
HAL Id: hal-04487969
https://hal.science/hal-04487969

Submitted on 5 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AlgoPath’s New Interface Helps You Find Your Way
Through Common Algorithmic Mistakes

Estelle Perrin, Sébastien Linck

To cite this version:
Estelle Perrin, Sébastien Linck. AlgoPath’s New Interface Helps You Find Your Way Through Com-
mon Algorithmic Mistakes. The Sixth International Conference on Advances in Computer-Human
Interactions, IARIA, Feb 2013, Nice, France. �hal-04487969�

https://hal.science/hal-04487969
https://hal.archives-ouvertes.fr

AlgoPath’s New Interface Helps You Find Your Way Through Common Algorithmic

Mistakes

Estelle Perrin

CReSTIC

IFTS - University of Reims Champagne-Ardenne

Charleville-Mézières, France

estelle.perrin@univ-reims.fr

Sébastien Linck

IFTS - University of Reims Champagne-Ardenne

Charleville-Mézières, France

sebastien.linck@univ-reims.fr

Abstract—This paper presents the new interface of our

serious game AlgoPath and its related interactions. AlgoPath
helps students learn algorithmic. The virtual world represented
in AlgoPath is all linked to the business of road construction
and people running along these roads: objects students interact
with are 3D figures, houses (huts and suburban houses), boxes,
a crane, a concrete mixer and a bus station. This paper
shows that AlgoPath helps students avoid common mistakes
they can make while learning algorithmic. The entire interface
is dedicated to help them conceptualize and understand the
rules of algorithmic and programming. Whenever it is possible,
AlgoPath reminds students of these rules and corrects the
mistakes.

Keywords-3D-based training; education; algorithmic; ludic
teaching

I. INTRODUCTION

When we first presented AlgoPath last year [1], we

introduced the reasons why we had wanted it to be im-

plemented: it was a necessity to have an entertainment

computer program in which students could learn algorithmic

but every single computer program we had looked into

was simply an improved imitation of flowcharts. To renew

interest, motivation, and enjoyment while learning, we had

to achieve a virtual world in which students could create

any algorithm they wanted. But to resemble video games, it

had to be a world so we had spent time thinking of what

a good concept of an algorithm could be. We had focused

on how a variable should look like and had decided to turn

it into a 3D white figure carrying a backpack that contains

a value. In AlgoPath, a 3D white figure runs on a stone

path. A path shape is related to the algorithmic statement it

mailto:estelle.perrin@univ-reims.fr
mailto:sebastien.linck@univ-reims.fr

and in its way of learning. Today all the most played video

games work in a 3D environment. If a serious game wants

to be interesting for children or students, it has to be close

to a classic game visual.

Questioning games are classically in only two dimensions.

But some of them use 3D interface to interact with the

player. These 3D-games are often made in 3D because of

the subject of the game: geography [8] or architecture [9],

but some are just made in 3D to have a better interface for

collaboration between players [10]. Some serious games are

just serious scenarii based on a commercially available video

games [11], [12]. For example in [12], they use Tycoon City:
New York R and SimCity Societies R games to learn daily

Figure 2. AlgoPath’s new interface.

dedicated to the new interface of AlgoPath and the common

mistakes it avoids. Section IV concludes the paper and shows

how the evolution of AlgoPath might be.

II. RELATED WORKS

We can find many works on serious games. We will focus

on three interesting characteristics of this kind of games: the

creativity developed by the gamer, the graphical interface

and environment of the game, and the usefulness of it.

A. Creativity

Serious games are made to learn something. Students can

either acquire knowledge about courses studied at school or

validate this knowledge with serious games.

Some are just made up of questions about the subject

taught at school. A Quiz [2] or a maze with a range of issues

related to a specific topic, [3] or [4], do not bring any part

of creativity in the game. This first type of serious game has

no creative part, it is more or less like school exams. Some

of these games are labelled ”serious games” only because

of their simplified interface and their childish presentation,

although it is no real support for learning whatsoever.

But on the other hand, some games develop a kind of

interaction between the learner and the game, where the

learner is involved in creating the game: for example series

of actions by the player to create a solution to advance

the storyline. The game does not only serve to check the

acquisition of knowledge but actually allows the student to

learn the concepts through play like: see [5] in physics,

see [6] to learn problem-solving or see [7] in mechanical

engineering. In [5] the authors show that the creativity

increases when the player can share his creation with other

players .

B. Interface

Serious games are first of all games, and so visual

representation and interactions between the player and the

interface of the game are very important. So, for people who

play serious games, a game must be attractive in its form

economics and global issues.

But all these 3D interfaces and interactions do not frame

the learning.

C. Usefulness

Many papers have been written about the utility of games

in education. Whatever the age of the students, the learning

with serious game is equivalent to that done in a master

course[13]. For [14], serious games are no obstacle to

students’ success. From primary school to high school, the

enjoyment to play [15] and, so to learn, is a good indicator

of the usefulness of serious games.

To be effective, a serious game must be a game as

well as a teaching aid. In that respect, teachers must be

given a special training to be able to use serious games

properly[16]. Then, if both teachers and learners use the

game in the right way, then the game itself will gain in

efficiency as well as in usefulness.

We have presented many serious games, some of which

allow the students to get interested in discovering ans

learning new subjects. We will next show how the new

interface of AlgoPath promotes the learning of algorithmic.

III. ALGOPATH’S NEW INTERFACE

AlgoPath’s interface was totally rethought in order to

simplify the navigation and to help students avoid most

of the common mistakes they can make while they learn

algorithmic. The world within witch students can play is

divided into five zones. The first one is the stone path.

This zone represents the algorithm being built and it evolves

gradually when students interact with the environment. The

second one is a group of five houses. While interacting in

this zone, students can create variables. AlgoPath provides

five basic data types: integers, floats, Booleans, strings

and characters. The third zone is the construction zone.

Students can create aggregate or composite data type, used

to represent entities that are described by multiple attributes

of potentially different types. Students can create statements

and they can build the prototype of a function or a procedure.

The fourth zone is the bus station. This zone is dedicated

to the simulation of the execution of the algorithm. And

the fifth zone is the variables area. The latter is missing in

Figure 2. because it is related to the memory usage and at

the beginning there is no variable declared.

In the next sections, we describe the last four areas in de-

tails. The first one (the algorithm zone) was fully described

in our previous paper [1] but, as the bush statements world

totally replaced the main statements world when the user

wanted to focus on the bush statements, we include a section

in this paper in which we explain how we changed that.

A. Algorithm Zone

Figure 3. Level 0 and level 1 open.

In AlgoPath, a bush is a sequence of statements that

describes actions to be performed. Replacing a world with

another when students clicked on a bush to see its relative

statements was not satisfying. Students could not locate

themselves in the levels of decomposition of the algorithm.

In this new version of AlgoPath, whenever students want to

focus on statements of an else-part, a then-part, a loop, a

function or a procedure, AlgoPath adds a new floor above

the mother statement (see Figure 3). In that way, students

do keep in mind the all concept. But, since a conditional

statement can lead to two sequences of statements of the

same level, AlgoPath does not allow to open more than one

floor at a given level. Therefore, each opened floor of a

superior level has to be closed before another floor can be

opened.

B. Urban Zone

In the urban zone (see Figure 4) AlgoPath provides

five basic data types: integers, floats, Booleans, strings and

characters. Each data type has its own hut. The population

Figure 4. Urban zone.

of integer variables lives in the integer hut. The name of

the data type is on the top of the hut and can be easily

seen by students. Students can click on a hut as they would

knock at a door and then trigger a variable. Clicking on a

hut is one of the only few things students can do at the

beginning of a session with AlgoPath (apart from creating a

new composite data type; creating the prototype of a function

or a procedure; and adding an output statement).

AlgoPath requires a name to declare a variable. If the

name is the same as the one of an existing variable, AlgoPath

declines the declaration and alerts students a variable has

already been declared with this name. Just like in program-

ming, words separated by a space are not accepted.

C. Memory Zone

The memory zone shows each declared variable. As seen

in [1], a standing 3D figure personifies a variable. In this new

version it stands on a pedestal whose colour is the same as

the roof of the hut the 3D figure belongs to. A 3D red figure

means the variable has not been assigned a value yet.

Figure 5. Two kinds of 3D figures.

Two kinds of 3D figures can stand on the memory zone

(see Figure 5). A small and a little overweight one represents

a basic data type variable; on the contrary, a tall and thin

one represents an aggregate or composite data type variable.

If students click on a tall and thin 3D figure, it opens a floor

above it, with the 3D figures corresponding to the members

of the composite or aggregate type, just as a new floor opens

when students click on a bush.

D. Construction Zone

In the construction zone, students can find boxes (to create

statements), a concrete mixer (to create new prototypes of

functions or procedures), a crane (to create an aggregate

data type), and a dustbin (to delete things). Each object

is dedicated to an interaction described in the following

sections.

1) Concrete mixer: If students click on the concrete

mixer, Algopath helps them go through the creation of

the prototype of a function or a procedure. When writing

algorithm on a sheet of paper, students often forget syntax

or are embarrassed deciding if they have to write a procedure

or a function. According to our rules, if a module has only

arguments by value and one result then it is a function.

In any other case, we ask students to write a procedure

(meaning a mix of arguments by value and by reference

with zero or at least two results). First AlgoPath asks them

if it is a function or a procedure that will be created. The

name of the module is then required and AlgoPath launches

the process of creating arguments. An argument is totally

defined by its name and its type. AlgoPath lets students

choosing the name but it automatically suggests the set of

the available data types. So, students cannot specify a data

type they have not already defined. But when you define a

procedure in a programming language, you have two choices

regarding how arguments are passed to it: by reference or

by value. In AlgoPath, you have three choices: by input, by

output, and by input-output. Passing by input refers to a way

of passing arguments where the value of an argument in the

calling function cannot be modified in the called function.

Passing by output refers to a way where an argument has no

value in the calling function prior to the called function, but

the called function has to assign it a value. Passing by input-

output refers to a way of passing arguments where the value

of an argument in the calling function can be modified in

the called function. There is a distinction between argument

by input-output and argument by output because we want

students to be aware that an argument by reference may not

be assigned a value when it reaches the called procedure.

If students want to create a procedure with zero or several

arguments by input and only one argument by output then

AlgoPath warns them that it should be a function instead of

a procedure and adds it as a function.

Once the prototype of the module is defined, a new box

appears in the construction zone. This new box is selectable.

If students select it then a new floor opens in AlgoPath. It

shows the - empty - body of the module. Next to the stone

path where statements will be added, there is a zone that

looks like the memory zone of the main algorithm. Instead

of showing the main variables, it shows the arguments of

the module. Visible features (see Figure 6) help the students

Figure 6. Three kinds of arguments (from left to right: by input, by output
and by input-output).

recognize if it is an argument by input, by output or by input-

output. An argument by input is a 3D white figure in front

of which is a padlock. It means this variable was assigned a

value and this value cannot change. An argument by output

is a 3D red figure. It means it has not been assigned a

value yet. An argument by input-output is a 3D white figure

without a padlock. It means it has already been assigned a

value and this value can change.

When students add an assignment statement in the body

of a procedure, AlgoPath suggests them the set of variables

available. Arguments by input are not included in this set. It

is a little bit restrictive regarding programming, but it helps

them understand that an argument by input cannot change

its value.

2) Crane: Clicking on the crane launches the creation

of composite data types. Students can create arrays or

structures. An array is a set of consecutive variables of

a same type. A structure is a collection of one or more

variables, possibly of different types, grouped together under

a single name for convenient handling. The variables named

in a structure are usually called members. Students have

to specify the types of cells of an array and the members

of a structure. AlgoPath helps them with this process by

suggesting the data types available. That is how AlgoPath

avoids common typing mistakes made by students - writing

a data type that does not exist or wrongfully writing a

data type that actually exists. But it also helps the students

understand that the most inner data types must be created

first. If a person structure has to be created - which we will

assume has a name and a date of birth - the date structure

has to be created first. Naming an array, a structure and its

members is another process students have to go through.

AlgoPath verifies the integrity of the names. Naturally,

a structure member and an ordinary (i.e., non-member)

variable can have the same name without conflict, since they

can always be distinguished by context.

3) Boxes: The construction zone contains seven boxes.

Each box creates a new statement in the path of AlgoPath.

Figure 7. The seven boxes to create statements.

Figure 7 shows the seven boxes. The lower row contains -

from left to right - a box to create an assignment, a box

to create an input statement, a box to create an output

statement, a box to create a conditional statement and a

box to create a loop. Since these five statements were fully

described in [1], this section will focus on the last two boxes:

the one with a receiver and a ”F” and the one with a receiver

and a ”P”. But let’s just add that anytime the name of a

variable is required, AlgoPath suggests a set of proper names

available. To fully explain AlgoPath does not only check the

names of the variables declared, it also computes the names

of the variables of basic data types because one of our rules

is that a variable of aggregate data type cannot be assigned a

value. For example, if the variable P is declared as a person,

that is a structure with two members - a name and a date of

birth - whose names are ”name” and ”date” and, if a date is

a structure with three members named month, day and year

then AlgoPath suggests the following set of names: P.name,

P.date.month, P.date.day and P.date.year. P and P.date do

not belong to this set because they are composite data type

variables.

The upper row left box creates a function calling state-

ment, while the right box creates a procedure calling state-

ment. These creations can occur within two contexts. The

prototype of the function or the procedure may be already

defined or not. If it is, AlgoPath helps students by notifying

the arguments of the module and their status: by input, by

output and by input-output. For each, it reminds students if

they can associate a value or a variable of the calling module.

Naturally, AlgoPath acts differently whether an argument of

the module is exclusively by input or not. If it is, AlgoPath

lets students choose if they will associate a value - an

expression - or a variable. If it is not, AlgoPath only shows

variables of the same data type of the calling module. If

there is none, AlgoPath cancels the process of creating a new

statement and explains why. Then students learn they first

have to create variables in the calling module if they want to

put results in them. If the prototype is not defined, AlgoPath

asks questions so the students are able to define the calling

arguments of the module. First, it asks what the name of the

module is. Then it asks if students want to add an argument.

If they do, it wants to know if the argument is a value or a

variable. In case it is a value, the argument is automatically

defined by input. In case it is a variable, students can choose

if it is by input, by output or by input-output. At the end

of the process, the prototype of the module is automatically

created and a new box is added in the construction zone.

Figure 8. Visible features of calling arguments (colors and backpacks).

As mentioned in [1], there are visible features to tell the

arguments apart. But in this version of AlgoPath, a calling

argument by output is red while a calling argument by input-

output is white (see Figure 8).

4) Dustbin: In the construction zone, there is a large

commercial refuse bin. It opens when students click on it

if a statement has already been added. Otherwise it does

nothing. It closes when students choose the statement they

want to delete.

E. Bus Station Zone

The bus station zone is under construction so we won’t

talk much about it. This zone is dedicated to the execution

of an algorithm. We expect a lot from this zone because

normally students have to wait for the implementation of

algorithms in a chosen programming language to discover

the execution. Let’s just say a bus will drive along the path

of AlgoPath to pick up the 3D figures (see Figure 9).

Figure 9. Execution.

The interface will act accordingly: for example, gates

will open or close, 3D figures will tell the content of

their backpacks, etc. Moreover, when students click on the

printer, AlgoPath shows them the algorithm writing with

conventional declarations and statements.

IV. CONCLUSION AND FUTURE WORK

[1] presented the different 3D objects to represent the

concepts of algorithms. A survey showed that students were

not satisfied with the interface. The latter was too dour and

even though students were able to avoid some grammatical

mistakes, the computer program did not prevent them all

and did not teach students why they were about to make

mistakes. The new version of AlgoPath now implements

those features. With AlgoPath, students can no longer:

 Add a statement if it is not an output statement before

a variable is declared;

 Add a variable in a R-value of an assignment if it was

neither declared nor assigned a value;

 Assign a value to an aggregate or composite data type

variable;

 Try to assign a variable if it was not declared;

 Forget or add the calling parameters of a module: the

number of calling parameters are always equal to the

parameters of the module;

 Associate a parameter of a prototype with a calling

parameter of a different type;

 Use a composite data type if it is not declared;

 Forget what the basic data types are;

 Declare a variable if AlgoPath does not know the type;

 Forget what statements they can use;

 Assign a value that does not match the type of the

variable.

Moreover, when students are about to make a mistake

and AlgoPath is able to notice it, AlgoPath explains why

it is a mistake and corrects it. In the future, we will focus

on adding Object-oriented programming concepts such as

objects, classes, data abstraction, encapsulation, polymor-

phism, and inheritance. We will also study the possibilities

to add distributed algorithms and programming concepts.

ACKNOWLEDGMENT

We thank Dimitry Zekrouf, Nicolas Fleurentin, and Sonny

Jestin for their valuable help during the study and the

implementation of this new version of AlgoPath.

REFERENCES

[1] E. Perrin, S. Linck, and F. Danesi, “Algopath: A new way
of learning algorithmic,” in The Fifth International Confer-
ence on Advances in Computer-Human Interactions, Valencia,
Spain, 2012.

[2] W. Barendregt and T. M. Bekker, “The influence of the level
of free-choice learning activities on the use of an educational
computer game,” Computers and Education, vol. 56, no. 1,
pp. 80–90, 2011.

[3] M. Virvou and G. Katsionis, “On the usability and likeability
of virtual reality games for education: The case of vr-engage,”
Computers and Education, vol. 50, no. 1, pp. 154–178, 2008.

[4] M. Papastergiou, “Digital game-based learning in high school
computer science education: Impact on educational effec-
tiveness and student motivation,” Computers and Education,
vol. 52, no. 1, pp. 1–12, 2009.

[5] D. B. Clark, B. C. Nelson, H.-Y. Chang, M. Martinez-
Garza, K. Slack, and C. M. D’Angelo, “Exploring newtonian
mechanics in a conceptually-integrated digital game: Compar-
ison of learning and affective outcomes for students in taiwan
and the united states,” Computers and Education, vol. 57,
no. 3, pp. 2178–2195, 2011.

[6] C.-C. Liu, Y.-B. Cheng, and C.-W. Huang, “The effect of
simulation games on the learning of computational problem
solving,” Computers and Education, vol. 57, no. 3, pp. 1907–
1918, 2011.

[7] B. Coller and M. Scott, “Effectiveness of using a video game
to teach a course in mechanical engineering,” Computers and
Education, vol. 53, no. 3, pp. 900–912, 2009.

[8] H. Tuzun, M. Yilmaz-Soylu, T. Karakus, Y. Inal, and
G. Kizilkaya, “The effects of computer games on primary
school students’ achievement and motivation in geography
learning,” Computers and Education, vol. 52, no. 1, pp. 68–
77, 2009.

[9] W. Yan, C. Culp, and R. Graf, “Integrating bim and gaming
for real-time interactive architectural visualization,” Automa-
tion in Construction, vol. 20, no. 4, pp. 446–458, 2011.

[10] R. Hamalainen, “Designing and evaluating collaboration in a
virtual game environment for vocational learning,” Computers
and Education, vol. 50, no. 1, pp. 98–109, 2008.

[11] D. Charsky and W. Ressler, “”games are made for fun”:
Lessons on the effects of concept maps in the classroom use
of computer games,” Computers and Education, vol. 56, no. 3,
pp. 604–615, 2011.

[12] Y.-T. C. Yang, “Building virtual cities, inspiring intelligent
citizens: Digital games for developing students’ problem
solving and learning motivation,” Computers and Education,
vol. 59, no. 2, pp. 365–377, 2012.

[13] M. Ebner and A. Holzinger, “Successful implementation of
user-centered game based learning in higher education: An
example from civil engineering,” Computers and Education,
vol. 49, no. 3, pp. 873–890, 2007.

[14] L. A. Annetta, J. Minogue, S. Y. Holmes, and M.-T. Cheng,
“Investigating the impact of video games on high school stu-
dents’ engagement and learning about genetics,” Computers
and Education, vol. 53, no. 1, pp. 74–85, 2009.

[15] F.-L. Fu, R.-C. Su, and S.-C. Yu, “Egameflow: A scale to
measure learners’ enjoyment of e-learning games,” Computers
and Education, vol. 52, no. 1, pp. 101–112, 2009.

[16] D. J. Ketelhut and C. C. Schifter, “Teachers and game-based
learning: Improving understanding of how to increase efficacy
of adoption,” Computers and Education, vol. 56, no. 2, pp.
539–546, 2011.

