
HAL Id: hal-04487862
https://hal.science/hal-04487862v1

Preprint submitted on 4 Mar 2024 (v1), last revised 24 Jun 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Random Generation of Git Graphs
Julien Courtiel, Martin Pépin

To cite this version:

Julien Courtiel, Martin Pépin. Random Generation of Git Graphs. 2024. �hal-04487862v1�

https://hal.science/hal-04487862v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Random Generation of Git Graphs

Julien Courtiel* Martin Pépin*

Abstract

Version Control Systems, such as Git and Mercurial, manage the history of a project as a Directed
Acyclic Graph encoding the various divergences and synchronizations happening in its life cycle. A
popular workflow in the industry, called the feature branch workflow, constrains these graphs to be of a
particular shape: a unique main branch, and non-interfering feature branches.

Here we focus on the uniform random generation of those graphs with n vertices, including k on
the main branch, for which we provide three algorithms, for three different use-cases. The first, based
on rejection, is efficient when aiming for small values of k (more precisely whenever k = O(

√
n)). The

second takes as input any number k of commits in the main branch, but requires costly precalculation.
The last one is a Boltzmann generator and enables us to generate very large graphs while targeting a
constant k/n ratio. All these algorithms are linear in the size of their outputs.

1 Motivation

In software development, Version Control Systems (VCS in short) such as Git or Mercurial are cru-
cial. They facilitate collaborative work by allowing multiple developers to concurrently contribute to
a shared file system. VCS automatically save all project versions over time, along with the associated
changes.

Most VCS offer branching support, allowing developers to diverge from the main line of develop-
ment and continue their work independently without affecting the main project line. These branches
can be subsequently merged, in order to integrate changes from one branch into another, like new fea-
tures or bug fixes.

In the abstract, the history of a VCS repository can be seen as a Directed Acyclic Graph (DAG),
where vertices are the different versions of the project (also named commits) and arcs symbolize the
changes between two versions. There are no restrictions on the shape of the graphs you can generate
with a VCS, but many projects follow a workflow, that is a process and a set of conventions that define
how branches are created, and how changes are integrated into the main codebase.

The purpose of this paper is to develop an efficient random sampler for DAGs that respect a parti-
cular workflow.

One benefit of such a sampler would be to integrate property-based tests into VCS development. In
these tests, instead of specifying explicit input values and expected outcomes, we define properties
that should be satisfied for a wide range of repositories, which are generated randomly during the
test. By generating diverse graph structures that adhere to the workflow’s specifications, we ensure a
comprehensive examination of the VCS’s behavior according to plausible scenarios. To give a concrete
example based on work by one of the authors [CDL23], a random DAG sampler could experimentally
check the effectiveness of git bisect, an algorithm that finds the commit where a bug has been
introduced.

In this paper, we will take a look at one of the simplest workflows, but one that is widely used in the
corporate world: the feature branch workflow. In this workflow, the non-main branches do not interfere
with each other, and are simply attached to the (unique) main branch. Here is a more formal definition
of graphs induced by this workflow. (This definition originally comes from [Lec24].)

Definition 1 (Git graph). A Git feature branch graph (or just Git graph) is a DAG that consists of:

• a main branch, that is a directed path of black vertices.

*Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

1

• potentially several feature branches, that are directed paths that start and end on vertices of the main
branch. The set of intermediary vertices is not empty and consists of white vertices. A black vertex cannot
be the end point of several feature branches, just one at most (but it can be the starting point of several
branches).

Figure 1: All Git graphs with 5 vertices including 3 black vertices. Edges are oriented from left to right.
Free vertices are outlined in orange.

The size of a Git graph γ is its number of vertices. By convention, we assume that there exists a
unique Git graph of size 0. Another important parameter is its number of black vertices, and will be
denoted by k(γ). A black vertex is said to be free if there is no feature branch ending on it, i.e. its indegree
is at most 1. All Git graphs γ of size 5 with k(γ) = 3 are listed in Figure 1.

The fact that we forbid merges of multiple feature branches into the main one is not a restriction of
the VCS, but is advisable to maintain a clearer and more understandable project history, reduce the risk
of conflicts, and enhance traceability and maintainability. This restriction is also discussed in [CDL23].

2 The uniform model

2.1 A recursive decomposition

We first describe a recursive decomposition of Git graphs, based on the number of black vertices. Con-
sider the last black vertex vk of a Git graph of size n and with k > 1 black vertices. There are only two
possibilities: either vk is free, or vk is a merge between the main branch and a feature branch (which is
unique, by definition). In the latter case, the feature branch starts with a black vertex, which can be any
vertex of the main branch, but vk. Removing vk and the potential feature branch attached to it leads to
a smaller Git graph.

Git graphGit graph
or or

≥ 1

Git graph

Figure 2: How to decompose a Git graph.

By this reasoning, illustrated by Figure 2, we obtain the induction formula

gn,k = gn−1,k−1 +
∑
ℓ≥0

(k − 1)gn−1−ℓ,k−1, with g0,k =

{
1 if k = 0

0 otherwise
(1)

where gn,k is the number of Git graphs with n vertices, k of them being black.
This induction is sufficient to write a recursive generator (see [NW78] for the general theory of recur-

sive samplers and [FZV94] for a more modern point of view in the context of the symbolic method). We
do not extend on this generator as we will show in Section 2.2 that it always yields similar objects. More-
over, recursive samplers generally suffer from the high cost of precomputing the large numbers gn,k
which makes then impractical for large values of n.

It is straightforward (especially if you are familiar with the symbolic method [FS09]) to translate
Formula (1) into a differential equation whose solution is the generating function G(z, u) of Git graphs:

G(z, u) = 1 + zuG(z, u) +
z2u2

1− z

∂G

∂u
(z, u), where G(z, u) :=

∑
n≥0

∑
k≥0

gn,kz
nuk. (2)

2

Note that G(z, u) is not analytic at z = 0 since the number of Git graphs grows as a factorial (we
have g2k−1,k ≥ (k − 1)! by considering a Git graph with only merge commits and feature branches of
length 1). For this reason, the previous equation does not seem to be usable for Boltzmann sampling.

2.2 Most Git graphs look alike under the uniform distribution

A large random Git graph is with high probability of the same shape: about half of the commits are on
the main branch, and most commits on the main branch are merges of size-1 branches.

Proposition 1. Let u be any real positive number. Consider γn a random Git graph of size n taken with probabi-

lity
uk(γn)∑

γ Git graph of size n u
k(γ)

. Then the random variable k(γn)
n converges in probability to 1

2 when n goes to +∞.

(Note that u = 1 corresponds to the uniform distribution).

The intuition behind this result is a large number of branches greatly increases the number of ways
of connecting them to the main branch, hence favoring graphs with many short branches over ones
with fewer but longer branches.

In particular, for any value of u, the average number of commits in the main branch is asymptotically
equivalent to n

2 . This motivates the introduction of a variant of this model which we detail in the next
half of this paper, and which allows more control over the number of commits on the main branch.

2.3 A rejection algorithm

Before delving into the next model, it is worth noting that there is an efficient rejection-based sampling
algorithm for the case where k is small based on the following inclusion. Consider a variation H of the
model where every black vertex but the first one is the endpoint of a feature branch but it is allowed
to have zero commit on a feature branch. Denote by hn,k the number of such graphs with n vertices
including k on the main branch. Then Git graphs can be seen as a subset of these graphs by identifying
empty feature branches pointing at the root commit in H with free commits in Git graphs. Moreover,
whenever k ≤ t

√
n, for some constant t > 0, we have that

gn,k = Θ(hn,k) where the bounds depend only on t.

This yields Algorithm 1 for sampling uniform Git graphs with a small main branch. This algorithm can
be implemented so as to perform O(k) array accesses and O(k) RNG calls1 in average.

Algorithm 1 Rejection algorithm for Git graphs with n vertices, k of them being black
1: start with a chain of k black vertices
2: arrange uniformly at random (n− k) white vertices into (k − 1) possibly empty chains
3: attach the ends of these chains to the (k − 1) last black vertices
4: attach the start of every chain to a previous black vertex, chosen uniformly at random
5: if any of the empty chains is not attached to the root, start over, otherwise return

3 The labeled-main distribution

3.1 Description of the model

Given the disadvantages of the uniform distribution, we propose a new model for random Git graphs
that is easier to sample, gives with more varied shapes, and with fine control over the number of black
vertices. The principle is that a Git graph γ will have a probability to be generated proportional to
uk(γ)/k(γ)! where u is a real positive parameter.

1In practice, considering an RNG call to be O(1) faithfully reflects the runtime performance of such an algorithm. It is thus a
realistic complexity model, that we use in the rest of this document. It is however important to note that every RNG call needs to
produce about log2(n) random bits here.

3

More precisely, we set G̃n(u) :=
∑n

k=1 gn,k
uk

k! and G̃(z, u) :=
∑

n≥0 G̃n(u)z
n. Thus G̃ resembles an

exponential generating function, but with a scaling of k! instead of a scaling of n!. Unlike G defined in
the previous section, the function G̃ is analytic at z = 0 (a direct consequence of Theorem 1 below).

Definition 2. The probability under the labeled-main distribution of a Git graph of size n and with k black
vertices is defined as ukzn

k!G̃(z,u)
, where z and u are positive parameters inside the domain of convergence of G̃.

This is a multivariate Boltzmann model (exponential in u and ordinary in z). A sampler based on
this distribution falls into the category of Boltzmann generators, for which a large number of results have
been established, facilitating the generation of large objects [DFLS04].

By using the Borel transform [Bor99] on Equation (2) with respect to the variable u, that is to

say
∑

n,k≥0 an,kz
nuk 7→

∑
n,k≥0

an,kz
nuk

k! , we can obtain a differential equation for G̃(z, u):

∂G̃

∂u
(z, u) = zG̃(z, u) +

z2u

1− z

∂G̃

∂u
(z, u) and G̃(z, 0) = 1. (3)

Solving this differential equation gives a nice formula for G̃.

Theorem 1. The function G̃(z, u) =
∑

n≥0

∑n
k=1 gn,k

uk

k! is equal to

G̃(z, u) =

(
1− z2u

1− z

)− 1−z
z

.

By a tedious but straightforward application of the transfer theorem [FS09], we can compute the
average number of black vertices under the labeled-main distribution.

Proposition 2. Let k(γn) be the number of commits in the main branch of a graph γn taken at random with
probability P(γn) = uk(γn)

k(γn)!
1

G̃n(u)
. The mean and variance of k(γn) are asymptotically equivalent to

E(k(γn)) ∼
1− ρu
2− ρu

n and V(k(γn)) ∼
ρu(1− ρu)

(2− ρu)
3 n, where ρu =

√
1 + 4u− 1

2u
.

Remark that the expected value of the k(γ)/n ratio can be any number between 0 and 1/2, depending
on the value of u. This is one of the main benefits of the labeled-main distribution: given any α ∈ (0, 1

2),
we can tune u in order to target Git graphs to have αn black vertices (and the variance is quite tight).

3.2 A bijection with cyclariums

The closed formula for G̃ featured in Theorem 1 calls for a combinatorial interpretation. That is why we
define a new family of combinatorial objects: the cyclariums.

A cyclarium is defined as a set of cycles of k black vertices labeled by {1, . . . , k}where each vertex that
has not the largest label inside its own cycle carries a non-empty chain of white vertices. See Figure 3
top left to see an illustration of a cyclarium. The set Y of cyclariums has the natural combinatorial
specification

Y = SET (C) , SEQ ̸=0 (Z)× C = CYC
(
UZSEQ ̸=0 (Z)

)
(4)

where SET (·), SEQ ̸=0 (·) and CYC (·) are respectively the operators for sets, non-empty sequences and
cycles. Consequently the generating function of cyclariums (scaled by k!) is also given by the formula
of Theorem 1 (for more details on the symbolic method, see [FS09]).

Proposition 3. The Git graphs with n vertices, k black vertices and f free vertices are in bijection with the
cyclariums with n vertices, k black vertices and f cycles.

The bijection is depicted in Figure 3. We give a quick overview of the transformation from cyclari-
ums to Git graphs. First, we break each cycle just before the vertex with the largest label, so that they are
directed paths. Then we sort these paths according to their largest label, and concatenate them. Now
we process the black vertices from right to left. If a chain of white vertices is attached to the current

4

4 2 5 6 31 4 2 5 61
3

2 1 5432 13
1

3

2
1

1

12

4 5

3 6 4 < 5 < 6

�4 �5 �6
shift
label

Figure 3: Outline of the bijection between Git graphs and cyclariums

black vertex v, then we connect this chain to the black vertex whose position is given by the label of v.
If no chain is attached, we do nothing. Once the vertex has been processed, its label ℓ is deleted and we
change all labels x such that x > ℓ by x− 1. We can check that we eventually obtain a Git graph.

Exploiting the fact that the permutations with f cycles are counted by the Stirling numbers of the
first kind, we obtain a closed formula for gn,k.

Corollary 1. The number of Git graphs gn,k of size n and with k black vertices is 1 if k = n and

gn,k =

k−1∑
f=1

[
k

f

](
n− k − 1

k − f − 1

)

for k < n, where
[·
·
]

denotes the (unsigned) Stirling number of the first kind.

The bijection also suggests a sampling algorithm for Git graphs of size n if we fix the number k
of black vertices and optionally the number f of free vertices: see Algorithm 2. It runs in O(n) (with
some optimization) but requires an expensive precomputation of the Stirling numbers of the first kind.
This precomputation is in particular used to generate a uniform permutation of size k with f cycles2.
If f must be sampled, we need to precompute O(k2) numbers of size O(k log k). If f is given, only
O(f(k − f)) of them can be precalculated.

Algorithm 2 Exact sampler of Git graphs with n vertices and k black vertices
Additional optional input: f , the number of free vertices

1: If f is not given, sample it with probability
[
k
f

](
n−k−1
k−f−1

)
/gn,k

2: Generate a random permutation of size k with f cycles
3: Generate a composition of n− k into k − f positive terms
4: Form k − f chains of white vertices whose lengths are given by the previous composition
5: Attach them to the permutation to form a cyclarium
6: Use the bijection from cyclariums to Git graphs

3.3 A Boltzmann generator

Specification (4) induces a natural Boltzmann generator [DFLS04] for cyclariums, and hence by Propo-
sition 3 a Boltzmann generator for Git graphs under the labeled-main distribution. Rather than simply
generating a cyclarium of size n and applying the bijection, which would result in O(n2) complexity, we
can mix the two approaches and achieve O(n + f2) complexity, where f is the number of free vertices
(which is logarithmic in n in average). The details are given in Algorithm 3 and illustrated by Figure 4.

2The uniform sampler for permutations with a fixed number of cycles comes from [Wil99, page 33] but it might be improved
by sampling a Poisson-Dirichlet distribution [Pit06, Chapter 3] with a well-chosen θ parameter. We leave this as an open question.

5

Algorithm 3 Boltzmann sampler under the labeled-main distribution of parameters z and u

1: f ← POISSON(ln G̃(z, u)) ▷ Poisson distribution
2: cycle lengths← array of f independent LOGA(uz2

1−z) ▷ Logarithmic series distribution
3: k ← total sum of cycle lengths
4: g ← directed path of k black vertices denoted v[0], . . . , v[k − 1] ▷ skeleton of our Git graph
5: while k > 0 do
6: extract a number x from cycle lengths with probability x/k
7: mark v[k − x]
8: k ← k − x

9: for j from 1 to number of black vertices −1 do
10: if v[j] is not marked then
11: i← random number between 0 and j − 1
12: link v[i] to a directed path of (1 + GEOM(z)) white vertices ▷ Geometric distribution
13: link the last vertex of this path to v[j]

14: return g

[3 , 1 , 5]cycle lengths =

Poisson

Loga
k = 9

k = 3

P(3) = 1

P(5) = 5
9P(3) = 3

9 P(1) = 1
9

1+Geom
?

P = 1

1+Geom

P=1
2

P=1
2

?

initialization while loop 1st iteration while loop 2nd iteration

while loop 3rd iteration for loop 1st iteration for loop 2nd iteration

k = 4

P(3) = 3
4 P(1) = 1

4

Figure 4: Illustration of the first steps of Algorithm 3.

Our implementation of this algorithm in Python easily generates graphs larger than 10 million. We
also recall that we can carefully choose the parameters z and u to target a size n and a ratio α ∈ (0, 1

2),
where αn is the number of black vertices.

4 Conclusion

In this work, we have developed three random generators for Git graphs. The Python source code for
these algorithms is enclosed with this submission.

A few questions remain unanswered. Firstly, our algorithms are unable to generate graphs for cer-
tain values of k efficiently (more precisely when k is in the window

√
n ≪ k ≪ n, and when k ≥ n

2).
In addition, it would be interesting to obtain an asymptotic estimate of the numbers gn of Git graphs.
The formula in Corollary 1 seems to be a good start to do so. Moreover, we could study potential phase
transitions as k evolves as a function of n. In particular, we could investigate how the number of free
vertices grows, as well as the gaps between each of them.

Finally, we could study more involved workflows, and enumerate DAGs that adhere to them.

References

[Bor99] Émile Borel. “Mémoire sur les séries divergentes”. fr. In: Annales scientifiques de l’École Nor-
male Supérieure 3e série, 16 (1899), pages 9–131. DOI: 10.24033/asens.463. URL: http:
//www.numdam.org/articles/10.24033/asens.463/.

6

https://doi.org/10.24033/asens.463
http://www.numdam.org/articles/10.24033/asens.463/
http://www.numdam.org/articles/10.24033/asens.463/

[CDL23] Julien Courtiel, Paul Dorbec, and Romain Lecoq. “Theoretical Analysis of Git Bisect”. In:
Algorithmica (2023). DOI: 10.1007/s00453-023-01194-0.

[DFLS04] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. “Boltzmann sam-
plers for the random generation of combinatorial structures”. In: Combinatorics, Probability
& Computing 13.4-5 (2004), pages 577–625. DOI: 10.1017/S0963548304006315.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press,
2009, pages I–XIII, 1–810. ISBN: 978-0-521-89806-5.

[FZV94] Philippe Flajolet, Paul Zimmermann, and Bernard Van Cutsem. “A calculus for the ran-
dom generation of labelled combinatorial structures”. In: Theoretical Computer Science 132.1-2
(1994), pages 1–35.

[Lec24] Romain Lecoq. “Analyse de git bisect et problème de propagation (temporary title)”. in
French, work in progress. PhD thesis. 2024.

[NW78] Albert Nijenhuis and Herbert Wilf. Combinatorial Algorithms: For Computers and Hard Calcu-
lators. 2nd. USA: Academic Press, Inc., 1978. ISBN: 0125192606.

[Pit06] J. Pitman. Combinatorial stochastic processes. Volume 1875. Lecture Notes in Mathematics. Lec-
tures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7–24,
2002, With a foreword by Jean Picard. Springer-Verlag, Berlin, 2006, pages x+256. ISBN: 978-
3-540-30990-1; 3-540-30990-X.

[Wil99] Herbert S. Wilf. “East Side, West Side . . . - an introduction to combinatorial families-with
Maple programming”. 1999. URL: https://www2.math.upenn.edu/˜wilf/eastwest.
pdf.

7

https://doi.org/10.1007/s00453-023-01194-0
https://doi.org/10.1017/S0963548304006315
https://www2.math.upenn.edu/~wilf/eastwest.pdf
https://www2.math.upenn.edu/~wilf/eastwest.pdf

	Motivation
	The uniform model
	A recursive decomposition
	Most Git graphs look alike under the uniform distribution
	A rejection algorithm

	The labeled-main distribution
	Description of the model
	A bijection with cyclariums
	A Boltzmann generator

	Conclusion

