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Abstract: As an important property and distinct characteristic of different lithium-ion batteries, open-circuit-voltage (OCV) online
estimation can provide useful information for battery monitoring and fault diagnosis. However, studies dedicated to battery OCV
estimation are not as much as the research efforts on state-of-charge determination and parameter identification such as
capacity and resistance. Hence, a general discussion for selecting the battery OCV estimation algorithm is proposed in this
study. To this end, modelling process of extended state-space model and autoregressive exogenous model is presented in
detail. Four estimation algorithms, namely, Luenberger observer, Kalman filter, recursive least-square with forgetting factor and
recursive least-square with variable forgetting factor are selected and compared in terms of estimation accuracy, computational
cost, parameter tuning and robustness to parameter variations. Based on real battery cell parameters and environmental
conditions, simulation results have shown that even if they are less robust to model uncertainty, observer-based methods exhibit
better estimation performances than regression-based ones.

1 Introduction
Lithium-ion batteries (LIBs), which can be used as the principal
energy source in battery electric vehicles (BEVs) or the auxiliary
energy module in hybrid electric vehicles (HEVs), have been
massively used for onboard energy storage systems due to their
relatively high power and energy density, eco-friendly
characteristic and promising potential for cost reduction [1].
Various research works around LIBs have been carried out on a
large scale, while from the perspective of control, LIB online
monitoring, including battery state and parameter estimation, is
fundamental and necessary for the follow-up works such as battery
fault detection and battery health prognosis.

Normally, the aforementioned real-time battery monitoring
mission is model-based, which is suitable for the processing
capability of current embedded chips of the vehicle battery
management system (BMS) [2]. Compared with the
electrochemical models, equivalent circuit models (ECMs) are
more attractive because of their simplicity and reliability. The
ECM composed of an open-circuit-voltage (OCV) source
connected in series with a resistor and one or more RC network(s)
is widely used to reproduce the battery's electrical behaviour, and
to further accomplish the objective of state and parameter
estimation [3–6].

The OCV, an important term that represents the distinct
characteristic of different LIBs, can be regarded as one of the
parameters to be estimated in battery ECM and whose story should
be started from the battery state-of-charge (SOC) estimation.

As a replacement for the fuel gauge used in traditional vehicles,
battery SOC, which is commonly defined as the percentage of the
maximum possible charge that is present inside a rechargeable
battery, is a key indicator that should be determined during the
operation [7]. Because it will be used to design the battery EMS,
and can further avoid the emergence of over-charge and over-
discharge problems in LIBs, which could be the root of violent
thermal runaways [8]. However, its indirectly measurable
characteristic makes the relevant SOC estimation methods appear.

The traditional ampere-hour (AH) counting method is a
classical real-time SOC estimation technique, where the required
SOC can be determined by integrating the flowing current with the
known battery capacity and an accurate initial SOC value [1].
However, the open-loop mechanism will cause the AH counting
method to have accumulated estimation errors over a long period
of time, because it is inevitably affected by the current noise, the
uncertain initial SOC value as well as the rated current battery
capacity, which will change with various factors such as
temperature, aging degree and so on [9].

Therefore, in order to overcome this drawback, the AH
counting method is usually combined with an OCV-based SOC
estimation method, whose working principle is a voltage-look-up
process that based on the simple one-to-one relationship between
battery OCV and SOC [10]. The measured battery OCV can infer
the corresponding SOC, which can be used as a periodic calibration
for the AH counting method [11]. Hence, the combination of these
two methods constitutes an efficient approach for determining the
battery SOC in the application of BEVs and HEVs [1].

However, an accurate measurement of the OCV requires LIBs
to stay in open-circuit conditions for a sufficient long period of
time, which usually takes several hours [12]. In fact, this is because
the so-called OCV relaxation process after the current interruption.
To be short, when the battery is charging or discharging, its internal
states (micro-level) will be disturbed by the external excitation;
while after the external current is interrupted, it will consequently
take time for the battery to rebuild a new equilibrium state, which
is fixed as electromotive force (EMF) [13, 14]. In other words, the
OCV that usually appears in the literature is approximately the
EMF in the equilibrium state after the OCV relaxation process
[14].

Furthermore, the aforementioned relaxation process strongly
depends on the short time previous usage history, including the
current value and the current direction, and the latter can cause the
well-known OCV hysteresis phenomenon. Specifically, the OCV
relaxation process is under the EMF if the battery is previously
discharged; on the contrary, it is above the EMF if the battery is
previously charged [13]. However, even though there exist the
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relevant hysteresis models for the OCV, the battery will never
operate along these two hysteresis curves in reality due to the more
complicated hysteresis ‘eye’ phenomenon (also called ‘minor
loop’) [15, 16]. Moreover, other factors such as temperature, initial
SOC and battery technology (e.g. the LIB with LiFePO4 cathode
has serious hysteresis phenomenon) will also affect the OCV
relaxation process [13, 15].

Obviously, previously mentioned complicated indescribable
physical phenomenon would largely affect OCV measurement
results; besides, the long waiting time is an obstacle for developing
OCV-based SOC estimation method. Fortunately, based on battery
ECM, real-time battery SOC determination through OCV-SOC
look-up table becomes possible when various adaptive estimation
methods of battery OCV are introduced. In fact, not only do they
greatly shorten the OCV measurement time, but also make the
OCV-based SOC estimation method become an independent SOC
online determination method, which belongs to the model-based
SOC estimation method that only uses measurable battery signals
such as voltage, current and temperature [1].

Broadly speaking, online OCV estimation techniques can be
divided into two families, namely, observer-based and regression-
based methods. For instance, in [5], extended Kalman filter (EKF)
is employed to execute online parameter identification as well as
OCV estimation; in [17], H∞ filter is applied to obtain the OCV
curve within 2 s instead of using the traditional OCV tests such as
incremental OCV or low-current OCV test which usually takes 3–5
days. On the other hand, the classical recursive least-squares (RLS)
algorithm and its numerous variations can also realise OCV
estimation. For example, the U-D factorised-based RLS is applied
to estimate the OCV, which is further used to infer the battery SOC
in [18]. In [19], multiple adaptive forgetting factors RLS, which
can cope with the different varying rates of different parameters, is
proposed in order to distribute a forgetting factor to each parameter
that needs to be estimated.

However, in the literature, most of the research efforts are
focused on model-based SOC estimation and on-line parameter
identification such as capacity and resistance. Therefore, we are
hereafter interested in developing a battery OCV estimation
algorithm. The main contributions of this paper are as follows:

(i) Characteristics and main properties of battery OCV are
reviewed in the introduction.
(ii) Modelling process of extended battery ECM and autoregressive
exogenous (ARX) model is presented.
(iii) The principle of the estimation algorithms is summarised into
one diagram, which can concisely illustrate the observer-based and
regression-based estimation algorithms. Based on this comparative
study, the advantages and disadvantages of observer-based and
regression-based estimation algorithms for estimating battery OCV
are pointed out.

The remainder of our work is organised as follows: the battery
model for observer-based and regression-based OCV estimation
methods is detailed in Section 2. In Section 3, OCV estimation
algorithms, namely, Luenberger observer (LO), Kalman filter (KF),
RLS with forgetting factor (FF-RLS) and RLS with variable
forgetting factor (VFF-RLS), will be introduced; then, simulation
studies including parameter tuning and comparison of estimation

methods will be presented in Sections 4 and 5. A conclusion will
end this paper.

2 Battery modeling
A second-order battery ECM, as shown in Fig. 1, is retained for
OCV estimation in this paper. The model is described as follows:

(i) The resistor R0 stands for the ohmic resistance, which includes
resistance of contacts, electrodes as well as electrolytes [3].
(ii) The double pair RC characterises the charge transfer effect, the
diffusion effect and double-layer behaviour inside LIBs. It
simulates the battery transient response. Besides, the double RC-
network is a good trade-off between the model error and the model
complexity compared with single-RC and triple-RC structures [20].
(iii) The voltage source Voc represents the OCV, which mainly
depends on the battery SOC. Its average value is usually a
monotonically increasing function of the SOC [3].

According to Kirchhoff's law, the discretised ECM state-model is
given by (1). It is obtained with the zero-order hold approximation
under the assumption that the current Ibatt is constant between two
adjacent sampling points [20]

V1(k)
V2(k) = A

V1(k − 1)
V2(k − 1) + BIbatt(k − 1)

Vbatt(k) − Voc = C
V1(k)
V2(k) + DIbatt(k)

(1)

where

A = e−T /R1C1 0
0 e−T /R2C2

= a1 0
0 a2

B = R1(1 − e−T /R1C1)
R2(1 − e−T /R2C2)

= b1

b2

C = [ − 1, − 1]
D = − R0

and V1 and V2 are the voltages across capacitors C1 and C2,
respectively; Ibatt is the input current, according to its reference
direction in Fig. 1, ‘ + ’ means discharging process, while ‘–’
means charging process; Vbatt is the output voltage of the battery; T,
the sampling time period for the discrete-time system, is set to 1 s
in this work.

Furthermore, in order to estimate the Voc, it is assumed that
dVoc/dt ≃ 0. The reasonable explanation can be given as follows
[21]: firstly, as it is well known, all the parameters of battery ECM,
including the OCV, will change with the temperature Temp, SOC
and the usage history H; consequently, the relationship
Voc = p(Temp, soc, H) can be analysed here, where p( ⋅ ) is a
nonlinear function and soc is the operator of SOC; then, the
differential of p( ⋅ ) with respect to time t is shown in the following
equation:

dVoc
dt = ∂p

∂Temp ⋅ ∂Temp
∂t + ∂p

∂soc ⋅ ∂soc
∂t + ∂p

∂H ⋅ ∂H
∂t (2)

Equation (2) equals zero with the following assumptions [21]: (a)
due to the battery cooling system, the LIBs’ temperature changes
slowly to avoid heavy thermal stress, then ∂Temp/∂t ≃ 0 becomes
true consequently; (b) a general example of city-EV given in [21]
shows that ∂soc/∂t ≃ − 0.00028, which means only a small
amount of the battery energy is consumed, hence ∂soc/∂t ≃ 0; (c)
∂H /∂t ≃ 0 definitely holds since the long usage history of LIB is
considered. As a result, Voc can be reasonably regarded as almost
constant to build the models for the observer-based and regression-
based estimation methods.

Fig. 1  Battery ECM with double-RC network
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2.1 Extended battery ECM

As a symbol of modern control theory, state-space representation
can not only be the basis for advanced observers, but also provides
the convenience for estimating the slowly varying unmeasurable
parameters. This means that the extended model is obtained by
adding the unknown parameters as additional state variables with
the aforementioned zero-time derivatives [22]. Notice that there is
no distinction between these parameters and the other state
variables. However, the structural simplicity of this solution is
achieved at the price of introducing the hyperspace, which is
usually a quantity of very high dimensions [22].

As for the battery OCV estimation in this work, the extended
battery ECM based on (1) is built as follows:

V1(k)
V2(k)
Voc(k)

= F
V1(k − 1)
V2(k − 1)
Voc(k − 1)

+ GIbatt(k − 1)

Vbatt(k) = H
V1(k)
V2(k)
Voc(k)

+ JIbatt(k)

(3)

where

F =
e−T /R1C1 0 0

0 e−T /R2C2 0
0 0 1

, G =
R1(1 − e−T /R1C1)
R2(1 − e−T /R2C2)

0
H = −1, − 1, 1 , J = − R0

Obviously, the extended battery model (3) is linear, where the
battery OCV could be estimated along with the other two battery
states during the operation. Note that there is no assumption on the
linearity of the OCV-SOC curve during the battery modelling
process. The linear model is obtained with the help of the general
expression dVoc/dt ≃ 0.

2.2 ARX model

For the purpose of applying the regression-based method, z-
transform pairs for the discrete-time system (1) between time-
domain and frequency-domain is used to deduce the required ARX
model for estimating the battery OCV [18, 19, 23]

Y(z)
U(z) = [C(zI − A)−1B + D]

Vbatt(z) − Voc
Ibatt(z) = b1(a2 − z) + b2(a1 − z)

(z − a1)(z − a2) − R0

(4)

where A, B, C and D are the corresponding matrixes and scalar of
(1); I is a unit matrix with the corresponding dimension; Y(z) and
U(z) are the output and input of (1) in the z-domain corresponding
to Vbatt(k) − Voc and Ibatt(k), respectively, in the time-domain; z is
the z-transform operator. Note that Voc is regarded as a constant

during the transformation process, which has been explained
previously.

Applying the inverse z-transform (x[n − k] ⇔ z−kx(z)) for (4),
the following differential equation can be obtained after
simplification and recombination:

Vbatt(k) = (a1 + a2)Vbatt(k − 1)
⋯ − a1a2Vbatt(k − 2) − R0Ibatt(k)
⋯ + (R0a1 + R0a2 − b1 − b2)Ibatt(k − 1)
⋯ + (b1a2 + b2a1 − R0a1a2)Ibatt(k − 2)
⋯ + (1 − a1 − a2 + a1a2)Voc

(5)

Consequently, the ARX model of the battery can be obtained by
rewriting (5) in the following form:

Vbatt(k) = φ′(k)θ (6)

with
φ = [Vbatt(k − 1), Vbatt(k − 2), Ibatt(k), Ibatt(k − 1), Ibatt(k − 2), 1]′;
θ = [θ1, θ2, θ3, θ4, θ5, θ6]′, where

θ1 = a1 + a2,
θ2 = − a1a2,
θ3 = − R0,
θ4 = R0a1 + R0a2 − b1 − b2,
θ5 = b1a2 + b2a1 − R0a1a2,
θ6 = (1 − a1 − a2 + a1a2)Voc,

(7)

and the battery OCV can be deduced as

Voc = θ6

(1 − a1 − a2 + a1a2) = θ6

(1 − θ1 − θ2) (8)

In fact, (6) is a simple linear mathematical model where Vbatt(k) is
the measurable signal, θ is the parameter vector to be determined,
the known vector φ(k) is called regression variables or regressors
[22].

3 OCV estimation algorithm
For observer-based or regression-based estimation algorithms,
although there exist different explanations such as Bayesian
inference [24], geometric interpretation [22], etc., both of them can
be illustrated intuitively by the following ‘prediction–correction’
principle [22, 25, 26].

In Fig. 2, the estimation process of a state variable is given as
an example, where the core is the sustained error correction
mechanism that is composed of a correction gain K multiplied by
the error between the measurement and prediction, namely, y and y^. 
Then, broadly speaking, estimation algorithms differ in how to
calculate the gain K in order to guarantee the convergence of the
estimated state x^ only with the known information such as system
input u and output y.

3.1 Luenberger observer

LO, as one of the most implemented real-time state observers for
the linear system, is relevant to use in this case due to the linear
characteristic of the extended battery model (3). Because of the off-
line determination of the observer gain, there is less calculation
stress for the vehicle BMS [4].

The estimated vector x^  by the LO at the sample k is given by
[4]

x^k = f (x^k − 1, uk − 1) + K(yk − 1 − y^k − 1) (9)

where f ( ⋅ ) is the linear function of the target system and K is the
observer gain, as shown in Fig. 2. The gain is computed by the

Fig. 2  Schematic diagram of the ‘prediction–correction’ principle
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classical pole placement strategy to achieve the desired
performance [23].

3.2 Kalman filter

KF is a classical observer that has been recognised as an optimal
state estimation technique for tracking the state of an uncertain
dynamic system [27]; one of the characteristics of KF is that the
Gaussian independent white noises are considered both in the state
space and the output equations.

As shown in (10), and adapted the general form of linear system
according to the model in (3) is given in order to present the
classical recursive algorithm of KF

xk = Fxk − 1 + Guk − 1 + wk − 1

yk = Hxk + Juk + vk
(10)

where wk is a vector that represents the zero-mean white process
noise with covariance matrix Q; vk is the zero-mean white
measurement scalar noise with covariance R.

Therefore, the linear Kalman filtering process is shown as
follows [24]:

1 . Prediction: x^k
− = Fx^k − 1 + Guk − 1

Pk
− = FPk − 1F′ + Q

2 . Gain computation: Kk = Pk
−H′[HPk

−H′ + R]−1

3 . Update: x^k = x^k
− + Kk[yk − (Hx̂k

− + Juk)]
Pk = (I − KkH)Pk

−

where x^k
− and Pk

− are, respectively, the priori state and error
covariance estimates; Kk is the feedback gain for the KF, which is
recursively calculated at each time step forcing the estimator to
converge faster [4]; Pk is the estimation error covariance matrix.

3.3 RLS with fixed forgetting factor

The classical parameter identification technique by the least-
squares method, whose principle has been formulated at the end of
the eighteenth century, can be applied to a large variety of
problems [22]. With sequential pairs of observations and regressors
{(y(i), φ(i), i = 1, 2, . . . , k)}, and considering the slowly time-
varying parameters in the system, the estimated parameter vector
θ
^(k) by the traditional FF-RLS is given directly [22]

θ
^(k) = θ

^(k − 1) + K(k)[y(k) − φ′(k)θ^(k − 1)]

K(k) = P(k − 1)φ(k)
λ + φ′(k)P(k − 1)φ(k)

P(k) = P(k − 1) − K(k)φ′(k)P(k − 1)
λ , (λ ≠ 0)

(11)

where λ ∈ {λmin, 1} is called the forgetting factor that can cope
with the system's slow parametric varying characteristic. In other
words, it implies that a time-varying weighting of data is
introduced: the most recent data is given a unit weight, but data
that is n time units old is weighted by λn [22]. In fact, a smaller
value of λ induces a higher impact of the latest data, which means
FF-RLS can track the changes of parameters quickly, but the
stability of the algorithm is reduced. On the contrary, a higher
value of λ can increase the stability of the algorithm, but the ability
to track the time-varying parameters is weak [28].

3.4 RLS with variable forgetting factor

It has been pointed out that the performance of FF-RLS relies
significantly on the forgetting factor λ in terms of convergence and
stability [19]. However, the requirements for the forgetting factor
depend on the application. There are, therefore various adaptive
strategies [28]. The selected variable forgetting factor strategy from
[28] is shown in (12), which combined with the traditional FF-RLS
constitutes the VFF-RLS

λ(k) = λmin + (1 − λmin)α(k)

α(k) = 2ρe2(k)

e(k) = y(k) − φ′(k)θ^(k)

(12)

where λmin and ρ are two fixed parameters [28].
An example from [28], as illustrated in Fig. 3, can clearly

explain this varying mechanism. The forgetting factor will change
according to the error e(k) between the measured and estimated
output, which means when e(k) approaches 0, α(k) and λ(k) tend to
1; when e(k) tends to infinity, α(k) also tends to infinity and λ(k)
tends to λmin [28].

In addition, the curve's shape in Fig. 3 is affected by the
selected fixed parameters λmin and ρ; the higher ρ is, the more
sensitive λ(k) is to e(k) [28]. Therefore, in [28], the author has set
these two parameters by minimising the following criterion:

Jo = ∑
k = 1

L
[y(k) − φ′(k)θ^]2 (13)

where L is the number of observations [28].
A flowchart of this comparative study is displayed in Fig. 4. 

4 Simulation results
The used LIB parameters in the simulations are derived from [29],
including a seventh-order polynomial OCV model which is a
monotonically increasing function of SOC (see (14)) . It is worth
noting that (14) is the average OCV value of the charge and
discharge process. Therefore, the hysteresis effect is ignored here.

Fig. 3  Mechanism of the variable forgetting factor λ(k) [28]
 

Fig. 4  Flowchart of this comparative study
 

Voc‐model(soc) = a1 ⋅ soc7 + a2 ⋅ soc6 + a3 ⋅ soc5 + a4 ⋅ soc4 + a5 ⋅ soc3 + a6 ⋅ soc2 + a7 ⋅ soc1 + a8 (14)
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Besides, the aging effect is not taken into account in our work with
the following reasonable explanation, (i) lots of experiment-based
LIB modelling works have verified this assumption, (ii) the usable
range of SOC is usually controlled in a fixed interval in real
application, 60–80% in our research work, for instance hence the
OCV curve will be limited into a small segment, where the
influence of the aging process can be ignored.

Besides, the well-known AH counting method is used as the
model of SOC, which will be further considered as the reference
value in our simulation studies [29]:

soc(t) = soc(t0) − η∫
t0

t Ibatt(τ)
Cn

dτ (15)

where η is the Columbic efficiency; Cn is the battery nominal
capacity; soc(t) is the required SOC in the time point t based on its
initial value soc(t0).

Moreover, a dynamic current profile is designed in our work, as
shown in Fig. 5, where the voltage response of the battery is also
presented. The voltage data with the considered Gaussian white
noise, whose statistical characteristic is set according to [30], will
be fed to the four OCV estimation algorithms for this comparative
study.

4.1 LO and KF

4.1.1 LO: For the discrete-time extended battery ECM (3), the
pole placement strategy indicates that as long as all the eigenvalues
of the matrix (F − KH) are located inside the unit circle of the
complex plane, the above system is asymptotically stable [23]; in
other words, the estimated states are able to converge to the real
states of the system. Therefore, considering the convergence speed
and the stability of the LO, a set of poles, [0.43 + 0.2i, 0.43 − 0.2i,
0.9871], is elaborately selected after numerous simulation tests (i is
the complex number i2 = −1).

4.1.2 KF: The process noise and the measurement noise of the
system (3) are set as follows: Q = diag[1 × 10−8, 1 × 10−8, δ] and
R = 3.6 × 10−5, where δ is the characteristic of the fictitious noise
for the term Voc; and it is of interest to note that δ will largely affect
the OCV estimation result. Generally, the larger it is, the more
dynamic the estimation will be, but the stability of the estimation
will decrease at the same time.

For instance, three different values of δ, namely 1 × 10−4,
1 × 10−6 and 1 × 10−8, are selected in the simulation test. The KF is
initialised with the vector x0 = [0, 0, 3.5]. The OCV estimation
results are shown in Fig. 6. From these results, it is found that
δ = 1 × 10−6 is a good compromise between accuracy and stability.
This value will be retained for the following comparison.

Here, the comparative study between the LO and KF for
estimating the OCV is given firstly; both of them are initialised
with the state vector x0, and the estimation result as well as the
estimation error are shown in Fig. 7. 

From Fig. 7, both LO and KF can track the OCV reasonably.
However, as it can be seen from the estimation error, KF has better
performance when estimating the OCV in the noisy environment.

4.2 FF-RLS and VFF-RLS

4.2.1 FF-RLS: In our simulation studies, inspired by the criterion
(13), the forgetting factor λ of FF-RLS is selected by minimising
the following criterion due to our interest in the OCV:

Jn = ∑
k = 1

L
[Voc − model(k) − Voc(k)]2 (16)

where Voc(k) is the inferred OCV from (8). L is equal to 3000,
which is the length of the voltage vector. Besides, λ is usually close
to 1, which can provide a rough search interval in our work. Hence,
after several simulation tests, the desired forgetting factor
λ = 0.9967 is selected for the FF-RLS according to Fig. 8. 

4.2.2 VFF-RLS: Similarly, the criterion (16) will be used to select
λmin and ρ for the VFF-RLS. As shown in Fig. 9, the pair
(λmin = 0.7, ρ = 140) is selected, while it is worth noting that the
pair (λmin, ρ) can be selected in a relatively larger range compared
with the determination of λ for the traditional FF-RLS. For
instance, for the parameters in the red circled region in the 2D plot
in Fig. 9, the VFF-RLS algorithm will roughly have the same
performances. This can be regarded as robustness to the tuning.

The comparative study between FF-RLS and VFF-RLS for
estimating the battery OCV is presented here. Both of these two
algorithms are initialised by the parameter vector
θ0 = [0.01; 0.01; 0.01; 0.01; 0.01; 0.01], and the result is shown in
Fig. 10. 

Fig. 5  Current profile and battery output voltage
 

Fig. 6  Impact of δ when estimating OCV with KF
 

Fig. 7  OCV estimation result with LO and KF
 

Fig. 8  Jn versus λ
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Firstly, compared with observers, the regression-based OCV
estimation has a very rapid convergence speed, because the initial
value of OCV inferred by (8) with the initial parameter vector θ0 is
near zero, but they can still track the OCV within several recursive
steps.

Secondly, according to the estimation error in Fig. 10, the VFF-
RLS induces a limited improvement due to the variable forgetting
factor, whose varying process is shown in Fig. 11. However, as
discussed previously, VFF-RLS has parametric robustness. On the
contrary, if the forgetting factor in FF-RLS is changed, for example
λ = 0.7555 or λ = 0.9999, then the OCV estimation result shown in
Fig. 12 will not meet the requirement for the SOC estimation. 

5 Discussion

5.1 Accuracy and computational cost

As for the estimation accuracy and the computational cost, ten
simulation tests are executed for the selected algorithms. The best-
recorded estimation error mean value and the standard deviation of
the estimation error for each method are presented in Table 1. The
average calculation time of these ten simulation tests for each
estimation method is also listed.

However, before concluding the estimation accuracy of
different methods, a basic question needs to be considered: ‘why
we want to estimate the OCV?’. In fact, the answer, SOC
estimation, is clearly presented in the introduction. Therefore, in
this paper, the OCV estimation accuracy is evaluated in terms of
the SOC estimation. Considering the studied SOC operation range
in our work, namely 60–80%, the OCV model (14) is linearised as
Voc − linearied = 0.7944 × soc + 3.2899, which will be used to infer
the SOC by the estimated OCV in each iterative step as shown in
Fig. 13. 

Normally, SOC accuracy of 3–5% is required in the vehicle
BMS [4]; hence, the ±3 and ±5% boundary of the model SOC,
which can be regarded as the evaluation criterion, are presented
directly in Fig. 13. Besides, the usable SOC range depends on the
application. For example, the usable SOC range is larger in BEVs,
because the battery is the main energy source. On the contrary,
smaller SOC range is preferred in hybrid EVs, because this will
protect the battery from premature aging. Considering a wider SOC
range does not affect this comparative study. Because the methods
of estimating the OCV value will always be the same, even in the
wider SOC range. The difference lies in how to infer the SOC
value from the OCV estimation. This is out of the scope of this
comparative study. However, it can be achieved, for example by
linearising the OCV-SOC curve over different SOC intervals.

KF has the best performance when estimating SOC; although
the disadvantage of LO in coping with the noise will be reflected in
the SOC estimation, both estimates are inside the ±3% accuracy
boundary. The estimation of OCV by VFF-RLS remains in the
±5% accuracy boundary, while the FF-RLS has the worst
performance in this comparison.

The result shown in Fig. 13 is consistent with the information in
Table 1; KF has definitely the best performance in terms of the
estimation accuracy, while LO is more attractive when considering
the computational cost. Although regression-based estimation
methods can converge rapidly, they have lower performance in
terms of the estimation accuracy.

5.2 Robustness to model parameters

Since the parameters in the ECM will change due to many factors
such as temperature and aging process, the discussion about the
parametric robustness for the four algorithms will be more
interesting than the robustness against the measurement noise,
where KF is definitely the best.

In fact, for the OCV estimation, the parametric robustness of
KF and LO is not as good as their estimation accuracy. Because the
performances of KF and LO mainly rely on the model accuracy,
however, the changing parameters in the ECM will undoubtedly
result in the inaccuracy of the OCV estimation, and further, induce
the invalid SOC estimation. For example, as shown in Fig. 14, the
+30% ECM parameters change is introduced in the KF and LO,
while the final inferred SOC is catastrophic. 

On the contrary, all the parameters of the ECM will be updated
for every iterative step in the FF-RLS and VFF-RLS. In other
words, the OCV estimation by the FF-RLS and VFF-RLS can be
considered as a result that already includes the parametric
uncertainty of the battery ECM.

In addition, for KF and LO, although the ECM's parameters can
be updated by further extending the system (3) using the same
presented method. However, the high dimension of the
corresponding matrixes of the extended model will become a heavy
calculation burden for the BMS. Besides, the other two inevitable
problems should be considered if the higher-dimensional extended
model is used. Firstly, when extended with resistors and capacitors
such as R0, R1, R2, C1 and C2 the ECM model will become non-

Fig. 9  Jn versus λmin and ρ in 3D and 2D
 

Fig. 10  OCV estimation results with FF-RLS and VFF-RLS
 

Fig. 11  Variable forgetting factor during the operation
 

Fig. 12  OCV estimation result with FF-RLS with λ = 0.7555 or
λ = 0.9999
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linear. This will require the use of nonlinear filtering techniques,
for example EKF and unscented KF. Therefore, this will increase
the online calculation difficulty. Secondly, the observability of the
non-linear extended model will be tedious to prove.

6 Conclusion
Parameter estimation, as an important approach for battery
monitoring and fault diagnosis, is widely discussed around the
battery resistance and battery capacity. However, studies about the
battery OCV have great potential to further improve the battery's
operation reliability. Hence, by reviewing the classical SOC
estimation methods and several important characteristics of battery
OCV, the importance and need for estimating the battery OCV
have been introduced.

Then, based on the detailed modelling process of the extended
battery model and ARX model, two OCV estimation methods are
evaluated and compared. The first one uses observers for
estimation based on state-space representation. The ARX model is
developed to implement the regression-based OCV estimation
methods.

From the evaluation of four estimation algorithms, the
following conclusions can be drawn. KF has definitely better
performances in a noisy environment. However, LO is very
attractive for the vehicle BMS thanks to its lower computational
cost. Although FF-RLS and VFF-RLS are robust to the model

uncertainty and easy for tuning, it has been observed that their
estimation results are poorer compared to observed-based methods.

The battery OCV estimation discussion presented in this paper
is expected to bring a contribution to the battery OCV estimation
and algorithm selection. Experimental validation could further
support the simulation results and strengthen the conclusions
drawn from the comparative study. Future research works should
consider the following topics: (i) non-linear algorithms for battery
parameters and state of health estimation; (ii) implementation
issues of estimation algorithms on embedded battery management
systems; (iii) energy management strategy optimisation including
current battery state of health; (iv) development of efficient and
reliable battery state of health and SOC prognosis.
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