
HAL Id: hal-04487957
https://hal.science/hal-04487957

Submitted on 4 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AlgoPath: A New Way of Learning Algorithmic
Estelle Perrin, Sébastien Linck, Frédéric Danesi

To cite this version:
Estelle Perrin, Sébastien Linck, Frédéric Danesi. AlgoPath: A New Way of Learning Algorithmic. The
Fifth International Conference on Advances in Computer-Human Interactions ACHI 2012, IARIA, Jan
2012, Valencia, Spain. �hal-04487957�

https://hal.science/hal-04487957
https://hal.archives-ouvertes.fr

AlgoPath: A New Way of Learning Algorithmic

Estelle Perrin

CReSTIC

IFTS – University of Reims

Charleville-Mézières, France

estelle.perrin@univ-reims.fr

Sébastien Linck

IFTS – University of Reims

Charleville-Mézières, France

sebastien.linck@univ-reims.fr

Frédéric Danesi

DINCCS

Charleville-Mézières, France

frederic.danesi@dinccs.com

Abstract— This paper presents a new way of learning

algorithmic: AlgoPath is a virtual world in which variables are

represented by 3D figures carrying a backpack and the

sequence of instructions is represented by a stone path. The

interface of AlgoPath helps students to avoid common

mistakes. The world of AlgoPath gives them a mental

representation of algorithms. Students are more prone to learn

because AlgoPath changes the level of difficulty. They can

forget the off-putting syntax and grammar of algorithmics.

AlgoPath is ludic and students feel they are more playing than

learning.

Keywords- 3D-based training; education; algorithmics; ludic

teaching

I. INTRODUCTION

Learning how to create algorithms can sometimes be
frustrating for students in the urge of using computers. We
now live in a world where numericals are everywhere:
playing is numerical, reading is numerical, and socializing
can be numerical. Asking students to handle a sheet of paper
and a pencil in order to learn the basic concepts of
programming is kind of out of phase. Bringing back
numericals in the process of learning can be perceived
reassuring for students and can increase their interest and
their concentration.

But numericals cannot solve everything. They have to be
attractive enough or they can be classified as being as boring
as a sheet of paper and a pencil. On the contrary, students
can learn while playing with a good numerical game.
Nowadays games are virtual and teenagers agree that the
most important characteristics in a game are those that
contributed to its realism [1].

In our university, we do have students that have to learn
algorithmics although they don’t have an extended scientific
background. One of our under-graduate courses is dedicated
to websites – how to design, how to add on modules, how to
write for the web, etc. Some of the students are more familiar
with communications while others are more familiar with
informatics. But they all have to attend a course dedicated to
algorithmics. The students whose mind is not shaped to
rationalize and to think in a way that fits logics, sometimes
have difficulties to catch a good mental representation of an
algorithm [2] and sometimes are not motivated to do so. As
hard teachers can keep trying to explain, a variable or a loop,
for example, is and remains abstract and some students just
do not conceptualize it. As a consequence, these students

will not even bother learning the syntax of algorithms and
they will fail without a doubt. Algorithmics is just something
they are not motivated for. So they need something attractive
to help them learn and avoid errors. Using computer games
is one means to encourage learners to learn. Even if game-
based learning is not the most efficient learning method per
se, games enhance motivation and increase students’ interest
in the subject matter [3]. Indeed, there have already been
quite a lot of research projects towards the development of
software games for education that aim at increasing the
students’ motivation and engagement while they learn [4][5].

In Section II we will review visual programming
dedicated to algorithmics and we will show that their
interfaces are traditional while the game-based environment
is more enjoyable for the users than a traditional
environment [6]. In Section III, we will show that algorithms
can be represented as a virtual world in which 3D figures
walk along a path. In Section IV, we will briefly show the
implementation of an example from scratch and we will
finally conclude and reveal future work in Section V.

II. OVERVIEW

In this section, we study various graphical algorithms and
programming editors. All of them have advantages but also
different disadvantages. We will focus on two characteristics
of these editors: (1) the appearance of the editor (see Section
“A”) and (2) the representation of the programming code or
algorithm (see Section “B”).

The software studied is designed to help students
learning algorithmics whatever their age. Some of the
software, mostly those dedicated to algorithm editors, are
developed by standalone or amateur developers. The others
are created by researchers or programmers. For example,
Algoris is a software created by an amateur who makes small
programs for pleasure [7]. He developed Algoris to help
young and older students to learn algorithmics with a visual
method. Scratch was developed by the Lifelong
Kindergarten Research Group at the MIT Media Laboratory
[8]. It was designed to introduce concepts to children in
mathematics and computer science [9].

A. Appearence

The colored visualization of a program or algorithm,
whatever the kind of code it is, is an important point to help
students to understand.

Colors can be used as an attention-getting element in
program interfaces. Algoris and Scratch follow this method
by using a colored enhancement in the text and the
representation of their algorithms [10]. Both editors have
rounded and colored interfaces but although they look like
identical, they have different aims. The first one is to learn
algorithmic to create real codes. The second one is to
simplify the creation of software. In first case the aim is to
learn, in the second the aim is to learn unaware of doing so.

Scratch looks like a game. Its instructions are represented
by boxes that fit like Lego bricks. These bricks are classified
in categories (for example to move or to speak), which
complicates the task of learning the program. Algoris has a
form of circuit like a flowchart. A ball goes through boxes
connected by pipes. It is a helpful representation to visualize
what is inside the loop and what is done or not. Alice2
enhances the visualization thanks to a programming
environment designed by building 3D virtual worlds [11].

Not all learning algorithm or programming software is

beautifully designed.
But colors can be distracting too. With dark colors and

shapes, LARP [12] and AlgoBox [13] seem less practical,
stricter, and so more serious. Algobox is not graphic. The
code is represented by text and is well made up. It follows
the structure of an algorithm. LARP constructs algorithms in
a flowchart form. It is pretty visual, but the user has to know
the representations of every element. However its flowchart
is not attractive to the eye. Jeliot, a java editor is divided into
two parts [14]. The first part is a text editor (for
programming purposes) with highlighted syntax keywords.
The second part, called the “theater”, is hidden by a blue
curtain during the drafting stage of the code. At the
beginning of the execution the curtain opens and reveals a
four-part window. These parts represent the element classes
of the program (method, expression evaluation, constant,
instance, and array). The execution modifies adequately each
part at each step of the program. The advantage of this
software stops there, since the user has to type in the whole
source of his algorithm.

Alvis is apparently a fairly classic program [15]. When
you open it you first see a text editor. A whiteboard with a
toolbox is placed next to it: this complementarity makes
Alvis interesting. Alvis makes a parallel between the source
code and the representation of the elements in memory:
boxes are for variables and boxes containing boxes are for
arrays.

One important standard of a good learning program is the
appearance. Scratch combines the most attractive one and a
playful display of the content of the variables. Alice2 makes
a good evolution in representation by introducing 3D and can
be seen as a gateway to the game world.

For some of the programs, there is a real time link
between the graphical and the textual representation of the
algorithm. It means that if the user changes the source, the
representation of the memory will be changed
instantaneously. Scratch, Jeliot [16], and Alvis [17] are the
only ones which propose this automatically, but it is also
proposed on-demand in the other programs.

B. Code Structure

AlgoBox and Scratch variable declarations are very
simple. The user just clicks on a button called “Declare new
variable” or “New variable”. There is no graphical
representation of a variable in AlgoBox but Scratch
illustrates the concept of a variable with a box whose value is
adjustable with a sliding scale. With Algoris or LARP, there
is no declaration. Whenever a variable is needed in a
program, it is set without your having to give a type. With
Alvis, the drag and drop of a new variable from the menu to
the editor opens a window assignment. To learn the notion of
type and variables, Alvis seems better.

The Scratch conditional instructions seem the simplest

and most visual implementation. The flowchart
representation is quite visual on this point. One can easily
understand how the algorithm works and what instructions
are to be executed.

In Algobox, there is a button to create conditional
instructions. Everything is explained in the initialization
window, where specifications can be added at request.

With Alvis, there is no a graphical representation of the
conditional instruction, but we are guided step by step to
build it. Alvis helps the user in the establishment of a simple
conditional instruction, but you have to modify the code to
create a compound one. Finally with Algoris there are two
boxes for “if” and one for “if / else”.

The representation in Scratch or LARP is quite visual, it
so it is easy to understand the course of a conditional
instruction. Furthermore the definition of the conditions of
the conditional instructions is designed like a puzzle.

The representation of loops in Scratch is interesting.

They are represented in the form of pliers in which the
instructions to be repeated are set. The problem is that the
syntax is not usual, which is a problem for learning
algorithms. Yet the visual aspect of the loops makes it easy
to understand that they are the instructions to be repeated.

LARP is based on the usual algorithmic syntax, it's easy
to understand what and each loop how does, but with
flowcharts it is not easy to recognize what kind of loop it is.

With AlgoBox, there is still nothing graphic, but the
initialization window is suitable and all the necessary
explanations are given. For the loop, the variable that is
chosen will be used as a counter. The starting and final
values can be chosen by the user but not the increment which
is necessarily of one.

In LARP, the code generation of a loop is well explained
thanks to the initialization window where you define all the
parameters available. The arrangement of loop representation
in Scratch and Algoris helps to understand the sequence of
loops.

All this algorithm and code editors, although very

different by their languages or representations, are helpful
for the user as they provide a representation of the code and a
better highlighted syntax.

Figure 1. An empty algorithm in AlgoPath.

Graphical representation or model is a good methodology

to understand and interpret algorithms [18]. For some of
them, the learning of a programming language is simplified
by creating a new language between code and algorithm.

III. ALGOPATH

The main advantages of AlgoPath are:

 AlgoPath is attractive. Students face a virtual world
which is like a game environment.

 AlgoPath helps them learn because it gives a mental
representation of an abstract concept that is the
algorithm.

 AlgoPath helps them avoid some common mistakes.
Students can forget the off-putting syntax and
grammar.

 AlgoPath lets them focus on the solving of the
problem they have to automate without syntax or
grammar errors. You will see that, at the end, a 3D
figure just has to carry the proper value.

 AlgoPath changes the level of difficulty. It is easier
to learn and to understand [19].

In AlgoPath, algorithms are a world reduced to a stone

path lined with grass and trees (see Figure 1). In such a state,
the algorithm represented by AlgoPath simply does nothing.

In the next sections, we will show how variables and

basic instructions are represented and the last section will be
dedicated to parameters passed by value or by reference.

A. AlgoPath Variables

In AlgoPath, a variable is a 3D figure (see Figure 2.). The
user always begins with virtual declarations of variables
because she/he cannot do anything else. Actually, no
instruction can be added if no variable has been created. To
do so, she/he just has to create a new 3D figure and give it a
name. Then a new 3D figure stands in a platform next to the
stone path lined with grass and folds its arms across its chest.
Why does the 3D figure seem unoccupied?

Figure 2. Creation of an array

It appears so because it has not been set yet. As expected,

several instructions are available and are described in the
next sections:

 The assignment.

 The conditional instructions.

 The loop instructions.
An array can also be created by the user of AlgoPath.

For teaching purposes, only one dimensional and two

dimensional arrays are available in AlgoPath. In that case,

the array is shown by multiple 3D figures standing right

next to the others.

B. AlgoPath Assignment

The assignment sets or re-sets the value associated to a
variable. In AlgoPath, the user starts with specifying the
right-value of the assignment with the keyboard and the
mouse and then links it to a 3D figure. During this step,
she/he just has to click on the appropriate 3D figure the
software shows. An ordinary mistake our students do is to
invert the right value with the left-value of an assignment.
This cannot happen in AlgoPath. They also cannot use an
unset variable in a right-value because the software only
shows them the set variables during the specification of the
right-value.

Once the variable has been set, the 3D figure carries a

backpack. It also walks along the stone path (see Figure 3.).
The difference between the green platform and the one with
the stone path is that the green platform contains all the 3D
figures that can be used in an instruction. The fact that a 3D
figure standing in the green platform carries a backpack
reminds the user that the associate variable has already been
set.

When assigning an array, the user clicks on the
corresponding 3D figure but this interaction is not sufficient.
She/he also needs to choose which slot of the array is
assigned. During this stage, the software shows the user
multiple 3D figures: one for each slot of the array. The
names of these 3D figures are the name of the array
concatenated to their position in the array (zero stands for the
first slot).

Figure 3. A set variable and its assignment.

At any time, the user can double-click on the 3D figure

and see the right value of the assignment.

C. AlgoPath Conditional Instructions

AlgoPath conditional instructions change the stone path
(see Figure 4). Instead of being a straight line, it splits into
two paths. There is a traffic light at the intersection of the
paths which stands for the condition of the conditional
instructions.

If the algorithm could be executed and the condition

turned out to be true, the traffic light would turn out to be
green. If the condition turned out to be false, the traffic light
would turn out to be red. That is why, one path is covered
with a green bush, the other with a red bush.

After the creation of a conditional instruction, the user
has to click on both the green and the red bushes. By doing
so, she/he will have to complete the unconditional
instructions and the conditional instructions. At each step, a
new empty stone path is shown and has to evolve. If she/he
creates a new variable when the shown stone path is one of
the conditional or unconditional instructions, then the
associated 3D figure is only available in the conditional or
unconditional instructions.

Figure 4. An AlgoPath conditional instruction.

It means that the user will no longer see it when she/he
leaves the stone paths of the conditional instruction. This
specification helps the students learn the notion of the scope
of a variable. They are able to see it before any program is
run.

As for the right value of an assignment, the user can see
the condition (by double-clicking on the traffic light), the
conditional instructions (by double-clicking on the green
bush), and the unconditional instructions (by double-clicking
on the red bush) of a conditional instruction at any time.

D. AlgoPath Loop Instructions

As an AlgoPath conditional instruction, an AlgoPath

loop instruction changes the stone path (see Figure 5). It

becomes a two-entry traffic circle. At one of these two

entries stands a traffic light. The position of the traffic light

specifies the type of the loop. If the traffic light is at the

beginning of the loop, the instructions of the loop may never

be executed (it is a while loop). If the traffic light is at the

end of the loop, a walker could be free to enter the loop. It

means that the instructions of the loop could be executed at

least once (it is a repeat loop).

After the creation of a loop instruction, the user has to

double-click on the bush of the traffic circle. By doing so,

she/he has to complete the instructions of the loop. Then a

new empty stone path is shown and has to evolve. During

this step, if a new variable has been created, the related 3D

figure is no longer known when the user leaves the loop

stone path. Again, the student faces the notion of the scope

of a variable.

E. AlgoPath Input and Output

AlgoPath has two more instructions. One if the future

user’s algorithm wants to see the value of a variable (a slate

is added in the stone path) and another it the future user’s

algorithm has to set a variable (the 3D figure shows an open

book).

Figure 5. An AlgoPath loop instruction.

F. Passing data to procedures and functions

In programming, there are two ways of passing data to

procedures and functions: either by value (in that case,

parameter in the call of a procedure or a function does not

share memory with the parameter in the definition of a

procedure or a function) or by reference (in that case, they

share memory). In AlgoPath, students are able to visualize

this process. As passing data by value passes a copy of the

data for processing and as a data is represented by a 3D

figure carrying a backpack, parameters by value are

visualized by two 3D figures standing in front of each other,

the first one showing its backpack to the second one, and the

second one carrying its own backpack. On the contrary, as

passing data by reference saves changes made to data and

passes those changes back to the calling algorithm,

parameters by reference are visualized by two 3D figures

facing each other and holding the same backpack (see

Figure 6).

The call of a function or a procedure is represented by a

forest. Multiple 3D figures stand at the edge of the forest.

They are the parameters of the function or the procedure.

For educational purposes, a function never has parameters

by reference but obviously passes a result to the calling

algorithm. This result is represented by a 3D figure that

stands at the exit of the forest. On the contrary, a procedure

does not need such a 3D figure but may have parameters by

reference.

When the user creates a new function or procedure,

she/he must:

 Specify the name of the procedure or the function.
With that name, AlgoPath knows if the user will
have to create the definition of the function or the
procedure in the next step.

 Specify the parameters. If the function or the
procedure has already been defined, AlgoPath shows
the user the parameters of the called algorithm. The
user just has to drag and drop the correct 3D figures
in front of the calling parameters. If not, AlgoPath
expects the user to drag and drop the correct 3D
figures and to choose the correct 3D figure that must
stand in front of them to choose a parameter by
reference or by value. If she/he chooses a 3D figure
with its hands wide open then the parameter is by
reference. If she/he chooses a 3D figure which
carries its own backpack then the parameter is by
value. If it is a function to be defined, a special
calling parameter is automatically created with its
hands wide open. It is the result of the function.

 Specify the instructions. This step is optional if the
procedure or the function has already been defined.
If not, the user has to double-click on the forest and a
new empty stone path appears. In that case, the
platform next to the stone path is already full of 3D
figures that correspond to the calling parameters. If
the calling parameter is by value then the called
parameter has given it its value. So the relative 3D
figure carries a backpack. If the calling parameter is

by reference then the called parameter gives it its
state. If the called parameter is set, the relative 3D
figure carries a backpack. If it is not, it does not. The
calling parameter representing the result of a
function always folds its arms across its chest at the
beginning of the definition of a function and means
that it has to be set. AlgoPath does not allow the user
to go back to the called algorithm if there is one 3D
figure with its arms across its chest left. At any time,
the user is able to change the type of a parameter
either by double-clicking on the 3D figures at the
edge of the forest or by double-clicking on the
platform next to the stone path.

IV. IMPLEMENTATION

AlgoPath has been developed in C++ language using the
VTK (Visualization Tool Kit) library. 3D figures have been
made in clay and digitized into STL files using the 3DSom
Software (see Figure 7). They have been smoothened and
enlarged using Gom Inspect and 3D Reshaper.

A more complete example of an algorithm can be seen in
Figure 8.

V. CONCLUSION AND FUTURE WORK

This paper shows that it is possible to translate
algorithms into a virtual world where 3D figures are data
storage locations, backpacks carried by 3D figures are values
and, bushes and forests are a set of instructions and paths are
the way instructions are supposed to flow.

We have also shown that AlgoPath can help students
avoid common mistakes (such as using a variable in an
expression before it is set or forgetting to assign a parameter
passed by reference) through an easy and intuitive interface.
It helps them learn because AlgoPath gives them a way to
have a mental representation of algorithms. AlgoPath is ludic
because it is a world close to games and students feel they
are playing more than learning. As a consequence, it is easier
to learn algorithmic with AlgoPath.

Figure 6. Parameters by reference (in back) and by value (in front).

