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Abstract

After different variables and functions changes, the generalized dispersal problem, recalled
in (1) below and considered in part I, see Labbas, Maingot and Thorel [14], leads us to consider,
to study and to invert the sum of linear operators (4) below in a suitable Banach space by
using two strategies: namely the theory of sums of operators in Banach spaces as developed
by Da Prato-Grisvard [4] and successfully improved by Dore-Venni [5].

Key Words and Phrases: Sum of linear operators, second and fourth order boundary value
problem, functional calculus, bounded imaginary powers, maximal regularity
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1 Introduction and main result

This work is a natural continuation of Labbas, Maingot and Thorel [14], where we have considered,
for k > 0, the following problem

A?u—kAu=f inS,,

ou
UZ%ZO OHFOUFw,p (1)
0%u
UZW:O oan,
with
Swp = {(z,y)=(rcosf,rsinf):0<r <pand0<6<w}
) = (0,p)><{0}
I, = {(rcosw,rsinw) : 0<r < p}
I'y, = {(pcost,psinf) : 0 <6 <w},

for given p > 0 and w € (0, 27].

In part I, see Labbas, Maingot and Thorel [14], to study problem (1), we have done many
variables and functions changes to write it as a sum of linear operators. To this end, we have
introduced the following functions for ¢t > 0 and (7,0) € S,

v(r,0) = u(rcosf,rsin )
G(t)(0) := G(t,0) = g(pe™",0) = f (pe‘t cos 0, pe~ sin 0)

o o)
o(t)(0) = o(t,0) = (Ppe_tv@)

H(t)(6) = H(t,0) = e ¥G(1)(0),

and the two abstract vector-valued functions

V(t) = ( ee;if,((tt)) ) CF) = ( pgey?H(t) ) L v=3 —; e(1,3) withp>1.  (3)



By considering the Banach space
X = WZP(0,w) x LP(0,w),

and after the changes indicated above in (2) and (3), we have rewritten problem (1) in the space
LP(0,+00; X), see Labbas, Maingot and Thorel [14], in the following form

(L1, + L)V + kp? (P + Pou)V = Fy,

where
{ D(L1,) = {V € W?P(0,+00;X) : V(0) = V(+00) = 0}
(L1, (V)] (@) = (0r— vV () =V"(t) — 20V () + 2V (1),
{ D(L5) = {V e LP(0,+00; X) : for a.e. t € (0,+0), V(t) € D(A)}
[Lo(V)] (1) = —AV(2),

with

D(A) = [WP(0,0) NWFT(0,0)] x WEP(0,w) € X

P2
(a1 _ 2 (31

A<¢2> _ (aa;+1> %2(;;1)% | (w ) e D(A),
and

{ D(Py) = {V € LP(0,+00; X) : for a.e. t € (0,+00), V(t) € D(Ap)}

[PV (t) = —e AV (t),
with
t D(Ap) = WEP(0,w) x LP(0,w) = X
0
() _ (1
AO(%) B <§;+1>¢1+¢2 ’ <¢2)€D(AO)’
and
{ D(Ps,) = WHP(0, 400; X)
Poy(V)] (1) = —e ™ (BayV) (1),

with

0 0
B = ( —2(8; —vI) 0 )

In the present paper, we will focus ourselves on the resolution of the following abstract equation
(Lrp+ L2)V 4 kp® (Pr+ Pay) V = F, (4)

where 1 € R is a general parameter and F € LP(0, 400; X).
Note that, in part I, see Labbas, Maingot and Thorel [14], subsection 3.4, we have worked

2
with 4 = v = 3— — which comes from the variable change concerning the weighted Sobolev space.

Here, in this second part, we consider a more general u € R.
The aim of this work is to show that there exists a unique classical solution of (4) that is a
function V' such that
V € W2P(0,400; X) N LP(0, +o00; D(A)).

This regularity is necessary to deduce all those of the function v stated in Theorem 2.2 in Labbas,
Maingot and Thorel [14].



To this end, we will use the Da Prato-Grisvard sum theory in order to invert £q , + £L2. Then,
we solve the following equation

(Lo L)V kp? (P4 Poy)V = F,

by using a perturbation argument. Next, we use some convexity inequalities to prove that V
belongs to a more suitable space, more precisely

Ve WHP(0, +00; X) N P (0, +o00; [WH(0,w) N WiP(0,w)| x LP(0,w))

At this step, V is the unique strong solution of (4), see (46). To obtain that V is a classical
solution, we use the Dore-Venni sum theory, see Section 6.
Among the results that we will use is the fact that the roots of the equation

(sinh(z) + z) (sinh(z) — 2z) = 0,
in C4 := {w € C: Re(w) > 0}, constitute a family of complex numbers (z;);>1 such that
T = m;{l\hn(z])] >0 and |z;] — +o0.

These roots are computed in Fadle [7] with 7 ~ 4.21239.
Our main result is the following.

Theorem 1.1. Let F € LP(0, +00; X) and assume that
wp < T. (5)
Then, there exists pg > 0 such that for all p € (0, pgl, the abstract equation
(Lip+ L2)V +kp? (PL+ Pay) V = F,
has a unique classical solution V' € LP(0, 4+00; X), that is
V € WP(0, 400; X) N LP(0, +00; D(A)).
In particular, £q,, + Lo is closed and V' € D(Lq,, + L2).

This second part is organized as follows. Section 2 is devoted to recalling some needed results.
In Section 3, we analyze the spectral properties of operators L1, and L in view to study the
invertibility of £1,, + L2 in Section 4. In Section 5, by considering that operator kp? (P1 + P2,,)
is a perturbation, we deduce the existence and the uniqueness of a strong solution of equation
(4). Finally, Section 6 is devoted to the proof of our main result given in Theorem 1.1.

2 Definitions and prerequisites

2.1 The class of Bounded Imaginary Powers of operators

Definition 2.1. A Banach space E is a UMD space if and only if for all p € (1, +00), the Hilbert
transform is bounded from LP(R, E) into itself (see Bourgain [2] and Burkholder [3]).

Definition 2.2. Let o € (0,7). Sect(c) denotes the space of closed linear operators 77 which
satisfying

i) o(Ty) C Sa,
ii) Vo e(am), sup{|AA —T1) e s A€C\ S} < +oo,

where

{{ZGC:Z#O and |arg(z)| < o} if a € (0,7]

see Haase [9], p. 19. Such an operator T} is called sectorial operator of angle a.



Remark 2.3. From Komatsu [11], p. 342, we know that any injective sectorial operator Tj
admits imaginary powers T7° for all s € R; but in general, 77° is not bounded.

Definition 2.4. Let k € [0, 7). We denote by BIP(FE, k), the class of sectorial injective operators
T5 such that

i) D(Ty) = R(Ty) = E,
ii) VseR, TieL(E),
iii) 3C>1,VseR, |[|T8]m < Cellr,

see Priiss and Sohr [19], p. 430.

2.2 Recall on the sum of linear operators

Let us fix a pair of two closed linear densely defined operators M and My in a general Banach
space £. We note their domains by D(M;) and D(Ms) respectively. Then we can define their
sum by

Myiw + Mow

w € D(M1) N D(May).

We assume the following hypotheses

(Hp) There exist O, € [0,7), Opq, € [0,7), C > 0 and R > 0 such that

p(Mi1) D1 r={2z€C\{0}: ]é| > R and |arg(z)| <7 — 0, }
VZEELR, H(Ml—zf)ilu < m,
and
p(Msz) D3ypr={zeC\{0}: ]é\ > R and |arg(z)] < 7 — O, )
ViESon, |(Ma-zD)7Y|< L
with
Onm, + 0, <.
(HQ) U(./\/ll) N U(*Mz) = 0.
(H3) The resolvents of M; and My commute, that is
(M= M) H (Mo =X D) = (Mg = XoI) P (M — NI,
for all Ay € p (M) and all Ay € p(Ma).

Remark 2.5. Note that from (Hj), we have p (M) U p(—M3z) = C and in particular M; or
My is boundedly invertible.

Theorem 2.6 (Da Prato and Grisvard [4], Grisvard [8]). Assume that (H;), (Hz) and (H3) hold.
Then, operator M; + Ms is closable. Its closure M; + Ms is boundedly invertible and

—\ 1 —1 -1 1

(Mi+Ms) = 5 [ (Mi—=D) (Mo + D) d (7)

r
where T" is a path which separates o (M;) and o (—M3) and joins coe™ to coe®® with 6y such
that
O, <0, <m—0pMs,.



This Theorem is proved in Da Prato and Grisvard [4] (Theorem 3.7, p. 324), when R = 0
and has been extended to the case R > 0 in Grisvard [8] (Theorem 2.1, p. 7). In this last case,
the curve I' does not need to be connected.

Corollary 2.7. Assume that (Hy), (H2) and (H3) hold. Let i = 1,2 and &; a Banach space with
D(M,;) — & — £. We suppose that there exist C' > 0 and § € (0, 1) such that

lwllg, < € (lwllg + lwll g [ Maw]2) @®
for every w € D(M;).
Then D (./\/11 + ./\/lz) C &;.
Proof. 1t is enough to prove that the integral in (7) converges in &£;. For all £ € £, we have
/F(Ml — D) (Mo + 2D) " edz < /F My =207 (Mo + 20) 7 ng1 Iz,
1
then, applying (8), we obtain
|Mi—=2D T Me+2D) g
1
<O My =27 (Me+ 2
1 1 10 -1 1.9
+C H(/\/h —2I) " (M + 2I) gHS HM1 (Mq — 2I)"H (My + 21) 5”.5'
Now, for all z € I'; we have
1 1 9 1 1.9
H(M1 —2D) N (Mo + 2]) gHS HMl (M — 1)~ (My + 21) 5H5
[01(9/\/11)02(6/\42)}175 [01(9/\41)]5 [02(6/\42)}6 ng _ Cy (0/\/11)02('9/\/12) ng
= 2[20-9) ER € |2[1+(1-9) &
from which we deduce the convergence of the integral in (7). O

3 Spectral study of operators

In all the sequel, in view to apply the above results, we will consider the following particular
Banach space
£ =ILP(0,400; X) with X = W2P(0,w) x LP(0,w),

equipped with its natural norm.

3.1 Study of operator £,

We study the spectral equation
L1,V —-AV =R,

where V € D(L1,), R € £ and A € C (which will be precised below), that is
V() = 2uV'(#) + (12 = NV (t) = R(t), t>0
{ V(0) =0, V(+oo)=0.
We set
I, = {z € C\R_ : Re(v/z) > u}.
Now, let us specify II,. For all z =z + iy € C\ R_, we have

|z| + Re(2)

5 > = \Ja2 4+ y2 > 2% — .

Re(vz) > p <



o First case : if > p?, we have /22 + y2 + x > 22 > 242, then Re(\/2) > p.

« Second case : if x < p?, then y? + 4u%x — 4u* > 0. Thus, we deduce that I1,, is strictly
outside the parabola of equation

y? + 4ple — Apt =0,

turned towards the negative real axis and passing through the points (u2,0), (0,2u%) and
(0’ —2#2)

Figure 1: In this figure, II, is the entire uncolored area.

Now, let ez, , be a small fixed positive number and consider the following set

4 2
Yey, =qA e, |arg(A)| <7 —2eg,, and [N > S N (10)
sin? (&tgw)

We then obtain the following proposition.

Proposition 3.1. The linear operator £y, is closed and densely defined in £. Moreover, there
exists a constant Mg, , > 0 such that for all A € ¥, ,, operator £y, — Al is invertible and

H(ﬁl’“ - /\I)_luc(f;) < M\ilyu

Therefore, assumption (H;) in Section 2.2 is verified for £, with

931# = 26517#. (11)

Proof. Let A € II,. From Eltaief and Maingot [6], Theorem 2, p. 712, there exists a unique
solution V' € W2P(0, +-00; X) of problem (9), given by

et(,uff\/x) +0o0

V() = 7 h e~V R(s) ds -
12

1 t +o00
b (=)D R(s) d / ~(s—1) (V) )

e s) ds+ e R(s) ds |,
i Ul oo 8
see formula (15) in Eltaief and Maingot [6] where Ly := —ul — VAT and Loy := ul — VL. Tt
follows that II, C p(L1,,). This proves that £y, is closed. The boundary conditions are verified
by using Lemma 8, p. 718 in Eltaief and Maingot [6].



Moreover, from (12), we obtain

1 —+o00 1/10 +oo
Ve < (/ e~ tP(Re(vVX)—p) dt) / e—s(u+Re(\fA))||R(S)HX ds
2/ \Jo 0

+ sup </t ’e(t_s)(“_ﬁ)‘ ds + /+OO ’e—(S—t)(quﬁ)‘ ds) | Rlle
0 t

teR 2\/‘)‘|’

hence, noting ¢ the conjugate exponent of p, we have

1/p oo
< 1 O atetreym) o) e IRl
Ve < e ds
p(Re(vA) — p) 0 2VARY

1 — e—tRe(VN)—p) 1 IR||e
+ sup +
wen, \ Re(WVA)—p  Re(VA)+u) 21N
1 1 | R
PVP(Re(VX) — ) /7 qa(Re(VA) + )1/ 2¢/]
L2 Rl
Re(VA) — p 2V/A
2 Bl
Re(VA) — p VIl

Let A = |\|etas() ¢ Yr,,, then |arg(\)| <7 —2e¢, ,. Thus

arg(\) T
Re(Vh) —n > /N eos (TE) — o> Neos (§ 2., ) —
=
S

|A| sin (5£1 ) — \/2|T| sin (6517#) > Al sin (851#) :

2

We then obtain
Mg, ,

Ve <
RY

12le

4

where Mg, , = sin(ez, )

3.2 Study of operator L,

The spectral properties of Lo are the same as those of its realization —A.
In all this subsection, we assume that

A<0.

We have to solve the following spectral equation in X

AU — \U = F,
that is
0 1 " " N
) () ) ) () - (R)
<892+1> 2(8921) ¢2 ¢2 F2
with

Fi e WgP(0,w) and  Fy € LP(0,w).

7

(13)



We have to find the unique couple (¢1,12) € <W4’p(0,w) N Wg’p(O,w)) X Wg’p(O,w), which
satisfies the following system

{ P2 — A\ = B
— ) 2~y — 2 4y — Ny = B

Thus, we first have to solve
) oy g — 2Ny + )+ (2= AN (M + F) = By
1 € WAP(0,w) N WP (0,w),

that is

¥1(0) = ¢1(w) = ¥1(0) = Y1 (w) =
Set G\ = —Fy — 2(F{' — Fy) — AF}, it follows that the previous system writes

{ o 21+ N = (A= 1) = By +2F] + (A~ 2)Fy

{ 91 200+ DU+ (A= 1) = 5)
$1(0) = ¢ (w) = ¢1(0) = Y1 (w) =
Then, the characteristic equation
X2+ 0+ (=17 =0,
admits, for A < 0, the following four distinct solutions
ap = \/j)\Jri, a3 = —qg
{ ar =V-XA—i, a4=—as, (19
and for A = 0, two double solutions ¢ and —i.
We have to distinguish below two cases : A =0 and A\ < 0.
3.2.1 Case A =0 : Invertibility of A
Proposition 3.2. A is boundedly invertible. Then : Je¢ > 0: B(0,0) C p(A).
Proof. Here A = 0. We have to solve (14). This is equivalent to solve (15) that is
{ U o+ = —Fy - 2(F) — ) an
$1(0) = Y1 (w) = ¥1(0) = Y1 (w) =

From Thorel [22], Theorem 2.8, statement 2., there exists a unique classical solution of problem
(17) that is (¢1,12) = (¢1, F1) € (W4*p(0,w) N W(?’p(o,w)) x WP (0,w). We then deduce that
there exists C'7 > 0 such that

197 200y < C1 (1Pl zo(0) + 20 Fillwesow) ) < 2C1Fllx,
and from the Poincaré inequality, there exists C,, > 0 such that
11wz e (0, < Coll¥7llLr0w) < 2C1C0 [ Fllx-
Finally, since 19 = F}, we have

P20l zr0w) = 111l 2r0.0) < [1F2llzr(0.0) + 1 Iw2p(0.0) = I1F]lx-



3.2.2 Case A <0 : Spectral study of A

In order to prove Proposition 3.9, we first have to state the following technical results.

Lemma 3.3. Let « € C\ {0}, a,b € R witha <band f € WOQ’p(a, b). For all = € [a, b], we set

KXx)ztéxe@@af@)ds+lébe“@af@)d&

Then, we have

2 1 v T—S)o 1 b —(s—z)a
K(w>:af(x)+?/a e~ (=s)a pr1(g) ds+$/ze (s=2)a f11(5) .
Proof. The result is easily obtained by two integrations by parts. O

Now, let us solve explicitly problem (15) for A < 0.

Proposition 3.4. Problem (15) has a unique solution which can be written in the following form

Pr(0) = e (B + Ba+ By + Ba) + e DBy + By — B1 — B2) + S(6)

+ (70 =70 (B + By) + (7@ —em @0 (3, — ), (18)

where the constants 3;, ¢ = 1,2, 3,4, and the particular solution S will be explicitly given below.

Proof. In order to apply results obtained in Labbas, Lemrabet, Maingot and Thorel [12] and
Labbas, Maingot, Manceau and Thorel [13], we set

L_=—-al, M=—-al, r_=0a?—a3, a=0 and b=w.

Then, problem (15) can be written as

{ O — (L2 4+ M2y + L2 M2y = Gy, 1)

$1(0) = 1 (w) = 1](0) = ¥} () = 0.
From Labbas, Maingot, Manceau and Thorel [13], there exists a unique classical solution 1; of
problem (19). Its representation formula, in the form (18), is explicitly given in Labbas, Lemrabet,
Maingot and Thorel [12] by (14)-(15)-(16) or also in a more general framework in Labbas, Maingot
and Thorel [15] by (22)-(30)-(31).
For the reader convenience, we will prove, by a long calculus, that

1 1 1—e¥™

b = LU e (J(0) = W)
B = — U (7(0) — J(w)
411 L o (20)
B = U T e (T00)+ T(w)
Bi = U (J0) +Tw)),
with
U, = 1-— em 2V o/ xemwV A (1)
Uy = 1—6_2w\/j‘+2w\/—7/\e_‘”m,



and for all 6 € [0, w]

o
S0) = gty V0 = () = 5 R0)
—(o—)as . . (22)
g () = € (0) = 5= (6),
with )
J(6) = /0 0=z (5) s +/ e (=002, (5) ds, (23)
where
e 0 —wa A "
W) = gt — ey U00) — W) + o F6)
e—(w=0)a1 3 1 (24)
gy () = €1(0) = 5= 16),
and ; \
10) = / e~ (0=s)n <—F2 —2(F - F1)+ = F{’) (s) ds
' " (25)
+ / Y lsm (—Fg CoF )+ 1”) (s) ds.
0 a7
Let us begin our proof. Here, we are inspired by the formulas given by (15) and (16), p. 2943, in

Labbas, Lemrabet, Maingot and Thorel [12], where the authors have used the notations F_, f_,
U_ and V_ which are replace respectively here by S, G, U; and U,. Consequently, we have

S() = Z‘;;ZM /0 " esazy(s) ds+Z€_2(ij /0 " em(wmslazyy () ds

_2;2 T 0=z (5) ds — 2;2 "m0z () ds
_Zez;":m /O " emmsaay, () ds

_Zewo‘22€a2(w9)a2 /Ow 02y (s) ds,

where
() = W;;jal /O Y ey (s) ds+We_2(:1_0Ml /0 Yoo, (o) ds

_W /0 e, (5) ds

_We_m;;(w_mm /0 TGy (s) ds — 27111(9)

1

with Z := (1 — e"202) ! | := (1 — e=20o1) " and

6
11(0):/ (=)o ( ds+/ (=013, (s) ds.
0
Then, since Gy = —F, — 2(F{' — F1) — AF}, we have
0
neo) = / ~(6-s)o1 (L, _o(F — F)) (s) ds
+/ (s=Oer (_py — 2(F)' — ) (s) ds

—/\/ ~(0=s)o1 oy ( ds—)\/ s=0a1 gy (s) ds.

10

(26)

(28)



From Lemma 3.3 and the fact that F} € Woz’p(O,w), it follows that

h@==ﬁzﬁﬂmeﬂ—%w—m»@w

n o~ (s—0)a (—Fy — 2(F)' — F)) (s) ds

0
2 0 w
—iFl(e) + 12 ( / e~ 0= Fl () ds + / e~ (=0ar pir gy ds>
(05} Oél 0 6
2X 0 A
= —ZR@)+ [ e ) (—Fg —2F - Fy)+ F{’) (s) ds
(051 0 ag

y A
I 6 67(379)041 <_F2 — Q(Fll/ — Fl) + ? Fll/> (5) ds.

1

Thus I, given by (25), satisfies

16) = 1(0) + -~ Fi(0).

Note that, from (28) and (29), we have

/W e 5 Gy(s) ds = I,(0) = I(0) and / (w—s alg)\ (s) ds = I(w) = I(w).
0

Therefore, from (27), we deduce that for all 8 € [0, w]

—0Oaq
wl6) = So (10) ¢ W)
Wef(wfé)al e 1
+T (I(w) —e™11(0)) —Eh(@)
= W o) e r)) + 2 R0)
N 20(1 Oé% !
We (w0 —way 1
Set \
V== g F1,
1
and

0 w
J1(6) :/0 e~ =902y (s) d8+/6 e~ (57024(s) ds;

then, due to Lemma 3.3, we obtain

0 w
J1(0) = / e~ 0=9)024 (5) ds+/ e~ 5702y, (5) ds
0 0

0 w
—1—% </ e~ (052 py () ds +/ e~ 5=02 B (s) ds)
ay 0 0

- [ s o)

+/ o—(s=0)a < () + a;a% Fl”(s))ds—i- 22 F6).

11



From (30), for all # € [0,w], we deduce that v given by (24) and J given by (23), satisfy

v(@):vl(G)—l-a/\a F(9),
199
and o)
J(0) = 1(0) - — a2F1(9) (32)
1

Note that, from (31) and (32), we have

/ e **yy(s) ds = J1(0) = J(0) and / (W=s)o2y(s) ds = Jy(w) = J(w).
0
Finally, from (23), (26), (32) and for all 8 € [0,w], we deduce that

e—@ag
SO) = Z5 = (0 - Iw)

Ze—(w—@)ag
+7

5 (J(w) — 72 (0)) = 5— J1(6),
a

20(2

which is (22).
Now, in order to compute 3;, i = 1, ..., 4, we must explicit Uy, Us and S’(0) + S’ (w).

U = 1-—ew@te) (42 —a2) " (a; + ay)? (e7@2 — 7w
— ] _ e wVX LV (e—w(ﬂ—i) _ 6—w(\/—7+i))
= 1—e VA9 /T eV A A sin(w),

and
Uy = 1— e wlonta) (a2 — a%)_l(al + ap)? (e7@2 — 7w

= 1BV Gy (e V) V)

= 1-—e 2V Ao/ eV A sin(w).
From (22), it follows that

Ze b2 A
/ 6 — _ _ T wa _ / 6
5'(0) 5 (0) = 7)) — o F()
Ze—o-0)as |
= L mwa2 R 1)
T () = e (0) - 5 0)
Zefaag —wa Zef(wfe)C‘fQ —wa
= 20 e ) + D () — e (o)
o (0—s)a2 ¥ (s—0)az A /
+- /0 e (s) ds 7/9 e v(s) ds o Fi(0),
e J(0) — J(w) J(0) + ()
/ / _ B w ! <l _ + w
S'(0) + S'(w) = =y and S'(0) —S'(w) 0+ cwo)
from which we deduce the constants f3;, i = 1,2, 3,4, written in (20). O

Remark 3.5. Since 0 < sin(w) < w, for all w > 0, then we have

Up=1-—e2V2_92y/Ne wrsm( )=>1-— e 2V A _ 9/ he VA,
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and
Up=1—¢e 2V A1 2/Txe VA “sin(w) > 1 — eV 9/ Th eV,

For = > 0, we consider the following function
h(z) =1—e 2% — 2ze™ %,

we then have
W () =22 -2 "+ 2z " =2 (e“+2x—1)>0.

It follows that h(xz) > h(0) = 0, for all > 0. Finally, we deduce that
Up >1—e 2V 20/ xe V2 = h(wV/=A) > (33)

and

Uy 21— e 2V 2 2py/=he ™V = h(wV/—A) > (34)

Lemma 3.6. For all A € (—o0, —&g], where ¢ is defined in Proposition 3.2, functions J, v and
I, given by (23), (24) and (25), satisfy the following estimates

2
L [ llzrow) < ey (HFZHLP(O,LU) + 2|l F1 e (0,w) + 3HF1”||LP(O,UJ))'

2
S
M1<

2. 11(0)| + ()| < (12l o(0.0) + 20l zo(0) + 31 FY o) -

3. ollrow < = (I Fallzoow) + 2P | zoo) + 31T v )

where M1 —2+ __7%\/—

2
4. [ 0w < NS 11| 2o (0.0)-

2
5. [J(O)] + |J(w)| £ ——==7, v/l Lr(0.0)-
\/—7)\ - /P ’

Proof.

1. From (16) and (25), we obtain

0 w
Mllzrow) < sup (/ Ny [TV ds> 1271 — Pall oo
0€0,w] 0

0
+ sup </ —(O=s)V=X ds~|—/ Fds) H(—2) F/
0e0,w]

1 _ e VA 1 _ g (-0V-A
=+ T (HFzHLP(o,w) + 2HF1||L"(0»W>)

LP(0,w)

< sup
0e0,w]
3 (1 - 6_6\/3 1 - 6_(w_0)\/j>\> ||F/IH
+3 sup + w
0€[0,w)] V=2 V=X LIEP(0w)
2

_ 1/
< = (IFalno) + 21 Fillzo o) + 31 FY o) -

13



2. Due to (16), (25) and the Holder inequality, it follows

1O+ 11@)] < [TV ds
0

~Fa(s) — 2} (s) ~ Fa(s)) + 2 F{(s)

1
+/w e—(w—s)\/TA
0

ds

Fy(s) — 2F(s) — Fi(s)) + j (s)

w 1/q
< ([T ds) " (1Bl + 2N lri0a) + 31 Nisio)
Y s V=X 1a "
+ ([T as) " (10 + 210w + 1Y zs0.)
1
21— e/ 0) )
< S (Il o0y + 20 o0y + 31 o0
2 (1Bsllzoou) + 21 Fillo0) + 31 FY oo -
vV—=A
3. From (16), (24) and the fact that |a;i| = |ae| = V1 — A > /=, we have
I1(0)] + [ (w N 1/p Y
HUHLP(OM) < | ( )| | (_ )| </ e pOv/—X d@) + 1_7)\2 ||F1””LP(O,w)
2T = (1 - e 2v&) Vo (1-X)

IOV ([ o= gy
0

1/p 1
+ Il r(0
2VT =X (1 - e2v50) > i 0w

(|I(0)| + |I(w)]) ) 1 Tl
m\/jl/ppl/p (1 _ 6—2w\/5) 21—\ (0.w)

1
+ﬁ”F1”HLP(O,w):

<

hence

2 (Il o) + 21 o0y + BIFY I o(0.0))
T /j)\l/}?-%-l/q ql/q pl/p (1 . e,QW\/g)

+||F2||LP(O,W) + 2 F1 || 2o (0,w) + 3IFY | o (0.0) 1 a4
/1 — )\ /_)\ 1 . A 1 LP(O,OJ)

HUHLP(O,w) S

My

/!
S VI=AV=)\ (HFQHL"(OM) + 2HFl”LP(O,w) + 3| Fy HLP(O,w)) .

4. From (16) and (23), we have

0 w
HJHLP((),W) < sup </ e—(@—s)\/j ds +/ e—(s—B)\/TA dS) ||UHLP(O,w)
9ci0,w] \J0 0

< sup

1— 679\/5)\ 1— ef(wfﬁ)\/j)\
||UHLP(O,UJ)
0€0,w]

+
V= V=
< 2ol
X \/TA LP(O,w)’

14



5. Due to (16), (23) and the Holder inequality, we deduce that

O+ @] < [ e P ds+ [ eV R us)] ds
0 0

w 1/q w 1/q
< ((/ e,sq\/f)\ dS) + (/ e*(wfs)Q\/j ds) ) HUHL})(QW)
0 0
—wgy =\ 1/
2e)
< v
/a1 b0
2
\/_7/\1_1/1; HUHLP(O,UJ)'
O
Lemma 3.7. Let A < 0. Then, we have
w 1/p 4
(/ ‘e_am -’ d9> S 1+1/p’
0 V=X
and "
([ fertomom — el )" < 4
0 V=A
Proof. For x > 0, we have e < 1, so
+oo +00 - - +00 - 2
/ e PPaP dx :/ e~ e 5 2P dx g/ e dr =2,
0 0 0 p
Then, from (16), we have
v ‘ —9a1 _ —6ay|P Yl —ov=X (i _0i\|P Y POV
/ e —e d0:/ ‘e (e —e ) d9:2p/ e P | sin(0)|P db,
0 0 0
hence, setting x = 6/ —A, it follows that
X
/w ‘6_90‘1 P b dg = 2P /wr e P? |sin (:U ) hode
0 0 V=A V=2
¥4 w\/TA p
< £ e (x) d
vV—=AJo V=A
op +o0
< 7“/ e PPzl dx
X\ 0
op+1 92p
< < .
e T VAR
The second estimate is obtained by change of variable, taking w — 6 instead of 6. O

Lemma 3.8. For all A € (—o0, —¢gq|, where ¢ is defined in Proposition 3.2, the constants /31, (2,
B3 and By, defined by (20), satisfy

My (1Bl o0y + 20 Fi L r00) + 31 o 0.0))

max (|81 + B2/, |Bs + Bal) < — ,
w(—)\)\/—ix\2 e (1 — e~ VR — 2w, /5 e—w\/%) (1 — e_w\/?(’)

15



and
My (12l o) + 21 00 + BIFY I o0.0))

2(—=A)v e (1 — e Ve Qw\/%e_w\/‘%> 7

max (|52, |Aa]) <

where My =2 —|— — _Qw\ﬁ

Proof. Recall that 3;, i =1,2,3,4, depends on Ufl and U{l. From (33) and (34), it follows
> h(wV=X) = h(wy/gg) = 1 — e 2VE0 _ 2 feg e Vo > 0,

and
h(wvV=X) = h(wy/Eg) = 1 — e” V50 _ 20, /25 e V50 > (.

Thus, we deduce

1 1
d U;'< .
1 — e 2wV — 2w, feg e~ wVeo and Uy 1 — e 2wV — 2w, feg e~ wVeo

Ut <

Therefore, from (20) and Lemma 3.6, we have

1B1+ B2| < [J(0)] + [ (w)| l—ewm ‘
4 (1 _ e—2wvED _ 2w\/56—w\/?o) 1— ewaz
< ||UHLP(0,w) e W2 _ pmwal
2\/_7)\171/1) (1 — e—2wyE0 _ 2w\/%e—w¢€?) 1 — e—wa
< M (HF?”LP(O,w) + 2||F1HLP(0M) + BHF{,HLP(O’M)) 2efw\/j)\
B 2(=A)v . (1 — e~ VR0 — 2w, /g e*”x/ﬁ) 1— e wVeo
_ My (”FQHLP(Ow + 2(1 Pl e 0,0) + 3 EY [ o o, w))
< w(_)\)m%l/p (1 — e—2wyED _ 2wﬁe—wf) (1 _ e—wﬁ)
and similarly
B3+ Ba| < O]+ T()] 1_1"’_677%[1
4 (1 — e~ 2VE0 — 2, /5] e—ww?o) 14 e—waz

My (1Bl o) + 2 o) + 31 o 0.0))
w(_)\) /7_)\2—1/17 (1 72“’\/7—20.)\/»06 wf) (1—67"‘)\/70)

In the same way, we obtain

My (1Bl o0y + 20 il o) + 31 o 0.0))
2(_)\)\/_—/\1—1/12 (1 _ e—2wyEo _ 2w\/ﬁe*w\/5) ’

|2|\

and
My (1Bl o0y + 201l 000 + BIFY 1o 0.0))

|Ba] < -
2(=\) /—_)\1 1/p (1_ —2w\/Z0 _ 2, /Eg €™ w\/%)
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Proposition 3.9. A is closed and densely defined in X. Moreover, there exists a constant M > 0
such that for all A < 0, operator A — Al is invertible with bounded inverse and

_ M
) 1H£(X) S 1+ Al

A=z

Remark 3.10. This result implies, in particular, that —v/'A is well-defined and generates a

uniformly bounded analytic semigroup (e*S‘/Z) o
2

Proof. Recall that
D(A) = [WHP(0,w) N W3 (0,w)] x WFP(0,w).
It is clear that
D(0,w) x D(0,w) C D(A) C X = WgP(0,w) x LP(0,w),

where D(0,w) is the set of C*°-functions with compact support in (0,w). Since D(0,w) is dense
in each spaces I/VO2 P(0,w) and LP(0,w) for their respective norms, then D(A) is dense in X.

From Proposition 3.2, 0 € p(A), thus A is closed. From Proposition 3.4, for all A < 0, there
exists a unique couple

(1, 2) € (WHP(0,w) NIWEP(0,w)) x WP(0,w)

which satisfies

V2 = M+ B (35)
P20 el A= DM = G
where G\ = —Fy — 2(F]' — F;) — AF. Then R_ C p(A) and
R T W By (£ T R |
\IJ_<¢2>—(A M) <F2>—(A M) F,
where 17 is given by (18)-(20)-(22) and
Pa(0) = XeT2(By+ Ba+ B3+ Ba) + AT (B3 4 By — By — o)
+A (679&1 - 679&2) (Ba + B1) + A (67(“’79)0‘1 - 67(w70)a2> (Ba — B2) (36)
+AS(0) + F1(0),
with 3;, 1 =1,2,3,4 are defined in (20)-(21). From (22), we have
_ A —BOao _—wag
AS(0) + Fi(0) = S0 (1 oo} e (J(0)—e J(w))
A —(w—0)as —wa
Py (e mmy ¢ (@) - e (0)) (37)
A2 A
“@ad Fi(0) + F1(0) — 20y J(0),

where J(#) is given by (23). Our aim is to prove that, for all A < 0, there exists M > 0, such
that

M
A= X)"LF < —||F||x,
(A =AD" Fllee < gyl
with
Fy
1Flx = 7 )| =Bz + 1Blmow: (38)
X

17



To this end, we consider that A € (—oo, —eg], where ¢q is defined in Proposition 3.2. We first
study S” and . From (22), for a.e. 6 € [0,w], we have

—0Oas
" _ e 7 _ pwa2 _ L /"
S0) = G ey 0~ w) ~ o F6)
—(w—0)a2 1
a3 € _—wae B 11
and from (23), we obtain J”(0) = a3J(0) — 2azv(#), hence
—0Oao
" _ @z¢ _—wan . A %
S(6) = Sy (U0) — € W) ~ e F6)
2 () — o (0) = 2 7(0) +0(0)
2 (1 — e 2oz \© W € 2 v

Then, since a1 = v=X +4 and ag = V=X — 4, we have |[e”“%| = |e™@92| = ¢~@V~A < 1 with
—\ = gg, thus

VI=X(JO)+[J@D (¥ —pov=x \""
2(1_6—2%/5) (/o e Ad@)

VI=X(JOI+ @D (9 potrv=x 0\""
" 2(1_6—%\/%) </0 e Ada)

15" | Lrow) <

- V1=
+m I FY M| e o) + O 1| e 0,w) + 101l 2r(0,0)

ml/p (1 _ 6_2%/?0) 1— ) i)

V31—
+—— I llzrow + vl 0w):

From Lemma 3.6, we have

15| < 2vi-A o
Lp(07w) = \/_7)\171/2%%1/? (1 _ 6_2&)\/%) LP(O,w)
V1—A 1
+ﬁ ]l r0w) + 1Vl Lr(0w) + T-x IFY (| £e (0,00
2M,
< )\(1 —2w\/?o) (HFQHLP(O,w) + 2[|F1 | r (0,0) +3||F1”||LP(O,w))
— —e
2M, 1
+t— (HFZHLP(O,w) + 2|l F1ll e 0,w) + 3||F{'||Lp(o,w)) LY 1 FY [ r (0,0)-
Finally, we obtain
Mo
HS//HLP(O,W) < Y (HFZHLP(O,W) + 2[|F1| e 0,0) + 3”F{/HLP(O,w)) ) (39)
Where M2 = 1762_% —+ 2M1 + 1.
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Now, we have

7(0) —S"(0) = a3e 2B+ B+ B3+ 1) +ade @By 4 By — B — Bo)

+aj (e_eal - 6_9a2> (B2 + B1) + a3 (6_(“’_9)0“ — e - 9)a2) (B4 — f2).

Then

w 1/p
197 = S"llrow) < (L= A)(IB1 + Bzl + |83 + Bal) (/0 e d">

“ 1/p
+(1 = XN)(|B1 + B2| + |83 + Bal) (/0 o PW=0V=X d@)

1/p
P d9>

L= 218l 18l) ([ [emtor = e

(1= )18l + (8] [ [t - et

Using the fact that
1-X 1 1 <14 1
—A /\ 607

with Lemma 3.7 and Lemma 3.8, we obtain
2(1 - )(|ﬁ1+ﬂ2|+|ﬂ3+64l) 8(1 = A)(I1B2] + |B4l)
ml/p \/_7)\1+1/p

_ M (1Pl o) + 2Bl + 31 FY 000

~ 7)\ b
4M1(1+5)(1+%)
where Ms = (l—e_QW\/%—Qw\/%e_w\/%)(1—6_“’\/%) :

Due to (39), it follows that

17l eow) < 197 = S"llr0w) + 1Sl Lp(0.w)

[0 — S| Lrow) <

M3 + Mo

< 2 (1Bl ow + 20 F o + 31 0.
3(M2 + M3)

< _7/\“F"X

From the Poincaré inequality, there exists C,, > 0 such that

SC’M(M2+M3)
1911200y < Collif oy < LR EM) oy

Now, we focus ourselves on |[12|| (o). As previously, we obtain

w 1/p
Iellzoow) < IM(BL+ Bal + 185 + Bal) (/0 VA d@)
v 1/p
(181 + Bal + 185 + Bal) </O (—Plw—0)Vx d9>
1/p
g d0)

v —(w—0)a —(w—0)as |P
+W(!ﬁ4!+|ﬁgl)(/0 emo0hen _ (om0l

(182 + 184]) ( /0 emter — e

My + M3
—A
+IAS + Fill oo -

N

(12l o) + 20 Fil o0y + BIEY 2o 0.))

19
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Moreover, from (37) and Lemma 3.6, we deduce that

_ w 1/p
‘|AS+F1HLP(0 ) < )‘(|J(O)| + ‘J(M)D (/ epr\/j)\ d&)
’ 2VT=A (1-e2v) Vo

—A(JO)] + [/ (w)]) o 1p
2vV1 =X (1—6*2%/%) </0 e Pl 9)ﬂd0>

L= | 1Al + 5 Wl
< ﬁ‘;i;’/f,oé’:'j_(j%) v ‘1 - | Wil + Il
< = (1‘2 oz i+ A Wil + Iolzs
< (=Zmm 1) Plsow + (55 + =) IFillew

1

o

2 1
S (WH) ollzo0w) + === 1Pl Le(0.)-

Then, from Lemma 3.6, we obtain

My

IAS + Fill o) < =

(12l o 00) + 21 Fill ooy + BIEY v )

WhereM4:(ke,%+l)M1+%+1.

Thus, it follows that

My + M3 + My
[2llLr0w) < Y (”F2||LP(0,w) + 2[|F1 || o (0,0) + 3HF1H||LP(0,w))
S Y X-

Finally, from (40), we have

_ M
(A=A Fllx = 91z +Iallow < 5 IFlL

where M = 3 ((C, + 1)(Ma + M3) + My).
Since —A is the realization of Lo, we deduce the following corollary.

Corollary 3.11. There exist £, € (0,7) small enough and M, > 0 such that

Vz€eX,, :=DB(0,e)U{z € C\{0}:]|arg(z)| <er,},

we have
Mg,

LX) S 1+ |2

(CI
Therefore, assumption (H;) in Section 2.2 is verified for £ with

032 =T —ELy-

20
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Remark 3.12. A is anti-compact; since o(—L2) = 0(.A) then o(—Ls2) is uniquely composed by
isolated eigenvalues (A;);-, such that |A;| — +oo, see Kato [10], Theorem 6.29, p. 187. More

precisely, the calculus of the resolvent operator (A — AI)~! requires that, for all A € C\ Ry, U;
and Us defined by (21) do not vanish. Since U;Us = 0 is equivalent to

(sinh(w\/j) - w\/j/\) (sinh(wﬁ) + w\/TA) =0,

then, using (z;);>1 defined in Section 1, we deduce that

2
25
Vi1, Aj:—w—geC\&.

Now, we prove that operator A has Bounded Imaginary Powers, see Definition 2.4.
Proposition 3.13. A € BIP (X,604), for any 64 € (0, ).

Proof. We will be inspired by the method used in Labbas and Moussaoui [16] or in Labbas and
Sadallah [17].
Let e > 0 and r € R. For all A > 0, F; € WaP(0,w) and Fy € LP(0,w), we have

[(A+I)—e+ir ( ?; >‘| (9) _ 1 +oo et

Fe,r 0

_ 1 +o0 )\_5+i7‘ ( wl ) (9) d\

(A+T+ D)1 ( 2 )] (0) dX

Fe,r 0 ¢2

where I'. , = I'(1 — ¢ + ir)['(e —ir), see for instance Triebel [23], (6), p. 100.

Now, let us focus ourselves on the first component v; for instance. Due to Seeley [21], we
only consider the convolution term in v, which is the most singular term. In our case, this term
is given by

1 w w
Is(0) = Somsles [T eleleng 1) ded
SO) = o [Tt [Teritongy 1) deds
1 w w
= /e"e—S'O‘?/ e~lstea (L — 2(FY — F) + (A + 1)FY) (t) dids,
dajag Jo 0

see (26) and (27). We will use the two following extensions

P —F5(0) — 2F"(0) + 2F1(9), if 6 € [0,w . ~ Fi(0), if0c|0,w
G0(9)={0 2(0) - 2HO) +2R0), H0el0u] Ly, m(@):{ol“ 10 €0,
and

Eo(0) = 10,

Now, we will use the Fourier transform denoted by F;. We then have

1o
Le®) = — | A~HT6(60) dA

1 400 )\—a—f—ir

T e s @ R 0 0

1 +oco )\—a—i-ir

N I.rJo  daion F (]:t (Ea? * (Eal * (GVO + (A + 1)%))) (f)) (0) d\,
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L0 = F ( 1 /O+oo \—etir Fi (Boy) (6)F, (Ea,) () F, (é} + O+ 1)?51) (€) d)\> ()

Cer dajag

- f( R (B (OF (Fay) €) 0 (Go) (5)) ®)

4041 a9

+Ft1< 1 /()+OO AT 2 V(@ F (Ba) (6) dAF, () (5)) (0).

40110&2

We recall that

2c
Ea) (€)= 3
Ft( )(5) a2 + 47T2€2
here a1 = VA +1+17and as = v+ 1 — 1. Hence
)\ferir )\75+ir 40&1042
Ea Ea =
daag Ft (Baa) ()71 (Ba) (€) darag (a2 + 4m2€2) (a3 + 4m2€2)
/\75+ir
C a2ad +4m2€2(af + ad) + 16mied
)\75+ir
A2 4(1 + 272€2) A + 4(1 + 4mied)
)\—e—i—ir
A A+ N
where - -
AL = 2 + 4né + 4n°€” = 4x” (g— (“)> (g— M)
21w 2
1+1 1—1
Ao = 2 — Ar€ + An%€? = 4x? (§+ ( “)) <§+ ( z)) .
2T 27

Thus, since

1 1 1 1
A+A)A+ X)) AL — X <_>\+>\1 +)\+>\2)7
it follows that

)\—a+ir 1 )\—a—f—z‘r )\—e—f—ir
E, E, =— |- .
40{]_0[2 ft( 2) (é.)ft( 1) (5) 87'('5 )\+)\1 + >\+ )\2
Then, setting
=— and o9= i
01 = )\1 2 = )\2)
we obtain
+o00 Aferir 1 +oo )\ferir +00 )\75+ir
Fi (Eq, Fi (Eq, d\ = — —/ d\ /
| G T () (9F (Eay) (€ W( e e A

)\1—€+iT —+o00 0—1_6—’—2‘7‘
= —— doy
8t&  Jo o1 +1

—e+ir a4 —e+ir
Ay o,
87 Jo oy +1

dO’Q.

Moreover, for all z € C\ N™, where N~ is the set of negative integer, we have

0T - T
/0 1= (2)I'(1 — 2).

22
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It follows that

+o0 O.fz-:Jrzr
/ do =T(e —ir)['(1 —e+ir) =T¢,,
0

oc+1
hence
L A (B (©F (Ba) (€ dh = ——— (=¥ — =)
Top o dogay ™t P ~ 8wl \? 1 &t
_ 1 —e+tir —e+tir

In the same way, we have

)\—a—l—ir(}\ + 1) 1

A+ A=t L 1A= Hr

Fo(Bay) (€)F: (Eay) (€) = <_

40(10[2 )\1 — )\2

1 )\1—5+ir )\1—5-{-2‘7’
To8mE\l A+ N S

1 Afz-:Jrir AfeJrz'r
+% ISV

Then, setting

A
o1=— and o09=—,
DY Y
we obtain N " ( )
o0 \=EHIN(\ 4 1
T = /0 Wft (EOZZ) (5)’715 (EOzl) (5) d)\
_ 1 +o0 )\75+ir /J,-oo A~ etir
- 8wE Jo A+ )\1 87‘1’5 A+ )\2
1 +o00 )\1 e+4ir +o00 )\1 e+4ir
" 8rEJo A+ N\ 87r£/ )\+)\2
)\—e—f—ir 400 ~—E+ir )\—E—I—ir 400 ~—E+IT
= 71 doy + =2 72 doy
8¢ Jo o1+ 1 8¢ Jo o9+ 1
)\1—5+ir 400 l—etir /\1 e+ir 1—e+ir
L 91 doi + o dos.
8t¢  Jo o1+1 8¢ Jo o2 +1

Moreover, from (42) and (43), we deduce that

)\7€+ir _ )\7€+ir )\7€+ir _ ) —Etir
T = (2 L >r57r+<2 Al >F(5—ir—1)F(1—(€—ir—1))

8mé 8mé

—et+ir —e+ir
<>‘2 — )‘1

o )(ra,r+r(a—ir— )DL — (e — ir — 1))).

For all z € C\ Z, we have

I'(z— 11— (2—1)) = Sm(ﬂ(z 557 = —Sm?m) = —T(z)T(1 - 2),

Setting z = ¢ — ir, with € € (0, 1), it follows that

Fe—ir—1DI'l1—(e—ir—1)=-T(—ir)I’'(1—e+ir) = -T.,,

23
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hence T = 0. Finally, we obtain that

L,(6) = F* (me(©)F: (Go) () (6),

where , ,
)\2—5—0—17" _ )\1—54-27“

8mwé

me(§)

Setting ' '
) A o\
m(€) = lim me(€) = 22—,

e—0 87T§

due to the Lebesgue’s dominated convergence Theorem, it follows that
Io(6) = lim L., (60) = F;™" (m(&)F: (Go) (©)) (6).
Moreover, for all z1,x2 € R, we have

1] 1x2

et — "2 L |y — xa,

then, for all £ € R\ {0}, we deduce that

|m(£)’ - ’)\g B )\?| B eirin(A2) _ girln(A1) |7,’ ’111()\2) _ 111(/\1)‘ _ |7"| ‘ln (3—1_@)‘
8] 8[| - 8¢ h 8r¢
Thus ) .
)\ZT _ )\ZT
=i = |lim Z22—"L
Sup m(&)] = lim Im(&)] = |lim Sre |
and
ir _ \ir , o 2¢2 i 1) 2¢2 2
lim o s i 2 1+ ir (=27 + 2m°&%) + 2ir(ir — 1)m28* + o(&?)
£-0 8w £—0 8mé
i 2 1+ ir (2m€ + 272€2) + 2ir(ir — 1)72€% + o(£?)
£—0 8m&
. — 49 2
_ i 2 ( dirmé + o(§ ))
£—0 8m&
= -2 ljp,
Then .
”
sup|m(©)] = 1.
£eER
We have
/ 272 (z'mg—l(—zm +8726) — ir AT (4 + 87r2§)> —2mE (AY — \IT)
gm (5) = 6471—262
T i1y i1 RV
= 5 (A1 (=1 4 2m€) = X1 (1 + 2m¢)) e
and in the same way we obtain
sup [ m/(€)] = lim [¢m'(§)| = [lim Em/ ()],
£ER £—0 £—0
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with ) )
Ay — AT

lim & m/(€) =~ lim (A (=14 2m€) — AT (1 + 278) ) — e

£—0 32 -0

where

lim Ay ~! = lim 271 (1 + (ir — 1) (—27r§ + 277252) + dir(ir — 1)m%€% + 0(52)> =

£50 £550
and
lim A1 = hm gir—1 (1 + (ir—1) (27r£ + 2%252) + dir(ir — 1)7%€% + 0(52)) = 2ir—1,
£—0
Thus
1 ir , , , , A — AT
: / _ = _ ir—1 ir—1 ir—1 _ yir—1 _ 2 1
%g%ﬁm(ﬁ) = 4% 08< ()\2 + A1 )+27Tf<>\2 Al )) g
1 2 g ,
_ = 2@7“—1~
1 ( 3 + zr>
= 3x2" 5
Then 5
sup [Em/(§)] = ’3 X 2”_52'7“’ = 3—2|r\
£ER
Therefore, we deduce that
/ r | 19
sup [m(©)] + sup e’ (€)] = 1 + 2 ir| = D],
£ER £ER

From the Mihlin Theorem, see Mihlin [18], for all v > 0, there exists C.,;, > 0, such that, for all
r € R, we have

lorOllgeey = [F (@ FUG)©) Q)| o, < Crpe™.

L(X)

Finally, for all v > 0, there exists a constant C;, > 0 such that for all r € R, we obtain

H(A+I)"

o) S Crwe

Therefore, taking 4 = v > 0, we have A+ I € BIP (X,64) and from Theorem 2.3, p. 69 in
Arendt, Bu and Haase [1], we deduce that A=A+ 1 — 1 € BIP (X,60,4). O

4 Study of the sum £, + Lo

4.1 Invertibility of the closure of the sum

In this section, we will apply the results described in Section 2.2. We take £;, = M; and
Lo = M.

Theorem 4.1. Assume that (5) holds. Then £y, + Ly is closable and its closure Ly, + Lo is
invertible.

Proof. Assumption (H;) is satisfied from Proposition 3.1 and Corollary 3.11, with
Onm, +0pm, = €Ly, T T — €Ly,

where it suffices to take ez, > e, , in order to obtain O, + Oaq, < 7.
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For assumption (Hs), due to Proposition 3.2, it follows that 0 ¢ o(£q,,) No(—L2). Moreover,
from Proposition 3.1, we have

o(L1,) ={NeC:larg\)| <7 and Re(VA) < pu},
and from Remark 3.12, it follows that

22
o(—Ls) = {A € C\ Ry :sinh(wvV—\) = +wvV-\} = {_]2 €C\Ry:j¢€ N\{O}}.

w

22 1

the condition o(L1,,) No(—L2) = 0 is fulfilled if (5) holds.

The commutativity assumption (H3) is clearly verified since the actions of operators £y ,, and
Lo are independent.

Now, applying Theorem 2.6, we obtain the result. O

Then, since

Remark 4.2. We can conjecture that, for the critical case wy = 7, the sum £;, + £o is not
closable.
4.2 Convexity inequalities
In view to apply Corollary 2.7, we are going to verify inequality (8) in two situations.
Proposition 4.3. Let

E1 = WHP(0, +00; X) C € =LP(0, +o0; X),

and
& = L7 (0, +o00; [W3P(0,w) N WP(0,w)] x LP(0,w)) C €.

Then, we have
D (Acl,,u + EQ) Cc & Né&s. (44)

Proof. Let V € D(L1,,). We must prove that there exists 6 € (0,1) such that
—0 6
IVlie, <€ IVl + IVIES 120, (VIE]

For all V. € W2P(0, +00; X), from Kato [10], inequality (1.15), p. 192, we have the convexity
inequality

1/2 1/2
V' lle < 2V2|V I3V 1E2
Thus, we deduce that
1/2 1/2
Ve = IVIle + V']l < IVIe + 2vV2|VIIE2V"|IE .

Since Ly, is not invertible, we will estimate ||[V"||¢ by [|£1,,(V) — AoV |e, where Ao € p(L1,,).
We have
V" —2uV' 4+ (2 = Xo)V = L1,,(V) — A V.

Then, there exists a constant C' > 0 such that
Ve + IV ]le + [IVlle < CllL1u(V) = AoV e,

hence

IV7lle < ClIL1u(V) = XoVe < CILLu(V)le + Aol CIV le-
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Thus
1/2 1/2
Ve, = IVIe +1IVle < IIVIe+2v2VIZ2 V1Y

N

< Ve +2v2CVIZ (L)l + PolllV )2

1/2 1/2 1/2
< VIl +2VaC VI (I21a (VI + ol 2V I1E)
< (142920 Do) Ve +2V2C VI L0012

Therefore, inequality (8) is satisfied for § = 1/2 and M; = L, ,. Using Corollary 2.7, we obtain
D(Liu+L2) Cér
Now, we must show that, for all V'€ D(Lz), we have
IVile, < € [IVlle + VI L2717
To this end, it suffices to do it for A. Set
G = [W32(0,w) NW5P(0,w)] x LP(0,w) C X.

)]0

= [[Y1llwsrow) + Y2l Lrow)

We must prove that

(0 ()
o) eeen ()],

Here, we have

(&
v )|,
= H¢1HLP(0,UJ) + HwiHLp( + H¢ HLP 0,w) + W’”Hm(o,w) + ||¢2HLP(0,W) .

Set ¢ = 9. Then, for all n > 0, from Kato [10], inequality (1.12), p. 192, taking n = n+ 1 and
b — a = w, we obtain

1/2
<C +

X

A(%)

X

1/2
X].

1

, W 2 2
10" | r(0.) < EH@ lzrw) + = {743+ p el e (0,0)-
It is not difficult to see that the second member is minimal when

1/2
V2 (19" 100y + 49l 2o0.0))

1/2
2 el Zrto.)

Therefore, we deduce that
1/2
V2l 0wl o 4 VEIleliow el

1/2 1/2
(197l zo0w) + 4lelzew) < (1" 1o 0w) + 4ol o))

1"l p o) <

V3 (16" 1270w) + 410l 500)” Ielzi0a)
+7 1/2 *H(P”LP (0,w)
H‘PHLp(ow

V2

1/2 6
16" 2r00) + 42l r0)” TelHi2gy + - lellzo o

1/2
V2 [lelii0m)

" 1/2
(1”2 0.0 + 4111l Lo0.) )

N

4 /!
+ ;HSDHLP(O,UJ)—FWW | 2 (0,00

1/2 1/2
Cos (1911 zo000) + 1] o0 1" | o0y ) -

N
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Then, we have

1/2 1/2
104" zr(00) < Coo (1971 z0000) + 171 ot 1952 1 ot ) -
Hence

()

< Ml oo + 191 e 0wy + 1971 1p(0,0)

g1
Cuo (1871120 0.0) + 1071 t0 w1 0y ) + T2l o0

1/2 1/2
< (WU Co) [lhzogoy + Colldally 2o 11 10wy + 12l 2ag00)

Now, since A is invertible, see Proposition 3.2, we have proved that there exists a constant C/,

depending only on w such that
19 100 < €L |4 ( o )
Moreover, it follows

), ()l el (2 B

Therefore, inequality (8) is satisfied for 6 = 1/2 and Ma = L3. Using Corollary 2.7, we obtain

1/2

< (1+0Cy) + C,Cl,

1

D(Lr+L2) C &,

which gives the expected result. O

5 Back to the abstract problem

Now, we are in position to solve the following equation
(Ciu+ L2) V + ko (PL+Po) V = F. (45)

Theorem 5.1. Let F € LP(0,+00; X) and assume that (5) holds. Then, there exists pg > 0 such
that for all p € (0, po], equation (45) has a unique strong solution V' € LP(0, +o00; X), that is

3 (Vi) pso € D(L1,) N D(L2) :

Va " V in LP(0,+o00; X) and (46)

n—s+00
(L1 + L2) Vi 4+ kp?* (P1+ Pay) Vi S i LP(0, 4005 X)),
satisfying
V € WHP(0,400; X) N L7 (0, +o00; [WH2(0,w) N WGP (0,w)] x LP(0,w)). (47)
Proof. Due to Theorem 4.1, if (5) holds, then £y, + L5 is invertible. Thus, it follows that

Ik (Pt Poy) (Cu 7 02) | (G Ba) V = 7.
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From (44), we deduce that V € D(Ly,, + L3) C & N &y, that is (47) which involves that
(P1+ Pay) (L1, + L2)71 € L(X).

Then, there exists pg > 0 small enough such that, for all p € (0, po], we have

V = (m)_l [I + kp2 (P14 Pa,p) (»Cl,u + Ez)_l] - F, (48)

which means that V' is the unique strong solution of (45). O

6 Proof of Theorem 1.1

From Theorem 5.1, there exists pg > 0 such that for all p € (0, po], equation (45) has a unique
strong solution V' € LP(0,+o00; X) satisfying (47). Then, due to (46), there exists a sequence
(Va)nen € D(L1,, + L2) such that V;, 0 V and

n—-+0o0o

lim (Li,+ L2)Vy+ kp? (P14 Pop) Vi = F.

n—-+o0o

Since (Vi)nen € D(L1,, + L2), then the previous equality can be written as

lim (V,/(t) — AV, (t) — Fa(t)) =0
(49)
lim V,(0)=0, lim V,(4+00) =0,

n—-+00 n—-+00

where
Fult) = kp?e 2 Ao Vi (t) + kp?e 20 [(Bo,Vi)] (1) 4 2V () — 2 Viu(t) + F(2).

Since V;, — V in £ and V satisfies (47), we deduce that
n—+o00

lim V,(0)=V(0)=0 with lim V,(+o00)="V(4+00) =0,

n—-+0o n—-+o00

and

lim F,(t) = Foolt) € LP(0, +o0; X),

n—-+oo
where

Foolt) = kpPe 2 AoV (t) + kp?e 2! (B, V)] (t) + 2uV'(t) — p?V (t) + F(t).

Thus, problem (49) can be written as follows

{ lim (V,/(t) — AV, (t)) = Foo(t)

n—-+o0o

V(0) =0, V(400)=0.

Moreover, from Proposition 3.13, A € BIP (X,604), with 64 € (0,7) and due to Haase [9],
Proposition 3.2.1, €), p. 71, it follows that v/.A € BIP (X, 04/2) with 84/2 € (0, 7/2). Therefore,
due to Eltaief and Maingot [6], Theorem 2, p. 712, with L; = Ly = —/ A, there exists a unique
classical solution to the following problem
{ V'(t) — AV(t) = Foolt)
V(0) =0, V(4o00)=0,

that is
V € WP(0,400; X) N LP(0, +o0; D(A)).
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Thus, it follows that
lim (V,)/(t) — AV, (t)) =V"(t) — AV,

n—-+4o0o
hence
Jim [(Va() = V()" = AVa(t) - V()] = 0.
Now, set
{ D(82) = {p € W>P(0,400; X) : p(0) = ¢(+00) =0}
dop = ", @€ D(d9).
Then

0= lim [(Vn(t) V()" — AV (t) — V(t))} = lim — (=62 +A) (Vo(t) = V(t)).  (50)

n—+o00 n—+oo

From Priiss and Sohr [20], Theorem C, p. 166-167, it follows that —ds € BIP (X, 6;,), for every
05, € (0,7) and due to Proposition 3.13, A € BIP (X,04), for all 64 € (0,7). Thus, since —d2
and A are resolvent commuting with 05, + 60 4 < 7, from Priss and Sohr [19], Theorem 5, p. 443,
we obtain that

—6+ A€ BIP(X,0), 6=max(ds,,04).

Moreover, due to Proposition 3.2, we have 0 € p(A), then we deduce from Priiss and Sohr [19],
remark at the end of p. 445, that 0 € p(d2 + A). Therefore, due to (50), we obtain that

lim Vi,(t) — V(t) =0,

n—+00

hence, since V,, —+> V', by uniqueness of the limit, we deduce that
n—-—+0oo

V =V e W?P(0,400; X) N LP(0, +00; D(A)).

This prove that £y, 4 Lo is closed and that V € D(Lq, + L2).
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