. Among them, the maximum and minimum number of batches. In
this regard, it must be considered that when the model is solved by simulation, the system
executes multiple times (batches) using different randomly generated event streams and
each execution generates a different trajectory in the possible event space of the system.
The reward variables are evaluated for each trajectory to create an observation. Statistical
estimates of the reward variable are computed from the observations.
For each analysis (i.e., for each experiment defined by the study), the number of batches
spans from 1.000 to 10.000, with a relative error lower than 1%.

5.2.3.4. V&V results for the baseline study

For each experiment, first, all the 20 trains can exit the line at the nominal time interval,
without any communication interruption. Results are reported in the graph in Fig. 5.13,
which plots the number of circulating trains versus the simulated time. This means that all
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trains can exit the line when the system works correctly, with the considered delays and
processing times.

Fig. 5.13. SAN model - #Trains vs simulated time without loss of communication

The simulations also report that a loss of the communication from 2 to 10 seconds has no
impact on the number of trains able to cross the line in the considered time interval. In
fact, in all the simulations, the 20 trains can exit the line in 3200sec. Given the analysed
time measurements in the reward variable, all trains can exit the line with a delay lower than
50sec. The number of measured braking are reported in Table 5.1. Results say that a loss
of communication up to 4 sec has no impact on the safe running of trains in the considered
conditions since trains are sufficiently separated, while some braking occurs when the loss
of communication duration is higher than 4 sec. Moreover, also in the worst case, only one
service braking has been obtained.

5.2.4. V&V results for the market variants

Many experiments have been executed to evaluate the impact of the loss of communica-
tion scenario on different market segments. The baseline choices have been maintained
for all the experiments, where maxTrainAcceleration, trainLength, trainScheduling and
maxTrainSpeed change according to the values reported in Table 4.5. The length of the
track is always 24000 m.
Further, the values LossCommunication StartInstant are varied to guarantee that this vari-
able is higher than the trainScheduling, so ensuring that the second train of the fleet (whose
ID is 1) loses its communication after entering the line.
The simulations showed the differences between the market segments.
Starting from High-Speed lines case, it was immediately clear that the number of generated
messages and the processing time of the trackside play a crucial role, and the balance
needle result to be the EoA extent. Thus, the final aim became to obtain the minimum EoA
extent that should be granted by the trackside to avoid the impact of a communication loss
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Table 5.1: Loss and Restore of Communication - impact on braking
LossComm duration #Emergency #Warning #Permitted #Indication

2 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0

5 0.0 0.0 0.26 0.22

6 0.0 0.0 0.84 0.15

7 0.0 0.0 1.0 0.0

8 0.0 0.0 1.0 0.0

9 0.0 0.0 1.0 0.0

10 0.0 0.0 1.0 0.0

on the service. Hence, different runs consider different values of the EoA extent, according
to increment of 100 m, and the Loss of Communication Duration, in the interval from 2 to 10
sec, according to the scenario specification.
Intuitively, the higher the speed of the train, the longer should be its agreed EoA before it
loses communication with the trackside, so avoiding the activation of the braking. Since
the maximum EoA that the trackside can grant to a train should be lower than the distance
from the preceding train, which is proportional to its speed, it is intuitive to expect that in
high-speed lines the trackside could grant longer EoAs.
These intuitions have been confirmed by simulations. As reported in the graph in Fig. 5.14:

1. the correlation between the minimum required MA extent and the duration of the Loss
of Communication has been measured;

2. this relationship strictly depends on the market segment (namely, on the values used
for the model data).

In fact, in high-speed lines the minimum extension of the EoA is 5 km, which increases to 5.7
km to tolerate a Loss of Communication of 10 sec. Instead, urban lines, where speeds are
significantly reduced, require a minimum EoA extent of 0.6 km to tolerate a Loss of Commu-
nication up to 5 sec., increased to 800 m. to tolerate 10 sec of a loss of communication. The
other market segments are positioned in the middle of these two extremities, as reported in
the graph. Of course, the reported results are specifically tailored to the entire set of con-
sidered values, also of the additional model data. However, the SAN model represents a
valid mean to evaluate the correlation among the entire set of considered variables on the
service.
The study that has been performed on the Loss of Communication scenario demonstrates
that the SAN model may help to conduct a in-depth analysis of the impact of the loss of com-
munication on the service of a train fleet, regarding signalling system features (i.e., trackside
processing time, delays in the communication network, period between subsequent TPRs,
driver reaction time) and the set of system configuration parameters (e.g., train headway,
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Fig. 5.14. SAN model - #Trains vs simulated time without loss of communication

safety margin, train mechanical features). The analysis described in this document provides
an example of the potentiality of the SAN-based simulation approach. Of course, a more
detailed model of the system’s behaviour that would derive from additional high-level re-
quirements could better support system designers. The SAN model, in fact, represents a
good mean to evaluate the trade-off between performance and optimal resiliency regarding
the considered scenario.
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6. Conclusions

This chapter ends the deliverable, both highlighting the results and discussing their applica-
bility in future contexts.

6.1. Summary of the results

This deliverable presented an integrated approach for the specification, the modelling, and
the analysis of various OPSs relevant for operation under MB. All the reported artefacts
described in this deliverable are reported in the GitHub repository https://github.com
/stefanomarrone/performingrail.
The main obtained contributions can be synthesized as follows:

• the specification of four operational scenarios, that serve as relevant and challenging
”test cases” for the introduced formal modelling approach;

• the development of a formal model libraries constituted by:
– the refinement and extension of the preliminary formal models already developed

in [7];
– the development of a number of stub models used to emulate the interaction of the

main involved actors in the OPSs with extra modules and with the environment;
– the usage of two different formalisms for the analysis of the ETCS-L3 operational

scenarios;
• the conduction of sensitivity analysis based on the SAN model to determine the impact

various factors on some performance criteria and investigate performance bottlenecks
in ETCS-L3 systems;

• the integration of UPPAAL formal models through a compositional approach that can
integrate the models on shared signals and variables.

It is important to highlight that, even though the scope of the analysis was limited to a num-
ber of functions and OPSs, the modelling activities showed to be very complex, due to the
numerous involved actors and the highly interactive nature of the investigated dynamics.
Moreover, as detailed earlier in the relevant sections, the development of various extra mod-
els was necessary to emulate the actual investigated behaviours. In addition, due to the
involvement of various partners in the modelling activities, an important amount of work was
required to align the different models and homogenize them for integration purposes.
Besides, the analysis of the UPPAAL models presented several issues. Due to the compo-
sitional nature of this approach, the resulting models may not be optimized for the analysis,
requiring much time for debugging. As a consequence, formally analysing the integrated
model is a hard task also from a computational point of view.
It is worth underlining the effort spent in the construction and in the integration of the models.
Generally speaking, the effort needed to conduct the modelling and V&V activities was much
higher compared to the previsions at the beginning of the project.
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6.2. Final remarks

The set of the lessons learnt during the development of WP2 can be grouped into three
different categories.

Methodological: the main result of the WP2 is the definition of a concrete methodology
able to guide the system engineers in both modelling and analysis of ETCS-L3 systems.
The agile-like process can cope with uncertainty in both specification and in technology,
resulting able to adapt to changes. The methodology relies on solid languages supported by
assessed (freely available) tools (i.e., SysML/Papyrus, TA/UPPAAL, SANs/Möbius); hence,
the approach can be instantiated “as-is” without entry barriers.
The methodology is furthermore enriched by the presence of a compositional approach
between formal models. The compositional approach allows a model developer to merge
formal models to support the construction of large models from smaller components.
The approach starts from the current status of the MBS requirements as they are specified
by other Shift2Rail (S2R) projects.
The methodology is replicable and adaptable to other railway systems (e.g., interlock-
ing, metro lines, subject to the proper changes related to the specificity of the new settings).

Technical: there are two remarkable points in this category.
An extensible SysML model, considering a ETCS-L3 system from different views: require-
ments, functional, behavioural, structural and data. The model clearly states a specification
for a reference ETCS-L3 functional architecture that could be a starting point for future de-
velopment and standardisation activities. The model is based on the Papyrus toolchain,
that is free available on the Internet. The model itself is released with an open-source li-
cence and can be accessed at https://github.com/stefanomarrone/performing
rail.
The second interesting point is constituted by a library of formal models, expressed with
a modular modelling approach. The models are reusable and customizable according to
different market segments and parameter values of the signalling (e.g., timeouts), physical
features of the trains (e.g., train length) and communication architecture (e.g., probability of
loss of communication, communication delay).

System-related: the specification, modelling and analysis phases contribute to under-
standing some aspects of the MBSs.
The ten OPSs defined in the WP2 depict ten different ways to elicit knowledge on the ETCS-
L3 systems using system testing techniques, as well as a guide to composing formal models.
The OPSs have been assessed using an industrial survey.
Another kind of remarks is constituted by the analysis of the requirements and in findings
that some guidances still misses. As an example, in [7] Subsection 6.3.4, a new require-
ment regarding the loss of the integrity of the train is proposed and the consistency with the
existing requirements is analysed.
The analysis run on both TA and the SAN model highlights the formal verification of the
properties chosen on three OPSs (see Subsection 5.1.2 and Subsection 5.1.3)) as well as
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providing quantitative information on how much parameter variations affect normal train
movement with undesired brakes (see Subsection 5.2).

In the end, the most valuable contribution is a general improvement of the knowledge on
ETCS-L3 and a capability of all the specification, modelling and analysis activities to reduce
the level of the uncertainty owned by a system whose standardization has not started —
yet.
Future research efforts will be spent in extending and fine-tuning the developed models,
optimizing the V&V process, and in bringing into play more powerful servers for the analysis.
Finally, it is worth mentioning that the results of this deliverable, the experience gained by
formal modelling the ETCS-L3 functionalities and components will serve as valuable en-
tries for task Task 1.3 – Recommendations and standardisation to definition of the Railway
Minimum Operational Performance Standards for moving block systems (T1.3), where the
lessons learnt in WP2 are summarized and reported in D1.2.
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