
HAL Id: hal-04488013
https://hal.science/hal-04488013v1

Submitted on 4 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deliverable D2.2-Moving Block Specification
Development

S. Marrone, F. Flammini, B. Janssen, R. Saddem-Yagoubi, Julie Beugin,
Mohamed Ghazel, C. Seceleanu, U. Sanwal, M. Benerecetti, S. Libutti, et al.

To cite this version:
S. Marrone, F. Flammini, B. Janssen, R. Saddem-Yagoubi, Julie Beugin, et al.. Deliverable D2.2-
Moving Block Specification Development. Consorzio interuniversitario nazionale per l’informatica.
2023. �hal-04488013�

https://hal.science/hal-04488013v1
https://hal.archives-ouvertes.fr

Deliverable D2.2
Moving Block Specification Development

Project acronym: PERFORMINGRAIL
Starting date: 01/12/2020
Duration (in months): 31
Call (part) identifier: S2R-OC-IP2-01-2020
Grant agreement no: 101015416
Due date of deliverable: Month 16
Actual submission date: 13th September 2023
Responsible/Author: Stefano Marrone (CINI)
Dissemination level: PU
Status: Issued to EU

Reviewed: no

GA 101015416 Page 1 | 171

Document history
Revision Date Description

0.1 May 16th 2022 First issue for internal review
1.0 May 31st 2022 Submitted to EU
1.1 September 13th 2023 Second issue after EU comments

Report contributors

Name Beneficiary Short
Name

Details of contribution

Stefano Marrone CINI Coordination, Chapter 1, Chapter 4, Chapter 5, Sec-
tion 6.1, Section 6.2, Section 6.3.6, Section 6.4.8,
Section 6.5.3, Section 6.6, Section 7.1, Section 7.2,
Chapter 9, Chapter 10.

Francesco Flammini MDH Contributor, Chapter 9, internal review and revision
Bob Janssen Eulynx Section 2.2, Subsection 6.3.1, Section 5.4
Rim Saddem
Julie Beugin
Mohamed Ghazel

Univ Eiffel Section 2 (Modelling phases), Section 2.3 (Adopted
Languages), Subsection 6.3.3 (On Sight Move-
ment), Subsection 6.3.4 (Loss of Train Integrity),
Subsection 6.3.7 (Sweeping), Subsection 6.4.6
(TTD Management), Subsection 6.5.1 (Train Posi-
tion Reporting), Subsection 6.5.2 (Integrity Infor-
mation Management), Section 8.2 (IIM UPPAAL
model), Section 8.3 (TPR UPPAAL model), Section
8.4 (TTD UPPAAL model), Annex A (Used Formal
Languages and Notations), contribution to the “ar-
chitectural specification” in Section 6.1, contribution
to the “data model” in Section 6.2

Cristina Seceleanu
Usman Sanwal

MDH Subsection 6.3.6 (Points Control), Subsection 6.4.8
(Points Management), Section 8.5 (Points Manage-
ment UPPAAL model)

Massimo Benerecetti
Simone Libutti
Elena Napolitano
Fabio Mogavero
Roberto Nardone
Adriano Peron
Luigi Starace
Valeria Vittorini

CINI Subsection 2.3.2 (Stochastic Activity Networks),
Chapter 3 (ETCS-L3 modeling state-of-the-art),
Subsection 6.3.2 (Normal Train Movement), Sub-
section 6.3.5 (Staff Responsible), Subsection 6.3.8
(Loss of Communication), Subsection 6.4.1 (Track
Status Management), Subsection 6.4.2 (Reserved
Status Management), Subsection 6.4.3 (Trains
Management), Subsection 6.4.4 (Movement Author-
ity Management), Subsection 6.4.5 (Route Manage-
ment), contribution to the Preliminary Activity Tem-
plate in subsection 7.2, Subsection 6.4.9 (Com-
munication Management), Section 7.1 Section 8.1
(Communication Management and Trains Manage-
ment UPPAAL model), Section 8.6 Movement SAN
model, Annex A. Section ”Stochastic Activity Net-
works” , integration with WP4.

GA 101015416 Page 2 | 171

Reviewers
Name Company or Institution

Arne Borläv Prover Technology
Miquel Garcia Fernandez Rokubun

Rob M.P. Goverde TU Delft, Department of Transport & Planning

Funding
This project has received funding from the Shift2Rail Joint Undertaking (JU) under grant
agreement No 101015416. The JU receives support from the European Union’s Horizon
2020 research and innovation programme and the Shift2Rail JU members other than the
Union.

Disclaimer
The information in this document is provided “as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The content of this document reflects
only the author’s view — the Joint Undertaking is not responsible for any use that may be
made of the information it contains. The users use the information at their sole risk and
liability.

GA 101015416 Page 3 | 171

Contents

Executive Summary 7

Abbreviations and acronyms 8

1. Introduction 11

1.1 Objectives and Scope 11

1.2 About modelling 12

1.3 Relationships with other PERFORMINGRAIL deliverables 12

2. Background 14

2.1 Modelling Phases 14

2.2 The EULYNX Approach 15

2.3 Adopted Languages 16

2.3.1 UPPAAL timed automata 17

2.3.2 Stochastic Activity Networks 17

3. ETCS-L3 Modelling 19

3.1 Semi-Formal and Formal Methods in S2R IP2 projects 19

3.2 Review of the Scientific Literature 21

3.3 Comparison with PERFORMINGRAIL contribution 24

4. The Overall Modelling Process 25

5. The Specification Approach and the SysML Structure 29

5.1 The Modelling Scope 29

5.2 Specification Process Description 31

5.3 Building the SysML model 33

5.4 Integrating EULYNX DP 39

5.5 Choice of the Functional Elements 39

5.6 Tooling 40

6. The Detailed SysML Model 42

6.1 The Architectural Specification 42

6.2 The Data Model 50

GA 101015416 Page 4 | 171

6.3 The ERTMS Use Cases 55

6.3.1 Trackside Initialisation 55

6.3.2 Normal Train Movement 59

6.3.3 On Sight Movement 65

6.3.4 Loss of Train Integrity 69

6.3.5 Staff Responsible 73

6.3.6 Points Control 76

6.3.7 Sweeping 80

6.3.8 Loss of Communication 83

6.4 The Trackside Behaviour 86

6.4.1 Track Status Management 86

6.4.2 Reserved Status Management 88

6.4.3 Trains Management 90

6.4.4 Movement Authority Management 92

6.4.5 Route Management 93

6.4.6 TTD Management 94

6.4.7 Manage Temporary Speed Restrictions 100

6.4.8 Points Management 101

6.4.9 Communication Management 105

6.5 The Onboard Behaviour 106

6.5.1 Train Position Reporting 106

6.5.2 Integrity Information Management 110

6.5.3 Speed and Distance Supervision 113

6.6 The Requirement Allocation Table 117

7. The Followed Modelling Approach 121

7.1 The Formal Modelling Process 121

7.2 The Preliminary Activity Template 123

7.3 Description of the Preliminary Activities for EUCs 124

7.4 Description of the Preliminary Activities for Internal Functions 130

GA 101015416 Page 5 | 171

8. Moving Block Formal Models 141

8.1 Communication Management & Trains Management UPPAAL model 142

8.2 IIM UPPAAL model 145

8.3 TPR UPPAAL model 150

8.4 Trackside Train Detection UPPAAL model 151

8.5 Points Management UPPAAL model 153

8.6 Movement SAN model 155

9. Discussion 160

10. Conclusions 163

Bibliography 164

A. Used Formal Languages and Notations 168

A.1 Timed Automata 168

A.2 Networks of Timed Automata Extended with Variables and Broadcast
Synchronization 168

A.3 Stochastic Activity Networks 169

GA 101015416 Page 6 | 171

Executive Summary

The present document constitutes the Deliverable D2.2 “Moving Block Specification Devel-
opment”, which is part of Work Package 2 of the “PERformance-based Formal modelling
and Optimal tRaffic Management for movING-block RAILway signaling” project (PERFORM-
INGRAIL). This deliverable provides both semiformal specification and formal modelling of
Moving Block (MB) systems; the two activities are the output of Task 2.3 (Specifications for
safe and reliable moving-block signalling) and Task 2.4 (Formal Development for moving-
block and virtual coupling train operations). The approach is based on the system functional
decomposition aimed at taming its complexity. ETCS Use Cases and functional components
of both trackside and on-board subsystems are the most important elements in this context.
The semiformal specification activity has been accomplished by creating a SysML model
starting from the specification available for the MB systems (i.e., the deliverables of previous
S2R projects). The SysML model focuses on functional and behavioural aspects, repre-
senting a valid attempt to create an overall model for this signalling system. Starting from
this general specification, some preliminary formal models have been defined, exploring
the modelling and analysis possibility be means of some formalisms as Stochastic Activity
Networks and Timed Automata. The choice of the formalisms has been made to respect
the different aspects of the system to model, according to the modelling guidelines already
defined in this project. These models try to cope with both quantitative and qualitative prop-
erties.
This deliverable makes the following contributions:

• Definition of a semiformal/formal modelling approach for MB systems.
• Definition of a high-level SysML model structure able to embrace the different aspects

of a signalling system: from requirements, to interactions between functional compo-
nents, to the behaviour specifications of the components themselves.

• Specification of a SysML model for a part of the MB systems, able to elevate the knowl-
edge of the ETCS-L3 systems and to detect some problems in system requirements.

• Formal specification of the different functional elements (use cases and components)
according to a well-defined approach aimed at detecting functional dependencies, vari-
ables, parameters, configuration information, etc.

• Definition of four different formal models, each of one focusing on some internal func-
tions and used for the verification of some simple properties.

Some considerations are needed:
• The coverage of both SysML model and formal models regarding the MB elements is

not total. The choice of the part to model has been taken according to the aspect of
European Train Control System - Level 3 (ETCS-L3) highlighted in [1].

• Virtual Coupling has not been addressed in this deliverable, due to the lack of proper
specification for this advanced signalling mechanism.

• Both SysML model and formal models may be subject to changes and improvements
in future documents related to this work.

• The Eulynx Data Preparation (Eulynx DP) approach and has been considered in this
deliverable sketching an integration strategy that could be explored in future.

GA 101015416 Page 7 | 171

Abbreviations and acronyms

Abbreviation / Acronym Description
4SECURAIL FORmal Methods and CSIRT for the RAILway sector
AD Activity Diagram
ALSP Axle Load Speed Profile
ASTRAIL SAtellite-based Signalling and Automation SysTems on Railways along

with Formal Method and Moving Block validation
ATO Automatic Train Operation
ATP Automatic Train Protection
BDD Block Definition Diagram
CD Class Diagram
CRE Confirmed Rear End
D1.1 D1.1 - Baseline system specification and definition for Moving Block

Systems
D1.2 D1.2 - Best practice, recommendations and standardisation to definition

of the Railway Minimum Operational Performance Standards
D2.1 D2.1 - Modelling guidelines and Moving Block Use Cases characteriza-

tion
D2.2 D2.2 - Moving Block Specification Development
D2.3 D2.3 - Moving Block Verification and Validation
DoW Description of Work
EC European Commission
EGNSS European Global Navigation Satellite System (Galileo & EGNOS)
EoA End of Authority
EoM End of Mission
ERTMS European Railway Traffic Management System
ETCS European Train Control System
ETCS-L2 European Train Control System - Level 2
ETCS-L3 European Train Control System - Level 3
EU European Union
EUC ETCS Use Case
Eulynx DP Eulynx Data Preparation
EVC European Vital Computer
FM formal methods
FS Full Supervision
GNSS Global Navigation Satellite System
HMI Human-Machine Interface
IBD Internal Block Diagram
IP2 Innovation Programme 2
LOS Line Of Sight
MA Movement Authority
MARTE Modeling and Analysis of Real-Time and Embedded Systems
MARTE-DAM Modeling and Analysis of Real-Time and Embedded Systems - De-

pendability Analysis and Modeling

GA 101015416 Page 8 | 171

MaxSFE Maximum Safe Front End
MB Moving Block
MDE Model-Driven Engineering
minSFE Minimum Safe Front End
MOVINGRAIL Moving Block and Virtual Coupling Next Generations of Rail Signalling
OBU On-Board Unit
OMG Object Management Group
OPS Operational Scenario
OS On-Sight
PD Package Diagram
PERFORMINGRAIL PERformance-based Formal modelling and Optimal tRaffic Manage-

ment for movINGblock RAILway signalling
PNs Petri Nets
PVT Position Velocity Time
RAT Requirement Allocation Table
RBC Radio Block Center
RD Requirement Diagram
RSM RailSystemModel
S2R Shift2Rail
SAN Stochastic Activity Networks
SD Sequence Diagram
SLR Systematic Literature Review
SM State Machine
SMC Stochastic Model Checking
SMD State Machine Diagram
SoM Start of Mission
SR Staff Responsible
SSP Static Speed Profile
STA Stochastic Timed Automata
STPN Stochastic Timed Petri Nets
SysML System Modelling Language
T2.1 Task 2.1 - Modelling approach and guidelines
T2.2 Task 2.2 - Moving block system and scenarios characterization
T2.3 Task 2.3 - Specifications for safe and reliable moving-block signalling
T2.4 Task 2.4 - Formal Development for moving-block and virtual coupling

train operations
T2.5 Task 2.5 - Verification and Validation of moving block systems
TA Timed Automata
TIMS Train Integrity Monitoring System
TLU Train Localisation Unit
TMS Traffic Management System
TPR Train Position Report
TSA Track Status Area
TSR Temporary Speed Restriction
TTD Trackside Train Detection
UC Use Case

GA 101015416 Page 9 | 171

UCD Use Case Diagram
UML Unified Modelling Language
VBD Virtual Block Detector
VBF Virtual Block Function
VC Virtual Coupling
V&V Verification and Validation
VSSs Virtual Sub-Sections
VTD Validated Train Data
X2Rail-1 Start-up activities for Advanced Signalling and Automation Systems
X2Rail-2 Enhancing railway signalling systems based on train satellite position-

ing, on-board safe train integrity, formal methods approach and stan-
dard interfaces, enhancing Traffic Management System functions

X2Rail-3 Advanced Signalling, Automation and Communication System (IP2 and
IP5) âC“ Prototyping the future by means of capacity increase, auton-
omy and flexible communication

X2Rail-5 Completion of activities for Adaptable Communication, Moving Block,
Fail safe Train Localisation (including satellite), Zero on site Testing,
Formal Methods and Cyber Security

XML eXstensible Markup Language
XSD XML Schema Definition
WP Work Package
WP2 WP2 - Modelling and Analysis of Moving Block Specifications
WP3 WP3 - Fail Safe Train Locationing
WP4 WP4 - Integrated Moving Block architecture for safe and optimised traf-

fic operations

GA 101015416 Page 10 | 171

1. Introduction

The Chapter outlines the main obiective of the deliverable and its structure, the adopted
modelling approach, and the connections with other PERFORMINGRAIL deliverables.

1.1. Objectives and Scope

The Section outlines the goal of the deliverable and its structure. The main objective of
this deliverable is to present some formal and semiformal models of ETCS-L3 moving block
systems, reporting the results of the tasks Task 2.3 - Specifications for safe and reliable
moving-block signalling (T2.3) and Task 2.4 - Formal Development for moving-block and vir-
tual coupling train operations (T2.4) of the PERformance-based Formal modelling and Opti-
mal tRaffic Management for movINGblock RAILway signalling (PERFORMINGRAIL) project.
The models included in this deliverable are of two types:

• a high-level specification of ETCS-L3 in the SysML including both structural, functional
and behavioural aspects;

• a set of formal models focusing on “vertical” aspects of ETCS-L3 with the aim of check-
ing specific properties of the system.

The deliverable refines the modelling methodology introduced in [1], also sketching the map-
ping from high-level models to formal models and enabling fully mechanizable generation
processes. This document also considers the languages and the technologies developed by
Eulynx, integrating them into the proposed approach.
Since ETCS-L3 specifications are in their early phases of the lifecycle, it is important to
stress that modelling in PERFORMINGRAIL has the main objective of improving the knowl-
edge of ETCS-L3 and of defining an open framework enabling further refinements of
the models, also coming from different contributors.
In more detail, the deliverable is structured as follows. Chapter 2 recalls the elements al-
ready developed/surveyed in PERFORMINGRAIL that are relevant to the presentation; fur-
thermore, essential elements of the Eulynx approach will be also recalled. Chapter 3 reports
the ETCS-L3 modelling attempts already available in scientific literature and other deliver-
ables of the project. Chapter 4 describes the methodology underlying the activities of both
T2.3 and T2.4. Chapter 5 focuses on the activities of T2.3 describing the approach followed
to construct the high-level SysML model. Chapter 6 describes this model in its most mean-
ingful parts. Chapter 7 reports the modelling approach for the formal models, sketching
in particular the adopted methods to approach the formal modelling activity. The differ-
ent formal models are described in Chapter 8. Chapter 9 discusses the devised models,
highlighting their scope and limitations. Finally, Chapter 10 concludes the deliverable while
addressing the work of Task 2.5 - Verification and Validation of moving block systems (T2.5)
which oversees completing PERFORMINGRAIL’s WP2 - Modelling and Analysis of Moving
Block Specifications (WP2). Appendix A reports further details on the adopted formalisms
used to design the formal models.

GA 101015416 Page 11 | 171

1.2. About modelling

The Section introduces the modelling aproach adopded in the deliverable. Modelling is
the corpus of the methodologies and the techniques that are devoted to the abstract rep-
resentations of things of the “real world”, according to specific modelling principles and/or
languages. It is the cornerstone task to all activities in the process of building or creating an
artefact. Models are:

• a means of understanding the issues involved in designing a problem solution;
• an aid to communication between actors involved in the project, especially between the

requirement analyst (a development role) and the user, as part of some deliverable;
• a component of the methods used in development activities such as the analysis of the

requirements for an artefact and the design of the artefact.
To avoid communication ambiguities, one of the first steps in the modelling task is the defini-
tion of a language (i.e., a modelling notation). In the context of system and/or software engi-
neering, both semiformal and formal languages are based on a rigorous and non-ambiguous
syntax. But, while semiformal languages (as Unified Modelling Language (UML) and SysML)
have not usually a formal semantics, formal languages have. The analysis of formal model
can be done both by simulative methods and by analytical methods that provide precise re-
sults (i.e., not affected by statistical errors). The formal execution/evaluation of semiformal
models is usually not possible.
As detailed in Chapter 4, in this deliverable a two-steps approach in modelling and speci-
fying the ETCS-L3 systems has been adopted. Specification will be done according to the
semiformal language of SysML, while the modelling phase will be done using the Timed
Automata (TA) and Stochastic Activity Network (SAN) formalisms. All the formalisms have
been chosen according to the results of the applicable deliverables [1–3].

1.3. Relationships with other PERFORMINGRAIL deliverables

The Section enlights the connections among the project deliverables. Fig. 1.1 depicts the
dependency between D2.2 - Moving Block Specification Development (D2.2) and other PER-
FORMINGRAIL deliverables, highlighting the information flow for D2.2.
Specifically:

• D1.1 - Baseline system specification and definition for Moving Block Systems (D1.1)
contains the description of the ETCS-L3 Use Cases that are modelled in this deliver-
able1 [4];

• from D2.1 - Modelling guidelines and Moving Block Use Cases characterization (D2.1),
the description of the Operational Scenario (OPS)s are considered to choose the part
of the ETCS-L3 to be modelled in the present deliverable2. Furthermore, D2.1 contains
a discussion on the most proper modelling approaches to adopt [1].

On the other hand, this deliverable will influence directly the following activities:

1It is worth highlighting the possible ambiguity between the well-known concept of UML’s/SysML’s Use Cases,
and the European Train Control System (ETCS) Use Cases ETCS Use Case (EUC), that are groups of train
control functionalities. To this aim, they are represented by different acronyms (Use Case (UC)s and EUCs,
respectively).

2In this deliverable the Operational Scenarios are abbreviated by OPSs instead of OSs to avoid conflicts with
the On-Sight (OS) mode of ETCS.

GA 101015416 Page 12 | 171

WP2

D2.2

D2.1

WP1

D1.2 D2.3

D1.1

Fig. 1.1. Relationship between D2.2 and other deliverables.

• the experiences and lesson learnt in modelling ETCS-L3 will be collected — with the
results collected from WP3 - Fail Safe Train Locationing (WP3) and WP4 - Integrated
Moving Block architecture for safe and optimised traffic operations (WP4) — in D1.2 -
Best practice, recommendations and standardisation to definition of the Railway Mini-
mum Operational Performance Standards (D1.2);

• the formal models reported in this deliverable will be customized and analysed in D2.3
- Moving Block Verification and Validation (D2.3).

GA 101015416 Page 13 | 171

2. Background

The Chapter reports some background notions and terminology useful in the rest of the de-
liverable. Section 2 recalls the phases of the modelling process. In Section 2.2 the approach
of EULYNX is described. In Section 2.3 the desiderable features of a specification languages
for the modeling activities are discussed. Eventually, a brief description of the two adopted
formalism UPPAL and Möbius are given in Section 2.3.1 and Section 2.3.2, respectively.

2.1. Modelling Phases

The Section recalls the phases adopted in the modelling process. To develop verifiable mod-
els for Moving Block (MB) systems, a methodology has been adopted, serving as a guide
for the modelling activities in the framework of the PERFORMINGRAIL project. The adopted
methodology, whose detailed description can be found in [1], is outlined in the following. The
methodology aims at producing generic and adaptable semiformal and formal models for
MB systems. In fact, the semiformal modelling activity is an intermediate step towards the
achieving of workable formal models that can be used for actual verification and validation
activities. Since the MB requirements are mainly written in natural language, a stepwise
refinement process is adopted to elaborate the MB formal models. The methodological
process includes some iterative steps towards the production of such formal models. This
workflow is composed of some interrelated activities that exchange inputs/outputs. Fig. 2.1
shows a high-level view of the workflow, where the main outputs of the workflow are repre-
sented by the blue bold boxes.

Verification features
Language selection features

Functional and Non-Functional
 selected requirements

MB Requirements
Engineering

 1

 Identified MB
Functional Blocks

MB Function
 Interactions

MB Functional
Modelling

 2

Functional
 Properties

Formal
ModelsMB Behavioral

Modelling
 3

Verification and
Validation ResultsVerification &

Validation
 5

Safety Related Requirements

Safety Properties

MB Hazard
Modelling

 4

X2R1/2/3, MovingRail projects
UC(WP1), OS(WP2)

verification techniques and studied tools
(X2R2, ASTRAIL)

Formal and semi formal methods
(X2R2, ASTRAIL)

notations/tools for
MB Functional Modelling

notations/tools for
MB Requirement Engineering

notations/tools for Hazard Modelling

Requirements selection and classification criteria
(relevant for formal models,

included in the modeling scope)

X2R3 ETCS L3 MB
Architecture and Functions

Formalism
selection
criteria

Fig. 2.1. Workflow structure.

The first step, “MB Requirement Engineering”, identifies and classifies the most relevant re-
quirements for the MB system. The selected requirements can be represented using SysML
requirement diagrams. The second step, “MB Functional Modelling”, aims at identifying,
from the selected requirements, the various functions within the MB scope, as well as the

GA 101015416 Page 14 | 171

interaction among them. The identified functions can be modelled using SysML state ma-
chines and the interactions they induce are modelled by using SysML sequence diagrams.
The “MB Behavioural Modelling” step develops parametrizable formal models for the vari-
ous MB functions and identifies functional properties. The “Hazard Modelling” step aims at
modeling the identified hazards that are related to the MB system and at specifing the safety
properties to be verified. Finally, the “Verification & Validation” step is introduced to verify
and validate the formal models developed in the previous step.

2.2. The EULYNX Approach

The Section contains a brief description of the EULYNX project. EULYNX is an initiative by
European infrastructure managers to standardize signalling systems, and in particular the
interfaces between interlocking and controlled field elements.
EULYNX also defines Eulynx Data Preparation (Eulynx DP), a standard for the exchange of
signalling information. A dataset that is complete and respects this standard should allow
the signalling supply industry to design, test and build a complete signalling system. As a
consequence, the resulting model is highly detailed.
The Eulynx DP model is a UML class model that can be accessed at https://dataprep
.eulynx.eu. It is organized as a stack of loosely coupled packages or layers. The lower
layers are defined by International Union of Railways (UIC)’s RailSystemModel (RSM) (ht
tps://rsm.uic.org) and model topology, location, position and rudimentary (signalling)
equipment. The network topology is a set of topological elements, typically linear elements,
that represent tracks from one place (point/crossing/bufferstop) to the next. Linear elements
are connected by positioned relations that inform that a train can travel from one track to the
next.
A location informs where an equipment is situated on the topology. For instance, one can
state that a signal has a spot location that is attached to linear element a at relative position
0.8729 and applies in the up-direction. A position informs where on the surface of earth,
screen or paper plant, an equipment is situated.
EULYNX adds more layers of detailed information to the RSM.
Eulynx DP defines a wide range of classes representing signalling equipment, their seman-
tics and relations. Thus, a data designer can capture detailed information stating about a
signal, namely:

1. where the signal is, in the railway network and on the surface of the earth, and in which
direction does it apply;

2. what message can the signal send to the train. This message is a composition of one
or more signal aspects;

3. what the physical components are, ranging from the physical support to individual sig-
nal frames;

4. which controllers, including interlocking, switch the signal.
Route information informs about:

1. the route path, from entry to exit signal;
2. properties of the route such as speed and type of route, e.g., shunting or normal oper-

ation.
An EULYNX dataset is an eXstensible Markup Language (XML) file that validates against a

GA 101015416 Page 15 | 171

https://dataprep.eulynx.eu
https://dataprep.eulynx.eu
https://rsm.uic.org
https://rsm.uic.org

set of Eulynx DP XML Schema Definitions (XSDs). These XSDs were automatically gener-
ated from the UML model.
Whereas the Eulynx DP use case describes the exchange of information for building a sig-
nalling system, the level of detail and scope will more than likely satisfy other use cases.
In fact, use cases such as Automatic Train Operation (ATO) and MB need input for algorithms
that compute distance to run and braking curves. RSM and Eulynx DP define alignment,
gradient profiles, cant and speed profiles. This information, combined with stopping points
defined by signals platforms and routes, provides the needed input for accurately simulating
train dynamics.

2.3. Adopted Languages

The Section describes the criteria used for choosing the two specification frameworks UP-
PAAL and Möbius. In the framework of PERFORMINGRAIL modelling activities, several
languages and notations have been adopted to specify the formal behavioural models of the
various targeted functions involved in the MB operation. In fact, the choice of the languages
was guided by a number of aspects as detailed below:

• the features to be considered in the modelling activity: for a given function, depending
on the relevant corresponding specifications and depending on the properties to be
checked, a number of features to be inferred. Namely, relevant features may include
the following:

– (quantitative) temporal aspects to be considered, e.g. timeouts for an event to
occur, or a duration for an action to be completed;

– probabilistic aspects, such as, for instance when several possible evolutions may
be taken from a given state which can be characterized by some likelihood value;

– stochastic aspects, such as, for instance when the occurrence time of some given
event can be characterized using some stochastic distributions.

• the availability of supporting tools: although some notations and languages may show
interesting features, the lack of dedicated and sufficiently mature tools necessarily
hampers the adoption of such notations. In this respect, since implementing support-
ing tools in the framework of the project is a risky task, it is important that the chosen
languages are supported by available efficient and mature tools. The issue of tool li-
cence is also important; namely, whether these tools are free or they require a licence
is also relevant.

• experience and mastering of the modelling tools: the various teams that are involved
in the formal modelling activities have previous experience with different formal meth-
ods (FM) tools. The choice of the tool to be adopted within the PERFORMINGRAIL
project is necessarily impacted by these previous experiences and the level of exper-
tise gained on the facilities offered by the tools. Another aspect that may also impact
the choice of a new tool is the effort needed to master the tool facilities in comparison
with the additional benefits the new tool could provide with respect to tools on which
the partner has a previous relevant expertise.

The tools used in this deliverable for formal modelling activities are UPPAAL1 and Möbius2.

1https://uppaal.org/
2https://www.mobius.illinois.edu/

GA 101015416 Page 16 | 171

https://uppaal.org/
https://www.mobius.illinois.edu/

As for UPPAAL, the extended timed automata provided by this tool offer rich semantics
that allow coping with various modelling features that are relevant for the modelling activi-
ties of the project. Moreover, UPPAAL offers interesting facilities in terms of model edition,
generation, formal verification and simulation. As for Möbius, it is adopted in this work for
performability analysis, in particular for the facilities it offers in terms of depicting stochastic
behaviour with SANs. The previous experience of the teams in mastering these modelling
tools was also a criterion supporting the choice.
Even if the modelling language provided by UPPAAL and Möbius have already been dis-
cussed in D2.1, to ensure self-containment of the deliverable, their main features are briefly
summarized in the following. Full descriptions of these frameworks are provided in the Ap-
pendix A.

2.3.1. UPPAAL timed automata

The Section reports a brief description of the specification framework UPPALL. TA are a
variant of state-transition machines that are extended with real-time features using clocks.
TA use a dense-time model where a clock variable evaluates to a real number. All the
clocks progress synchronously. The model-checker UPPAAL is based on the theory of timed
automata, and extends the TA formalism with various features such as bounded integer
variables, urgency and communication channels. In UPPAAL, the system to be investigated
is modelled as a network of timed automata that operate in parallel. The bounded discrete
variables are part of the state and can be handled as in programming languages. Namely,
they can be read, written, and are subject to common arithmetic operations. A system’s state
is defined by the locations of all automata, the clock values, and the values of the discrete
variables. Every automaton may fire a transition independently with respect to the other
automata, or by synchronizing with another (resp. several) automaton (resp. automata)
using binary (resp. broadcast) communication channels. The firing of a transition or the
progress of time leads to a new state.
In fact, UPPAAL is an integrated environment for modelling, validation and verification of
real-time systems. Verification can be performed by exploiting model-checking techniques
with properties expressed in a suitable fragment of a branching time temporal logic. UPPAAL
also allows simulation, which can be used to provide useful insights into the working of the
considered real-time system. Simulation can also be advantageously used during the model
debug phases. Moreover, some extensions make it possible to consider stochastic aspects,
while in this case, the verification can be performed exploiting a Stochastic Model Checking
(SMC). A more detailed description of timed automata and networks of timed automata is
reported in Appendix A.

2.3.2. Stochastic Activity Networks

The Section reports a brief description of the specification framework Möbius. SANs are a
variant of stochastic Petri Nets (PNs) that have been introduced to facilitate performability
evaluation of large systems. A SAN model comprises four primitives: places, activities, input
gates and output gates.
Places are used to represent local system states, e.g., conditions or situations as in PNs,
but differently from PNs, they can be of two types: ordinary and extended. Ordinary places
are as in PNs; they can contain tokens, and the marking of an ordinary place is defined as
the number of tokens it contains. Extended places are associated to a variable that can be
of any type: atomic, array, matrix or a data structure. The value of the associated variable

GA 101015416 Page 17 | 171

is the marking of the extended place. These variables cannot be removed or added to the
extended places as the tokens in the ordinary places, but their value can only be read or
changed.
Activities are as transitions in PNs: they can be either timed or instantaneous. Timed ac-
tivities represent time-consuming activities whose duration has an impact on the system
performance, they can have either a deterministic or a stochastic duration. Instantaneous
activities are used to model the verification of logical conditions or the completion of activities
that require negligible amounts of time. Each activity has a non-zero number of cases, where
a Case denotes a possible action that may be taken upon the completion of the activity.
Gates are introduced to allow for greater flexibility in defining enabling and completion rules.
Input gates are used to control the activation of the activities, and the effect of their com-
pletion on their input places. The input gate connected to an activity defines the enabling
condition of that activity (by specifying an enabling predicate) and how the new marking of
its input places has to be evaluated after the activity completion (by specifying an input func-
tion). Therefore, when connected to an extended place, an input gate allows the reading of
its associated variable.
Output gates define the marking change on the output places of an activity when it completes
through the specification of an output function. Therefore, when connected to an extended
place, an output gate allows the writing of its associated variable.
SANs are formally defined in [5]. In the Appendix, an example is presented to provide
more details on SAN modelling and introduce some features of the Möbius tool [6], that is
being used in PERFORMINGRAIL to develop a performability model of the MB system. In
particular, Möbius allows for compositional modelling, so enabling the development of a set
of sub-models and the adoption of a modular approach in system modelling. More details
regarding SANs are provided in Appendix A.

GA 101015416 Page 18 | 171

3. ETCS-L3 Modelling

The adoption of semiformal and formal methods has always been pursued in railway sig-
nalling to take advantage of several benefits they can bring by leveraging on formal specifi-
cation, modelling, development, and verification of systems. Such benefits include, among
others, enhanced safety and security, improvement of specifications, designs and architec-
tures, formal evidence of properties in certification processes, standardization of protocols,
and reduced costs. Despite the potential advantages, the take-up of formal methods in
industrial settings is still limited.
A recent report [7] presents the current status of adoption of formal methods in signalling,
including the work conducted within the S2R programme which opened specific streams
of research on the application of formal and semiformal methods. The modelling activities
carried out in PERFORMINGRAIL WP2 and reported in the present deliverable consider
both the previous work conducted in S2R IP2 projects and the results available in the scien-
tific literature. This chapter provides a review and analysis of the current state-of-the-art in
ETCS-L3 modelling.

3.1. Semi-Formal and Formal Methods in S2R IP2 projects

This section gives a bird’s-eye view of the work conducted in IP2 on semiformal and formal
modelling, based on the available public documents. The main source for the information
contained in this section are the S2R IP2 project pages as well as the public websites of the
projects. The following IP2 projects address formal methods for signalling systems within
the TD2.7 (Formal methods and standardisation for smart signalling systems): Enhancing
railway signalling systems based on train satellite positioning, on-board safe train integrity,
formal methods approach and standard interfaces, enhancing Traffic Management System
functions (X2Rail-2) [8], SAtellite-based Signalling and Automation SysTems on Railways
along with Formal Method and Moving Block validation (ASTRAIL) [9], FORmal Methods
and CSIRT for the RAILway sector (4SECURAIL) [10], Completion of activities for Adaptable
Communication, Moving Block, Fail safe Train Localisation (including satellite), Zero on site
Testing, Formal Methods and Cyber Security (X2Rail-5) [11] and PERFORMINGRAIL [12].
X2Rail-2 proposed a classification of formal methods for the development and Verification
and Validation (V&V) of railway signalling systems, providing a framework for the following
activities in S2R [13].
ASTRAIL was a complementary project of X2Rail-2. The objective of the FM related activ-
ities was twofold: i) benchmarking and ranking formal and semi/formal methods to identify
the most suitable languages and tools to be applied for the development of railway systems,
and in particular of signalling systems; ii) experimenting with the usage of a set of selected
formal methods through the modelling of the moving-block system and validating the us-
age of the selected formal methods by integrating the moving-block model with automated
driving technologies. In particular, ASTRAIL also considered the Global Navigation Satellite
System (GNSS) in combination with moving-block.
As for the first objective, an in-depth analysis was conducted by ASTRAIL. One of the re-
sults of the Systematic Literature Review (SLR) carried out during the project is that UML
is the most common semiformal language used for the high-level specification of railway

GA 101015416 Page 19 | 171

systems; whereas from the survey conducted among practitioners, the formal tools and
methods most mentioned by industrial or academic users are: Simulink1 and Stateflow2,
SCADE3, CPN tools4, Monte Carlo Simulation, NuSMV5 and Spin6. The main quality as-
pects of a (semi-)formal method/tool should have to be concretely and effectively adopted in
the railway industry, according to relevant stakeholders, are maturity and ease of learning.
Some of the findings from the analysis phase performed by ASTRAIL are summarized in
[14].
As for the second objective, several semi/formal and formal models have been developed
with different purposes, along two research streams.
a) The logical functionality of the MB signalling system without trackside train detection has
been modelled as an input for the following hazard analysis. The functional model includes
eight UML State Machine Diagrams (SMDs) in eight regions, each of them representing a
function or process performed in the system [2]. This model aims at visualising the work-
flow, structure, and behaviour of the system, relationships and interaction of its elements,
and it is used as a basis for the modelling activities in the second research stream, briefly
summarized at point b). In the following, this model is called MB model.
A set of system scenarios based on the MB architecture at general functional level have
also been defined and modelled with UML SMD. This modelling activity mostly refers to the
Start of Mission (SoM) EUC, and on a transition scenario from Full Supervision (FS) to TRIP
mode. Specifically:

1. SoM when the train position is valid and GNSS has the required availability (i.e.,
Line Of Sight (LOS)). This scenario corresponds to the normal operation.

2. SoM when the train position is invalid/unknown under the following conditions: the
position cannot be acquired from the Train Localisation Unit (TLU) (erroneous or un-
available position), the train integrity is confirmed, the communication session with the
Radio Block Center (RBC) is correctly set, and the train information is correct. This
scenario corresponds to the degraded operation where the train position is invalid or
unknown and GNSS positioning information is out of range.

3. SoM when the train integrity is not confirmed under the following conditions: the
position can be correctly acquired from the location unit, the train integrity is not con-
firmed, the communication session with the RBC is correctly set, and the train informa-
tion is correct. This scenario corresponds to the degraded operation where the train
integrity is not confirmed during the SoM procedure, nevertheless the position of the
train can be acquired.

4. Transition from FS to TRIP if the train position is invalid/unknown. This scenario
corresponds to the degraded operation where during the mission (train in FS) either
train integrity is not confirmed, or train position becomes invalid/unknown. The pro-
vided sequence diagram covers the case in which the train position is invalid/unknown.

The ASTRAIL MB model and the sequence charts listed above are available and illustrated
in [2]. All the above scenarios are said to be valid for each railway profile.

1https://it.mathworks.com/products/simulink.html
2https://it.mathworks.com/products/stateflow.html
3https://www.ansys.com/products/embedded-software/ansys-scade-suite
4https://cpntools.org/
5https://nusmv.fbk.eu/
6https://spinroot.com/spin/whatispin.html

GA 101015416 Page 20 | 171

https://it.mathworks.com/products/simulink.html
https://it.mathworks.com/products/stateflow.html
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://cpntools.org/
https://nusmv.fbk.eu/
https://spinroot.com/spin/whatispin.html

b) Selected languages and tools have been applied to the MB model enabling experimental
parallel application of multiple techniques/tools to evaluate and compare their usability and
applicability in the domain. The models produced with eight different formal techniques were
used to provide a usability assessment. The industrial users indicated Simulink/Stateflow
and SCADE as the most usable tools. The different formalizations based on the UML state
machine diagrams of the MB model include UML State Machines, Event B State Machines,
and Stochastic Timed Automata (STA) modelled in UPPAAL. Some of the results of this re-
search have been described in [15,16]. In particular, the UPPAAL models are also presented
in [17–19].
One of the objectives of 4SECURail was to perform a cost-benefit analysis for the adop-
tion of formal methods by prototyping a formal method Demonstrator to be exercised with
a selected case study. Specifically, the goal was to study the possible impact of the intro-
duction of formal methods in the system requirements definition process. The current
release of the formal method demonstrator is described in [3]. It consists of a process for
the demonstration and evaluation of techniques based on formal methods. Starting from the
initial natural language requirements, several steps are cyclically performed, until the output
of the analysis process becomes usable. The main steps are here sketchily reported:

1. development of a standardised description of the systems specification based on
UML/SysML diagrams, in particular state machines and sequence diagrams (be-
havioural diagrams), according to the indications from EULYNX and the X2Rail projects
(from natural language to semiformal language);

2. (automatic) transformation of the standard UML/SysML description into verifiable for-
mal models (from semiformal to formal language(s)) and verification of the properties
of interest;

3. rigorous natural language rewriting of the requirements (from formal, to semiformal, to
natural language).

The process ends when several conditions are fulfilled, i.e., the complete system is entirely
designed, all the properties of interest are satisfied, etc. The formal method demonstrator
is introduced in [20, 21] and its final release is presented in [3]. The signalling case study
selected for experimenting the demonstrator in 4SECURail is the RBC/RBC Handover.

3.2. Review of the Scientific Literature

In the scientific literature, few works specifically address the application of formal and semi-
formal methods to ETCS-L3, Table 3.1 and Table 3.2 summarize the current state-of-the art
for the works whose subjects are RBC, TLU, On-Board Unit (OBU), Virtual Sub-Sections
(VSSs) or other relevant subsystems.
A number of the papers addressing full moving block describe results from ASTRAIL and
4SECURAIL projects. Among them, [17], [18], [22] and [19] address a ETCS-L3 moving
block scenario related to Movement Authority (MA) communication. In [17], [18] the sys-
tem behaviour is modelled by Simulink and UPPAAL, and then analysed by using statistical
model checking. The first work focuses on the evaluation of the probability of reaching a safe
state (i.e., a quantitative property), the second work focuses on fine-tuning communication
parameters which has impact on the system reliability. In [22] the authors combine statisti-
cal model checking with Reinforcement Learning to synthesise a safe strategy guaranteeing
that the train does not exceed the MA. In [19] a refinement of the UPPAAL model from [18]

GA 101015416 Page 21 | 171

Ref. L3 Goal System Method(s) Tool(s) Funding

[17] MB Safety TLU,OBU,RBC Stateflow
TA

Simulink
UPPAAL SMC

S2R,
Regional

[18] MB Parameters
tuning

TLU,OBU,RBC Stateflow
TA

Simulink
UPPAAL SMC

S2R,
Regional

[22] MB Safety TLU,OBU,RBC TA UPPAAL
STRATEGO

S2R,
National

[19] MB
Multiple trains
Parameters
tuning

TLU,OBU,RBC TA UPPAAL SMC S2R

[23] MB Availability
Evaluation

Communication Stochastic Timed
Petri Nets (STPNs)

ORIS -

[24] MB Performability
Evaluation

Communication STPNs ORIS -

[25] MB Safety
Evaluation

GNSS
Localization

TA UPPAAL -

[26] MB
Safety and
Performance
Evaluation

GNSS
Localization

TA UPPAAL SMC -

Table 3.1: Scientific papers addressing ETCS-L3 formal modelling (part 1)

is presented, which models a scenario with more trains on a line.
STPN models are proposed in [23] and [24] to perform quantitative analyses of commu-
nication failures in ETCS-L3 (and consequent emergency stops). A model-driven, modular
approach is described in [25] and [26] for safety and performance evaluation of GNSS-based
railway localisation function. This approach also exploits TA, Model checking and SMC with
UPPAAL. Modularity allows considering a variety of system architectures in different opera-
tional context.
Few works have also been published in the literature that specifically cope with formal and
semiformal modelling of Virtual Coupling. In [22] the authors mention the possibility of further
reducing the headways between trains. Virtual Coupling (VC) is explicitly investigated in [39]
and [40]. The work described in [39] presents a SAN model for the quantitative evaluation of
capacity increase in VC scenarios. The study is based on a fine-grained discretization of the
railway track that allows to represent the moving block concept by a step-by-step movement
of the trains.
Most of the above publications on full MB can be easily clustered by authors and their un-
derlying research project. On the contrary, more works from diverse groups of authors focus
on Hybrid ETCS-L3. This different attention paid by the scientific community to the two sig-
nalling systems seems due to two concomitant circumstances: 1) the availability of a public
document describing in detail the Hybrid L3 principles from the European economic inter-
est grouping (EEIG) European Railway Traffic Management System (ERTMS) Users Group,
and 2) the case study track of the 6th ABZ conference on state-based and machine-based
formal methods, specifically addressing Hybrid ERTMS/ETCS-L3. Such circumstances put
a special attention on the Hybrid system, but on the other hand, all these works focus on the
management of the fixed VSS that was the scope of the proposed case study. These studies

GA 101015416 Page 22 | 171

Ref. L3 Goal System Method(s) Tool(s) Funding

[27] Hybrid V&V VSS Electrum Analyzer ERDF,
National

[28] Hybrid V&V VSS Promela Spin -

[29] Hybrid V&V,
Animation

VSS B-Method
(Model Check-
ing (MC))

ProB -

[30] Hybrid V&V VSS Event-B Rodin
Res. Council
of Canada,
National

[31] Hybrid V&V VSS Event-B Rodin National
[32] Hybrid V&V VSS Event-B Rodin -

[33,34] Hybrid Functional
Safety

VSS Event-B,
iUML-B

ProB ECSEL JU

[35] Hybrid Verification
and Testing

RBC (MA),
TTD, VSS

Event-B, iUML-
B

Rodin, MoMuT ECSEL JU, BMVIT

[36] Hybrid

Requirements
Specification,
and scenarios
validation

OBU TPR),
RBC (TTD), VSS

Abstract
State Machines

ASMETA
toolset

-

[37] Hybrid Safety Train, TTD,
RBC (MA), VSS

UML
Event-B

ProB,
B4MSecure

IRT Railenium

[38] Hybrid Verification TTD, Trackside,
VSS

mCRL2 mCRL2
Toolset

-

[39] VC Capacity
Evaluation

Trackside
OBU

SAN Mobius S2R

[40] VC

Safety,
Performance,
Functional
Evaluation

V2V
Interaction and
Communication

SysML/CPN CPN-Tool National

Table 3.2: Scientific papers addressing ETCS-L3 formal modelling (part 2)

follow two main approaches: The works described in [27], [28] and [29] model the specifi-
cation as faithfully as possible, checking and animating the specification for verification and
validation purposes in some operational scenarios. Electrum (an extension of Alloy) and the
Analyzer model checker are used in [27], Promela and the Spin model checker are used in
[28] while in [29] the introduction of a Virtual Block Function (VBF) computing the occupation
states of the virtual subsections is described. The VBF is implemented as a formal B model
executed at runtime using ProB, and it has been used in a field demonstration.
The studies from [30] to [34] make use of abstraction and refinement, regardless of scenar-
ios. [30–32] use Event-B and theorem proving to verify the main principles, considering a
subset of the requirements. In [33, 34] a systematic modelling method based on the state
and class diagrams of iUML-B and Event-B is proposed, which uses abstraction to verify the
principle of movement authority and develop the Virtual Block Detector (VBD) component
according to a stepwise refinement approach, verifying that it preserves the safety proper-

GA 101015416 Page 23 | 171

ties. Two interesting works also consider the presence of the Trackside Train Detection (TTD)
system [37,38]. Finally, a few pioneer papers describe research on VC, e.g., in [39,40].

3.3. Comparison with PERFORMINGRAIL contribution

The activities conducted in WP2 aim at modelling the behaviour of the MB system as defined
in the Deliverables D4.2 part 2 and part 3 (Moving Block Specifications – System Definition
and System Specification [41, 42]). These documents were not available before the end of
2020; therefore the work done in previous projects, and the modelling activity described in
the scientific literature so far, had necessarily to refer to partial knowledge of the system
and to formulate hypotheses about its behaviour. In addition, the works presented in the
literature are intended to model specific functionalities or scenarios of the system. In con-
trast, the work described in this deliverable has taken up the challenge of modelling a large
part of the system’s behaviour, addressing a number of components and features that have
never been considered at the same time in previous modelling attempts. Hence, regarding
the works currently reported in the literature, the modelling effort being performed in PER-
FORMINGRAIL WP2 is based on a preliminary definition of the system specifications; on
the other hand, it had to deal with the difficulties arising from the complexity of the system,
and the need to make up for the lack of some information necessary for such extensive mod-
elling. This required the definition of a suitable model development methodology, based on
software engineering principles, more complex and articulated from that normally required
for the development of models related to specific features or scenarios.
In doing that, the continuity with the previous S2R projects has been preserved, in particu-
lar, some modelling choices from ASTRAIL and the adherence (as possible) to the formal
methods demonstrator developed by 4SECURAIL. Among the aspects pointed out by 4SE-
CURAIL, the following are especially relevant for the work conducted in PERFORMINGRAIL
[3,20,21]:

• The importance of UML/SysML artefacts to effectively complement the specification of
system requirements.

• The importance of formal methods diversity, i.e., the development of formal models of
different types.

• The importance of automated (mechanical) generation of the formal models.
The modelling approach taken in WP2 is based on these key points, in particular the exten-
sive usage of sequence and state machine diagrams allowed to develop formal models for
which automatable transformations from the SysML artefacts can be defined.

GA 101015416 Page 24 | 171

4. The Overall Modelling Process

This chapter is devoted to the description of the modelling process adopted in T2.3 and
T2.4. The described modelling activities are distinct, as they focus on two different aspects:
high-level specifications and developing formal models.
The process adopted in these activities targets accomplishing the following objectives:

• interoperability: the languages and tools used in the process require a high level of
interoperability, and must adhere to a well-known and adopted standard. The objective
is to foster the reuse of the produced models by the scientific community;

• integration with EULYNX: the results of the modelling activities are integrable with the
Eulynx DP;

• automatable generation process: it is possible to mechanize the generation of formal
models from the high-level specification of ETCS-L3;

• incremental design: the modelling approach reflects a modular design paradigm that
facilitates extending existing models with more refined versions;

• early-stage level: the results of the modelling approach reflect the status of maturity of
specification and standardization of ETCS-L3 systems;

• demonstration-oriented: even if the final goal of any modelling activity is to define an
abstraction of a system, in order to be able to infer several system properties from
model analyses, modelling (and analysing) the entire ETCS-L3 system is a hard task.
To this end, the conducted activities have been oriented to demonstrate the feasibility
of the approach by eliciting selected and relevant validation scenarios (see Chapter 5).

To pursue the above objectives, an “agile modelling” approach has been adopted in this
project. A very high-level overview of this approach is depicted by the UML’s UC in Fig. 4.1.

Fig. 4.1. High-level view of the modelling approach.

Two distinct sub-activities are reported: Specification, that is responsible for defining the
high-level model (T2.3), and Modelling, for definition of formal models (T2.4), which depends
on the first sub-activity, as represented by the� extend� relationship. This diagram is also
important, as it details the different roles participating in the process and contributing to the

GA 101015416 Page 25 | 171

Work Package (WP). On the one hand, the Model Owner, the Data Owner, EUC Owners,
Function Owners specify and update a specific part of the high-level model, respectively
(see Table 4.1 for details). On the other hand, a Formal Modeller defines and updates one
of the formal models developed in T2.4.

Table 4.1: Roles and responsibilities
Role Responsibility
Model Owner To maintain and update the entire model, and integrate the dif-

ferent contributions. To specify the parts of the model that are
common to all of the sub-models (i.e., the architecture, the re-
quirement structure, etc.).

Data Owner To define and maintain the representation of the data for train and
trackside.

EUC Owners To specify the EUC with the specific purpose of highlighting the
interactions among the functional components.

Function Owners To specify the inner behaviours of the functionalities of both train
and trackside.

Formal Modellers To model specific internal functions according to a concrete for-
malism.

Fig. 4.2 details the interactions between the mentioned two sub-activities, by illustrating the
iterative nature of the “agile approach” followed in WP2.

Fig. 4.2. The specification and modelling approach.

GA 101015416 Page 26 | 171

Through this UML’s Activity Diagram (AD), the Specification and the Modelling activities are
carried out in a loop. Each iteration of this loop represents a different sprint of such kinds of
approaches. The Specification activity updates (using two ports) the SysML repo datastore
(e.g., concretely, a repository of high-level models), while the Modelling one updates another
repository, the models repo. The � extend � relationship is represented by the input from
the SysML repo to the refresh port of Modelling.

Here, a brief summary on how the deliverables of other S2R
projects affected the PERFORMINGRAIL baseline: (1) the re-
sults of [43] of MOVINGRAIL affected the SysML’s functional ar-
chitecture; (2) the requirements of [42] of have been consid-
ered as a baseline for all the modelling activities; the results of
ASTRAIL reported in [20] strongly influenced the choice of lan-
guages and of modelling approaches here followed.

GA 101015416 Page 27 | 171

In the rest of this document, the following naming convention is
adopted:

••••••••••• Automata: between “ ”, first letter in capital, e.g.
“Name of automaton”;

• Clocks: small capital letters with separating words, e.g.
CLOCK 1;

• Variables: between dollars, e.g. x;

• Signals: between dollars and ’ ’ with separating words,
e.g. ′MA request′;
Operations: use MATHIT command with separating
words, e.g. send MA();

• Functions: use MATHIT between “ ”, first letter in capital,
e.g. “Trains management”;

• Timers: use MATHIT command and small capital letters
with separating words, e.g. SYNCHRONIZATION TIMER;

• Constants: small capital letters with separating words,
e.g. NB TRAINS;
UML diagrams: between “ ”, use MATHIT, e.g.
“TTD Management SD”;

• Requirements: between “ ”, respecting the way the require-
ment is spelled in the specs, e.g. “REQ-Trainloc-5”.

• States: use italic between ’ ’ , first letter in capital, e.g. ’Idle’ ;

• External Actors: use italic e.g.Driver ;

GA 101015416 Page 28 | 171

5. The Specification Approach and the SysML Structure

This chapter shows the approach followed for the Specification phase, as described in Chap-
ter 4 — i.e., the first phase of the entire work and the purpose of T2.3. The description is
articulated in:

• a description of the scope of the specification activity and the consequent SysML model
structure (Section 5.1);

• a formalization of the entire specification process (Section 5.2);
• the description of the proposed SysML structure, also through a running example (Sec-

tion 5.3);
• some considerations on the integration of the proposed modelling approach with Eul-

ynx DP (Section 5.4);
• a description of the ETCS-L3 functional elements actually chosen (Section 5.5);
• some considerations about tools and concrete artefacts containing the model (Section

5.6).

5.1. The Modelling Scope

This sub-section presents the scope of the specification, and the SysML model structure.
Fig. 5.1 reports a Class Diagram (CD), describing the elements of the ETCS-L3 as well as
the parts of SysML, involved in the Specification activity. The blue blocks are the elements of
ETCS-L3, while the red blocks represent the SysML diagrams used to specify one or more
blue blocks.

Fig. 5.1. Overview of the ETCS-L3 modelled elements

Entity represents the different (physical) subsystems and components, and it can be the
subject of modelling (i.e., Modelled Entity) or not (i.e., Side Entity). Modelled Entities are
referred by EUCs that are characterized by one or more Requirements. Modelled entities

GA 101015416 Page 29 | 171

(i.e., Trackside and On-board) are characterized by a set of internal functions (named Func-
tional Components). A Functional Component is responsible for implementing one or more
requirements that are related to the same aspect of the ETCS-L3: the way a Functional Com-
ponent implements such requirements is through a Behaviour. A Behaviour can be affected
by one or more Hazards, and characterized by one or more Requirements, too. Modelled
entities are also described by a static description of their data (using a Data Model).
The description of these “blue blocks” and their relationships is captured by SysML dia-
grams (represented in the figure by “red blocks”). Table 5.1 reports such kinds of diagrams,
explaining their role in the general ETCS-L3 SysML model.

GA 101015416 Page 30 | 171

Table 5.1: Mapping between ETCS-L3 concepts and SysML.
Domain Ele-
ment

Diagram Description

Data Model Block Definition Dia-
gram (BDD)

The Data Model describes the software and
data part of the ETCS-L3, focusing on ele-
ments such as protocol messages, configura-
tion parameters, living variables, etc.

Architecture
Model

BDD This diagram is used to describe physical
parts of the model and their static relation-
ships. They are used to describe the ETCS
entities involved in the model.

Functional
Architecture

Internal Block Dia-
gram (IBD)

This diagram describes the functional com-
ponents of both trackside and on-board in a
more in-depth way, highlighting the interac-
tions among them, in terms of exchanged sig-
nals and conveyed data from a component to
another.

EUC / Be-
haviour

Requirement Dia-
gram (RD)

These sub-models depict the requirements re-
lated to the EUC or the internal function be-
haviour, as well as the allocation of require-
ments on model elements, to tackle the trace-
ability concern.

EUC Use Case Diagram
(UCD)

It structures EUC, by defining relationships
with actors and sub-functionalities.

EUC Sequence Diagram
(SD)

This diagram explains the interactions be-
tween involved actors and functionalities.

Behaviour SMD This diagram depicts, for each internal func-
tion of both trackside and on-board, the evolu-
tion of the functional component.

Behaviour AD These diagrams may be used to describe
some actions triggered by the evolution of a
functional component’s behaviour (i.e., by the
State Machine (SM)).

Requirements Requirement Alloca-
tion Table (RAT)

This table summarizes the considered re-
quirements and their respective allocation to
one or more SysML model elements.

5.2. Specification Process Description

This sub-section presents the details of the specification approach, as follows. Fig. 5.2
reports the description of the sub-activities involved in the Specification process. First, there
are two one-time actions that are carried out in the first iteration of the process:

• ETCS element selection — that is devoted to the definition of the actual (functional)
elements of the system that are specified and modelled in this document;

GA 101015416 Page 31 | 171

• role assignment — where the roles discussed in Chapter 4 are apportioned to PER-
FORMINGRAIL’s partners.

Fig. 5.2. Details on the specification approach.

Then, other activities are carried out every time the Specification process starts, to refine the
work previously done. The first of these activities is the Architecture Specification, whose
objective is to define the architectural sub-model of all the involved physical entities,through a

GA 101015416 Page 32 | 171

BDD. Such Architecture is then improved, in a second instance, by a Functional Architecture,
highlighting the interactions between components. Next, different activities start in parallel:

• the specification of each chosen EUC, a sequence of (1) Functional Specification (with
a UCD), (2) an Interaction Specification (with a SD), and (3) a Requirement Specifica-
tion (with a RD);

• the specification of each chosen Functional Component using a Behavioural Specifi-
cation (with one or more SMDs/ADs).

When all the previous activities are completed, Data Specification defines the structural view
of the data of all modelled entities, ending the Specification process.

5.3. Building the SysML model

This sub-section describes the proposed SysML model structure, and exemplifies it on a
selected example. Since the SysML model is complex and structured in different parts
and diagrams, some considerations are due in discussing the detailed ways of creating
such sub-models. These considerations are displayed by employing a running toy example,
where a train is subject to the emergency commands of a trackside controller and has to
activate/deactivate its emergency brake.
Let us start from the two considered requirements:

• “REQ-1”: Given a running train, when the Braking Supervision receives an emergency
stop message, then it activates the emergency brake.

• “REQ-2”: Given a braking train, when its speed is at zero, then the Braking Supervision
function deactivates the emergency brake.

• “REQ-3”: Given that the Controller has sent an emergency stop message, when the
Braking Supervision function receives such a message, then it sends back to the Con-
troller an acknowledgment message.

Architecture Specification: Let us consider the functional architecture presented in the
form of SysML’s BDD/IBD (see Fig. 5.3).

Fig. 5.3. Functional Architecture (running example).

GA 101015416 Page 33 | 171

The key elements of this functional architecture are the blocks, representing physical (i.e.,
“Controller”, “Brake”, and “Odometer”) and “software” components (i.e., the “Braking Super-
vision”) that are internal functions of other physical components (the “Train” in this case, not
reported in the diagram for simplicity). The SysML model presents the internal functions
as encapsulated in homonymous SysML’s blocks, to allow adding ports and signals. Ports
and signals are the means by which blocks communicate with each other. The ports can be
Output Ports and Input Ports according to the direction of the item flows that connect them.
Input Ports — e.g, source ports for the item flows — are characterized by a SysML’s signal,
whose role is crucial in the description of components’ behaviour. Item flows are character-
ized by the type conveyed onto it. This data type represents the type that the concrete data
transported by the flow are conforming to. In this specific model, the following signals are
present (even if not shown in the diagram), all involving the “Braking Supervision” compo-
nent: ′emergencyStop′ (communication from “Controller”), ′brakeCommand′ (communication
to the “Brake” block), ′acknowledged′ (communication to “Controller”), and the ′updatedSpeed′

signal (communication from “Odometer”). The conveyed types are described in the following
Data Model.

Data Model: Fig. 5.4 reports the data model of the running example. In such a model,
each class represents a unit of data/software according to the traditional software engineer-
ing processes. Classes/Blocks can be characterized by attributes (representing the current
state of the subsystem), parameters (whose values are set at configuration-time and are, in
general, read-only), and operations (which can be used to hide complex computations from
the algorithmic perspective). As in this example diagram, the data model can contain the
definition of specific data types as well, e.g., enumeration types.
Some considerations are due, in order to clarify the role of the Data Model in the whole Spec-
ification approach. Since the ETCS-L3 signalling system is still subject of research, there
are few attempts to create concrete experimental implemented solutions. In PERFORMIN-
GRAIL, there is no will to propose such a solution, considering that the requirements need
further assessment. Hence, the underlying hypothesis is the presence of a global database,
containing all the variables, parameters and operations, able to read, write and manipulate
data, by functional components and their behaviours. Such a database is shared among
the components, without further hypotheses on the concrete mechanisms, which are left to
future research projects.

Use Cases: Use cases represent general scenarios involving different internal functions.
Each of these scenarios is described by utilizing three SysML diagrams, according to Fig.
5.2:

• Functional Specification, used to define the context of the use case, according to the
involved external blocks and internal functions. It is represented by a UCD. In the
running example, Fig. 5.5 depicts this view.

• Interaction Specification, used to define the sequence of the messages exchanged
among the different actors identified in the previous diagram. In this approach, it is
represented by a SD. For the messages that are related to a communication that is also
represented in the functional architecture, some links with the functional architecture
must be set. This is concretely done by setting the signature of the message to the

GA 101015416 Page 34 | 171

Fig. 5.4. Data Model (running example).

Fig. 5.5. Use Case Functional Specification (running example).

signal of the communication, according to the functional architecture. In the running
example, Fig. 5.6 depicts this view.

• Requirement Allocation, where the system requirements considered for the use case
are mapped to model elements. A more comprehensive discussion about this mapping
is presented at the end of this section.

Functional Components: for each considered internal function, the description of its be-
haviour is captured by a SMD, respectively. States and transitions are determined by
analysing the requirements that are apportioned to the functional component, as well as
in analysing the messages that the functional component receives in the different SDs that
it is involved in. The Data Model is also crucial in determining the correct behaviours, by-
setting the proper guards and actions. Local variables in the state machines are possible,
simplifying their structures.
Two points worth discussing follow. The first point regards the transitions of the SMD, link-
ing the Behaviour Specification to the Functional Architecture. When the SMD refers to a
functional component that receives a message — i.e., is the target of an incoming message
in the SD, and it has an incoming item flow in the functional architecture — one or more
transitions in the SMD can be triggered by the receiving of this message. Consequently, the
“accepting port” related to the signal is set as in the port field of the transition’s trigger.
The second discussion point is related to the actions. As some SMDs need to send mes-

GA 101015416 Page 35 | 171

Fig. 5.6. Use Case Interaction Specification (running example).

sages, activities can be set in the effect field of such transitions. These activities can be then
developed into ADs, possibly considering SysML’s Send Signal Action.
Fig. 5.7 reports the SMD describing the behaviour of the “Braking Supervision” functional
component, while Fig. 5.8, Fig. 5.9 and Fig. 5.10 report the ADs of the actions related to
the transition from ’running’ to ’braking’, from ’braking’ to ’running’, and on the self-loop on
’theupdateWaiting’ state, respectively.

Requirement Allocation: to illustrate the number of requirements that are considered dur-
ing the SysML modelling activities, the considered requirements are mapped onto model
elements. A set of model elements are used to satisfy the considered requirements through
the satisfied by relationship into a RD: transitions, actions, use cases and combined
fragments can be used as well to this aim. Next, a RAT is automatically generated, summa-
rizing this mapping into a table-form view.
Fig. 5.11 shows the allocation of the requirements in the considered example, while Table
5.2 reports the example’s RAT.

GA 101015416 Page 36 | 171

Fig. 5.7. Behaviour Specification — SMD (running example).

Fig. 5.8. Behaviour Specification — AD/1 (running example).

Fig. 5.9. Behaviour Specification — AD/2 (running example).

GA 101015416 Page 37 | 171

Fig. 5.10. Behaviour Specification — AD/3 (running example).

Fig. 5.11. Requirement Allocation Diagram (running example).

Table 5.2: Example RAT.
Requirement Satisfying Elements
REQ-1 emergencyStop()
REQ-2 updatingTheSpeed
REQ-3 sendingBackAck, Sendacknoweldgement

GA 101015416 Page 38 | 171

5.4. Integrating EULYNX DP

This sub-section describes aspects regarding the integration of the proposed modelling ap-
proach with Eulynx DP. The Eulynx DP model provides a highly detailed static class model of
trackside systems. The information needs of the present project overlap with the information
provided by Eulynx DP, yet the level of detail differs. For instance, Eulynx DP models track
vacancy detection sections, the associated technical systems and components, e.g., axle
counters, which implement train detection. The PERFORMINGRAIL system architecture
hides this complexity inside the TTD manager, which reports track vacancy. This indicates
that, at this stage, classes such as the TTD manager can be regarded as facades of the
detailed Eulynx DP model.
However, state machines that use train positions and distance calculations intensively are
being implemented. These state machines use the same model for representing topology
and topography as Eulynx DP, which is UIC’s RSM. This matters because the signalling
equipment, routes, speed profiles and other relevant input are located in the railway network
through the RSM model.
The software that can process routes, profiles and signalling equipment located in the rail-
way network using the Eulynx DP/RSM model, is hence reusable, since reading in configu-
ration data will be substantially easier.

5.5. Choice of the Functional Elements

This sub-section details the steps followed in defining the boundary of the ETCS-L3 subset
of elements that are the subject of the specification and modelling activities. These actions
refer to the ETCS element selection subprocess, defined in Section 5.2.
The starting point is determined by the OPSs defined in [1]. In this document, ten OPSs have
been defined by summarizing some specific situations of ETCS-L3, rather than focusing on
entire train trips. In this document, four OPSs have been selected as candidates for guiding
the verification and the demonstration of the results conducted in WP2. These four scenarios
are:

• Trackside Initialisation
• Points Control
• Loss/Restore of Communications
• Loss of Train Integrity.

In [4], a coverage table from OPSs to EUCs is reported, describing for each OPS what
EUCs are involved by the OPS, respectively. By this EUC-OPS mapping, it is possible to
determine a subset of the EUCs that is obtained by considering only the selected OPSs.
Such a subset contains the EUCs that are necessary to accomplish the demonstration of
the modelling approach, and are hence considered in the rest of this document. Such EUCs
are as follows:

• Trackside Initialization
• Normal Train Movement
• On-Sight (OS) Movement
• Loss/Restore of Communication
• Loss of Train Integrity

GA 101015416 Page 39 | 171

• Staff Responsible (SR)
• Points Control
• Sweeping.

In addition, Functional Components are detected from Figure 4 in [4], where main functions
of the ETCS-L3 are reported. The list of these trackside functions are:

• Track Status Management
• Reserved Status Management
• Trains Management
• MA Management
• Route Management
• TTD Management
• Manage Low Adhesion Areas
• Manage Temporary Speed Restrictions
• Points Management
• Communication Management

whereas On-board functions are:
• Train Position Reporting
• Integration Information Management
• Manage Dynamic Speed Profile
• Speed and Distance Supervision

It is important to underline that these functions rely on other
ETCS-L2 functions that are not the main objective of this mod-
elling activity and, hence, they will be considered only if neces-
sary. Furthermore, also between these ETCS-L3 functions — as
they are mentioned in [41] — Manage Low Adhesion Areas and
Manage Dynamic Speed Profile are partially modelled. Both of
them are quite hard to model by means of discrete SM-based
formalisms.

5.6. Tooling

This sub-section overviews the final considerations regarding the tools adopted in T2.3. The
Eclipse Papyrus1 tool has been chosen to match the requirements of interoperability and
adopting an open-source tool able to foster the exploitation of the produced SysML model.
Another important feature of Papyrus that justifies its choice is the possibility to “branch” a
part of a model into a separate Papyrus file. This possibility enables the apportionment of
the different sub-models (each devoted to a EUC or functional component, respectively) to
different roles, simplifying the versioning of the whole model with the usage of a git repository
(i.e., the SysML Repo). This practice enables a distributed and concurrent modelling practice
with Eclipse Papyrus, without building/adopting a complex/closed solution. The result of this

1https://www.eclipse.org/papyrus/

GA 101015416 Page 40 | 171

approach is available at the GitHub repository of the model https://github.com/ste
fanomarrone/performingrail.

GA 101015416 Page 41 | 171

https://github.com/stefanomarrone/performingrail
https://github.com/stefanomarrone/performingrail

6. The Detailed SysML Model

This chapter presents the results of applying the Specification Approach on ETCS-L3 and
provides details on the different sub-models that compose the SysML model. The sub-
models are described in the following order:

• Architectural Specification. This sub-model defines the structure and behaviour of the
ETCS-L3 system, including its components, interfaces, ports and connectors.

• Data Model. This sub-model specifies the data types and enumerations used by the
ETCS-L3 system, as well as their relationships and constraints.

• ETCS Use Cases. This sub-model captures the functional requirements of the ETCS-
L3 system, using use case diagrams and sequence diagrams to describe the interac-
tions between the system components and its actors.

• Functional Component. This sub-model describes the internal behaviour of the ETCS-
L3 system (divided into trackside and onboard) to model its logic by means of state
machines.

• Requirement Allocation. This part traces the requirements of the ETCS-L3 system to
the elements of the other sub-models to show how each requirement is satisfied by the
system design.

The complete SysML model is available at https://github.com/stefanomarrone/
performingrail and has been developed according to the toolset described in Section
5.6.

6.1. The Architectural Specification

This subsection presents the Architectural Specification of the ETCS-L3 system, using a
BDD to show its components and their relationships. The BDD is depicted in Fig. 6.1. This
structural diagram shows the concepts as in Fig. 5 of [41] but in a SysML style. Some as-
sociations among these blocks are annotated with a comment reporting the ERTMS-related
documents that support the association.
The core of the model consists of the Trackside and On board blocks. They interact with
the ETCS-L3 External Users, who are the actors that use the system — namely, the In-
frastructure Manager, the Driver and the Dispatcher — and with External Interfaces, which
are other systems related to ETCS-L3-related systems — namely, the Object Controller, the
TTD, the Train/Engine, other Adjacent Signalling Systems, and the Traffic Management Sys-
tem (TMS). The TLU1 and the Train Integrity Monitoring System (TIMS) are also explicitly
mentioned because they play a crucial role in the ETCS-L3 signalling system.2

1In this deliverable, the TLU is considered as the summarization of all the HW/SW technologies able to
determine the position of a train including Eurobalises, GNSS’s odometry and other related mechanisms.

2The attribute External is consistent with the nomenclature of [41].

GA 101015416 Page 42 | 171

https://github.com/stefanomarrone/performingrail
https://github.com/stefanomarrone/performingrail

Fig. 6.1. Architecture Specification.

GA 101015416 Page 43 | 171

Fig. 6.2. Functional Architecture Specification.

G
A

101015416
P

age
44
|171

This diagram serves as the basis for the Functional Architecture, which is a key represen-
tation of the approach. The Functional Architecture has been derived from similar diagrams
presented in [41, 44]. The relation between this model and these references is explained
in [4], while this deliverable shows its SysML representation as an IBD (Fig. 6.2). In this
Functional Architecture, the Trackside and On-board subsystems are decomposed, show-
ing their internal functions and the relations among them and with the external components.
The basic mechanism for the interaction is described in Section 5.3, while the details of the
specific interactions are given in Tables 6.1, 6.2, 6.3, and 6.4. In these tables, the signals are
grouped by the block (e.g., the functional or component) that receives the signal (the Owner).
These interactions are only a subset of the real interactions: some components (e.g., TLU)
are only considered for their interactions with ETCS-L3 components; other interactions are
not related to ETCS-L3 or depend on the technology used.

GA 101015416 Page 45 | 171

Table 6.1: Interactions in the Functional Architecture (part 1).
Signal Source Conveyed Type Description

Driver
′integrityInfoRecv′ Integrity Informa-

tion Manager
integrity It receives train integrity information as

detected by TIMS.
′speedSupervision′ Speed Distance

Supervisor
Information To
Driver

Light/Sound alarm to the Human-
Machine Interface (HMI).

′recvAckRequest′ Dynamic Speed
Profile Manager

- Request for acknowledge in case of
OS mode.

Train/Engine
′commandToTrain′ Speed Distance

Supervisor
TrainCommand Traction and brakes commands, given

to the train by the Automatic Train Pro-
tection (ATP) functions3.

TMS
′TSAreport′ Track Status Man-

ager
Track Status Area Reporting the status of the areas to the

TMS.
′recvLocation′ Trains Manager Location Reporting the position of the trains to

the TMS.
′receivingMAs′ MA manager Movement Author-

ity
Reporting th e MAs sent to the trains to
the TMS.

′recvRSAs′ Reserved Status
Manager

Reserved Status
Area

Reporting the status of the track reser-
vation to the TMS.

′recvAlertFromTTD′TTD manager TTD Alerting the TMS in case of suspect
track occupancy.

TLU
′positionRequest′ Integrity Informa-

tion manager
- Request for an estimated position.

Trackside::Trains Manager
′V TDReceived′ Speed Distance

Supervisor
Validated Train
Data

Validated Train Data (VTD) message to
the trackside. Used to know the length
and other parameters of the train.

′TPRReceived′ Train Position Re-
port (TPR) man-
ager

PositionReport TPR message received by the train to
know position and integrity information.

′timeoutEvent′ Communication
manager

Train Data Used to know if one or more of the
communication timer have expired.

Trackside::MA Manager
′routeExtension′ Route Manager Route Used to updating a MA
routeRestriction Route Manager Route Used to restrict an existing MA
′recvTSR′ Temporary Speed

Restriction (TSR)
manager

TSR Area Sending activated TSR needed to
compute MA.

GA 101015416 Page 46 | 171

Table 6.2: Interactions in the Functional Architecture (part 2).
Signal Source Conveyed Type Description

Trackside::Route Manager
′reportRSA′ Reserved Status

Manager
Reserved Status
Area

It gives information about the status of
a reservation.

′MArequest′ TMS Train Data, Route Triggered when the TMS asks for and
MA for a given train on a specific route.

′reportPointStatus′ Points manager Physical Point It gives information about a point.
′TSArelease′ Track Status man-

ager

′TrackStatusArea′ Triggered when an area of the track is
to clear according to the passage of a
train.

′clearRSA′ Trains Manage-
ment

TrainData Triggered by the Trains manager when
a train disconnects and its related re-
served area is to clear.

Trackside::TTD Manager
′setLocation′ Trains Manager Location Position of a train (used to avoid false

positives).
′TTDreport′ TTD TTD HW signals from the track circuits.

Trackside::TSR Manager
′recvTSRCommand′ TMS TSR Command Used when the TMS commands a

TSR.
Trackside::Points Manager

′setPoints′ Route manager PhysicalPoint Used to command a point to move.
′reqPointStatus′ Route manager PhysicalPoint Used to query the status of a point.
′repPClear′ Track Status man-

ager
Boolean Used to know if a point does not belong

to an occupied/unknown area.
′repPNotReserved′ Reserved Status

manager
Boolean Used to know if a point does not belong

to a reserved area.
′emergencyMov′ TMS PhysicalPoint Used to manually override point move-

ment protection.
′sweepPoint′ Route manager PhysicalPoint Used to sweep points by a sweeping

train.
Trackside::Reserved Status Manager

′reqPNotReserved′ Points manager PhysicalPoint Used by Points management to query
whether a point belongs or not to a re-
served status area.

′RSArelease′ Route manager AreaExtent Triggered when an area is requested to
be released.

′RSArequest′ Route manager AreaExtent Triggered when an area is requested to
be reserved.

Trackside::Communication Manager
′TPRReceived′ TPR manager PositionReport Used to compute communication

timers.
′V TDReceived′ Speed Distance

Supervisor
Validated Train
Data

Used to compute communication
timers.

GA 101015416 Page 47 | 171

Table 6.3: Interactions in the Functional Architecture (part 3).
Signal Source Conveyed Type Description

Trackside::Track Status Manager
′repPClear′ Points manager PhysicalPoint Used by Points management to inform

about the status of a point.
′reqPClear′ Points manager PhysicalPoint Used to understand whether a point

belongs or not to an occupied/unknown
area.

′TSAunknown′ Trains manager Location Used by Trains manager to signal to
update to unknown the status of an
area according to the train location.

′TSAoccupy′ Trains manager Location Used by Trains manager to signal to
update to occupy the status of an area
according to the train location.

′TSArelease′ Trains manager Location Used by Trains manager to signal to
update to clear the status of an area
according to the train location.

′ttdStatus′ TTD manager TrackStatusArea To get occupancy information about a
TTD.

′onoffShuntingArea′TMS ShuntingArea Used to enable/disable a Shunting
Area.

′unknownTSA′ TMS AreaExtent Manual overriding operation from TMS.
′releaseTSA′ TMS AreaExtent Manual overriding operation from TMS.
′newV TD′ Trains manager ValidatedTrainData Used to react to a change in VTD un-

der the aspect of track occupancy.

GA 101015416 Page 48 | 171

Table 6.4: Interactions in the Functional Architecture (part 4).
Signal Source Conveyed Type Description

On-board::TPR manager
′getTPRRequest′ Trains manager TPR Request Used by the trackside to request a TPR

to a train.
′integrityInfoRecv′ Integrity Informa-

tion manager
integrity Integrity related information to include

in the TPR.
′positionReceived′ TLU PVT RawData Raw data about the Position Velocity

Time (PVT).
On-board::Speed Distance Supervision

′trainData′ Train/Engine TrainData Data of the train used to compute brak-
ing curves.

′V TDAck′ Trains manager Acknowledge of the Validated Train
Data message.

′recvSpeedDistance′ TPR manager ETCS Information Update of the position/speed of the
train for the supervision.

′newCurve′ Dynamic Speed
Profile manager

BrakingCurve Update of the braking curves.

′EoM ′ Driver DriversAction End of Mission (EoM) command to
close the supervision mechanism.

On-board::Integrity Information manager
′TIIreceived′ TIMS Train Integrity Infor-

mation
Integrity confirmation by the train.

′integrityDriver′ Driver DriversAction Integrity confirmation by the driver.
On-board::Dynamic Speed Profile

′MAupdate′ MA manager Movement Author-
ity

Update of the MA and related informa-
tion (e.g., Static Speed Profile (SSP)).

′trainData′ Train/Engine TrainData Data of the train used to compute brak-
ing curves.

′osAck′ Driver DriversAction Driver confirming for entering in OS
mode.

GA 101015416 Page 49 | 171

6.2. The Data Model

This subsection describes the Data Model, which is the structural part of the SysML model
that represents the software aspects of the system. Tthe Data Model acts as a global
database, storing all the configuration parameters and the current variables of both track-
side and on-board subsystems. The Data Model also serves as a blackboard that allows
each internal function to write and read data to communicate with the other functions. The
Data Model is composed of four main packages, as shown in the Package Diagram (PD) in
Fig. 6.3.

Fig. 6.3. Data Model Package Diagram

The DataType package defines the Enumerations and Types that are used by other pack-
ages. Many of these types are derived from the ETCS-L2 and ETCS-L3 documents. One
notable type is the AreaExtent, which represents a contiguous area of railroad, extending
from start to end. The DataType package is shown in Fig. 6.4.
The packages DriverInterface (Fig. 6.5) and TrainInterface (Fig. 6.6) defines the data and
the types of the information exchanged respectively between the system and the driver and
the train, respectively.
The Configuration package, shown in Fig. 6.7, contains the SysML’s blocks that specify
the configuration parameters of a generic ETCS-L3 system, such as communication and
lineside aspects.
The Trackside package, shown in Fig. 6.8, describes the core software data structures that
form the basis of a ETCS-L3 trackside system.
The Onboard package, shown in Fig. 6.9, describes the core software data structures that
form the basis of a ETCS-L3 on-board system.

GA 101015416 Page 50 | 171

Fig. 6.4. The DataType package BDD

Fig. 6.5. The DriverInterface package BDD

GA 101015416 Page 51 | 171

Fig. 6.6. The TrainInterface package BDD

Fig. 6.7. The Configuration package BDD

GA 101015416 Page 52 | 171

Fig. 6.8. The Trackside package BDD

GA 101015416 Page 53 | 171

Fig. 6.9. The Onboard package BDD

GA 101015416 Page 54 | 171

6.3. The ERTMS Use Cases

This subsection presents the SysML sub-models of the ETCS-L3 use cases, using RDs,
UCDs, and SDs.

6.3.1. Trackside Initialisation

The Trackside Initialisation use case describes the process of bringing the trackside equip-
ment to a state that enables safe operation to begin.
The trackside system is a vital signalling system. Such a system defines a fail-safe state
which is typically attained due to loss of power; after power-on, all detectors report the state
“unknown”. However, it is assumed that configuration data and some vital settings such
as temporary speed restrictions (TSR, slippery track) are stored in non-volatile memory. In
a similar way, it can be safely assumed that trains store vital status information such as
train length and integrity information. The latter kind of information has a long time-to-live
after which it becomes stale. Once the track-train communication is re-established, trains
communicate this information to the RBC.
After power-on, the trackside system acquires point detection from the point control subsys-
tems and other systems such as movable bridges and hot-box detectors (out of the scope
of this project).
Trackside information includes point detection and TTD. Train detection using track circuits
is relatively straightforward because it detects the presence of rolling stock. Axle counting
systems behave differently during power-on; the nature of axle counting systems implies
that train movement during a “dark phase” is not detected. Therefore, any TTD sections
using axle counters enter the state occupied after initialisation. As a consequence, the RBC
cannot issue FS MA but only SR MA’s.
Crucial to trackside initialisation is the acquisition of the safe position of trains. This sub-
sumes that procedures must ascertain that trains haven’t coupled or split and that no non-
reporting rolling stock has entered the network, e.g., to tow stranded trains. This informa-
tion cannot be acquired technically during a dark phase, the management of dangerous
situations must be described in proper procedures involving drivers and signallers. Such
procedures are beyond the scope of this project but should be drawn up and respected by
the Infrastructure Managers (IMs). The Trackside Initialization diagrams are reported in Fig.
6.10 (UCD), in Fig. 6.11 (SD) and in Fig. 6.12 (RD).

GA 101015416 Page 55 | 171

Fig. 6.10. The Trackside Initialization EUC UCD

GA 101015416 Page 56 | 171

Fig. 6.11. The Trackside Initialization EUC SD

GA 101015416 Page 57 | 171

Fig. 6.12. The Trackside Initialization EUC RD

GA 101015416 Page 58 | 171

6.3.2. Normal Train Movement

The Normal Train Movement use case describes the nominal actions performed by the track-
side and a train during its running. In particular, this use case considers the normal running
of a single train with integrity confirmed either by an external device or by the driver. Also,
the presence of the TTD is considered as optional.
Given its scope and regarding high-level topics, requirements of Normal Train Movement are
spread among the different chapters of [42]. Specifically, after a careful analysis of the cited
document, a set of applicable requirements has been identified and reported in the SysML
model. The resulting RDs are depicted in Fig. 6.13, Fig. 6.14 and Fig. 6.15.

Fig. 6.13. Normal Train Movement Requirement Diagram (1/3).

GA 101015416 Page 59 | 171

Fig. 6.14. Normal Train Movement Requirement Diagram (2/3).

Fig. 6.15. Normal Train Movement Requirement Diagram (3/3).

Based on the requirements reported above, the UCD has been designed, and it
is reported in Fig. 6.16. The external actors involved in the use case, repre-
sented as blocks in the diagram, are Driver, Trackside, TMS and TTD. The use
case has also some include relationships with the impacted use cases, which are
Train Position reporting,Integrity Information Management, Communication Management,
Trains Management, and Track Status Management.

GA 101015416 Page 60 | 171

Fig. 6.16. Normal Train Movement Use Case Diagram.

The detailed behaviour of the use case is modelled by the SD in Figure 6.17. The dia-
gram depicts the scenario in which a train, specifically the “Train Position Reporting” sub-
component, sends the TPR to the Trains Manager of the trackside. When this component
receives this information, it computes the updated Train Location and, consequently, up-
dates the Max Safe Front End and the Confirmed Rear End based on the train integrity
confirmation. At last, it updates the TMS with the information regarding the train location.
The underlying hypothesis of this use case is that the TIMS confirms the train integrity,
hence the Trains Manager is also in charge of sending the two signals, ′TSAoccupy′ and
′TSArelease′, to Track Status Manager. This latter component updates the extent of the
corresponding Track Status Areas, also deleting it and clearing the track when the train
reaches the end of the track area controlled by the trackside. In the specific case in which
the train is moving over an Unknown Track Status Area, in the OS-SR mode, the Trains Man-
ager sends the ′TSAunknown′ to the Track Status Manager. At last, in the case in which the
train integrity is reported as lost, the Trains Manager also sends the ′TSAunknown′ to the
Track Status Manager. In all the cases, the Track Status Manager reports the status of the
Track Status Areas to the TMS.

GA 101015416 Page 61 | 171

Fig. 6.17. Normal Train Movement Sequence Diagram - receive TPR from a train.

GA 101015416 Page 62 | 171

In the same use case, the alternative scenario of an ′MA request′ raised by the TMS is
considered; the corresponding sequence diagram is reported in Fig. 6.18. In this scenario,
the message is received by the Route Manager, which asks for setting the points to the
Points Manager. This latter component locks the points (after ensuring that they are in a
clear Track Status Area, and they are not included in a Reserved Status Area) and reports
the status to the Route Management. Under the hypothesis that the points are effectively
locked, The Route Manager locks the route and asks for the creation/update of a Reserved
Status Area, which is at last reported to the TMS.

Fig. 6.18. Normal Train Movement Sequence Diagram - update Train.

A third possible scenario in this use case considers a route extension request from the Route
Manager. The corresponding sequence diagram is reported in Fig. 6.19, and it depicts the
actions of creating/updating the MA and, after the recalculation, its delivery to the Dynamic
Speed Profile Manager component of the train and the update of the TMS.

GA 101015416 Page 63 | 171

Fig. 6.19. Normal Train Movement Sequence Diagram - unexpected situations.

GA 101015416 Page 64 | 171

6.3.3. On Sight Movement

The On-Sight Movement use case allows the trains to enter an occupied line for the purpose
of joining or checking for infrastructure defects. The movement in On-Sight mode cannot be
selected by the driver, but shall be entered automatically when commanded by trackside and
all necessary conditions are met. The On-Sight Movement EUC is the UC where the train
moves in On-Sight mode. This EUC is described using a RD, a SD and a UCD.
There is no dedicated section for On-Sight requirements in [42]. To deal with this issue, a
search for the keywords On-Sight/OS/On Sight is performed. As a result, six requirements
are identified and are represented by a SysML RD, as shown in Fig. 6.20.

Fig. 6.20. On-Sight Requirement Diagram.

The UCD is designed by analysing the requirements of the RD. It is then refined us-
ing the OS procedure described in subset-26 part 5 page 35. It is important to note
that the OS UC was not described in [4]. It was reported that the On Sight Move-
ment use case was merged with the Sweeping use case since the On-sight L3 fea-
tures are related to the sweeping functionality. To this aim, the description of Sweep-
ing UC reported in [4] has been analysed. The external actors detected are TTD, TMS,
Driver and Dispatcher. The related internal functions detected are Route Management,
TTD Management, Track Status Management. The UCD is represented in the Figure 6.21.
In this figure, the elements coloured in magenta are not reported in the description of Sweep-
ing UC in [4]. Indeed, from the requirement “REQ-TrainLoc-5”, the TIMS (external device)
and the On-board functions Train Position Reporting and Integrity Information Management
are identified. From the requirement “REQ-MovSR-2”, the Train Localization Unit is de-
tected. From the requirement “REQ-MA-12”, the Trackside functions MA Management
and Reserved Status Management are detected. Finally, from the procedure OS de-
scribed in subset-26, the On-board functions Speed and Distance Supervision and Man-
age Dynamic Speed Profile are identified.

GA 101015416 Page 65 | 171

Fig. 6.21. On-Sight UC Diagram.

Two SDs related to the UC are designed by analysing the RD: the first describes the transi-
tion from the SR mode to the OS mode and the second reports an example of interactions
within the OS mode.
The first SD is depicted in Fig. 6.22. The TIMS sends a message ′TIIreceived()′ to the “In-
tegrity Information Management” function which computes integrity information and sends
a message ′integrityInfoRecv()′ to the Train Position Reporting function. The latter com-
putes the train position report and sends it in a message to the Trains Management which
updates the Confirmed Rear End (CRE) and the Maximum Safe Front End (MaxSFE) of
the train. In the case that the train, moving in FS mode, is located in the rear of an
adjacent unknown/occupied track status area, the MA Management function computes
an OS mode profile for this train and issues an MA with mode profile OS over the Un-
known/Occupied Track Status Area (TSA) (′MAupdate()′ in Fig. 6.22). Then, the Man-
age Dynamic Speed Profile function sends to the Driver a request for acknowledgement
for OS mode (′recvAckRequest()′). This is represented by a synchronous message in the
SD. The Driver sends a reply message Acknowledgement (ACK) for OS mode to the func-
tion Manage Dynamic Speed Profile. Finally, the on-board system moves to the mode OS
(′Transition to OS mode′ in the figure).

GA 101015416 Page 66 | 171

Fig. 6.22. On-Sight Sequence Diagram: Transition to OS mode.

The second SD is depicted in the Fig. 6.23, and it describes the behaviour of trackside
and on-board systems to represent the requirements “REQ-TrainLoc-5” and “REQ-TrainLoc-
6”. For the requirement “REQ-TrainLoc-5”, the TIMS sends a message ′TIIreceived()′

to the Integrity Information Management function. The last computes integrity informa-
tion and sends a message ′integrityInfoRecv()′. The Train Position Reporting function
sends a request for position ′positionRequest()′ to the TLU which replies with the posi-
tion ′positionReceived()′. The Train Position Reporting function computes the train posi-
tion report and sends it in a message to the Trains Management. In the case that the
mode is On-Sight and the integrity is confirmed by TIMS, the Trains Management up-
dates the CRE. For the requirement “REQ-TrainLoc-6”, the behaviour is similar to that of
“REQ-TrainLoc-5”. The Driver sends a message ′integrityConfirmedByDriver()′ to the In-
tegrity Information Management function. In the case that the mode is OS, the integrity is
confirmed by the Driver and the trackside is configured to accept driver confirmation, the
Trains Management updates the CRE.

GA 101015416 Page 67 | 171

Fig. 6.23. On-Sight SD: Train in OS mode.

GA 101015416 Page 68 | 171

6.3.4. Loss of Train Integrity

The Loss of Train Integrity (LTI) EUC is a hazardous scenario. It corresponds to the situation
where some wagons are unintentionally unleashed from the train, which may induce severe
accidents if not timely detected. The train integrity is considered to be lost in either of the
following cases: a loss of integrity is explicitly reported, or integrity is assumed to be lost,
namely due to the expiry of the Integrity Wait Timer or in case new Validated Train Data are
received. In fact, if a train splits unintentionally, the dispatcher needs to take appropriate
measures, in particular, to prevent the collision of the dislocated part of the train with some
following trains. It is also worth mentioning that under ETCS-L3 operation, the train integrity
information has a significant impact on the performance of the line.
The LTI EUC is described through three SysML diagrams: RD (“LTI RD”), SD (“LTI SD”)
and UCD (“LTI UCD”).
To design the “LTI RD”, ten requirements in the section Loss of Train Integrity (section 3.17)
in [42] are identified. Detected requirements are represented by a SysML RD, as shown in
Fig. 6.24.

text=The L3 system shall manage the loss
of train integrity in a safe manner

Fig. 6.24. Loss of Train Integrity Requirement Diagram.

The UCD related to LTI EUC is designed by analysing the related description reported in
[4]. Then, it is refined using the “LTI RD” (cf. Fig. 6.25). According to the requirement
“REQ-LTI-5”, the external device (TIMS) is missing in [4]. This external actor is represented
with a magenta colour in Fig. 6.25 representing the “LTI UCD”. The TLU and the trackside
function “Trains Management” are also added to the “LTI UCD”, and they are represented

GA 101015416 Page 69 | 171

with a magenta colour. Indeed, from the functional architecture, the “Trains Management”
function is in charge of receiving the train position report from the On-board system and
sending messages to “Track Status Management” function in order to update the status of
track areas. The TLU is required for computing the train localization included in the train
position report.

Fig. 6.25. Loss of Train Integrity UCD.

From the identified LTI related requirements, the interaction between LTI EUC and ETCS-L3
actors is depicted using two SysML SDs.
The first “LTI SD” (see Fig. 6.26) represents an example of interactions of the LTI
EUC with ETCS-L3 actors. The onboard function “Integrity Information Management”
receives Train Information Management (TII) either from the external device TIMS
(′TIIreceived()′) or from the Driver (′integrityConfirmedByDriver()′). Then, the
“Integrity Information Management” function computes the integrity status and sends
it to the “Train Position Reporting” function (′integrityInfoRecv()′). Then, the
“Train Position Reporting” requests position from the Train Localization Unit which com-
putes train position and replies to the request (′positionRequest()′ and ′positionReceived()′).
The “Train Position Reporting” sends the train position report to the “Trains Management”
(′TPRReceived()′).
The interactions between the LTI EUC and ETCS-L3 actors and ETCS-L3 internal
functions depend on the status of integrity received in the TPR (Q LENGTH). In-
deed, the variable Q LENGTH contains the status of integrity computed by the function
“Integrity Information Management”.

• Q LENGTH = MonitoringDevice means that the integrity in confirmed by the TIMS. In
this case, the “Trains Management” function restarts the wait integrity timer (“REQ-
LossTI-5”), and computes the areas of track which are released/occupied by the train.
Then it sends the information to the “Track Status Management” to update the track
status areas (′TSAoccupy()′, ′TSArelease()′).

• Q LENGTH = Lost means that the integrity is lost, and it is reported by the TIMS.
In this case, the $mathit“Trains Management” function computes the area of track
which is unknown. Then, it sends the information to the “Track Status Management”

GA 101015416 Page 70 | 171

to update the track status area (′TSAunknown()′, “REQ-LossTI-1”). The Driver
is aware of the situation by the “Integrity Information Management” Function
(′integrityInfoRecv()′, “REQ-LossTI-7“)

• Q LENGTH = NoInformation means that the integrity is unknown, and it is reported
by the TIMS. In the case that the wait integrity timer expires, Trackside considers
that the integrity is lost (“REQ-LossTI-4”). The “Trains Management” function com-
putes the area of the track which is unknown. Then, it sends the information to the
“Track Status Management” to update the track status area (′TSAunknown()′, “REQ-
LossTI-2”) and it reacts as configured (“REQ-LossTI-3”).

Fig. 6.26. Loss of Train Integrity Sequence Diagram 1.

The second “LTI SD” (see Fig. 6.27) represents an example of interactions of the LTI EUC
with ETCS-L3 actors in the case that the integrity is confirmed by the driver.
While modelling this sequence diagram, some missing requirements have been identified.
For instance, if the trackside is not configured to accept train integrity from the driver, then its
expected reaction is not specified. To address this issue, the following additional requirement
is proposed: if the trackside is not configured to accept a confirmation of the train integrity
by the driver, then it shall react as if the received TPR does not hold any train integrity
information. This solution is, at the same time, consistent with guidance of “REQ-LossTI-4”
(if the L3 Trackside is configured not to accept Train Integrity confirmed by Driver, and Train

GA 101015416 Page 71 | 171

Integrity confirmed by Driver is reported, then the L3 Trackside will treat this as “No train
integrity information”) and inconsistent with guidance of “REQ-LossTI-8” (if confirmation of
Integrity by the driver is not accepted, then the L3 Trackside can ignore any reports with Train
Integrity Confirmed by Driver). The proposal is to delete the guidance of “REQ-LossTI-8”.
The description of interactions is as follows. If the Trackside is configured to ac-
cept integrity confirmation by the driver (“REQ-LossTI-8”), the “Trains Management”
function stops the wait integrity timer (“REQ-LossTI-6”). It computes the areas
of track which are released/occupied by the train. Then it sends the information
to the “Track Status Management” to update the track status areas (′TSAoccupy()′,
′TSArelease()′). In the case that the Trackside is not configured to accept integrity confirma-
tion by the driver, it reacts as receiving a position report with ”no train integrity information”.

Fig. 6.27. Loss of Train Integrity Sequence Diagram 2.

It is important to underline that identifying missing requirements as early as possible is cru-
cial since that has a positive impact during the subsequent engineering activities [45].

GA 101015416 Page 72 | 171

6.3.5. Staff Responsible

SR mode is the primary way to move a non-communicating train or a communicating train
without a known location. The procedure to authorize the movement is out of the scope of
this use case. The detailed requirements are given in a specific chapter of [42], leading to a
Requirement Diagram with five requirements as depicted in Fig. 6.28.

Fig. 6.28. Staff Responsible Requirement Diagram.

The UCD is reported in Fig. 6.29. The main external actors are the Driver and the Dis-
patcher. The use case has direct relationships with the other three use cases, as depicted
in the figure.

Fig. 6.29. Staff Responsible Use Case Diagram.

The behaviour of this use case has been modelled with the SD in Fig. 6.30. Following an

GA 101015416 Page 73 | 171

MA Request from a train in SR mode, the trackside has to provide an authorization modelled
through the ′MAupdate′ message. Three different scenarios are possible: the train is located
in rear of an adjacent Unknown TSA created by the TMS and not used for another train; the
train has a position given by the Dispatcher, and it is in the rear of an adjacent ; the train has
a known location. In the first case, the distance to run is limited to the adjacent Unknown
Track Status Area. In the second case, the distance to run is within the and, if possible,
the trackside includes the list of the balise groups the train is allowed to pass in the given
authorization. In the last case, the trackside maintains the previous CRE from when the
train reports in SR until the train transitions out of SR to FS/OS mode and reports with Train
Integrity confirmed; as also described in the Normal Train Movement, the corresponding
TSA is set to UNKNOWN.

GA 101015416 Page 74 | 171

Fig. 6.30. Staff Responsible Sequence Diagram.

GA 101015416 Page 75 | 171

6.3.6. Points Control

An UCD is built and depicted in Fig 6.31: Points Control’s EUC interacts with four
trackside internal functions (i.e., Points Management, “Reserved Status Management”,
“Track Status Management” and “Route Management”) and TMS as an external actor.

Fig. 6.31. Points Control UCD.

On the base of the UCD and by analysing the reported requirements, three scenarios are
detected.

Nominal scenario: referring to ”REQ-PTS-1” and ”REQ-PTS-2”, it describes the interac-
tions between the different actors when the TMS just requests the creation of a route (see
Fig. 6.32).

Degraded scenario: referring to ”REQ-PTS-3”, it describes the exchange of messages
between TMS and the “Points Management” function when TMS forces the release of some
points (see Fig. 6.33).

Sweeping scenario: referring to “REQ-PTS-4”, it describes the case of a sweeping train
that frees some points: in this case, the Point Management internal function communicates
with the “Track Status Management” to restore the correct status of an area (see Fig. 6.34).
According to the description of the scenarios already provided, Fig. 6.35 depicts a RD where
the four considered requirements for this EUC are reported as well as their satisfying model
elements.

GA 101015416 Page 76 | 171

Fig. 6.32. Points Control SD (nominal scenario).

GA 101015416 Page 77 | 171

Fig. 6.33. Points Control SD (degraded scenario).

Fig. 6.34. Points Control SD (sweeping scenario).

GA 101015416 Page 78 | 171

Fig. 6.35. Points Control allocation RD.

GA 101015416 Page 79 | 171

6.3.7. Sweeping

Sweeping is that state of the system where a train, that is authorized by the L3 Trackside in
OS or SR mode, moves into a track area that is in the unknown state. The objective of this
functionality is to have a train that “cleans” the area safely. The Sweeping EUC is the UC
implementing this functionality. It is described using three SysML diagrams: RD, SD and
UCD.
Since no dedicated section for sweeping requirements is found in [42], a search for keywords
swept/sweeptable/sweeping is performed. As a result, eight requirements are identified and
are represented by a SysML RD, as shown in Figure 6.36.

Fig. 6.36. Sweeping Requirement Diagram.

The UCD related to Sweeping EUC is designed by analysing the description of Sweeping
EUC reported in [4]. Then, it is refined using the Sweeping RD (cf. Figure 6.36). According
to the requirement “REQ-TrackStatus-5”, the On-board function “Train Position Reporting”
is missing in [4]. This function is represented in magenta colour. The train position report
is received by the function “Trains Management” which is also added in magenta colour in
Fig. 6.37 representing the Sweeping UCD.

GA 101015416 Page 80 | 171

Fig. 6.37. Sweeping UC Diagram.

From the identified requirements, the interaction between Sweeping EUC and ETCS-
L3 actors and ETCS-L3 functions is depicted using two SysML SDs. The first
“Sweeping SD” is depicted in the Figure 6.38. The interaction is related to the re-
quirements “REQ-TrackStatus-6” and “REQ-TrackStatus-7”: the TMS sends a request
to “Track Status Management” to create an Unknown TSA (′unknownTSA()′). If the
area is sweepable, the “Track Status Management” computes the length of TSA. If
the length is longer than a configurable minimum length (MIN LEN UNKNOWN), the
“Track Status Management” creates the TSA. Else, nothing happens. If the area is non-
sweepable, the “Track Status Management” creates the UTSA without any length verifica-
tion.

Fig. 6.38. Sweeping Sequence Diagram: TMS request.

GA 101015416 Page 81 | 171

The second “Sweeping SD” is depicted in Fig. 6.39. The interaction is related to the
requirements “REQ-Shunting-3” and “REQ-TrackStatus-5”.
For the requirement “REQ-Shunting-3”, The TMS sends a request to the
“Track Status Management” to enable a shunting Area (′enableDisableShuntingArea()′).
The “Track Status Management” sets this area as unknown and non-sweepable.
For the requirement “REQ-TrackStatus-5”, the “Train Position Reporting” function sends
a TPR to “Trains Management” function (′TPRReceived()′). The “Trains Management”
computes the Minimum Safe Front End (minSFE). In the case that the minSFE is located in
an unknown track status area (UTSA), the “Trains Management” computes the new size of
the UTSA and sends a request (′unknownTSA()′) to “Track Status Management” function
in order to reduce it. The “Track Status Management” updates the TSA with the received
information.

Fig. 6.39. Sweeping Sequence Diagram.

GA 101015416 Page 82 | 171

6.3.8. Loss of Communication

The Loss/Restore of Communication use case is related to the degraded mode occurring
when the L3 Trackside loses the supervisions of one or more trains under its control. L3
Trackside manages a train losing its connection and involves the train status management
and the track status. The use case also considers the actions that need to be taken to restore
the communication between on-board and trackside subsystems. This use case assumes
that the Train is not currently, and does not enter subsequently, in a RadioHole and has not
been sent Reversing Area Information. Loss of communication in these last two situations
are dealt with by dedicated Use Cases.
The specification requirements relevant to this use case have been extracted from [42] and
depicted in the requirement diagram reported in Figure 6.40.

Fig. 6.40. Loss of Communication Requirement Diagram.

The Use Case Diagram for Loss of Communication is designed on the basis of the require-

GA 101015416 Page 83 | 171

ments reported above and is illustrated in Figure 6.41. The external actors that partake
in the use case are the Traffic Management System (<<Block>> TMS) and the Trackside
Train Detection (<<Block>> TTD). In addition, the Infrastructure Manager actor has been
included according to the Engineering Rule ENG-LossComm-1 in Section 2.14.2 of [46].
The functions involved, instead, are Communication Management, Track Status Manage-
ment, Train position reporting, TrainsManagement and Reserved Status Management (see
the <<include>> relation).

Fig. 6.41. Loss of Communication Use Case Diagram.

The detailed behaviour of the Use Case specified in the Sequence Diagrams reported in
Figure 6.42. According to requirements in Figure 6.41, for each connected train, the L3
Trackside has a Session Timer and can be configured to also depend on a Mute Timer. It
is assumed that the timeout for the Mute Timer, if configured, is smaller than the one for the
Session Timer. Figure 6.42 illustrates the behaviour of the Use Case both when the Mute
Timer is configured (top diagram) and when it is not (bottom diagram). When the Mute timer
is configured, every time a valid message is received from the train, the L3 Trackside resets
both timers. When the timeout for the Mute Timer triggers, the communication with this train
is considered lost; in this case, the area of the track in front of the train is considered to have
Track Status Unknown. If the communication session is restored before the Session Timer
expires, the Track Status will be recovered, after L3 Trackside has checked that TRAIN ID
and TRAIN LENGTH, sent in the Train Position Report, have not changed. In this case, Track
Status is cleared according to the presence or not of TTD and MA assignment can proceed
according to the other functional requirements. If the communication session is not restored
in time, or communication is restored, but the train is not recognised as the same train, then
the Track Status will remain Unknown and any reserved status area for the train is released.
Since the Mute Timer is not mandatory, if not used, the SESSION EXPIRED TIMEOUT
plays its role. When this timeout triggers, the effects of the track status and reserved status
are the same as the ones described when the Mute Timer is configured.

GA 101015416 Page 84 | 171

Fig. 6.42. Loss of Communication Sequence Diagrams.

GA 101015416 Page 85 | 171

6.4. The Trackside Behaviour

This subsection presents the SysML sub-models of the ETCS-L3 trackside internal func-
tions, using SMDs.

6.4.1. Track Status Management

The “Track Status Management” function is the trackside function in charge of determining
the Track Status within its Area of Control. The Track Status represents the information held
within the trackside about whether the track is occupied or not; any area of track within the
Area of Control can be OCCUPIED, UNKNOWN or CLEAR. The Track Status is OCCUPIED if
the trackside considers that there is a communicating train on the track with Train Integrity
confirmed. Instead, it is CLEAR (also known as FREE) when the trackside considers that
there is no obstacle on the track. At last, the Track Status is UNKNOWN when the trackside
is unsure whether there is a train or an obstacle on the track, or it is certain that there is a
train, but it does not know the location of the train within the area. Hence, the ’Unknown’
state is used both for a specific train and also for any other reason, not associated with a
train (e.g., created by the Dispatcher, or corresponding to an Active Temporary Shunting
Area). An Unknown Track Status Area created by the Dispatcher can be Sweepable or
Non-Sweepable. Among the states, in case of overlap, the function gives precedence to
Occupied over Unknown as it is more restrictive.
Track Status can be considered as a collection of Track Status Areas, each of which can be
Occupied or Unknown. Any area of track that is not covered by a Track Status Area (Occu-
pied or Unknown) is considered as Clear. An Occupied Track Status Area is possible only
when the trackside receives at least one TPR, with Train Integrity confirmed. An Unknown
Track Status Area is consequent to several reasons:

• the trackside has received at least One Position Report, but the Train Integrity is lost or
never confirmed;

• the trackside is no longer receiving the Train Position Report (i.e., the communication
is lost);

• the trackside has received an End of Mission;
• the Dispatcher has created an Unknown Track Status Area (Sweepable or Non-

Sweepable) via the TMS;
• during the initialization procedure of the trackside, where all the Area of Control is

Unknown;
• if present, the TTD input is Occupied, but there is no corresponding Train Position

Report;
• the track within an Active Shunting Area is Unknown.

The objective of the function is to calculate the Consolidated Track Status of the entire track
within the Area of Control according to the current state of all Track Status Areas. In addi-
tion, it sends information to the Points manager. Therefore, “Track Status Management” is
modelled by two state machines. The machine in Figure 6.43 models the global behaviour
of the Track Status manager. The safe handling of overlapping Unknown track sections is in
charge of the algorithm (do activity) calculating the Consolidated Status Area.
The machine in Fig. 6.44 describes the internal behaviour of a generic Track Status Area
and must be instantiated for each Track Status Area. An assumption is that information is

GA 101015416 Page 86 | 171

available, allowing the association of the incoming signals to the specific track to which they
are sent. The three possible entry points of the machine allow the trackside to immediately
create an Occupied or Unknown (either Sweepable or Non-Sweepable) Track Status Area.
Different transitions exist, which can vary the state of a Track Status Area or delete the infor-
mation, enabling the trackside to consider the Area as Clear. Mainly, when the train integrity
is confirmed, either by an external device or by the driver and the system is configured for
this, the status is updated to Occupied. Similarly, after TMS requests, the state can be
updated.

Fig. 6.43. State Machine Diagram for the “Track Status Management” (global).

Fig. 6.44. State Machine Diagram for a single Track Status Area.

GA 101015416 Page 87 | 171

6.4.2. Reserved Status Management

The “Reserved Status Management” is a trackside function devoted to the reserving of an
area into which the train is authorised to move. Specifically, it manages the information held
within the trackside about whether the track is reserved for a train or not; if any part of the
track within the Area of Control is reserved for a train, the Reserved Status is Reserved. An
area of the track must be Reserved before the trackside authorizes a train to move through
that area (i.e., before sending a ′Movement Authority′ to a train for that area of the track,
authorizing an SR movement or sending Route Related Information as part of handover to
an adjacent trackside). The Reserved State is separate from the states defined for Track
Status. Similarly to the Track Status, Reserved Status can be considered as a collection of
Reserved Status Areas. A Reserved Status Area is always for a specific train, even if the
Train ID is not known yet.
The management of a Reserved Status Area follows three possible causes:

• the trackside will issue an SR Authorization to a train;
• the trackside will issue a new or extended Movement Authority to a train;
• the trackside may retain a Reserved Status Area behind a train in a Reversing Area.

The individual Reserved Status Areas can overlap Track Status Areas which are Unknown or
Occupied. Reserved Status Areas do not overlap with each other, and any area of track that
is not covered by a Reserved Status Area is not reserved [42]. Reserved Status Areas can
be created or extended, but also reduced following a request to shorten an authorisation, for
example, if there is a cooperative shortening of a Movement Authority. After its removal, the
corresponding area is not reserved.
The behaviour of the “Reserved Status Management” is represented by the SMD in Figure
6.45. When receiving an ′RSArequest′ message, the state machine creates/updates each
Reserved Status Area requested in the received message. For each create/update request,
the internal, machine modelling a single Track Status Area is updated, and, if necessary,
created or removed. After the complete update of the Reserved Status Areas, the state of
the general state machine comes back to ’Idle’, releasing the ′reportRSA′ message. Simi-
larly, when the machine receives the signal ′RSArelease′, it behaves similarly. At last, when
the machine receives the requestPointNotReserved message, it enters the state points re-
quested, where it computes the locations of the points. After finishing the computation, the
machines come back to ’idle’, sending the reportPointNotReserved message.

GA 101015416 Page 88 | 171

Fig. 6.45. State Machine Diagram for the Reserved Status Management.

GA 101015416 Page 89 | 171

6.4.3. Trains Management

The “Trains Management” function is similar to the corresponding function in ETCS L2, but
it takes different inputs [41]. The following main inputs are considered:

• The Position Report (TPR, from the ETCS On Board);
• The Validated Train Data (VTDR, from the ETCS On Board);
• The timeoutEvent (from the Communication manager).

The state machine modelling the internal behaviour of this function is reported in Figure 6.46.
This state machine is instantiated for each train connected to the trackside. Each machine is
supposed to communicate with the train whose NID ENGINE is specified by the Train Data
and locally stored by the “Trains Management”. The machine is activated after the SoM (not
modelled); similarly, termination after EoM is not modelled. The objective of the modelled
function is to determine the train location and send the Track Status Manager the proper
signals to update the Track Status Area (i.e., the Occupied, Unknown and Release signals).
Sleeping and non-leading engines are not considered in this model. The signals to the Track
Status manager are determined by checking the train length, updating the Front End and
the Rear End of the train. State transitions are specified according to the requirements in
[42], the transitions are enabled by the evaluation of conditions, including the availability of
information about the train integrity. If an unexpected or conflicting position of the train is
detected, an alert is sent to the TMS and a safe procedure must be performed. In case
the communication with the train is lost (the mute timer is expired), this machine receives
the ′timeoutEvent′ from the “Communication Management and waits in the state mute timer
expired for a possible valid reconnection of the train. Waiting in this state, if the machine is
alerted for a session timer expiration, then it asks the “Track Status Management” to release
the Track Status Area. Similarly, if the TRAIN INTEGRITY WAIT timer expires, the machine
asks the “Track Status Management” to set the specific Track Status Area as unknown.

GA 101015416 Page 90 | 171

Fig. 6.46. State Machine Diagram for the Trains Management trackside function

GA 101015416 Page 91 | 171

6.4.4. Movement Authority Management

The “Movement Authority Management is the function in charge of delivering the MAs to
the train. The state machine representing the internal behaviour of this function is depicted
in Fig. 6.47. This state machine is triggered by an ′MA request′ and leads the machine
to the state ’Idle. Then, to manage a single MA request, the internal machine is entered,
and the specific validation of the MA is performed. Specifically, the validity of the request is
validated against the conditions that a Danger Point should be at or in the rear of the CRE of
the preceding train, and there should be at least the distance of the L3 Margin between the
End of Authority (EoA) and the CRE. If the conditions are satisfied, the MA boundaries are
computed and the MA is issued. Otherwise, the procedure fails, and the MA is not delivered.

Fig. 6.47. State Machine Diagram for the Movement Authority Management trackside
function

GA 101015416 Page 92 | 171

6.4.5. Route Management

The “Route Management” function is in charge of managing the setting, releasing and lock-
ing of Routes. As stated in [41], this function is the same as in ETCS-L2. Specifically,
ETCS-L2 assumes the availability of an external interlocking system, whereas in ETCS-L3
the interlocking functions are assumed to be contained within the ETCS-L3 functions. How-
ever, no new requirements for “Route Management” are introduced in [42]. Interlocking for
moving block was discussed in MOVINGRAIL (Deliverable D1.1 [43]) that proposed to in-
clude the flank protection function into the ETCS-L3 “Route Management”. This point is
undecided yet, and it could bring to a possible future extension.
Anyway, an abstract high-level model of this function is provided as it has several interactions
with other trackside components and functions, including “Reserved Status Management”
(that is L3 specific).
The state machine in Figure 6.48 models the general behaviour, and it must be instantiated
for each route. The TMS sends the route request and the related information to the Route
manager. The request may have been raised by the first MA or by subsequent MAs. The
function interacts with the Points management function to set the points for the route, i.e., all
the points in the running route. The set of points could also include any adjacent points for
flank protection, according to what has been proposed by the MOVINGRAIL project.
The Points manager provides the “Route Management” with a report about the points status,
if the required points cannot be set the route cannot be created/extended/reduced, otherwise
the “Route Management” interacts with the Reserved Status manager to check if the route
can be reserved. Again, if the check fails, the route cannot be reserved and the procedure
represented in the state machine is aborted, otherwise information about the route exten-
sion/reduction is sent to the MA manager and the route is reserved. It is locked as soon
as the train occupies the first track. The route is released when the train fully clears all the
tracks in the route.

Fig. 6.48. State Machine Diagram for the Route Management trackside function

GA 101015416 Page 93 | 171

6.4.6. TTD Management

The Trackside Train Detection(TTD) Management function is a trackside function devoted
to managing the status of TTDs. It is used only for an MB system using Trackside Train
Detection. The main objectives of the “TTD management” function are:

• receive and compute a report from the Trackside Train Detection.
• receive and compute train location information (minSFE, MaxSFE, Minimum Safe Rear

End (minSRE), Maximum Safe Rear End (MaxSRE)) from “Trains Management” func-
tion.

• manage the lack of synchronisation between TTD occupancy and trains information
during normal operation.

The state machine for “TTD management”, represented in Fig. 6.49, is designed using TTD
requirements reported in [42] and following the architecture defined in section 6.1.
To describe the behaviour of this state machine, some variables and functions are defined:

• ′ReceiveTrainInformation()′ updates the information of trains using the received in-
formation from “Trains Management” function.

• ′ReceiveTTDReport()′ updates the information on TTD status using the received
TTDR. TTDRs are stored with a timestamp.

• ′TTD STATUS(n)′ returns the status of TTD number n. Two values are possible:
CLEAR and OCCUPIED.

• ′Start(synchronizationT imer)′ starts the synchronization timer.
• ′Reset(synchronizationT imer)′ restarts the synchronization timer.
• ′TTD(position)′ returns the TTD number where the ”position” is located.
• ′MaxSFE(Train)′ returns the position of the Max Safe Front End of the Train passed

as a parameter.
• ′MinSFE(Train)′ returns the position of the Min Safe Front End of the Train passed

as parameter.
• ′MaxSRE(Train)′ returns the position of the Max Safe Rear End of the Train passed

as parameter.
• ′MinSRE(Train)′ returns the position of the Min Safe Rear End of the Train passed

as a parameter.
• ′send(Track Status Management, Clear(Track Status(TTD(MaxSFE(Train)), train)))′

sends to the function “Track Status Management” a message to clear the track status
identified by the ID of the train and the TTD occupied by the MaxSFE of the train. The
same function is defined with the minSRE.

• The DESYNCHRONISATIONTIMER is configured at L3 Trackside level. It is assigned to
a TTD if the train position refers to an occupied track section and the corresponding
TTD is free, or if a TTD is occupied and there is no corresponding train position for
the same track section. Indeed, for a train during normal movement, it may occur that
the train physically occupies a TTD before it has reported its position within the TTD
boundary (or vice versa).

GA 101015416 Page 94 | 171

Fig. 6.49. State Machine Diagram for the Trackside Train Detection Management function

Initially, the TDD Management State Machine (“TTD SM”) is in an ’Idle’ state. After a
SoM, the DESYNCHRONISATIONTIMER is started (′Start(synchronizationT imer)′) and the
“TTD SM” passes to the macro state ’Receive Report’. In this state, the “TTD SM” performs
at the same time three parallel activities represented by states.

• The first is the state ’Wait Train Information’ : when the trackside function

GA 101015416 Page 95 | 171

“Trains Management” sends the train location information, the “TTD SM” can compute
the ID of the train and update the information about this train.

• The second state is ’Wait Trackside Train Detection Report’ : when the external actor
TTD sends a Trackside Train Detection Report, the “TTD SM” can update the informa-
tion on TTD status.

• The third state is ’Monitor presence trains within area of control’. In this state, the
“TTD SM” updates the list of trains within the area of control using the received train
location information: if the MaxSFE of the train is located in the first TTD of the area of
control, the ID of the train is added to the list. If the MinSRE comes out the last TTD,
the ID of the train is removed from the list.

If the DESYNCHRONISATIONTIMER is elapsed, the “TTD SM” moves to the state ’Synchroni-
sation between TTD occupancy and TPR for each train’. For each train within the area of
control, the “TTD SM” verifies the front train Occupancy (“REQ-TTD-2”) and the Rear Train
Occupancy (“REQ-TTD-3”).

• In the state ’Verify Front Train Occupancy’, the “TTD SM” checks
if the Max Safe Front End of the train is located in a clear TTD
(′TTD STATUS(TTD(MaxSFE(Train))) == CLEAR′) and the
Min Safe Front End of the train is located in an occupied TTD
(′TTD STATUS(TTD(MinSFE(Train))) == OCCUPIED′) and the length
of track area occupied by the train is not shorter than the train length
(′TrackArea >= trainlength′), then the “TTD SM” sends to the function
“Track Status Management” a message to clear the track status identi-
fied by the ID of train and the TTD occupied by the MaxFSE of the train
(′send(Track Status Management, Clear(Track Status(TTD(MaxSFE(Train)), train)))′),
see Fig. 6.50.

Fig. 6.50. Shortening of front of Track Occupancy due to clear TTD (FMB)

• In the state ’Verify Front Train Occupancy’, the “TTD SM” checks if the MaxSFE and
the minSFE of the train are located in a clear TTD then the “TTD SM” shall correlate
the TTD occupancy to the train location information by adding a delay timer which is
the DESYNCHRONISATIONTIMER (see Fig. 6.51).

GA 101015416 Page 96 | 171

Fig. 6.51. The Max Safe Front End and the Min Safe Front End of the train are located in a
clear TTD (FMB)

• In the state ’Verify Front Train Occupancy’, the “TTD SM” checks if the Max Safe Front
End and the Min Safe Front End of the train are located in an occupied TTD then this
situation is normal (see Fig. 6.52).

Fig. 6.52. The Max Safe Front End and the Min Safe Front End of the train are located in an
occupied TTD (FMB)

• In the state ’Verify Front Train Occupancy’, the “TTD SM” checks if the Max Safe Front
End of the train is located in an occupied TTD and the Min Safe Front End of the train
is located in a clear TTD then this situation is not possible and the “TTD SM” shall
contact the TMS (state Contact TMS Front End prb).

• In the state ’Verify Rear Train Occupancy’, the “TTD SM” checks
if the Max Safe Rear End of the train is located in an occu-
pied TTD (′TTD STATUS(TTD(MaxSRE(Train))) == OCCUPIED′)
and the Min Safe Rear End of the train is located in a clear TTD
(′TTD STATUS(TTD(MinSRE(Train))) == CLEAR′) and the length
of track area occupied by the train is not shorter than the train length
(′TrackArealength >= trainlength′), then the “TTD SM” sends to the func-
tion “Track Status Management” a message to clear the track status iden-
tified by the id of train and the TTD occupied by the minSRE of the train
(′send(Track Status Management, Clear(Track Status(TTD(MinSFE(Train)), train)))′),
see Fig. 6.53.

GA 101015416 Page 97 | 171

Fig. 6.53. Shortening of rear of Track Occupancy due to clear TTD (FMB)

• In the state ’Verify Rear Train Occupancy’, the “TTD SM” checks if the Max Safe Rear
End of the train and the Min Safe Rear End of the train are located in a clear TTD
then the “TTD SM” shall correlate the TTD occupancy to train location information by
adding a delay timer which is the DESYNCHRONISATIONTIMER(see Fig. 6.54).

Fig. 6.54. The Max Safe Rear End and the Min Safe Rear End of the train are located in a
clear TTD (FMB)

• In the state ’Verify Rear Train Occupancy’, the “TTD SM” checks that the Max Safe
Rear End and the Min Safe Rear End of the train are located in an occupied TTD then
this situation is normal (see Fig. 6.55).

Fig. 6.55. The Max Safe Rear End and the Min Safe Rear End of the train are located in an
occupied TTD (FMB)

• In the state ’Verify Rear Train Occupancy ’, the “TTD SM” checks that the Max Safe
Rear End of the train is located in a clear TTD and the Min Safe Rear End of the train
is located in an occupied TTD then this situation is not possible and the “TTD SM” shall
contact the TMS (state ’Contact TMS Rear End prb’).

GA 101015416 Page 98 | 171

After verifying the rear and the front occupancies for all trains within the area of control, the
“TTD SM” restarts the DESYNCHRONISATIONTIMER.

GA 101015416 Page 99 | 171

6.4.7. Manage Temporary Speed Restrictions

The “Manage Temporary Speed Restrictions is the trackside function in charge of managing
Temporary Speed Restrictions (TSRs). This procedure is described in [47], together with the
possible requests and the detailed list of their attributes. Briefly, this function is solicited by
the following requests:

• Establish a TSR;
• Activate a TSR;
• Deactivate a TSR;
• Remove a TSR;
• Purge a TSR;
• Cancel the purge of a TSR.

The State Machine Diagram for each TSR is depicted in 6.56. In brief, after establishing a
TSR, it is in its ’Established’ state. After the activation with the proper message, the state
is updated to ’Activated’. When the conditions leading to the TSR are restored, it can be
(in sequence) deactivated, removed and purged. After the removal of a TSR, the trackside
could cancel the purge of a TSR, so returning to the state ’Activated’.

Fig. 6.56. State Machine Diagram for the Manage TSRs trackside function

GA 101015416 Page 100 | 171

6.4.8. Points Management

Points Management is the function of the trackside devoted to the management of points
locking and unlocking. Its behaviour is represented by a state machine whose main SMD is
in Fig. 6.57. This SMD contains the initial pseudo-state of the behaviour (init) that brings
into the waiting state. From this last state, three possible transitions are present. These tran-
sitions are nominal, degraded and sweepable, that respectively refer to Nominal, Degraded
and Sweepable: the three scenarios of the Points Control EUC (see Subsection 6.3.6). The
first two transitions bring to the CreateRoute composite state from two different entry points
(the nominal transition brings to mainentry while the degraded transition to forcedentry).

Fig. 6.57. SMD for the Points Management.

The CreateRoute composite state is described as follows (see Fig. 6.58).
There are two variables that are local to this state machine: retval (containing the status of
the entire operation) and the continueFlag (representing that there are some further points
to explore). This state machine describes the two phases of the creation of a route from the
point of view of Points Control. The first phase is related to checking that the involved points
in the route to create are in an area that is Occupied/Unknown (Track Status) or is Reserved
(Reserved Status). When a point is in one of these conditions, the state machine exits with
retval equals to False. In case the checking phase ends with success, the UnlockandSet
composite state is reached and, point after point, the route can be created by setting the
points in their new position, respectively. The composite state consists of the states: EndPo-
sition, SettingPosition, Unlocking, routeToSet, noError and Error that correspond to moving

GA 101015416 Page 101 | 171

the points. A point’s position at rest is captured by variable EndPosition, which can be “Left“
or “Right”, whereas variable PointendPosition describes the final position of the point after
the point has been moved to a new detected position. The transition to state NoError is taken
as soon as the blades start moving, and the point position is lost (not detected any more).
When the position is detected again, once the movement is complete (within a MaxMoving-
Time upper bound), the final point position is stored by the PointendPosition variable, as a
“Left” or “Right” value. In case the maximum prescribed time is exceeded, the Error state is
entered.
When exiting, a transition from CreateRoute to waiting is triggered. The state CreateRoute is
equipped with a shallow history state that allows the state machine to re-enter CreateRoute
via the last state that was active before leaving the composite state, a useful feature for
modelling degraded behaviours, especially when the point position is lost.
An AD has been defined to report the actions related to the sweeping scenario (Fig. 6.59).

GA 101015416 Page 102 | 171

Fig. 6.58. SMD for the Points Management.

GA 101015416 Page 103 | 171

Fig. 6.59. AD for the Points Management.

GA 101015416 Page 104 | 171

6.4.9. Communication Management

Fig. 6.60. Communication Management State Machine Diagram.

The Communication Management function takes care of managing the communication be-
tween the Trackside and a Train. In particular, it is in charge of dealing with possible losses
of communication and of managing the conditions under which a lost communication can
be recovered. This function assumes that the Train is not currently, and does not enter
subsequently, in a RadioHole and has not been sent Reversing Area Information. Loss of
communication in these last two situations are dealt with by dedicated Use Cases.
The State Machine modeling this function starts in the WaitForTPR state. Receiving a Train
Position Report (TPR) while both the SessionTimer and the MuteTimer (if configured) are
valid (i.e., not expired) causes the machine to loop back to this state after resetting both the
SessionTimer and the MuteTimer (if configured). If the MuteTimer is not configured, the ex-
piration of the SessionTimer while in this state causes the machine to terminate, after setting
the Track Status Area (TSA) to Unknown. If the MuteTimer is configured, instead, its expira-
tion, while the SessionTimer is still valid, triggers a transition to the WaitForReconnection
state, while also setting the Track Status Area to Unknown. From the WaitForReconnection
state, should the SessionTimer expire, the machine will simply terminate, the Track Status
Area having been already set to Unknown. The machine will also move to a session termina-
tion state from WaitForReconnection, if it receives a TPR before the SessionTimer expires,
but the NID ENGINE or the L TRAIN of the communicating train are not confirmed. If, in-
stead, the machine receives a TPR while in WaitForReconnection state, both NID ENGINE
and L TRAIN are confirmed and the SessionTimer has not expired, it will transition back to
WaitForTPR, after setting the Track Status Area to Occupied and resetting both the Ses-
sionTimer and the MuteTimer (if configured).

GA 101015416 Page 105 | 171

6.5. The Onboard Behaviour

This subsection presents the SysML sub-models of the ETCS-L3 onboard internal functions,
using SMDs.

6.5.1. Train Position Reporting

Fig. 6.61. State Machine Diagram for the Train Position Reporting function

The “Train Position Reporting” function (TPR) is an on-board function that aggregates two
types of information in one TPR message:

• Train Position information,
• Train Integrity information.

The TPR message is sent by radio from the train to the trackside system, mainly using the
packet number 0 in Train-to-Track message 136 (Train Position Report), message 157 (Start
of Mission TPR) or message 150 (End of Mission). The data in the TPR message does not
appear in the State Machine Diagram of Fig. 6.61. Indeed, they are included in the data
model Fig. 6.8. The following paragraphs remind the data included in the TPR message
and the timed-related conditions for sending it.

DATA INCLUDED IN THE TPR MESSAGE:
The main Train Position (TP) information included in the TPR message is the distance
between the estimated train front-end position and a reference location. The reference
location is given by a , i.e. a batch of balises (from two to eight) placed on the track

GA 101015416 Page 106 | 171

one behind the other on a few meters zone. The BG provides the train with geographic
coordinates thanks to the Track-to-Train BG message. This message is obtained from the
concatenation of the balise telegrams of the BG, the reference location being the absolute
position of the first balise in the BG. When a BG is used as a reference location by the train
TPR function, it is called Last Relevant Balise Group (LRBG). Note that the BG telegrams
can be read by the train in the nominal or reverse direction.

TP information includes the following main variables:
• NID LRBG: Identity of last relevant balise group,
• D LRBG: Distance between the last relevant balise group and the estimated position

of the train front-end,
• Q DIRLRBG: Qualifier for the orientation of the train in relation to the direction of the

LRBG,
• Q DLRBG: Qualifier telling on which side of the LRBG the estimated front end is,
• L DOUBTOVER: over-reading amount (odometry error + error in detection of BG in

rear of the estimated train position) + Q LOCACC (position error in meter) of the LRBG
location,

• L DOUBTUNDER: under-reading amount (odometry error + error in detection of BG
in front of the estimated train position) + Q LOCACC (position error in meter) of the
LRBG location,

• V TRAIN: Train speed,
• Q DIRTRAIN: Qualifier for the direction of train movement in relation to the LRBG

orientation,
• M MODE: on-board ETCS operating mode.

In addition, the time at which the TPR message is expected by the Trackside system is
associated with conditions described hereunder.

Train Integrity (TI) information in the TPR message includes the following variables:
• Q LENGTH: Qualifier for train integrity status (0: No TI information available, 1: TI

confirmed by TIMS, 2: TI confirmed by the driver, 3: TI lost).
• L TRAININT: safe train length, i.e. the distance between the “min safe rear end” (at

the time the train was last known to be an integer) and “the estimated position of the
train Front-End” at the time when the train integrity information is sent to the RBC
(remark: Subset 026-§3.6.5.2.4 refers to minSFE and L TRAIN, but here, the ongoing
Change Request CR940 is considered, cf. [4]).

Relation between“TPR information” and “Train Location information”:
L DOUBTOVER and L DOUBTUNDER define the “confidence interval” associated to the
estimated position of the train front-end (=D LRBG) and are used to determine the Train
Location information (MINSRE, MAXSRE, MINSFE, MAXSFE, ESITMATED FRONT END (ES-
TIMFE)). L TRAININT is related to the Trackside CRE (Confirmed train Rear-End) calcu-
lated by the “Trains Management” function. Finally, the correspondence between TPR infor-
mation and Train Location information is established as follows:

MaxSFE = D LRBG+ L DOUBTUNDER

GA 101015416 Page 107 | 171

minSFE = D LRBG− L DOUBTOV ER
MaxSRE = MaxSFE − L TRAIN
minSRE = minSFE − L TRAIN

EstimFE = D LRBG

CRE = D LRBG− L TRAININT

= minSRE at last integrity confirmed

= D LRBG at last integrity confirmed−
L DOUBTOV ER at last integrity confirmed− L TRAIN

CONDITIONS FOR SENDING THE TPR MESSAGE:
A TPR message is sent when this is requested by ETCS On-board following certain con-
ditions and/or using a periodicity. The conditions for which the On-board system has to
request TP and TI information respectively to the Localisation System and the Train Integrity
Monitoring System are (cf. Subset 026-§3.6.5.1.4 and §4.5.2):

• when the train reaches a standstill,
• when the ETCS operating mode changes,
• when train integrity is confirmed by the driver (only permitted at standstill),
• when loss of train integrity is detected,
• when the train front/rear passes an RBC/RBC border with MaxSFE/MinSFE,
• when the ETCS level changes,
• when the train establishes a session with the RBC, especially during the Start of Mis-

sion procedure,
• when passing a LRBG,
• when requested by RBC (cf.M LOC and LOC variables).

A TPR can be sent periodically in space or/and in time with the following parameters given
by the RBC:

• T CYCLOC: time interval between 2 TPRs sent by the train,
• D CYCLOC: distance between 2 TPRs sent by the train.

Former version of Subset 041 (v2.10) mentioned a maximum value of five seconds between
two consecutive TPRs sent by the train. However, today, no frequency value is given in the
current specification version (it has to be laid down by railway operators).

The first TPR (message 157-SoM TPR) is sent during the Start of Mission procedure (SoM)
after the On-board system establishes a radio session with the Trackside System. The
SoM TPR includes the status of the on-board stored position, i.e. Q STATUS = 0: Invalid,
1: Valid, 2: Unknown. This status depends on whether the train has undergone a cold
movement when the On-board system was switched off. The first TPR is depicted on top
of Fig. 6.61 and the other sent TPR is depicted on the bottom. During the End of Mission
Procedure (EoM), a last TPR is sent (messages 136 and 150) and TPR data are stored
on-board (Subset 026-§4.10.1).

′getTPRRequest(parameter)′ is a signal triggered when TPR information has to be collected

GA 101015416 Page 108 | 171

by ETCS On-board after a request by the ETCS Trackside or On-Board system. In the
conditions listed above, some parameters related to a specific location can be used.
Namely, when ETCS Trackside (RBC) requests ETCS On-board to report its position at
specific train locations (cf. requirement “REQ-TrainLoc-7”), M LOC and D LOC are used.
These parameters and, also, the cyclic parameters T CYCLOC and D CYCLOC are sent
using packet number 58 in a Track-to-Train message.

Integrity information can be generated with a different frequency related to the external
device output (TIMS) frequency.

Note that, for realizing the TPR function, GNSS (Global Navigation Satellite Systems) are
planned to be embedded in the train Localisation Unit in addition to the Odometry System.
A GNSS receiver can provide either the reference location to the train (for that, the concept
of Virtual Balises is introduced in several GNSS projects in order to replace the reference
location provided by BG) or directly the absolute position, depending on the future ETCS-
L3 architecture. Today, for delivering TP information, the use of a relative distance from a
LRBG is preferred as several BG can be announced in advance using “linking information”.
The train has then to pass the expected BG in a calculated expectation window. The linking
mechanism is one of the critical ETCS safety functions. Note also that the Speed and Dis-
tance Monitoring function refers to distances and speeds counted from a reference location
(e.g. the LRBG). For delivering TI information, a second GNSS-based localization system
could be placed at the rear of the train.

GA 101015416 Page 109 | 171

6.5.2. Integrity Information Management

The main role of the “Integrity Information Management” function is to monitor and control
the integrity status of the train while considering all the relevant information. The integrity
information is, in fact, a crucial input for safe train operation. The event of accidental train
separation constitutes a serious hazard for railway operation since it generates an unex-
pected obstacle on the line for the following train. Hence, it is crucial that such a hazard
be promptly reported to the signalling system. Concretely, monitoring the integrity status
consists of permanently checking whether the whole train is advancing in a coherent way.
“Integrity Information Management” is a key function in the framework of MB operation since
movement authority needs to be provided along line parts that are free from any obstacle. As
a reminder, implementing the train integrity monitoring onboard trains allows for substantial
gains in terms of equipment, maintenance, etc.
Fig. 6.63 shows the behaviour of the “Integrity Information Management” function. To do
so, various documents, namely the System Requirement Specification (SRS) specifications,
MOVINGRAIL deliverables, X2Rail-2 D4.1, are considered. Four states can be enumerated
as follows:

• No integrity information,
• Integrity confirmed by driver,
• Integrity confirmed by an external device,
• Integrity lost.

The switching among the various states is described through a transition table given in the
European Union Agency for Railways (ERA) change request document CR 940 16042020
(subset-026 v3.6.0), as shown in Figure 6.62.
As seen in the transition table, the changes from one state to another are governed by a
number of conditions and priority levels. The list of conditions is given below;

1 : No valid Train data is available
2 : (Train is at standstill) AND (valid Train Data is available and has been acknowledged

by the RBC) AND (the train integrity is confirmed by the driver)
3 : (The information ”Train integrity confirmed” is received from an external device) AND

(valid Train Data is available and has been acknowledged by the RBC) AND (Train
Data regarding train length has not changed since the time the train was last known to
be an integer) AND (the train position is valid and is referred to an LRBG) AND (the
train position was valid and was referred to an LRBG at the time the train was last
known to be an integer) AND (no reverse movement is currently performed nor has
been performed since the time the train was last known to be an integer) AND (the
distance between the min safe rear end at the time the train was last known to be an
integer and the current estimated train position does not exceed the range of the safe
train length information)

4 : (The information ”Train integrity lost” is received from an external device) AND (valid
Train Data is available since the time the train integrity was last known to be lost)

5 : A position report indicating that the train integrity is confirmed is sent to the RBC
6 : The information ”Train integrity status unknown” is received from an external device
7 : Train Data regarding train length is changed

GA 101015416 Page 110 | 171

8 : A reverse movement is performed
9 : The distance between the min safe rear end at the time the train was last known to

be an integer and the current estimated train position exceeds the range of the safe
train length information

Fig. 6.62. States and transitions in “Integrity Information Management”

GA 101015416 Page 111 | 171

Fig. 6.63. State Machine Diagram for the “Integrity Information Management” function

GA 101015416 Page 112 | 171

6.5.3. Speed and Distance Supervision

Fig. 6.64 reports the global SMD of this function, which is divided into two regions: one
(the left region) managing the sending of VTD message and its acknowledgement, while
the second (the right region) related to the entering into the supervision mode when a new
braking curve is available.

It is important to stress the separation of duties be-
tween this function and “Manage Dynamic Speed Profile”.
The second function is in charge of taking into account
the data coming from the Trackside — e.g., MAs, SSP
— and data coming from the train — e.g., brake in-
formation, ALSP. “Manage Dynamic Speed Profile” is then
in charge of computing braking curves (see [48]) that
“Speed and Distance Supervision” controls.

Fig. 6.64. Speed and Distance Supervision SMD

The supervision state is then exploded into another SMD reported in Fig. 6.65.
Some ADs are present to report actions done on some diagram transitions (see Fig. 6.66,
Fig. 6.67, Fig. 6.68, Fig. 6.69 and Fig. 6.70).

GA 101015416 Page 113 | 171

Fig. 6.65. Supervision sub-SMD

Fig. 6.66. AD of the transition from sending to ackWaiting

Fig. 6.67. AD of the transition from evaluated to normal

GA 101015416 Page 114 | 171

Fig. 6.68. AD of the transition from evaluated to warning

Fig. 6.69. AD of the transition from evaluated to cut off

GA 101015416 Page 115 | 171

Fig. 6.70. AD of the transition from evaluated to SBI

Fig. 6.71. AD of the transition from evaluated to EBI

GA 101015416 Page 116 | 171

6.6. The Requirement Allocation Table

This subsection reports the final status of the requirement allocation. It shows how the
SysML model satisfies the ETCS-L3 requirements, using Tables 6.5 and 6.6. These tables
list the elements of the SysML model that are related to each requirement. There are 87
requirements that are satisfied by some model elements, and they are reported in the table.
Other 65 requirements, as they are described in [42], are partially considered. Table 6.7
reports such requirements justifying the reason for not being fully considered in the proposed
model4.

4In this table, some rows are grouped for the sake of clarity.

GA 101015416 Page 117 | 171

Table 6.5: SysML model RAT
Requirement Satisfied by

REQ-LossComms-1 MuteTimer expiration
REQ-LossComms-2 MuteTimer expiration
REQ-LossComms-3 SessionTimer expiration (mute) - SessionTimer expiration (no mute) - Mute-

Timer expiration
REQ-LossComms-4 Trains Management - MuteTimer expiration
REQ-LossComms-5 Trains Management - SessionTimer expiration (mute) - SessionTimer expira-

tion (no mute)
REQ-LossComms-6 Trains Management - SessionTimer expiration (mute) - SessionTimer expira-

tion (no mute)
REQ-LossTI-1 LTI TIMS Integrity SD
REQ-LossTI-2 LTI TIMS Integrity SD
REQ-LossTI-3 LTI TIMS Integrity SD
REQ-LossTI-4 LTI TIMS Integrity SD
REQ-LossTI-5 LTI TIMS Integrity SD
REQ-LossTI-6 LTI DriverIntegrity SD
REQ-LossTI-7 LTI TIMS Integrity SD
REQ-LossTI-8 LTI DriverIntegrity SD
REQ-MA-3 MA Management
REQ-MA-4 MA Management
REQ-MA-5 MA Management - transition to OS mode
REQ-MA-6 MA Management - transition to OS mode
REQ-MA-10 MA Management
REQ-MovSR-1 SR Movement
REQ-MovSR-2 SR Movement
REQ-MovSR-3 SR Movement
REQ-MovSR-4 SR Movement
REQ-MovSR-5 SR Movement
REQ-PTS-1 TrackStatusManagement global - Nominal SD
REQ-PTS-2 Nominal SD
REQ-PTS-3 TrackStatusManagement global - Degraded SD
REQ-PTS-4 Sweeping SD
REQ-RecoveryMgmt-1 MuteTimer expiration - SessionTimer expiration (mute) - SessionTimer expira-

tion (no mute)
REQ-RecoveryMgmt-2 NID ENGINE and L TRAIN confirmation - SessionTimer expiration (mute) -

SessionTimer expiration (no mute)
REQ-RecoveryMgmt-3 Trains Management - SessionTimer expiration (mute) - SessionTimer expira-

tion (no mute)
REQ-Reserved-1 Reserved Status Management - RouteManagement
REQ-Reserved-2 Reserved Status Management
REQ-Reserved-3 Reserved Status Management
REQ-Reserved-4 Reserved Status Management
REQ-Reserved-5 Reserved Status Management - RouteManagement
REQ-Reserved-6 Reserved Status Management

GA 101015416 Page 118 | 171

Table 6.6: SysML model RAT
Requirement Satisfied by

REQ-SH-3 Sweeping 2 SD
REQ-TTD-1 TTD Management SM
REQ-TTD-2 TTD Management SM
REQ-TTD-3 TTD Management SM
REQ-TTD-4 TTD Management SM
REQ-TTD-5 TTD Management SM
REQ-TrackInit 1 Trackside Initialisation
REQ-TrackInit 2 Initialise train positions - Trackside Initialisation
REQ-TrackInit 3 Trackside Initialisation
REQ-TrackInit 4 Detect track assets
REQ-TrackInit 5 Trackside Initialisation
REQ-TrackStatus-1 TrackStatusManagement global
REQ-TrackStatus-2 TrackStatusManagement global
REQ-TrackStatus-3 TrackStatusManagement
REQ-TrackStatus-4 TrackStatusManagement
REQ-TrackStatus-5 TrackStatusManagement - Sweeping 2 SD
REQ-TrackStatus-6 TrackStatusManagement - Sweeping 1 SD
REQ-TrackStatus-7 TrackStatusManagement - Sweeping 1 SD
REQ-TrackStatus-8 TrackStatusManagement
REQ-TrackStatus-10 TrackStatusManagement
REQ-TrackStatus-12 TrackStatusManagement
REQ-TrackStatus-13 TrackStatusManagement
REQ-TrackStatus-15 TrackStatusManagement - Trains Management
REQ-TrackStatus-16 TrackStatusManagement - Trains Management
REQ-TrackStatus-17 TrackStatusManagement - Trains Management
REQ-TrackStatus-19 TrackStatusManagement - Trains Management
REQ-TrainLoc-1 Trains Management
REQ-TrainLoc-2 Trains Management
REQ-TrainLoc-3 Trains Management
REQ-TrainLoc-4 Trains Management
REQ-TrainLoc-5 Trains Management - OS SD
REQ-TrainLoc-6 Trains Management - OS SD
REQ-TrainLoc-7 Trains Management
REQ-TrainLoc-11 Trains Management
REQ-TrainLoc-12 Trains Management
REQ-TrainLoc-13 Trains Management
REQ-TrainLoc-14 Trains Management

GA 101015416 Page 119 | 171

Table 6.7: Requirements not included in the RAT
Requirement Comment

REQ-EoAExclusionArea-(1,2) This EUC is not included in the chosen OPSs.
REQ-EoM-(1-4) This EUC is not included in the chosen OPSs.
REQ-FVB-1 This EUC is not included in the chosen OPSs.
REQ-HO-(1-3) This EUC is not included in the chosen OPSs.
REQ-Join-(1-3) This EUC is not included in the chosen OPSs.
REQ-LevelTrans-(1,2) This EUC is not included in the chosen OPSs.
REQ-LossTI-10 Changing train length is mainly related to splitting and joining

which are not in the scope of the work.
REQ-LossTI-9 General properties of the function.
REQ-MA-(1,7-9) General properties of the function.
REQ-MA-2 Position of obstructions have not been stored
REQ-MA-11 Linking Information not considered for the message.
REQ-MA-12 Requires an additional interaction and additional information.
REQ-RadioHole-(1-6) This EUC is not included in the chosen OPSs.
REQ-Rev-(1-5) This EUC is not included in the chosen OPSs.
REQ-SH-(1,2,4) This EUC is not included in the chosen OPSs.
REQ-Split-1 This EUC is not included in the chosen OPSs.
REQ-StartTrain-(1-15) This EUC is not included in the chosen OPSs.
REQ-TTD-6 Requires an additional interaction and additional information.
REQ-TTD-7 Requires an additional interaction and additional information.
REQ-TrackStatus-9
REQ-TrainLoc-8

The procedure leading the system to a safe state involves ETCS
messages and procedures that are not in the scope of the work
(e.g., emergency management).

REQ-TrackStatus-11 The overlap of multiple Unknown TSAs is part of an internal eval-
uation algorithm, not captured by an SM.

REQ-TrackStatus-14 The computation of the extension of a TSA is made by data-
oriented operations not covered by SMD’s elements.

REQ-TrackStatus-18 The functional architecture does not allow the Track Status Man-
ager to validate the current position of the train.

REQ-TrainLoc-9 The algorithm recognising an unexpected position or a conflict
among train movements is not well specified in reference docu-
ments.

Req-TrainLoc-10 Non-Leading or Sleeping modes are out of the scope of the mod-
elling activities.

GA 101015416 Page 120 | 171

7. The Followed Modelling Approach

This chapter describes the formal modelling approach (Section 7.1) and provides details on
the preliminary activities (Section 7.2, Section 7.3 and Section 7.4). The structure and the
details of the formal models are presented in Chapter 8.

7.1. The Formal Modelling Process

This subsection describes the formal modelling process. This process can be divided into
two main parts. A set of preliminary activities has the objective of describing EUCs/internal
functions enumerating, for example, variables, parameters, describing initial conditions.
Fig. 7.1 depicts the detail of the Modelling activity in the AD reported in Fig. 4.2.
In the AD, these activities are depicted in the two loop activity blocks that can be executed
in parallel. Preliminary activities are run on both EUCs — the block on the right of the fork
bar — and on internal functions — the block on the left.
Preliminary activities are oriented to the definition of a rigorous framework where a formal
model of an EUC or of an internal function can be developed. Preliminary activities change
in case of EUC or internal function. The details are in the diagram. Some sample activities
are the definition of parameters, inputs/outputs, initial configuration, and involved actors. Up
to this moment, the specification activities are neutral regarding the formalism, having the
side objective to specify behavioural and interaction elements in a formalism-neutral way,
opening for possible “implementations” in different formalisms regarding the ones used in
this deliverable.
After the preliminary activity phase, there is the formal model construction and analysis
phase, which involves the construction of a formal model, according to a chosen formalism,
and its analysis, aimed at proving some simple properties.

GA 101015416 Page 121 | 171

Fig. 7.1. The Formal Modelling Process.

GA 101015416 Page 122 | 171

7.2. The Preliminary Activity Template

This section shows the template used to describe the results of the preliminary activities of
the formal modelling, according to the process described in this chapter. Table 7.1 and Table
7.2 respectively report the templates for EUCs and functional components. Bold text is fixed,
while italics explains the meaning of the table field and changes in the instantiation of such
templates. The following rows could be added/deleted according to the needs: Variable X,
Parameter X in Table 7.1 and Input X, Output X, Parameter X in Table 7.2

Table 7.1: Template for EUC’s preliminary activity description
Initial Condition

Position defining the initial position
Operation Mode defining the initial operation mode

Variables
Variable A
Variable B

Parameter
Parameter A value or value range
Parameter B value or value range

Configuration
Initial Configuration describing the configuration of the system at the be-

ginning of the EUC
Configuration
settings

to be considered during the EUC

GA 101015416 Page 123 | 171

Table 7.2: Template for functions preliminary activity description
Relevant references list of related documents
Other interacting
function

list of other interacting functions

Involved actors list involved actors
Involved
components

list involved components

Related EUCs list related EUCs
Inputs

Input A
Input B

Outputs
Output A
Output B

Parameters
Parameter A value or value range
Parameter B value or value range

Initial Condition
Position defining the initial position
Operation Mode defining the initial operation mode
Initial Configuration describing the configuration of the system at the be-

ginning of function operation

7.3. Description of the Preliminary Activities for EUCs

This section reports the instantiation of the template described in the previous section to the
8 considered EUCs.

GA 101015416 Page 124 | 171

Table 7.3: Trackside Initialisation preliminary activity description
Initial Condition

Position train positions irrelevant; trains are halted before EoA
after trackside cuts communication

Operation Mode trackside in fail-safe (powerless) mode
Variables

Points status
Signals status
TTD status

Configuration
Initial Configuration All TTDs occupied, points position unknown, signals

closed
Configuration
settings

Any TSR are stored in remanent memory

Table 7.4: Normal Train Movement preliminary activity description
Initial Condition

Position precisely known, situated in the middle of the track
Operation Mode Full Supervision

Variables
Train Position Report
Track Status
Reserved Status
Points Status
Movement Authority

Configuration
Initial Configuration Train integrity is confirmed. Communication timers are

not expired.
Configuration
settings

(1) Presence of TTD, (2) Trackside configured to ac-
cept integrity confirmations by driver

GA 101015416 Page 125 | 171

Table 7.5: On Sight Movement preliminary activity description
Initial Condition

Position in the middle of the track
Operation Mode Full supervision

Variables
Train position report
Track status
Reserved status
Movement Authority

Parameter
CYCLE TIMEOUT [0, 254] s
L3 margin 2 ×D NV ROLL

Configuration
Initial Configuration Train integrity is confirmed
Configuration
settings

(1) Whether trackside is configured to accept integrity
confirmation by driver, (2) Trackside Reactions if an
area of track within a Reserved Status Area becomes
Unknown before the L3 Trackside has authorized a
train to proceed into that area

GA 101015416 Page 126 | 171

Table 7.6: Loss of Train Integrity preliminary activity description
Initial Condition

Position precisely known, situated in the middle of the track
Operation Mode Full supervision

Variables
Train position report
Track status
Reserved status
Movement Authority
Train Integrity Status
Train data

Parameter
CYCLE TIMEOUT [0, 254] s
INTEGRITY CHECK TIMEOUT [0.01:1] s
L TRAININT [0, 32767] m

Configuration
Initial Configuration Train Integrity is confirmed
Configuration settings (1) Reaction of trackside in the case of lost integrity (2)

Whether the trackside is configured to accept integrity
confirmation by driver (3) Whether the trackside con-
figured to authorize a Movement Authority for a train
that has lost Integrity

Table 7.7: Staff Responsible preliminary activity description
Initial Condition

Position in the middle of the track
Operation Mode SR mode

Train position report
Track Status
Movement Authority

Configuration
Initial Configuration Communication not expired. Train integrity confirmed.
Configuration
settings

Trackside configured to accept integrity confirmation
by driver

GA 101015416 Page 127 | 171

Table 7.8: Points Control preliminary activity description
Initial Condition

Position precisely known where it is situated in the track
Operation Mode full supervision

Variables
Point Position
End Position
End Position Detected
Track Status
Reserve Status

Parameter
Maximum moving
time

5sec

Track Configuration of track: Occupied, Unknown, Re-
served, Free

Configuration
Initial Configuration Two trains cross a point consecutively
Configuration
settings

1. The second train requires the point to move to a dif-
ferent position, 2. The point cannot be moved as long
as the first train occupies the associated track area, 3.
The point cannot be moved when the point is already
reserved for the second train

Table 7.9: Sweeping preliminary activity description
Initial Condition

Position In the middle of the track
Operation Mode Full supervision

Variables
Train position report
Track status
TTD Occupancy

Parameter
Configurable
minimum length of
Unknown track
status area

to be defined (D2.3 PERFORMINGRAIL)

Configuration
Initial Configuration Train Integrity is confirmed
Configuration
settings

List of Active shunting area

GA 101015416 Page 128 | 171

Table 7.10: Loss of Communication preliminary activity description
Initial Condition

Position The Train must not be located inside a Radio Hole
Operation Mode Upon MuteTimer or SessionTimer expiration, the

Trackside shall be notified of the loss of communica-
tion

Variables
SESSION EXPIRED TIMEOUT
MUTE EXPIRED TIMEOUT
NID ENGINE

Parameter
Configuration

Initial Configuration Train must not have entered an announced Radio Hole
and must not have been sent Reversing Area Informa-
tion

Configuration
settings

Train must not enter an announced Radio Hole

GA 101015416 Page 129 | 171

7.4. Description of the Preliminary Activities for Internal Functions

This section reports the instantiation of the template described in the section 7.2 to 12 inter-
nal functions.

Table 7.11: Trains Manager preliminary activity description
Relevant references X2Rail3 D4.2 - part 3, MOVINGRAIL D1.1
Other interacting
function

Communication Management, Track Status Manage-
ment, Reserved Status Management, Speed and dis-
tance supervision, Train Position Reporting.

Involved actors ETCS On Board, TMS
Related EUCs Normal Train Movement, On-Sight Movement, Loss of

Communication, Loss of Train Integrity, Staff Respon-
sible.

Inputs
Position Report
Validated Train Data
timeoutEvent

Outputs
VTDAck
TSAunknown
TSArelease
TSAoccupied
TrainLocation
AlertTMS

Parameters
L3 margin 2 ×D NV ROLL

Integrity Wait
Timeout

INTEGRITY WAIT TIMEOUT

Initial Condition
Position train in the middle of the track, with integrity confirmed

and communication timers not expired
Operation Mode Trackside shall define the procedure to lead the sys-

tem to a safe state
Initial Configuration TTD is present, the trackside is configured to accept

integrity confirmation by drivers

GA 101015416 Page 130 | 171

Table 7.12: MA Manager preliminary activity description
Relevant references X2Rail3 D4.2 - part 3, MOVINGRAIL D1.1
Other interacting
functions

Route Management, Manage Dynamic Speed Profile

Involved actors ETCS on board, TMS
Related EUCs Normal Train Movement, In Sight Movement, Move-

ment in SR mode
Inputs

RouteExtension
RouteRestriction

Outputs
updateMA
receiveMA

Parameters
L3 margin 2 ×D NV ROLL

Initial Condition
Position train in the middle of the track
Operation Mode Trackside is in Full Supervision, On Sight, or in Staff

Responsible
Initial Configuration TTD presence

GA 101015416 Page 131 | 171

Table 7.13: Route Manager preliminary activity description
Relevant references X2Rail3 Deliverable 4.2 - part 3, MOVINGRAIL Deliv-

erable D1.1, Subset 026- part3
Other interacting
functions

Points Management, Track Status Management, Re-
served Status Management, MA management

Involved actors Traffic Management System, Trackside
Related EUCs Normal Train Movement, On Sight, Staff Responsible

Inputs
MArequest
ReportRSA
ReportPointsStatus
OccupyTSA
TSArelease

Outputs
RouteExtension
RouteRestriction
RSArequest
RSArelease
setPoints
reqPointsStatus
sweepPoints

Parameters
Initial Condition

Position irrelevant train position
Operation Mode irrelevant operation mode
Initial Configuration -

GA 101015416 Page 132 | 171

Table 7.14: TTD Manager preliminary activity description
Relevant references X2Rail-3 System Specifications
Other interacting
function

Trains Management, Track Status Management

Involved actors TTD, TMS
Related EUCs LTI EUC, Normal Train Movement

Inputs
train information
TTD STATUS

Outputs
ShortenTSA
AlertTMS

Parameters
Synchronization
Timer

value to be defined (PERFORMINGRAIL T2.5)

Desynchronization
Timer

value to be defined (PERFORMINGRAIL T2.5)

Initial Condition
Position train in the middle of the track
Operation Mode Full Supervision
Initial Configuration No faulty TTD

Table 7.15: TSR Manager preliminary activity description
Relevant references X2Rail3 Deliverable 4.2 - part 3, MovingRail Deliver-

able D1.1, Subset 026- part3
Other interacting
function

MAmanagement

Involved actors TMS
Related EUCs -

Inputs
TSRcommand

Outputs
TSRinfo

Parameters
Initial Condition

Position irrelvant train position
Operation Mode irrelvant operation mode
Initial Configuration -

GA 101015416 Page 133 | 171

Table 7.16: Reserved Status Manager preliminary activity description
Relevant references X2Rail3 D4.2 - part 3, MovingRail D1.1
Other interacting
function

Communication Management, Track Status Manage-
ment, Speed and distance supervision, Train Position
Reporting.

Involved actors ETCS on board, TMS
Related EUCs Trackside Initialisation, Start of Mission, Normal Train

Movement, End Of Mission, Loss/Restore Communi-
cation, Loss of Train Integrity, Shunting, Joining, Split-
ting, Reversing, Sweeping, Radio Hole, Points control,
Movement in SR Mode.

Inputs
RSArequest
RSArelease
requestPointNotReserved

Outputs
reportRSAs
reportPointsNotReserved

Parameters
Initial Condition

Position irrelevant train position
Operation Mode irrelevant operation mode
Initial Configuration -

GA 101015416 Page 134 | 171

Table 7.17: Track Status Manager preliminary activity description
Relevant references X2Rail3 D4.2 - part 3, MOVINGRAIL D1.1
Other interacting
functions

Trains Management, Route Management, Points
Mangement, TTD management

Involved actors TMS/Responsible person/Dispatcher, external de-
vices (detectors), TTD

Related EUCs Trackside Initialisation, Normal Train Movement, On-
Sight Movement, Loss/Restore Communication, Loss
of Train Integrity, Points control, Movement in SR
Mode, Sweeping

Inputs
TSArelease
TSAunknown
TSAoccupy
enable/disable shunting area
requestPointClear
ttdStatus

Outputs
TSAreport
reportPointClear
TSArelease
occupyTSA

Parameters
configurable
minimum length

not specified

Train Length
tolerance

not specified

Initial Condition
Position train located in an occupied TSA
Operation Mode Full Supervision, Trackside shall define the procedure

to lead the system in a safe state
Initial Configuration -

GA 101015416 Page 135 | 171

Table 7.18: Points Manager preliminary activity description
Relevant references D1.1 MOVINGRAIL, PERFORMINGRAIL D1.1 and

D2.1
Other interacting
function

Points Management

Involved actors TMS, Trackside
Related EUCs Points Control

Inputs
Track section containing points occupied/reserved/unknown
Point is locked initially

Outputs
Update positions of the relevant set of points
Locking status of points

Parameters
Safe Point Position locked or unlocked

Initial Condition
Position Moving, locking and releasing of points related to two

subsequent trains requesting to pass over different
points

Operation Mode Trackside shall prevent movement of points within an
unknown or occupied Track Status Area or within Re-
served Stratus Area

Initial Configuration The Trackside shall be configured with Release Points
to enable Points to be moved when the area of track
containing the Points has Consolidated Track Status
Clear and does not contain any part of a Reserved
Status Area

GA 101015416 Page 136 | 171

Table 7.19: Communication Manager preliminary activity description
Relevant references PERFORMINGRAIL D1.1, X2Rail-3 System Specifi-

cations
Other interacting
functions

Track Status Management, Trains Management

Involved actors TMS, TTD
Related EUCs LossOfCommunication

Inputs
Train identification

Outputs
SessionTimer reset
MuteTimer reset

Parameters
Session expiration SESSION EXPIRED TIMEOUT
Mute expiration MUTE EXPIRED TIMEOUT

Initial Condition
Position Train must not have entered an announced Radio Hole

and must not have been sent Reversing Area Informa-
tion

Operation Mode The Trackside shall notify the TrainsManagement on
the expiration of the mute and/or session timers, in or-
der to update the TrackStatusArea associated with the
train

GA 101015416 Page 137 | 171

Table 7.20: TPR Manager preliminary activity description
Relevant references Subset 026-part 7, PERFORMINGRAIL D1.1
Other interacting
function

“Integrity Information Management”,
“Communication Management”,
“Speed and Distance Supervision,
“Trains Management”

Involved actors Train Localization Unit
Related EUCs Start of Mission, Normal Train Movement, End Of

Mission, Sweeping, Loss of Train Integrity, On-Sight
movement

Inputs
Train position
Integrity information

Outputs
Train position Report

Parameters
CYCLE TIMEOUT [0, 254] s

Initial Condition
Position in the middle of the track
Operation Mode FS mode
Initial Configuration

• 1st on-board position has been reported with a
”valid” status to RBC during SoM,

• Valid Train Data has been sent to RBC in SoM
and acknowledged by RBC to allow the train to
run in FS mode,

• Train Position information is referred to a LRBG,

• The LRBG has transmitted correct data and this
data has been correctly decoded on-board

GA 101015416 Page 138 | 171

Table 7.21: Integrity Information Manager preliminary activity description
Relevant references ERA CR 940 16042020, X2R2 D4.1, PERFORMIN-

GRAIL D1.1
Other interacting function “Train Position Reporting”
Involved actors TIMS, Driver
Related EUCs Loss of Train Integrity UC, Normal Train Movement

Inputs
Train DATA
Train mode
Train Location
Train Speed

Outputs
Integrity information

Parameters
train integrity confirmation by
driver

boolean

range of safe train length to be defined (D2.3 PERFORMINGRAIL)
INTEGRITY CHECK TIMEOUT [0.01:1] s
L TRAININT [0, 32767] m

Initial Condition
Position In the middle of the track
Operation Mode FS mode
Initial Configuration

• Valid Train data is always available

• Valid Train Data has been acknowledged by the
RBC

• Train Data regarding train length has not
changed since the time the train was last known
to be integer

• Train position is referred to an LRBG

• No reverse movement is currently performed

• Distance between the min safe rear end at the
time the train was last known to be integer and
the current estimated train position does not ex-
ceed the range of the safe train length informa-
tion

• Position report indicating that the train integrity is
confirmed has just been sent to the RBC

GA 101015416 Page 139 | 171

Table 7.22: Speed Distance Supervisor preliminary activity description
Relevant references [49]
Other interacting
functions

Dynamic Speed Profile management, TPR manage-
ment, “Trains Management”, Communication man-
agement

Involved
components

Train/Engine

Inputs
VTD acknowledgement
Train data
Braking Curves
Driver Commands
Current position and speed of the train

Outputs
Information to the driver
Commands to the train
Validated Train Data to the trackside

Initial Condition
Position The function operation is independent of the position.
Operation Mode The train should be connected.

GA 101015416 Page 140 | 171

8. Moving Block Formal Models

In this deliverable, six formal models have been defined, capturing the behaviour of a few
internal functions each. Fig. 8.1 shows the mapping between functions and model by rear-
ranging and simplifying the SysML’s functional architecture presented in Section 6.1. Solid
lines represent some communications between the functions.

Trackside

MA ManagerTSR Manager

Route Manager

Communication
Manager

Track Status
Manager

Points ManagerReserved Status
Manager

On-board

Integrity
Information
Manager

Dynamic Speed
Profile Manager

TPR ManagerSpeed Distance
Supervision

Trains Manager

TTD Manager

Fig. 8.1. Mapping of formal model to internal functions.

The models are:
• Communication Management & Trains Management UPPAAL model (in yellow), re-

ported in Section 8.1;
• the IIM UPPAAL model (in orange) reported in Section 8.2;
• the TPR UPPAAL model (in green) reported in Section 8.3;
• the TTD model (in red), reported in Section 8.4;

GA 101015416 Page 141 | 171

• the Points Management UPPAAL model (in blue), described in Section 8.5;
• the SAN Movement model (in purple), described in Section 8.6, focusing on the inter-

actions among affected functions.

8.1. Communication Management & Trains Management UPPAAL model

This subsection is dedicated to the description of the UPPAAL model of communication
management & train management.
The Communication Management function is required to notify the Trains Manager upon ex-
piration of the connection timers, signalling a loss of communication to the Trackside. Due
to the nature of the function, the model was developed taking its interactions with the Track-
side into consideration. For this reason, five secondary automatons have been included,
with particular attention towards those that represent the track status management and, of
course, the trains management.

Model Structure The main automaton, CommunicationManagement, is strongly based
upon the state machine described in Figure 6.60. The same is true for TrainsManagement
and TrackStatusManagement, developed from the state machines depicted in Figure 6.44
and 6.46. The Train automaton is a stub: it emulates a very generic train behaviour by
periodically sending TPR messages in order to simulate a Train-Trackside interaction. The
Train can also spend an arbitrarily long amount of time idling, to mimic a connection inter-
ruption during which the Trackside is not receiving messages from the Train. In addition to
these machines, an extremely simple stub of the RouteManagement and TrainIntegrity func-
tions has also been included in order to avoid deadlocks due to the impossibility of receiving
messages on synchronization channels.

Model Description This initial phase of the model is intended to have a process instantia-
tion for each train. In other words, each living train will have its own CommunicationManage-
ment, TrainsManagement, etc., each of which will have the train identifier as a parameter. In
the future, the model will be refined so as to make it dependent on a single TrainsManage-
ment instance, which will be able to handle multiple trains at once with a buffered message
system. TrainsManagement and TrackStatusManagement also require the train length as a
parameter, in order to perform comparisons between the received data and the valid data.

• CommunicationManagement : The main automaton starts in the WaitForTpr state.
While in this state, when receiving a TPR from the Train, the machine resets both
timers and loops back into this state. Upon expiration of the mute timer the automa-
ton will go into the WaitForReconnection state, from which there are two possibilities:
either the session timer will expire before receiving a message, causing the process
to terminate, or the automaton will receive a TPR from the train. In this case Trains-
Management will check the validity of the TPR by comparing the received train id and
length with the correct train values, and if the TPR is valid the machine will re-enter the
WaitForTPR state, while if the data does not match it will terminate. Termination can
also ensue from the WaitForTPR state if the session timer expires, which will happen
if the mute timer is not configured.

• TrainsManagement : The TrainsManagement automaton handles the messages sent
by CommunicationManagement on the connection status of the train. Almost all of

GA 101015416 Page 142 | 171

Fig. 8.2. Communication Management UPPAAL model

Fig. 8.3. TrainsManagement UPPAAL model

the transitions have been included, albeit with extensive use of boolean abstraction
in those that did not explicitly involve interactions with CommunicationManagement.
From the initial Waiting state, the automaton will be able to perform a series of actions,
the one relevant to the CM function being the one connecting the Waiting state with the
committed state SendingTSAUnknown and ending in the MuteTimerExpired state. This

GA 101015416 Page 143 | 171

pair of transitions represents the reception of a timeout signal from the CM automaton,
which will be the one sent at mute timer expiration. From the MuteTimerExpired state,
TM will be waiting for a TPR in order to attempt reconnection. If it receives another
timeout signal from CM, that will mean that the session timer has expired, and the
automaton will terminate by going into a safe state. If instead the TPR is received, TM
will check the validity of the data sent by the train, returning to the Waiting state and
notifying CM if the train id and the length are confirmed, and exiting otherwise.

• TrackStatusManagement TrackStatusManagement receives the update signals from
TrainsManagement. By convention, it starts in the Occupied state, and loops back in
it if it receives TSA occupation and release signals by the Trains Management. If, in-
stead, it receives a signal to set the TSA to unknown, then the automaton will transition
to either the Removed or Unknown state, depending on whether the train is completely
located in an active shunting area or not, respectively. From the Unknown state, re-
turning to the Occupied state is possible upon receiving a TSA occupation signal only
if the source of confirmed integrity is the driver and the integrity is accepted by the
driver, or if said source is the monitoring device. Receiving the occupation signal with-
out these conditions leads to exiting in a Safe State or looping back into the Unknown
state, depending on whether the length communicated by the train is confirmed.

Fig. 8.4. TrackStatusManagement UPPAAL model

• RouteManagement and TrainIntegrity : These two automata are completely void of any
meaningful transition, and exist for the sole purpose of keeping the other automata
alive by receiving and sending necessary messages. TrainIntegrity, in particular, also
keeps track of the integrityTimer, sending a signal to TrainsManagement in case of
expiration. Due to their triviality, no image has been included in this document.

• Train: The Train automaton is a stub, as it also serves the simple purpose of continu-
ously sending TPR messages on a broadcast channel to CommunicationManagement

GA 101015416 Page 144 | 171

and TrainsManagement. More specifically, this automaton starts in the WaitingPe-
riod state and waits a fixed amount of time (TRAIN MSG PERIOD) after which it can
randomly perform three actions: send a correct TPR, send a TPR with invalid data
(incorrect length) or it can simply spend more time doing nothing (IDLE TIME). This
last option is to ensure that the session and mute timers can expire for simulation and
verification purposes.

Fig. 8.5. Train stub UPPAAL model

Limitations At the moment, the train movement is not modeled, and most of the
transitions in TrainsManagement and TrackStatusManagement depend on position up-
dates sent by it. The problem has been temporarily solved with the aforementioned
use of boolean abstraction: every transition guard denoted by a function evaluates to
true. Also, some message-sending operations have been modeled with an update,
while they should instead be channel synchronizations (e.g., AlertTMS()). This is due
to the fact that the automatons with which the communication should happen have not
been modeled.

8.2. IIM UPPAAL model

This subsection is dedicated to the description of the UPPAAL model of the
“Integrity Information Management” internal function. The main role of the “In-
tegrity Information Management” function is to monitor the integrity status of the train by
taking into account all the relevant information.

Model Structure The “Integrity Information Management” (IIM) function receives signals
from the TIMS and the Driver about the train integrity. Then, it computes the train integrity
status which can have 4 values: ’Integrity Confirmed Driver’, ’Integrity Confirmed TIMS’,

GA 101015416 Page 145 | 171

’Integrity Lost’ or ’No Train Integrity’. The switching from one status to another is described
in the transition table shown in Figure 6.62. The transition conditions are reported in Table
8.1. All these conditions have been implemented in this formal model, except conditions 3
and 9 which require a representation of the train movement. From the conditions table, in
order to emulate the behaviour of the IIM function, the following data are considered:

• Train Data sent from Train to “Speed and Distance Supervision” function;
• the acknowledgement of Train Data sent from “Trains Management” function to the

“Speed and Distance Supervision” function;
• the Train Position Report sent from “Train Position Reporting” function to the

“Trains Management” function;
• the integrity Status sent from the “IIM” function to the “Train Position Reporting” func-

tion.
The structure of the formal models representing the “IIM” function is composed of 10 au-
tomata:

• “TIMS” automaton which emulates the behaviour of the TIMS block by
sending 3 signals: ′Train Integrity Unknown′, ′Train ntegrity Confirmed′ and
′Train Integrity Lost’. This automaton is represented in the figure 8.6.

Fig. 8.6. TIMS automaton

• “Driver” automaton which emulates the behaviour of the Driver block by sending signal
′Integrity Confirmed By Driver”.

• “IIM StatusManagement” automaton which intercepts TIMS and Driver signals, and
according to the current status of integrity and other conditions described in Table 8.1,
performs the switching from one state to another. This automaton is represented in the
figure 8.7.

GA 101015416 Page 146 | 171

Fig. 8.7. IIM StatusManagement automaton
GA 101015416 Page 147 | 171

• “Train data” automaton which sends to the function “Speed and Distance Supervision”
signals ′V ALID TRAIN DATA′ and ′INV ALID TRAIN DATA′. Train data are re-
quired to compute integrity status (conditions 1, 2, 3, 4).

• “Speed and Distance supervision” automaton receives from “Train Data” automaton the
signals about Train data, sends these information to the “Trains Management” function
and waits for acknowledgement from this latter. This automaton also receives the
train speed information from “Train speed” automaton and can, therefore, determine
whether the train is in standstill or not.

• “Train speed” automaton which emulates the speed of the train by sending the train
speed information to the automaton “Speed and Distance supervision”.

• “Trains management” automaton receives Train position report from The
“Train Position Reporting” automaton, receives Train Data from “Speed and Dis-
tance supervision” automaton, and sends an acknowledgement upon reception. This
automaton is represented in the figure 8.8.

Fig. 8.8. “Trains management” automaton

• “Train Position Reporting” automaton which receives the current integrity status from
“IIM updating” automaton and sends the train position report to “Trains management”.

• “IIM updating” automaton which sends each INTEGRITY CHECK TIMEOUT the cur-
rent integrity status to the “Train Position Reporting” automaton. It is represented in
the figure 8.9.

Fig. 8.9. IIM updating automaton

• “Train mode” automaton which emulates the switching between the different ETCS op-
eration modes of the train. It is designed particularly in order to consider the condition
8.

Model Description These conditions have been considered in the formal model in
the following ways. Condition 1 is considered in the interaction between the “Train

GA 101015416 Page 148 | 171

Table 8.1: Switching Conditions
SWITCH ID Content of the conditions
[1] No valid Train data is available
[2] (Train is at standstill) AND (valid Train Data is available and has

been acknowledged by the RBC) AND (the train integrity is con-
firmed by the driver)

[3] (The information ”Train integrity confirmed” is received from an
external device) AND (valid Train Data is available and has been
acknowledged by the RBC) AND (Train Data regarding train
length has not changed since the time the train was last known
to be integer) AND (the train position is valid and is referred to
an LRBG) AND (the train position was valid and was referred
to an LRBG at the time the train was last known to be integer)
AND (no reverse movement is currently performed nor has been
performed since the time the train was last known to be integer)
AND (the distance between the min safe rear end at the time
the train was last known to be integer and the current estimated
train position does not exceed the range of the safe train length
information)

[4] (The information ”Train integrity lost” is received from an external
device) AND (valid Train Data is available since the time the train
integrity was last known to be lost)

[5] A position report indicating that the train integrity is confirmed is
sent to the RBC

[6] The information ”Train integrity status unknown” is received from
an external device

[7] Train Data regarding train length is changed
[8] A reverse movement is performed
[9] The distance between the min safe rear end at the time the train

was last known to be integer and the current estimated train po-
sition exceeds the range of the safe train length information

data” automaton and the “speed and distance supervision” automaton. It is repre-
sented by the signal ′INV ALID TRAIN DATA′. Condition 2 is involved in the in-
teraction between “Train speed” automaton, “Speed and Distance supervision” automa-
ton, “Trains management” automaton, “Train data” automaton, “Driver” automaton and
“IIM StatusManadgement” automaton. Condition 4 is involved in the interaction between
“TIMS” automaton, “Train data” automaton, “speed and distance supervision” automaton
and “IIM StatusManadgement” automaton. Condition 5 is involved in the interaction between

GA 101015416 Page 149 | 171

“Train Position Reporting” automaton, “Trains management” automaton, “IIM updating” au-
tomaton and “IIM StatusManadgement” automaton. Condition 6 is involved in the interac-
tion between “TIMS” automaton and “IIM StatusManadgement” automaton. Condition 7 is
involved in the interaction between “Train data” automaton, “Speed and Distance Supervi-
sion” automaton and “IIM StatusManadgement” automaton. Condition 8 is involved in the
interaction between “Train mode” automaton and “IIM StatusManadgement” automaton.

Property specification and verification Some preliminary reachability properties have
been verified on this model, to ensure that all the integrity statuses are covered.

Limitations To be able to check the relevant functional and safety properties of “In-
tegrity Information Management” function, modelling the train movement is required. The
model to emulate train dynamics has not been developed so far, but this will be part of the
following modelling activities.

8.3. TPR UPPAAL model

This subsection is dedicated to the description of the UPPAAL model of the
“Train Position Reporting” which is an on-board function. This function is in charge of send-
ing to the “Trains Management” function a train position report which includes, mainly, the
train position and the train integrity information.

Model Structure The formal model for “Train Position Reporting” function is composed of
four automata:

• “Train position reporting” automaton, which regularly sends requests for location to the
“localization unit” automaton. It receives from “IIM updating” automaton the integrity
status (′integrityInfo′), and from the “localization unit” automaton the train location.
It compiles the train position report and sends it to the “Trains Management” function.
This automaton is represented in Figure 8.10. In this figure, the ′integrityInfo′ loops
at three states in order to catch at any state the reception of integrity status.

Fig. 8.10. Train position reporting automaton

GA 101015416 Page 150 | 171

• “Train localization Unit” automaton, which regularly receives from the train position
reporting automaton requests for location. It computes the location and sends it back
to the “Train position reporting” automaton.

• “IIM updating” automaton, which sends the current integrity status to the “Train position
reporting” automaton.

• “Trains management” automaton, which sends, under some conditions related to
train location, a request for train position report to “Train position reporting” au-
tomaton and receives train position reports from the “Train Position Reporting” au-
tomaton. As the train location is not designed, only the request for train position
′RequestPositionReport′ is modelled.

Limitations The interactions between the train position reporting function and the other
related functions and external actors are represented in this model. The main limitation is
that the train movement is not emulated yet, thus no precise train location can be computed
so far. This issue will be addressed in the following phase of the project.

8.4. Trackside Train Detection UPPAAL model

This subsection is dedicated to the description of the UPPAAL model of the
“TTD Management” function which is a trackside function devoted to managing the status
of TTDs in the covered area. It is used only for an MB system that uses Trackside Train
Detection means (axle counters, track circuits). On the one hand, the function receives
and computes a report from the Trackside Train Detection. On the other hand, it receives
and computes train location information from “Trains Management” function. Therefore, the
“TTD Management” function is responsible for managing the lack of synchronization be-
tween TTD occupancy and trains information during normal operation.

Model Structure The formal model for “TTD Management” function is composed of seven
automata:

• an automaton “TTD” for each TTD, which emulates the status change of the TTD block.
This automaton sends the TTD status every desynchronization timeout. This automa-
ton is represented in Figure 8.11.

Fig. 8.11. “TTD” automaton

GA 101015416 Page 151 | 171

• an automaton “TM SendTrainInfo” for each train, which emulates the behaviour of
the “Trains Management” function. It sends Train information to the automaton
“TTDM ReceiveTrainInfo” upon receiving a train position report.

• an automaton “TTDM ReceiveTTD”, which represents a part of the behaviour of the
“TTD Management” function. It receives the report from each TTD. In the case that a
desynchronization timer is assigned to a TTD (due to status inconsistency issue) and
if in the next status reporting the status of the TTD is still reported as clear, the TMS is
alerted about this abnormal situation. This automaton is represented in Figure 8.12.

Fig. 8.12. “TTDM ReceiveTTD” automaton

• an automaton “TTDM ReceiveTrainInfo” for each train, which represents a part of the
behaviour of the “TTD Management” function. It receives the train information from
“TM SendTrainInfo” automaton.

• an automaton “TTDManagement” which represents a part of the behaviour of the
“TTD Management” function. It performs a synchronization between the received
train information and TTD report every synchronization timer using the function
′Synchronise()′. This function computes for each train, within the area of control of
the “TTD Management”, the MaxSFE, the minSFE, the MaxSRE and the minSRE. In
the case when the MaxSFE and the minSFE are located in a clear TTD (see Fig-
ure 6.51), a desynchronization timer is triggered to this TTD, to monitor whether the
TTD is designated as occupied in the next TTD report. If it is not the case, the TMS
is alerted. In the case that the MaxSFE is located in a clear TTD and the minSFE is
located in an occupied TTD (see Figure 6.50), then a “shortening” must be performed
(′checkShorten = true′). In the case when the MaxSFE is located in an occupied
TTD and the minSFE is located in a clear TTD, then the TMS shall be alerted. The
“TTDManagement” automaton is represented in Figure 8.13.

• an automaton “TMS TTDM” emulating the behaviour of TMS which is
alerted either in the case that a TTD is clear while it should be occupied
′(AlertTMS Faulty TTD[ID TTD])′, or when the train location is incoherent
with TTD occupancy (′AlertTMS TTDM ′).

• an automaton “TrackStatus TTD”, which emulates the behaviour of the
“Track Status Management” function. It receives from “TTDManagement” automaton
a release request, and sends a release completed.

GA 101015416 Page 152 | 171

Fig. 8.13. “TTDManagement” automaton

8.5. Points Management UPPAAL model

This subsection is dedicated to the description of the UPPAAL model of the Points Manage-
ment which is the function of the trackside devoted to the management of points locking and
unlocking.

Model Structure The Points Management function has been modelled via a network
of four UPPAAL timed automata, as explained below. The Points Management func-
tion receives the status of the track section containing the points to be moved, from the
Track/Reserved Status Management module. Then, the initial pseudo-state of the behaviour
(init) of Points Management brings the latter to the waiting state. From this state, three
behaviours, that is, nominal, degraded and sweepable can be achieved via corresponding
transitions, as shown in the SMD of Fig. 6.57. The nominal and degraded transitions bring
the diagram to the CreateRoute composite state, as seen in Fig. 6.58. The composite state
CreateRoute models the creation of a route from the point of view of Points Control, which
involves moving the necessary points to appropriate positions depending on the received
track status. CreateRoute first checks if the involved points in the route to create are in an
area that is Occupied/Unknown or Reserved. In the composite state SetandLock, the route
is created by setting the points in their new position. A point’s position at rest can be either
“Left” or “Right”, and a point is moved to a new detected position that constitutes the final po-
sition of the point. The network of timed automata formal models of the Points Management
function consists of the following four automata:

• Points Management main automaton that communicates with the three other timed
automata.

• CreateRoute timed automaton is responsible for creating the route after checking the
received value of the track status that can be Occupied/Unknown, Clear, or Reserved.
In the nominal case, that is, if TrackStatus is Clear, the automaton synchronizes with
the SetandLock timed automaton, via the synchronization channel setandlock.

• SetandLock timed automaton is responsible for setting the points in their new positions;
for this, the automaton detects the final position of the point (after the point has been

GA 101015416 Page 153 | 171

moved to a new detected position), which can be either “Left” or “Right”, and it also
models the error location reachable once the prescribed moving time of the blades is
exceeded.

• SweepableandOverride timed automaton describes the case of a sweeping train that
frees some points.

Model Description A detailed description of this UPPAAL formal model follows. In the Cre-
ateRoute timed automaton, represented in Figure 8.14, the variable Track Status encodes
the track’s occupancy status, as received from the Track Status Management function. The
variable ranges over the constant values of “Clear”, “Occupied”, “Unknown”, and “Reserved”.
These values are used to check the value of Track Status variable and to distinguish between
the nominal behaviours and exceptional ones.

Fig. 8.14. CreateRoute automaton

In the SetandLock timed automaton, shown in Figure 8.15, the variable PointPosition en-
codes the position of the point in question, via setting the variable’s value to either“Left” or
“Right”. EndPosition encodes the point’s position at rest and its initial values can be either
“Left” or “Right”. Then, it is checked if EndPosition is “Left”, in which case the automa-
ton moves to PointPositionLeft and assigns PointPosition variable to value “Left”, or if it is
“Right”, then the automaton moves to location PointPositionRight and executes the assign-
ment PointPosition:= Right. The clock variable time is used to measure the elapsed time
for the moving blades. When the prescribed moving time needed to reach the new point
position exceeds its maximum allowed value (modelled by guard time > maxtime), the error
state of the SetandLock timed automaton is reached (see Figure 8.15).

Property specification and verification Some preliminary reachability property verifica-
tion — e.g., to check the sanity of the model or if the error location is reachable — are verified
on the model. Further invariance and liveness properties will be verified on an extended and
improved model of the Points Management function.

GA 101015416 Page 154 | 171

Fig. 8.15. SetandLock automaton

Limitations To be able to verify essential invariance (e.g., safety) properties, as well as
liveness properties on this function, the degraded scenarios of overriding in case of unknown
track status, as well as lost connection, need to be accounted for in the formal model. Such
situations have not been developed yet, future modelling activities will take care of these
aspects.

8.6. Movement SAN model

This subsection is dedicated to the description of the SAN model whose objective is to en-
able the evaluation of performance and performability properties at the system level. These
properties are evaluated regarding the movement of a train fleet on a track under the control
of a trackside.

Model Structure The SAN model represents a set of trains that, after entering the line,
periodically compute their positions and speeds on the basis of the current EoA dynami-
cally assigned by the trackside to it (assuming that the trains run at their maximal speed).
Meanwhile, each train periodically sends the Train Position Report to the trackside. On the
reception of a Train Position Report from a specific train, the trackside updates the extent of
the Track Status Area associated with that train on the basis of the communicated position
and integrity status. Then the trackside updates and sends the Movement Authority for that
train, up to the ”known” tail of the preceding train (plus a safety margin). When receiving a
Movement Authority message from the trackside, the train updates its information regarding
the distance it is enabled to run. At last, the model can also consider the effect of possible
failures, that are, in the current status, integrity not confirmed by the train and the loss of
messages (both Train Position Report and Movement Authority) during the communication.
The model has been developed as a composition of reusable atomic SAN models that are
joined by means of place superposition, i.e., by sharing state variables. Namely, the atomic
models are sub-models that can be replicated, instantiated, and composed. The structure

GA 101015416 Page 155 | 171

Fig. 8.16. SAN composed model

of the current composite model is shown in Fig. 8.16. It includes n replicas of the on-board
and Communication network models, and just one trackside sub-model. The figure also
highlights the main superposed places that are extended places in which proper messages
(i.e., TPRs and MAs) are stored. The arrows show the logical data flow in the composed
model.

Fig. 8.17. SAN composed model

Möbius is the adopted tool for both SANs modelling and solution. A single atomic model
for the onboard and communication is developed. Hence, the joint model, as obtained in
Möbius, is depicted in Fig. 8.17, where a join operator merges the trackside atomic model
with a replica (rep operator) of obuComm atomic models.

Model Description The atomic model of the on-board and the communication network is
depicted in Figure 8.18. The model contains 10 places, 8 extended places, 5 timed activ-
ities, 2 instantaneous activities, 1 input gate, and 9 output gates. For sake of clarity, the
different parts of the model are grouped together in the figure by rectangles, described in
the following:

• train scheduling: the place arrivalTime stores the arrival time (in seconds) of each
train over an array of short values, i.e., one value for each train. These values initialized
through a custom initialization code. This place is shared among the replicas.

• local info of the train fleet : the 4 extended places trainSpeed, trainMAs,
trainHeadPositions, and trainTailPositions store respectively the speed of

GA 101015416 Page 156 | 171

Fig. 8.18. SAN on-board unit + communication atomic model

the trains in meters/second, the end of Movement Authorities, the head and the tail
positions of the trains. Each place contains an array of short values, i.e. one value for
each train. All these places are shared among the replicas.

• messages over the communication network : the two extended places TPRmessages
and MAmessages store the messages over the communication network, and specifi-
cally the Train Position Reports and the Movement Authorities. Each place contains
an array of data structures, where values in a certain position represent a message
from/to a specific train. These places are shared among the replicas and with the
trackside model.

• assign. of unique ID to each train: this portion has the goal of storing, for each replica,
a number of tokens in the place trainId from 0 to n − 1, where n is the number of
trains. A token in the place Start enables the activity assigningID, which fires and
enables the execution of the output gate assignId. Because of the number of tokens
in the place Count, shared by all the replicas, the code in the output gate puts a certain
number of tokens in the place trainId equal to the identifier assigned to this replica.

• step-movement : it models the movement of the train as a sequence of steps. A token
in the place waitForEntering enables the activity trainArrival that models the
train scheduling. The firing time of this activity depends on the values stored in the
place arrivalTime. The output gate initialPositionAndSpeed computes the
initial position and speed. Kindly note that the train with id 0 has a movement authority
for the entire track by default. A token in the place trainMovement enables the activ-
ity updatePosition that cyclically fires and enables the execution of the code in the
gate updatePositionAndSpeed. When the train reaches the end of the modelled
line, a token in trainHasToExit enables the activity trainExits and removes the
token in trainMovement.

• TPR generation: similarly to the previous section, this section has the goal of
generating continuously the Train Position Report message. A token in the place
TPRwaiting periodically activates the activity updateTPR, which enables the out-
put gate createTPR. The code in this gate calculates the fields of the TPR mes-
sage based on the current position and speed, and stores the information in the place

GA 101015416 Page 157 | 171

TPRmsg.
• comm. network : it considers the communication delay on the messages exchanged

between each train and the trackside. When a token is present in sendTPR, it en-
ables the activity TPRNetworkDelay that, when fires, updates the messages in
the two extended places TPRmessages and MAmessages through the output gate
deliverTPR. When a Movement Authority needs to be delivered to the train, the
input gate MAmessageForTheTrain and a token in MAtoRBC enable the transition
MANetworkDelay, which fires after a certain delay and updates the data stored in
trainMAs through the code in MAmessagesDelviered.

• failures: this portion models the considered failures. According to certain probabilities,
the activities updateTPR, TPRNetworkDelay and MANetworkDelay could activate
the different cases, connected to proper output gates, which represent respectively the
generation of a TPR with integrity not confirmed, the loss of a TPR message and the
loss of an MA in the communication network.

The atomic model of the trackside is depicted in Fig. 8.19. The model contains 4 places, 4
extended places, 1 timed activity, 1 instantaneous activity and 1 output gate. The description
of the different sections follows:

Fig. 8.19. SAN trackside atomic model

• messages over the communication network : as described before, the two extended
places, shared with the replicas of the trains, represent the messages on the commu-
nication network.

• Trackside track status areas: the two extended places trackStatusAreasHeads
and trackStatusAreasTails models the track status variables of the trackside.
Each place contains an array of short values, which represent respectively the front
and the back position of a track status area. The values in the position i of the arrays
represent the track status area associated with the train with the id i.

• TPR processing: this portion models the processing of the TPR messages by the track-
side. A token in the place TPRtoRBC means a message ready to be analysed. The
trackside has been modelled as a shared resource, able to process a single message
at a time. In fact, a single token in the place idle is consumed when the message is
processed and regenerated when the processing ends. The activity RBCprocessing
models the processing time of the RBC. The output gate updateTSAsAndgiveMAs,

GA 101015416 Page 158 | 171

executed when RBCprocessing fires, executes the code needed to update the track
status areas (and store the values in the proper extended places) and generates the
MA for the train on the basis of the “known” position of the preceding train.

Property specification and verification The property specification in SANs is done
through the definition of reward variables. A reward variable, computes the number of trains
that can cross the line regarding the simulation parameters described in the following. All
the arrival times of trains to the value 0. The model parameters are the following:

• Train scheduling: the arrival times (in seconds) of each train is specified through the
custom initialization code. If this value is set to 0 for all the trains, the simulation
evaluates the maximum number of trains the system can manage in the given time
slot.

• Number of trains: dimension of the train fleet, which implies the number of times the
atomic model should be replicated.

• Period of updating position: duration (in seconds) of the time period of position update.
The shorter is this value, the more accurate is the simulation of the train running.

• Period of sending TPR: duration (in seconds) of the time period of generating a new
TPR by the trains.

• Line length: extent (in metres) of the line under the control of the trackside.
• Maximum Train Speed: maximum value (in metres/second) for the train speed (equal

to all the trains). For sake of simplicity, this is considered as constant along the track,
but with a custom initialization code and an additional extended place it is possible to
add a static speed profile.

• RBC processing time: duration (in seconds) of the processing of the TPR and the
consequent generation of the MA by the trackside.

• Communication time from RBC to train of MA: delay (in seconds) introduced by the
communication network for the delivering of Movement Authorities.

• Communication time from train to RBC of TPR: delay (in seconds) introduced by the
communication network for the delivering of Train Position Reports.

• Probability of not confirming integrity: probability of occurrence of a temporary fault
preventing the confirmation of integrity by the train.

• Probability of not delivering: probability of occurrence of a temporary fault preventing
the delivering of messages by the communication network.

Limitations In the current state, the developed model can consider straight lines with con-
stant static speed profile; the presence of merging and diverging junctions has not been
considered. However, this limitation has been considered not relevant for the scope of the
analysis carried-out by this model.

GA 101015416 Page 159 | 171

9. Discussion

This deliverable is dedicated to the presentation of the results of both specification and mod-
elling activities of the ETCS-L3 system. Although some previous research works have dealt
with the formal modelling of this system, according to what we have reported in Chapter 3,
the scientific background does not provide any systematic attempt to define both a modelling
methodology and a model encompassing the various functionalities of ETCS-L3.
The first valuable result of T2.3 lies in the definition of a SysML model built on the basis of
the ETCS-L3 specifications contained in previous S2R projects such as ASTRAIL, MOVIN-
GRAIL, .
It is worth recalling here that the formal models were developed based on the functional
architecture that we haveintroduced earlier in this deliverable, as well as on the data model,
so as to be automatically derived from the SysML SDs and SMD diagrams. Furthermore,
in our work we strive to consider the Eulynx approach to the maximum possible extent. We
should also mention that the models are built in different languages (i.e., TA and SAN), that
are able to capture the heterogeneity of the signalling system under study. All the developed
models are parametric and have been developed following a modular and compositional
approach to enable libraries of “building blocks” to be reused, instantiated, and connected.
As a result, a significant effort was made to model MB system behaviour w.r.t. the relevant
use-cases and functions selected in D2.1, which went beyond expectations in terms of cov-
erage and details, although final and exhaustive formal modelling of the whole MB system
was not in the scope of this project.
It is worthwhile to notice that both the activities of T2.3 and T2.4 required a big effort due
to the need of “merging” the knowledge elicited from the different sources, and also due to
wide range of considered functionalities. To overcome this challenge, a process inspired by
the agile software engineering approaches has been implemented. Such a process allowed
an effective distribution of modelling tasks among project partners, effectively lowering the
essential uncertainty of the ETCS-L3 specifications.
Finally, we should also mention that the work presented in this deliverable fairly fulfils the
requirements stated in the Description of Work (DoW) as detailed in Table 9.1 for T2.3 and
in Table 9.2 for T2.4.
The work described in this deliverable is also aligned with the research activities achieved
in other related projects, such as ASTRAIL (e.g., use of UPPAAL models) and 4SECURAIL
(e.g., use of SysML and model-to-model transformations).
Note that the coverage of both SysML model and formal models with respect to the MB
elements is not total. The choice of the part to be modelled has been made according to the
main features of ETCS-L3 that have been highlighted in [1] and reported in Section 5.5.
We believe that the work achieved is valuable both for the rail industry and academia, since
it provides and demonstrates a viable approach towards formalizing the ETCS-L3 speci-
fications and paves the way to automatizing the generation of formal models to evaluate
relevant system properties and performances. One important result of such a formalization
is to lower the level of uncertainties in knowledge that may have a detrimental effect in the
following development and verification stages.

GA 101015416 Page 160 | 171

Table 9.1: Demonstration of T2.3 goal fulfilment.
DoW item Demonstration

Developing a set of semi-formal and
formal specifications based on the de-
liverables produced by previous S2R
projects

The SysML modelling approach of MB signalling systems is
based on the requirements defined in [50] and improved in [42],
on the functional model in [43] and on the semi-formal lan-
guages (i.e., UML/SysML) which are strongly recommended in
[1].

Developing a set of semi-formal and
formal specifications based on modular
engineering approach defined in Task
2.1 - Modelling approach and guide-
lines (T2.1) and the system characteri-
zation defined in Task 2.2 - Moving block
system and scenarios characterization
(T2.2)

Section 2 reports the modelling approach described in [1] on
which the concrete SysML specification process in Section 5.3
is based. On the other hand, the OPS produced by the work
in T2.2 and reported in [1] are used in this deliverable to select
the functional ETCS-L3 elements — i.e., the EUCs and internal
functions — to be modelled.

A high-level standard language based
on a UML profile (SysML, UML Real
Time), will be used to develop the sys-
tem specifications.

This has been widely demonstrated in this document. More-
over, the choice of an open modelling environment (i.e., Pa-
pyrus) goes in the direction of interoperability.

The high-level description language will
be properly extended with formal se-
mantics or integrated with formal nota-
tions to model safety requirements and
allow the verification of functional and
non-functional properties.

Although this has not been extensively discussed, SysML al-
lows the usage of UML profiles such as Modeling and Analysis
of Real-Time and Embedded Systems (MARTE) [51] and Mod-
eling and Analysis of Real-Time and Embedded Systems - De-
pendability Analysis and Modeling (MARTE-DAM)[52]: the first
is an official Object Management Group (OMG) profile, while
the second has been the subject of an important number of sci-
entific works, demonstrating its appropriateness to specify de-
pendability and safety properties, as well as functional require-
ments.

In developing these activities, the work
conducted within the S2Rproject 4SE-
CURAIL will be considered as well.

The work discussed in this deliverable is fully in line with the
4SECURAIL use of SysML and model-to-model transforma-
tions.

The specification phase will integrate
the Eulynx modelling methodology as
for the specification of the standard in-
terfaces as well as the available results
from the S2R project ASTRAIL.

The scopes of Eulynx DP and the model here presented are
slight different. Namely, while the first focuses on describing
“physical assets” of a railway system, the second is more ori-
ented to the functional and behavioural aspects. In fact, they
represent two complementary views whose joint is constituted
by the Data Model described in Section 6.2. This data model
is inspired by Eulynx DP and further research would reach a
practical integration between them.

In particular, the effect on safety of the
usage of the European Global Naviga-
tion Satellite System (Galileo & EGNOS)
(EGNSS) (possibly combined with addi-
tional positioning systems) will be con-
sidered.

The SysML model considers the TLU components, while tak-
ing into account the MOVINGRAIL functional architecture. In-
tegrating this component makes it possible to investigate accu-
racy and performance features related to the considered GNSS
technologies. So far, the TLU is integrated in the SysML model.
Furthermore, experiments run in T2.5 will take into account also
TLU update mechanisms in the formal modelling.

The system formal and semi-formal
models will be updated according to the
moving block specifications and archi-
tectures which will result from the work
in S2R X2Rail-3, including virtual cou-
pling scenarios.

The work reported in this deliverable is already updated with the
MB specifications reported in [42]. On the other hand, VC has
not been explicitly addressed in this deliverable due to the lack
of specifications at the date of this document preparation.

GA 101015416 Page 161 | 171

Table 9.2: Demonstration of T2.4 goal fulfilment.
DoW item Demonstration

According to the approach defined in
Task 2.1, the specification models built
in Task 2.3 are generic, i.e., they
are templates, which are parametric in
both a subset of their attributes and/or
their structural elements. This allows
them to be reused and customized (to
some extent) to different signalling sys-
tems (based on the deliverables from
X2RAIL-1) and diverse market seg-
ments.

All the models described in this deliverable are parametric. Rel-
evant ETCS-L3 parameters have been identified as early as
from the beginning of the WP2 activities and considered in both
SysML and formal models as well. By setting specific parameter
values, the different market segments can be modelled and in-
vestigated. Track configurations can be modelled in the SysML
model.

This task is in charge of defining and
implementing proper transformations to
generate “deployable” concrete models
(from configuration data from Task 2.2)
and the input required by the target anal-
ysis tools (if needed).

All the formal models have been built in two steps. In the
first step, a series of preliminary activities prepared the con-
crete construction of models by clearly stating each model “in-
terfaces”, i.e., its inputs, outputs, parameters, etc. The sec-
ond activity concretizes such “module” in a model expressed by
means of a concrete formalism. The languages actually chosen
— i.e., UPPAAL’s TAs and Möbius’ SANs — present an easy
and practical way to accept as input parameter values and fur-
ther customization. This shall enable straight model-to-model
transformation from SysML diagrams into such formal models.

In this way, a possible implementation
for the EULYNX use case for formal de-
velopment is also provided.

See Table 9.1 for further details.

A relevant activity of this task is the de-
velopment of a model-based proof of
concept and analysis of virtual coupling
train operations.

VC has not been explicitly addressed in this deliverable due to
the lack of specifications at the date of this document prepara-
tion.

GA 101015416 Page 162 | 171

10. Conclusions

MB, which is the central concept for ETCS-L3, constitutes a substantial breakthrough for
railway signalling and command-control systems. Railway operation under MB shall induce
substantial gains in terms of infrastructure capacity and cost. Nevertheless, this raises im-
portant challenges in terms of safety due to the potential shortened headways between
successive trains. In addition, ensuring the functional requirements of the ETCS-L3 sys-
tem is also a crucial issue due to the numerous intervening components. With this in mind,
understanding and analysing the dynamics of the ETCS-L3 system is paramount. This de-
liverable presents the results of the specification and modelling activities conducted on the
ETCS-L3 in the framework of the PERFORMINGRAIL WP2 workpackage. Namely, the cur-
rent document focuses on the work carried out in tasks T2.3 and T2.4. The overall objective
of the conducted activities is to elaborate “systematic” processes that allow for establishing
formal behavioural models that can serve as basis for various safety and functional features
pertaining to ETCS-L3. The adopted approach is based on a two-staged process, orga-
nized according to agile principles. Namely, in the first stage, a SysML model is presented,
covering various aspects of the system (requirements, structural, functional and behavioural
features). Although the coverage with respect to all the EUC is not total, an important con-
tribution of the work achieved lies in the definition of a modelling approach that can be
extensible to all the ETCS functions and procedures, while being customizable regarding
different parameter and configuration situations and while being integrable with Eulynx DP.
In the second stage, formal models are elaborated covering different parts of the system,
and describing one or two ETCS-L3’s internal functions, each. Through these models, a
more profound knowledge of the ETCS-L3 signalling system is achieved, and some prop-
erties are analysed. The performed modelling activities demonstrate the complexity of the
ETCS-L3 system in terms of dynamics, in particular due to the extensive interactions and
interdependencies between the involved components.
The work discussed in this deliverable is the middle step in the activities of PERFORMIN-
GRAIL’s WP2. In the third deliverable of this WP, the developed models will be composed
and parametrized to address the evaluation of various safety and performance features per-
taining to OPSs.

GA 101015416 Page 163 | 171

Bibliography

[1] Cristina Seceleanu, et al., “PERFORMINGRAIL D2.1 - Modelling guidelines and
Moving Block Use Cases characterization,” Tech. Rep., 2021. [Online]. Available:
https://www.performingrail.com/

[2] —, “ASTRAIL Deliverable D2.1 - Modelling of the moving block signalling system,”
Tech. Rep., 2019. [Online]. Available: http://www.astrail.eu/Page.aspx?CAT=DELIVER
ABLES&IdPage=24a285dd-3cfa-42ec-b83b-0f5e0c9db6d6

[3] ——, “4SECURail D2.5 Formal development demonstrator prototype - final release,”
Tech. Rep., 2021. [Online]. Available: https://projects.shift2rail.org/s2r ip2 n.aspx?p=S
2R 4SECURAIL

[4] M. Samra, et al., “PERFORMINGRAIL D1.1 - Baseline system specification
and definition for Moving Block Systems,” Tech. Rep., 2021. [Online]. Available:
https://www.performingrail.com/

[5] W. H. Sanders and J. F. Meyer, “Stochastic activity networks: Formal definitions and
concepts,” in Lectures on Formal Methods and Performance Analysis: First EEF/Euro
Summer School on Trends in Computer Science Bergen Dal, The Netherlands, July
3–7, 2000 Revised Lectures. Springer Berlin Heidelberg, 2001, pp. 315–343.

[6] T. Courtney, S. Gaonkar, K. Keefe, E. W. Rozier, and W. H. Sanders, “Möbius 2.3:
An extensible tool for dependability, security, and performance evaluation of large and
complex system models,” in 2009 IEEE/IFIP International Conference on Dependable
Systems & Networks. IEEE, 2009, pp. 353–358.

[7] D. Rizopoulos, N. Olsson, A. Lindahl, and O. Lindfeldt, “Research directions regarding
the adoption of formal methods in the railway signaling sector: Determinants and next
steps for future-proof railways,” WIT Transactions on the Built Environment, vol. 199,
pp. 75–86, 2020.

[8] Enhancing railway signalling systems based on train satellite positioning, on-
board safe train integrity, formal methods approach and standard interfaces,
enhancing Traffic Management System functions. [Online]. Available: https:
//projects.shift2rail.org/s2r ip2 n.aspx?p=X2RAIL-2

[9] SAtellite-based Signalling and Automation SysTems on Railways along with
Formal Method and Moving Block validation (ASTRail). [Online]. Available: https:
//projects.shift2rail.org/s2r ip2 n.aspx?p=s2r astrail

[10] FORMAL METHODS AND CSIRT FOR THE RAILWAY SECTOR (4SECURail).
[Online]. Available: https://projects.shift2rail.org/s2r ip2 n.aspx?p=s2r 4securail

[11] Completion of activities for Adaptable Communication, Moving Block, Fail safe Train
Localisation (including satellite), Zero on site Testing, Formal Methods and Cyber
Security. [Online]. Available: https://projects.shift2rail.org/s2r ip2 n.aspx?p=X2RAIL-5

[12] PERformance-based Formal modelling and Optimal tRaffic Management for movING-
block RAILway signalling. [Online]. Available: https://projects.shift2rail.org/s2r ip2 n.a
spx?p=S2R PERFORMINGRAIL

[13] —, “X2Rail-2 D5.1 Formal Methods (taxonomy and survey), Proposed methods and

GA 101015416 Page 164 | 171

https://www.performingrail.com/
http://www.astrail.eu/Page.aspx?CAT=DELIVERABLES&IdPage=24a285dd-3cfa-42ec-b83b-0f5e0c9db6d6
http://www.astrail.eu/Page.aspx?CAT=DELIVERABLES&IdPage=24a285dd-3cfa-42ec-b83b-0f5e0c9db6d6
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=S2R_4SECURAIL
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=S2R_4SECURAIL
https://www.performingrail.com/
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-2
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-2
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=s2r_astrail
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=s2r_astrail
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=s2r_4securail
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-5
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=S2R_PERFORMINGRAIL
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=S2R_PERFORMINGRAIL

Applications,” Tech. Rep., 2018. [Online]. Available: https://projects.shift2rail.org/s2r i
p2 n.aspx?p=X2RAIL-2

[14] D. Basile, M. ter Beek, A. Fantechi, S. Gnesi, F. Mazzanti, A. Piattino, D. Trentini, and
A. Ferrari, “On the industrial uptake of formal methods in the railway domain: A survey
with stakeholders,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11023 LNCS,
pp. 20–29, 2018.

[15] A. Ferrari, F. Mazzanti, D. Basile, M. H. ter Beek, and A. Fantechi, “Comparing for-
mal tools for system design: a judgment study,” in 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE), 2020, pp. 62–74.

[16] A. Ferrari, F. Mazzanti, D. Basile, and M. Ter Beek, “Systematic evaluation and usability
analysis of formal methods tools for railway signaling system design,” IEEE Transactions
on Software Engineering, pp. 1–1, 2021.

[17] D. Basile, M. Ter Beek, and V. Ciancia, “Statistical model checking of a moving block
railway signalling scenario with UPPAAL SMC: Experience and outlook,” vol. 11245
LNCS, pp. 372–391, 2018.

[18] D. Basile, M. ter Beek, A. Ferrari, and A. Legay, “Modelling and analysing ertms l3
moving block railway signalling with simulink and uppaal smc,” vol. 11687 LNCS, pp.
1–21, 2019.

[19] ——, “Exploring the ERTMS/ETCS full moving block specification: an experience
with formal methods,” International Journal on Software Tools for Technology Transfer,
vol. 24, pp. 351–370, 2022.

[20] —, “4SECURail D2.1 Specification of formal development demostrator,” Tech. Rep.,
2020. [Online]. Available: https://projects.shift2rail.org/s2r ip2 n.aspx?p=S2R 4SECU
RAIL

[21] ——, “4SECURail D2.2 Formal development demonstrator prototype 1st release,”
Tech. Rep., 2020. [Online]. Available: https://projects.shift2rail.org/s2r ip2 n.aspx?p=S
2R 4SECURAIL

[22] D. Basile, M. ter Beek, and A. Legay, “Strategy synthesis for autonomous driving in a
moving block railway system with uppaal stratego,” vol. 12136 LNCS, pp. 3–21, 2020.

[23] L. Carnevali, F. Flammini, M. Paolieri, and E. Vicario, “Non-markovian performability
evaluation of ERTMS/ETCS level 3,” in Computer Performance Engineering, vol. 9272,
2015, pp. 47–62.

[24] M. Biagi, L. Carnevali, M. Paolieri, and E. Vicario, “Performability evaluation of the
ertms/etcs – level 3,” Transportation Research Part C: Emerging Technologies, vol. 82,
pp. 314–336, 2017.

[25] O. Himrane, J. Beugin, and M. Ghazel, “Towards a Model-Based Safety Assessment
of Railway Operation Using GNSS Localization,” in ESREL 2020 PSAM 15, 30th Euro-
pean Safety and Reliability Conference and the 15th Probabilistic Safety Assessment
and Management Conference, Venice, Italy, Nov. 2020.

[26] O. Himrane, J. Beugin, and M. Ghazel, “Toward Formal Safety and Performance Evalu-
ation of GNSS-based Railway Localisation Function,” in CTS 2021, 16th IFAC Sympo-
sium on Control in Transportation Systems, vol. 54, no. 2, Lille (virtual), France, 2021,
pp. 159–166.

GA 101015416 Page 165 | 171

https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-2
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-2
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=S2R_4SECURAIL
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=S2R_4SECURAIL
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=S2R_4SECURAIL
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=S2R_4SECURAIL

[27] A. Cunha and N. Macedo, “Validating the hybrid ERTMS/ETCS level 3 concept with
electrum,” Int. J. Softw. Tools Technol. Transf., vol. 22, no. 3, pp. 281–296, 2020.

[28] P. Arcaini, J. Kofroň, and P. Ježek, “Validation of the hybrid ertms/etcs level 3 using
spin,” International Journal on Software Tools for Technology Transfer, vol. 22, no. 3,
pp. 265–279, 2020.

[29] D. Hansen, M. Leuschel, P. Körner, S. Krings, T. Naulin, N. Nayeri, D. Schneider, and
F. Skowron, “Validation and real-life demonstration of ETCS hybrid level 3 principles us-
ing a formal b model,” International Journal on Software Tools for Technology Transfer,
vol. 22, no. 3, pp. 315–332, 2020.

[30] A. Mammar, M. Frappier, S. Tueno Fotso, and R. Laleau, “A formal refinement-based
analysis of the hybrid ERTMS/ETCS level 3 standard,” International Journal on Software
Tools for Technology Transfer, vol. 22, no. 3, pp. 333–347, 2020.

[31] T. Fotso, S. Jeffrey, M. Frappier, R. Laleau, and A. Mammar, “Modeling the hybrid
ertms/etcs level 3 standard using a formal requirements engineering approach,” Int.
J. Softw. Tools Technol. Transf., vol. 22, no. 3, pp. 349–363, 2020.

[32] J.-R. Abrial, “The abz-2018 case study with event-b,” International Journal on Software
Tools for Technology Transfer, vol. 22, 06 2020.

[33] D. Dghaym, M. Poppleton, and C. Snook, “Diagram-led formal modelling using iuml-b
for hybrid ertms level 3,” vol. 10817 LNCS, pp. 338–352, 2018.

[34] D. Dghaym, M. Dalvandi, M. Poppleton, and C. Snook, “Formalising the hybrid ERTMS
level 3 specification in iUML-B and event-b,” International Journal on Software Tools for
Technology Transfer, vol. 22, no. 3, pp. 297–313, 2020.

[35] M. Butler, D. Dghaym, T. Hoang, T. Omitola, C. Snook, A. Fellner, R. Schlick, T. Tar-
rach, T. Fischer, and P. Tummeltshammer, “Behaviour-driven formal model development
of the ETCS hybrid level 3,” in 2019 24th International Conference on Engineering of
Complex Computer Systems (ICECCS), vol. 2019-November, 2019, pp. 97–106.

[36] P. Gaspari, E. Riccobene, and A. Gargantini, “A formal design of the hybrid european
rail traffic management system,” in Proceedings of the 13th European Conference on
Software Architecture - Volume 2, vol. 2, 2019, pp. 156–164.

[37] A. Ait Wakrime, R. Ben Ayed, S. Collart-Dutilleul, Y. Ledru, and A. Idani, “Formaliz-
ing railway signaling system ERTMS/ETCS using UML/Event-B,” vol. 11163 LNCS, pp.
321–330, 2018.

[38] M. Bartholomeus, B. Luttik, and T. Willemse, “Modelling and analysing ERTMS hybrid
level 3 with the mCRL2 toolset,” vol. 11119 LNCS, pp. 98–114, 2018.

[39] F. Flammini, S. Marrone, R. Nardone, and V. Vittorini, “Compositional modeling of rail-
way virtual coupling with stochastic activity networks,” Formal Aspects of Computing,
vol. 33, no. 6, pp. 989–1007, 2021.

[40] Z. Yong and Z. Sirui, “Typical train virtual coupling scenario modeling and analysis of
train control system based on vehicle-vehicle communication,” in 2020 IEEE 6th Inter-
national Conference on Control Science and Systems Engineering (ICCSSE), 2020,
pp. 143–148.

[41] —, “X2Rail-3 Deliverable D4.2 - Moving Block Specifications — Part 2 – System
Definition,” Tech. Rep., 2018. [Online]. Available: https://projects.shift2rail.org/s2r ip2 n
.aspx?p=X2RAIL-3

GA 101015416 Page 166 | 171

https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-3
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-3

[42] ——, “X2Rail-3 Deliverable D4.2 - Moving Block Specifications — Part 3 – System
Specification,” Tech. Rep., 2018. [Online]. Available: https://projects.shift2rail.org/s2r i
p2 n.aspx?p=X2RAIL-3

[43] R. Goverde, et al., “MOVINGRAIL D1.1 - Report on Moving Block Operational and
Engineering Rules,” Tech. Rep., 2018. [Online]. Available: https://movingrail.eu/

[44] MOVING BLOCK AND VIRTUAL COUPLING NEXT GENERATIONS OF RAIL
SIGNALLING (Movingrail). [Online]. Available: https://movingrail.eu/

[45] M. Ghazel, “Formalizing a subset of ERTMS/ETCS specifications for verification pur-
poses,” Transportation Research Part C: Emerging Technologies, vol. 42, pp. 60–75,
2014.

[46] —, “X2Rail-3 Deliverable D4.2 - Moving Block Specifications — Part 5 – Engineering
Rules,” Tech. Rep., 2018. [Online]. Available: https://projects.shift2rail.org/s2r ip2 n.a
spx?p=X2RAIL-3

[47] ——, “X2Rail-2 Deliverable D6.1 - System Requirement Specification (SRS) for the
Integration Layer,” Tech. Rep., 2018. [Online]. Available: https://ec.europa.eu/research/
participants/documents/downloadPublic?documentIds=080166e5cc98373f&appId=P
PGMS

[48] L. Ferier, S. Lukicheva, and S. Pinte, “Ertms braking curves modeling using efs,” in 9th
FORMS/FORMAT 2012 - Symposium on Formal Methods for Automation and Safety in
Railway and Automotive Systems, 2012, pp. 99–108.

[49] UNISIG, “ERTMS/ETCS: System Requirements Specification - SUBSET-026, issue
3.6.0,” 2016.

[50] —, “X2Rail-1 Deliverable D5.1 - Moving Block System Specification,” Tech. Rep., 2016.
[Online]. Available: https://projects.shift2rail.org/s2r ip2 n.aspx?p=X2RAIL-1

[51] ——, “Modeling and analysis of real-time and embedded systems ((ptc/08-06-09),”
Tech. Rep., 2018. [Online]. Available: https://www.omg.org/omgmarte/

[52] S. Bernardi, J. Merseguer, and D. Petriu, “A dependability profile within marte,” Software
and Systems Modeling, vol. 10, no. 3, pp. 313–336, 2011.

[53] R. Alur and D. Dill, “A theory of timed automata,” Theoretical Computer Science, vol.
126, no. 2, pp. 183–235, 1994.

GA 101015416 Page 167 | 171

https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-3
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-3
https://movingrail.eu/
https://movingrail.eu/
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-3
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-3
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5cc98373f&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5cc98373f&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5cc98373f&appId=PPGMS
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-1
https://www.omg.org/omgmarte/

A. Used Formal Languages and Notations

This Appendix recalls the main definitions and concepts of timed automata, networks of
extended timed automata, and stochastic activity networks, respectively.

A.1. Timed Automata

Timed automata (TA) is a well-known formalism for modelling and verifying safety-critical
systems with timing constraints [53]. TA extend finite state automata with clocks (i.e., real-
valued variables, all of which evolve linearly at the same rate). The behaviour of a real-time
system is modelled by finite graphs augmented with a finite set of clocks. The vertices of the
graph are called locations and represent the possible control modes of the system, whereas
the edges that connect locations are called (control) switches, and model discrete changes
of control modes. Time can only pass in locations, while switches are instantaneous. Clocks
can be compared with rational constants to form clock constraints. These constraints are
expressed as conjunctions of linear inequalities: for a set X of clocks, the set Φ(X) of clock
constraints φ is defined by the grammar:

φ := x ≤ c|c ≥ x|x < c|c < x|φ1 ∧ φ2

where x is a clock in X and c is a rational constant in Q.
Clock constraints can be used to express enabling conditions for switches, called guards,
and to specify location invariants, namely upper bounds on the time that an automaton
can spend in a given location, respectively. Formally, a timed automaton A is a tuple <
L,L0,Σ, X, I, E >, where:

• L is a finite set of locations,
• L0 ⊆ L is a set of initial locations,
• Σ is a finite set of input symbols,
• X is a finite set of clocks,
• I is the invariant mapping, associating each location l with a clock constraint in Φ(X),
• E ⊆ L × Σ × 2X × Φ(X) × L is a set of switches. A switch < l, a, φ, λ, l′ > represents

an edge from location l to location l′ that can be traversed on reading the input symbol
a. φ is a clock constraint over X that specifies when the switch is enabled, and the set
λ ⊆ X gives the clocks that must be reset, i.e. set to 0, when the switch is executed.

A.2. Networks of Timed Automata Extended with Variables and Broadcast Syn-
chronization

A system of timed automata with Boolean variables, which can be synchronized using broad-
cast communication channels, is a tuple (A,C,V), in which:

• A =
⋃n

i=1{Ai} is the set of communicating automata, where Ai =
(Li, `

i
0, Xi, Ti, Invi, Gi, Ci, Ri,Ti,Fi, Syni,Σi),

• C is the set of communication channels,
• V is a set of Boolean variables.

GA 101015416 Page 168 | 171

In this context, an automaton is a tuple A = (L, `0, X,E, Inv,G,C,R,T,F, Sync,Σ), in which:

• L is a finite set of locations,
• `0 ∈ L is the initial location,
• X is a finite set of clocks,
• E ⊆ L× Σ× L is the set of edges, (`, a, `′) ∈ E is written ` a→ `′,
• Inv : L→ 2X×{<,6}×R+ maps a possibly empty invariant to each location,
• G : E → 2X×{<,6,=,>,>}×R+ maps a possibly empty clock guard to each edge,
• C : E → 2V maps a possibly empty Boolean condition to each edge,
• R : E → 2X maps a possibly empty set of clocks to be reset, to each edge,
• T : E → 2V maps a possibly empty set of variables that must be set to true, to each

edge,
• F : E → 2V maps a possibly empty set of variables that must be set to false, to each

edge, with T∩F = ∅. Intersection is used here since mappings (T and F here) are also
relations, thereby sets,

• Syn : E → (C×{!, ?})∪{∅}maps a possibly empty synchronisation label to each edge,
• Σ is a finite alphabet of actions.

A clock guard assigned to a clock t is a triple (c, o, v), where c is a clock variable, o ∈ {<
,≤,=,≥, >} is a comparison operator and v a non-negative real value. For example, the
expression “c 6 0”, stating that the clock c must be lower than or equal to zero, is formally
written as the triple (c,6, 0). This works in the same way for invariants, except that guards
are mapped to locations, and use a restricted set of comparison operators (only < and ≤).
Mappings C, R, T and F all work in the same way: they map to an edge a set of Boolean
variables or clocks. For C, the variables associated with an edge e must all be true for e to
be enabled. As for R, when e is traversed, every clock in R is reset. Finally, T and F specify
what Boolean variable must be set to true, and which one to false, respectively.
Synchronization labels are of two sorts. Those ending in “!” specify a sending (or master)
edge that initiates the communication. As it is a broadcast communication, it does not require
any listener to be ready to listen, which means that a master edge can always be traversed
provided that the other enabling conditions are fulfilled.
An edge holding a synchronization label ending in “?” is a receiving (or slave) edge. A slave
edge is blocked until a master edge sending on the same channel is enabled.
When a master and some slave edges are enabled, they are all traversed synchronously, in
a single step (atomically). No enabled slave edge can be left out of the synchronous step if
a master edge on the same channel is enabled.

A.3. Stochastic Activity Networks

Stochastic Activity Networks (SANs) are a stochastic extension of , introduced to analyse
concurrency, timeliness, fault tolerance, and degradable performance of complex computing
systems [5]. A SAN model comprises four primitives that define its structural components,
places, activities, input gates, and output gates, whose meaning and roles have been already
introduced in Section 2.3.2. Here, a deeper discussion focused on the temporal specification
of SANs and how they deal with uncertainty is provided. In addition, the tool and the graphic
elements used to model the Moving Block system are introduced by a simple example.

GA 101015416 Page 169 | 171

The goal of this sub-section is to provide the necessary basis for understanding the model
presented in Section 8.6 to readers not familiar with SANs.
The temporal specification of SANs is stochastic, being defined by associating a time distri-
bution function with each timed activity, and a probability distribution with each set of cases
associated with an activity. Cases can be associated with both instantaneous and timed ac-
tivities. Case probabilities associated with instantaneous activities model a non-deterministic
choice among alternative activities enabled in a certain state, Case probabilities associated
with timed activities model the uncertainty about the next state assumed upon completion of
the activity. The case probabilities associated to an activity can be marking dependant, and
their sum must be equal to one.
A SAN model can only be analysed by simulation.
Figure A.1 shows the structural elements of a SAN. Ordinary places are drawn as blue
circles, extended places are orange circles, timed activities are drawn as thick bars, instan-
taneous activities are represented by thin bars, input gates are depicted as red triangles,
whereas output gates are black triangles. Cases are denoted by small circles on one side of
the associated activity.
Extended places (e.g., Extended Place1 in Figure A.1) differ from standard places because
they are associated to a variable, i.e., they contain data. Variables can be atomic, data
structures or arrays of primitive data types (i.e., short, int, long, float, double, bool and char).
Extended places cannot be connected directly to an activity, but only to its input and output
gates.
The firing of timed activities is associated with general distributed random variables (e.g., Ex-
ponential, Normal, Binomial, etc.) whose parameters can be numeric constant, or marking
dependant.
The probability associated with each case (e.g., the cases associated with Instanta-
neous Activity1) can be specified as a numerical constant or a function. If no cases are
explicitly present, the default is assumed, with a probability equal to one.
Input and output gates can be used to control the enabling condition of an activity, and
to change the state of the system when the activity fires. An activity is enabled when the
predicates of all input gates connected to the activity are evaluated to true, and each ordinary
place connected to the incoming arcs contains at least one token. When an activity fires,
the input and the output functions of the input and output gates (respectively) are executed,
while tokens of connected ordinary places are updated as in the Petri Net firings. Enabling
predicates and functions for gates are typically specified in tabular form.

Fig. A.1. A SAN model example

GA 101015416 Page 170 | 171

In Figure A.1, the timed activity Timed Activity1 is enabled by tokens in places Place1
and Place2. When the activity fires, a new token is added in Place3. At the bottom of
the figure, the instantaneous activity Instantaneous Activity1 is enabled by the predicate of
Input Gate1, which, in turn, is evaluated with respect to the marking of Place2 and Ex-
tended Place1. When the activity fires, two cases are possible. If selected, the first case
adds a token to Place3; alternatively, the second case enables the execution of the output
gate Output Gate1, which, in turn, updates the marking of Place4 and Extended Place1,
according to the output function associated with the activity.
SANs are well-supported by Möbius [6], a well-known tool used to edit and analyse SAN
models, which also supports the compositional and hierarchical development of models,
making SANs well suited to compositional modelling. In Möbius, all enabling predicates,
input and output functions, parameters, types, and variables are expressed by C++ state-
ments, thus allowing the introduction of actual code in the model definition.
Composed models are obtained through two compositional operators: Join and Rep. Join
composes two or more sub-models (called atomic submodels) by place or activities super-
position. Rep automatically creates identical copies (replicas) of an atomic sub-model. State
variables can be local to an atomic sub-model, or they can be shared among all sub-models.
The Join operator also supports the sharing of state variables among different subsets of
the composed sub-models.

GA 101015416 Page 171 | 171

	Executive Summary
	Abbreviations and acronyms
	1 Introduction
	1.1 Objectives and Scope
	1.2 About modelling
	1.3 Relationships with other PERFORMINGRAIL deliverables

	2 Background
	2.1 Modelling Phases
	2.2 The EULYNX Approach
	2.3 Adopted Languages
	2.3.1 UPPAAL timed automata
	2.3.2 Stochastic Activity Networks

	3 ETCS-L3 Modelling
	3.1 Semi-Formal and Formal Methods in *s2r *ip2 projects
	3.2 Review of the Scientific Literature
	3.3 Comparison with PERFORMINGRAIL contribution

	4 The Overall Modelling Process
	5 The Specification Approach and the SysML Structure
	5.1 The Modelling Scope
	5.2 Specification Process Description
	5.3 Building the *sysml model
	5.4 Integrating EULYNX DP
	5.5 Choice of the Functional Elements
	5.6 Tooling

	6 The Detailed SysML Model
	6.1 The Architectural Specification
	6.2 The Data Model
	6.3 The ERTMS Use Cases
	6.3.1 Trackside Initialisation
	6.3.2 Normal Train Movement
	6.3.3 On Sight Movement
	6.3.4 Loss of Train Integrity
	6.3.5 Staff Responsible
	6.3.6 Points Control
	6.3.7 Sweeping
	6.3.8 Loss of Communication

	6.4 The Trackside Behaviour
	6.4.1 Track Status Management
	6.4.2 Reserved Status Management
	6.4.3 Trains Management
	6.4.4 Movement Authority Management
	6.4.5 Route Management
	6.4.6 TTD Management
	6.4.7 Manage Temporary Speed Restrictions
	6.4.8 Points Management
	6.4.9 Communication Management

	6.5 The Onboard Behaviour
	6.5.1 Train Position Reporting
	6.5.2 Integrity Information Management
	6.5.3 Speed and Distance Supervision

	6.6 The Requirement Allocation Table

	7 The Followed Modelling Approach
	7.1 The Formal Modelling Process
	7.2 The Preliminary Activity Template
	7.3 Description of the Preliminary Activities for EUCs
	7.4 Description of the Preliminary Activities for Internal Functions

	8 Moving Block Formal Models
	8.1 Communication Management & Trains Management UPPAAL model
	8.2 IIM UPPAAL model
	8.3 TPR UPPAAL model
	8.4 Trackside Train Detection UPPAAL model
	8.5 Points Management UPPAAL model
	8.6 Movement SAN model

	9 Discussion
	10 Conclusions
	Bibliography

	A Used Formal Languages and Notations
	A.1 Timed Automata
	A.2 Networks of Timed Automata Extended with Variables and Broadcast Synchronization
	A.3 Stochastic Activity Networks

