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A The unlabelled model

This appendix proves the main theoretical results on the unlabeled model for Git graphs. We start
by proving combinatorial bounds in Section A.1 on the numbers gn,k, from which our results follow
(Sections ?? and A.2).

A.1 Estimates on the number of Git graphs

The following Lemma gives us an approximation of the coefficients gn,k from which we can show
that gn,k is negligible compared to gn,bn/2c when k is away from n/2.

Lemma 1. For all 1 ≤ k ≤ n, we have

(k − 1)!

(2k − n− 1)!
≤ gn,k ≤

(
n− 2

k − 2

)
(k − 1)!

(2k − n− 1)!
when n− k ≤ k − 1

(
n− k − 1

k − 2

)
(k − 1)! ≤ gn,k ≤

(
n− 2

k − 2

)
(k − 1)! when n− k > k − 1

Proof. We start by proving the lower bounds. To this end, we construct an easy-to-enumerate subclass
of the Git graphs of size (n, k). Start with a size k main branch and attach a size-1 branch to as many of
its k commits as possible, starting with the rightmost/most recent commits.

• If (n − k) ≤ (k − 1), we reach a total of n commits at some point, and the number of possibilities
for connecting these branches to one of the main commits on the left is

(k − 1) · (k − 2) · · · (k − (n− k)) =
(k − 1)!

(2k − n− 1)!
.

• If (n − k) > (k − 1), then we can attach a branch to every commit on the main branch, and there
remains n − (2k − 1) unused commits at the end of this process. There is then

(
n−k−1
k−2

)
ways of

adding these remaining commits to the (k − 1) branches. In that case, the number of possibilities
for connecting the branches is (k − 1)!.

This gives the lower bound.
For the upper bounds, first consider all the possible ways to assign the (n− k) commits that are not

on the main branch to one of the (k − 1) commits on the main branch to which they will be attached.
There are

(
n−2
k−2

)
ways of doing this (this is the number of compositions of (n − k) into (k − 1) terms).

Then, for each of theses configurations, and for each feature branch, we have to choose where it forks
on the main branch. In the worst case, all the non-free commits are after the free commits. Furthermore,
there is at most (n− k) branches. This yields the same enumeration as for the lower bound, thus

gn,k ≤
(
n− 2

k − 2

)
(k − 1)!

max(0, 2k − n− 1)!

Let gn(u) be
∑n
k=0 u

kgn,k. Using these bounds, we proceed to show that for any choice of u > 0, the
mass is concentrated around k = b(n+ 1)/2c in gn(u).
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An upper bound for k below the mean Let 0 < α < 1
2 . Whenever k ≤ αn, we have

gn,k ≤
(
n− 2

k − 2

)
(k − 1)! =

(n− 2)!

(n− k)!
(k − 1) ≤ (n− 1)!

((1− α)n)!
αn.

And by Stirling’s formula,

(n− 1)!

((1− α)n)!
αn ∼

n→∞

α√
1− α

(
e−α

(1− α)
1−α

)n
nαn.

Similarly, when k = b(n+ 1)/2c, we have that

gn,k ≥
⌊
n− 1

2

⌋
! ≥

(n
2
− 1
)

! ∼
n→∞

√
4π(2e)

−n2 nn/2−1/2.

These two bounds allow to control the probability that the length of the main branch of a uniform Git
graph is less than αn. Indeed, for any choice of 0 < α < 1

2 and u > 0, we have

1

gn(u)

bαnc∑
k=0

ukgn,k ≤
max(1, uαn)

ub(n+1)/2c
ngn,bαnc

gn,b(n+1)/2c
= O

(
n3/2 ·

(
max(1, uα)

√
2e

√
u eα(1− α)

1−α

)n
· n−n( 1

2−α)

)
(1)

which tends rapidly to zero as n→∞.

An upper bound for k above the mean By Lemma 1, for k ≥ n+1
2 we have that

gn,k ≤
(n− 2)!(k − 1)

(n− k)!(2k − n− 1)!
=: hn,k

where the quantity hn,k on the right is unimodal as soon as n ≥ 3. Indeed, we observe that

hn,k+1

hn,k
=

(n− k)k

(2k − n)(2k − n+ 1)(k − 1)
=

(
n
2 − t

) (
n
2 + t

)
2t(2t+ 1)

(
n
2 + t− 1

) where t = k − n

2
∈
[

1

2
;
n

2

]
,

and we can show that this ratio in decreasing in t. Furthermore, this ratio evaluates to n+1
4 ≥ 1 at 1/2

and to 0 at n/2. There is thus a unique value tn of t such that this ratio is 1, and this value satisfies tn ∼√
n
8 . As a consequence of this observation, we have that for any given α > 1/2 there exists an n0(α)

such that for all n ≥ n0(α) and for all k ≥ αn, we have

gn,k ≤
(n− 2)!(k − 1)

(n− k)!(2k − n− 1)!

≤ (n− 2)!(αn− 1)

((1− α)n)!((2α− 1)n− 1)!
∼

n→∞
α

√
2α− 1

2π(1− α)
·

(
eα−1

(1− α)
1−α

(2α− 1)
2α−1

)n
· n(1−α)n−1/2

where the equivalent is obtained using Stirling’s formula. Similarly as before, we conclude using this
bound that the probability that a uniform Git graph has more than αn commits on main (with α > 1/2
and u > 0) tends rapidly to zero as n→∞:

1

gn(u)

∑
αn≤k≤n

ukgn,k = O

(
n ·

(
max(u, uα) eα−1

√
2e

√
u (1− α)

1−α
(2α− 1)

2α−1

)n
· n−n(α− 1

2 )

)
. (2)

By Equations (1) and (2), we have

∀ε > 0, P
( ∣∣∣∣k(γ)

n
− 1

2

∣∣∣∣ ≥ ε)→ 0,

which means that k(γ)
n converges in probability to 1

2 .
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A.2 The special case k = O(
√
n)

Lemma 1 also gives an estimate of gn,k up to a constant factor in the particular case when k = O(
√
t).

Let hn,k denote the sequence
(
n−2
k−2

)
(k − 1)! counting the generalization H of Git graphs, discussed in

Section 2.3 of the paper, where branches are allowed to have zero commits. By Lemma 1, when k < n+1
2 ,

we have that

1 ≥ gn,k
hn,k

≥
(
n− k − 1

k − 2

)(
n− 2

k − 2

)−1

=

k−3∏
j=0

(
1− k − 1

n− 2− j

)
.

Furthermore, when k ≤ t
√
n for some constant t > 0 independent of n, we can split this product as

follows
k−3∏
j=0

(
1− k − 1

n− 2− j

)
= exp

− k−3∑
j=0

(
k − 1

n− 2− j
+O

(
(k − 1)

2

(n− 2− j)2

))
where the big O under the summation is uniform in j. Consequently,

k−3∏
j=0

(
1− k − 1

n− 2− j

)
= exp

(
−(k − 1)(Hn−2 −Hn−k) +O

(
k3

n2

))

= exp

(
−k(k − 1)

n
+O

(
n−1/2

))
= e−

k(k−1)
n ·

(
1 +O

(
n−1/2

))
where (Hn)n≥0 denotes the harmonic series. The fact that e−

k(k−1)
n ≥ e−t

2

suffices to conclude that gn,k
and hn,k are of the same order of magnitude. This result can be rephrased as follows: the probability
that a uniform H structure is a Git graph is lower-bounded by a uniform constant as n → ∞ in the
domain k ≤ t

√
n. This implies directly that the rejection-based algorithm from Section 2.3 of the paper

terminates after a constant number of rejections.

B Labeled model

B.1 Asymptotic analysis

Recall that the generating function G̃(z, u) of Git graphs (exponential in u, ordinary in z) is given by

G̃(z, u) :=
∑

0≤k≤n

gn,k
uk

k!
zn = exp

(
1− z
z

ln
1

1− uz2

1−z

)
(3)

We first study its domain of analyticity in order to show that it is amenable to singularity analysis.
We then apply the classical techniques of analytic combinatorics to estimate the mean and variance of
the number of commits on the main branch of Git graph under the Boltzmann model.

B.1.1 Domain of analyticity

For any fixed value of u ∈ R+, the expression given in equation (3) is well-defined for all complex
numbers in C \ F where F =

{
z ∈ C | 1− z2u

1−z ∈ R−
}

. Within the set F of forbidden values for z,

maybe a countable number of points are actually valid values of z for expression (3) because 1−z
z ∈ Z.

Since there is only a countable number of such points, the domain of analyticity of G̃ (for a fixed value
of u) is C \ F . (Also note that the formula extends naturally at z = 0 to G̃(0, u) = 1).
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For any x ∈ R+, we have that 1− z2u
1−z = −x if and only if z = ρ(u, x) or z = ρ̄(u, x) where

ρ(u, x) =
1 + x

2u

(√
1 +

4u

1 + x
− 1

)
, and

ρ̄(u, x) = −1 + x

2u

(√
1 +

4u

1 + x
+ 1

)
.

Moreover, ρ and ρ̄ are respectively increasing and decreasing in x so that ρ(u,R+) = [ρ(u); 1[
and ρ̄(u,R+) =]−∞; ρ̄(u)] where

ρ(u) = ρ(u, 0) =

√
1 + 4u− 1

2u
, and (4)

ρ̄(u) = ρ̄(u, 0) = −
√

1 + 4u+ 1

2u
= − 1

uρ(u)
. (5)

Finally, we remark that −ρ̄ρ = 1 − ρ̄ > 1 so that ρ is the dominant singularity (as expected). The
domain of analyticity of G̃ is pictured in Figure 1.

ρ(u)ρ̄(u) 1

Figure 1: Domain of analyticity of G̃(z, u) when u is a fixed non-negative real number

B.1.2 Singularity analysis

Per the previous section, G̃ is analytic on a delta domain and has only one dominant singularity. More-
over, near ρ(u), we have the following estimate for G̃:

G̃(z, u) =

(
C

1− z
ρ

) 1−ρ
ρ

·

[
1 +

1

ρ
·
(

1− z

ρ

)(
ln

1

1− z
ρ

+ µ

)
+O

((
1− z

ρ

)2

ln

(
1− z

ρ

)2
)]

where
C =

1− ρ
2− ρ

and µ = lnC +
1

2− ρ
As a consequence, the transfer theorem from [FS2009] applies and we have that

[zn]G̃(z, u) =
n→∞

C
1−ρ
ρ

Γ
(

1−ρ
ρ

)n 1−2ρ
ρ ρ−n ·

[
1 +

1− 2ρ

ρ2n

(
lnn+

1− ρ
2

+ µ− ψ
(

1− 2ρ

ρ

))
+O

(
(lnn)

2

n2

)]
(6)

where ψ denotes the digamma function, that is the logarithmic derivative of Euler’s gamma function.
We can obtain a similar estimate for the coefficients of ∂2G̃ by observing that:

u∂2G̃(z, u) =
uz

1− uz2

1−z
G̃(z, u) =

z(1− z)
(ρ− z)(z − ρ̄)

G̃(z, u).

It follows that

u∂2G̃(z, u)

G̃(z, u)
=
z→ρ

(1− ρ)
2

ρ(2− ρ)

(
1− z

ρ

)−1
[

1− 1− 3ρ+ ρ2

(1− ρ)(2− ρ)

(
1− z

ρ

)
+O

((
1− z

ρ

)2
)]
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and thus

u∂2G̃(z, u) =
z→ρ

1− ρ
ρ
·

(
C

1− z
ρ

) 1
ρ

·

[
1 +

1− z
ρ

ρ

(
ln

1

1− z
ρ

+ µ− ρ(1− 3ρ+ ρ2)

(1− ρ)(2− ρ)

)
+O

((
1− z

ρ

)2

ln

(
1− z

ρ

)2
)]

.

Using the transfer theorem, it follows that

[zn]u∂2G̃(z, u) =
n→∞

1− ρ
ρ

C1/ρ

Γ(1/ρ)
n

1
ρ−1ρ−n

·

[
1 +

1− ρ
ρ2n

(
lnn− ψ

(
1

ρ
− 1

)
+ µ+

1

2
− ρ(1− 3ρ+ ρ2)

(1− ρ)(2− ρ)

)
+O

(
(lnn)

2

n2

)]
.

(7)

For the sake of computing the variance of the number of commits on the main branch of a Git graph
under the labeled-main distribution, we also analyze the second derivative. For any function f =
f(z, u), let f• denote the function u∂2f(z, u). Then we have that

G̃••(z, u) =
z→ρ

1− ρ
ρ2
·

(
C

1− z
ρ

) 1
ρ+1

·

[
1 +

1− z
ρ

ρ

(
ln

1

1− z
ρ

+ µ+
ρ(ρ3 − 5ρ2 + 8ρ− 2)

(1− ρ)(2− ρ)

)
+O

((
1− z

ρ

)2

ln

(
1− z

ρ

)2
)]

.

Applying the transfer theorem to this expansion yields

[zn]G̃••(z, u) =
n→∞

1− ρ
ρ2

C
1
ρ+1

Γ
(

1
ρ + 1

)n 1
ρ ρ−n

·

[
1 +

ρ−2

n

(
lnn− ψ

(
1

ρ

)
+ µ+

ρ+ 1

2
+
ρ(ρ3 − 5ρ2 + 8ρ− 2)

(1− ρ)(2− ρ)

)
+O

(
(lnn)

2

n2

)]
.

(8)

B.1.3 First moments of the labeled-main distribution

The above estimates allow us to approximate the expected number of commits on the main branch of a
git graph of size n sampled according to

P(γ) =
uk(γ)

k(γ)!G̃n(u)

where k(γ) is the number of commits on the main branch of γ and where G̃n(u) denotes [zn]G̃(z, u).

Mean We have that, if γ is sampled according to this distribution, we can compute its main using
from Equations (6) and (7):

E(k(γ)) =
u∂2G̃n(u)

G̃n(u)
=

[zn]u∂2G̃(z, u)

[zn]G̃(z, u)

=
n→∞

Cn ·

1 + ρ−1 lnn

n
+

1

n

 lnC − ψ
(

1−ρ
ρ

)
ρ

+
1

2− ρ

+O

(
(lnn)

2

n2

) .
Note that the ratio C = 1−ρ

2−ρ can take any value in the open interval (0; 1
2 ) depending on the value of u.

This implies that one can “tune” the value of u in order to target graphs with a given k(γ)/n ratio.
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Variance Similarly, we also have the variance of k(γ) from Equations (6) and (8):

V(k(γ)) = E(k(γ)
2
)− E(k(γ))

2
=

[zn]G̃••(z, u)

[zn]G̃(z, u)
−

(
[zn]G̃•(z, u)

[zn]G̃(z, u)

)2

= C2n
ρ

(1− ρ)(2− ρ)
= n · ρ(1− ρ)

(2− ρ)
3 .

This means that k(γ) is concentrated around its mean in a window of width about
√
n.
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