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ABSTRACT 
The increased prevalence of human-AI collaboration is reshaping the manufacturing sector, funda-
mentally changing the nature of human work and training needs. While high automation 
improves performance when functioning correctly, it can lead to problematic human performance 
(e.g., defect detection accuracy, response time) when operators are required to intervene and 
assume manual control of decision-making responsibilities. As AI capability reaches higher levels 
of automation and human–AI collaboration becomes ubiquitous, addressing these performance 
issues is crucial. Proper worker training, focusing on skill-based, cognitive, and affective outcomes, 
and nurturing motivation and engagement, can be a mitigation strategy. However, most training 
research in manufacturing has prioritized the effectiveness of a technology for training, rather 
than how training design influences motivation and engagement, key to training success and lon-
gevity. The current study explored how training workers using an AI system affected their motiv-
ation, engagement, and skill acquisition. Specifically, we manipulated the level of automation of 
decision selection of an AI used for the training of 102 participants for a quality control task. 
Findings indicated that fully automated decision selection negatively impacted perceived auton-
omy, self-determined motivation, behavioral task engagement, and skill acquisition during training. 
Conversely, partially automated AI-enhanced motivation and engagement, enabling participants to 
better adapt to AI failure by developing necessary skills. The results suggest that involving workers 
in decision-making during training, using AI as a decision aid rather than a decision selector, yields 
more positive outcomes. This approach ensures that the human aspect of manufacturing work is 
not overlooked, maintaining a balance between technological advancement and human skill 
development, motivation, and engagement. These findings can be applied to enhance real-world 
manufacturing practices by designing training programs that better develop operators’ technical, 
methodological, and personal skills, though companies may face challenges in allocating substan-
tial resources for training redevelopment and continuously adapting these programs to keep pace 
with evolving technology.

KEYWORDS 
Human-centered AI; training 
curriculum; motivation; self- 
determination theory; 
industry 5.0   

1. Introduction

Advances in technological interconnectivity, decision-making 
speed, and automation have greatly improved the capability 
of artificial intelligence (AI)-based manufacturing work sys-
tems, thus changing the nature of the work being done by 
workers in the manufacturing sector. AI is becoming more 
integrated and pervasive in industrial processes due to this 
technological advancement, also known as Industry 4.0 
(I4.0) or the fourth industrial revolution (Jan et al., 2022). 
The main objective is to support human workers rather 
than replace them. This focus on supporting rather than 
replacing human workers is driven by the recognition that 
the complete replacement of humans by AI could lead to 

several detrimental outcomes and be unfeasible in many 
manufacturing contexts.

First, it risks losing the critical thinking, creative prob-
lem-solving, and adaptability that human workers bring, 
which are essential for handling unpredictable situations and 
innovations that AI cannot yet replicate (Kolade & Owoseni, 
2022; Strenge & Schack, 2021). Second, many organizations, 
particularly those embracing Lean Management principles, 
place a high value on worker autonomy (Rosin et al., 2020). 
They aim for a transition from a technology-centered to a 
value-centered vision, where AI tools are designed to sup-
port rather than replace human decision-making processes 
(Enang et al., 2023; Kumar et al., 2021). This approach is 
aligned with the findings of Rosin et al. (2021, 2022), who 
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demonstrated various ways to support decision-making in 
manufacturing with Industry 4.0 tools, including AI, sug-
gesting that complete automation is not always desirable. 
Indeed, research has shown that automating decision-mak-
ing aspects of work may reduce workers’ perceptions of 
autonomy/agency, and thus their subjective well-being, char-
acterized by lower motivation and sense of meaningfulness 
at work (Legaspi et al., 2024; Nazareno & Schiff, 2021).

Third, the full automation of tasks without human over-
sight might lead to systemic vulnerabilities, where AI sys-
tems may fail to adapt to novel scenarios or detect nuanced 
anomalies, potentially compromising safety and efficiency. 
Indeed, AI tools, vary greatly in performance depending on 
the complexity of the task and data quality (Usuga Cadavid 
et al., 2020). Particularly notable are the challenges arising 
from the adoption of personalized product strategies seen in 
I4.0. The inherent variability in data associated with custom-
ized approaches, frequently hinders the development of 
robust and reliable AI systems, necessitating more advanced 
and adaptable technological solutions (Neumann et al., 
2022). Finally, manufacturing environments frequently 
undergo changes, as new products are continuously devel-
oped and brought to market. This necessitates regular 
adjustments in manufacturing and assembly processes, 
including shifts in raw materials (Mart�ınez-Olvera & Mora- 
Vargas, 2019; Zhou et al., 2022). These regular changes can 
lead to decreases in AI tool reliability and even obsolescence 
in cases of significant technological shifts (Mellal, 2020).

Recognizing the strengths and limitations of both AI and 
humans leads to the acknowledgment that both have distinct 
but complementary roles to play in modern manufacturing. 
Humans, with their versatility, creativity, and problem-solv-
ing capabilities, complement AI’s proficiency in performing 
repetitive tasks quickly, accurately, and consistently. In con-
trast to humans or AI acting alone, it is anticipated that 
both working together would increase efficiency, productiv-
ity, and cost-effectiveness (Klumpp et al., 2019; Wilson & 
Daugherty, 2018). Because of this, human-AI collaboration 
in manufacturing systems is becoming more common in the 
age of I4.0. The nature of the human’s work is fundamen-
tally altered by this partnership in terms of job responsibil-
ities and skill/training requirements (Avril et al., 2022; Da 
Silva et al., 2022; Gagn�e et al., 2022; Magnani, 2021; Parker 
& Grote, 2022; Soo et al., 2021). For example, the automa-
tion of repetitive manual tasks shifts human work towards a 
higher-level supervisory role which involves manual take-
over, troubleshooting, or problem-solving when automation 
malfunctions.

This role requires workers to have the capabilities to 
detect a malfunctioning/failing automation and manually 
take over efficiently. Research has shown this to be a chal-
lenging aspect of human-automation collaboration, noting 
that the increased automation of AI systems is a double- 
edged sword with regards to human task performance. As 
levels of automation increase, so does worker performance 
during routine system operation. On the other hand, when 
automation fails or malfunctions, higher levels of automa-
tion lead to worse performance (Bainbridge, 1983; Onnasch 

et al., 2014). Essentially, workers may become complacent 
and over-rely on automation, leaving them unable to 
adequately respond, resulting in precarious performance 
(Liu, 2023).

As human–AI collaboration becomes more prevalent and 
the capability of AI increases, it is necessary to find ways to 
mitigate worker task performance issues in the inevitable 
situation of automation malfunction. One such mitigation, 
brought forward by many, is proper worker training (B€uth 
et al., 2018; Cazeri et al., 2022; Da Silva et al., 2022; Molino 
et al., 2020; Parker & Grote, 2022; Saniuk et al., 2021). 
Indeed, providing workers with problem-solving, analytical 
and decision-making skills, as well as the motivation to learn 
and improve, can help them adapt to the growing capability 
of AI, fostering an efficient human–AI collaboration (Bell 
et al., 2017; Hecklau et al., 2016; Zirar et al., 2023). Despite 
its noted importance, training workers using highly-auto-
mated AI systems has received relatively little research atten-
tion in the manufacturing domain. Rather, most of the 
research has focused on operational, or technical aspects, as 
opposed to a human-centred focus, which values the worker 
as an indispensable resource to the success of I4.0 work sys-
tems in which humans and AI collaborate.

This issue has been echoed by the scientific community 
(European Commission et al., 2021; Gagn�e et al., 2022; 
Kaasinen et al., 2019; Kadir et al., 2019; Neumann et al., 
2021; Rauch et al., 2020). Indeed, in their systematic review, 
Kadir et al. (2019) found that less than 2% of all papers 
about I4.0 had a human-centred focus. Generally speaking, 
this limits our understanding regarding the design and 
implementation of AI systems. More specific to the current 
study, this limits our understanding regarding the creation 
of training that would give workers the necessary capabilities 
to adequately adapt when AI systems malfunction. The 
European Commission has raised the lack of human-centric 
research and has brought forward the concept of Industry 
5.0 (I5.0), defined as a manufacturing paradigm that lever-
ages technology to promote worker well-being and 
empowerment, societal development, and environmental 
sustainability (European Commission et al., 2021; Humayun, 
2021; Leng et al., 2022). Essentially, I5.0 aims to alleviate 
issues within I4.0 research by stimulating human-centric 
research in which human empowerment and augmentation 
is paramount.

Within the optic of I5.0, the current paper presents an 
experiment which explores an under-researched aspect of 
human–AI collaboration that plays a pivotal role in the 
long-term success of work system, i.e., worker training in a 
highly automated manufacturing environment. More specif-
ically, we aim to investigate the impact of AI decision-selec-
tion level of automation during training for a quality control 
task on worker skill acquisition, motivation, and engage-
ment. We intend to answer two research questions: (1) Does 
AI level of automation during training affect a worker’s abil-
ity to perform when AI fails? (2) Does AI level of decision- 
selection automation affect worker motivation and engage-
ment during training?

2 M. PASSALACQUA ET AL.



The rest of the article is structured as follows. First, the 
next section presents a literature review of worker compe-
tencies in relation to automation and worker training within 
I4.0. We then discuss our experimental methodology and 
results before concluding the paper a with a discussion on 
this research’s main contribution and limitations.

2. Literature review

The following section will review the relevant literature on 
I4.0, automation, worker competencies, training, motivation, 
and engagement.

2.1. Industry 4.0, automation, and the impact on work 
and workers

I4.0 is characterized by technological advancement such as 
decentralized decision-making, real-time data, and technol-
ogy interconnectivity (Danjou et al., 2017). These advance-
ments have led to the increased capability of AI-based 
systems, allowing more cognitive complex tasks to now be 
automated. Humans will not be completely replaced by AI, 
as whole jobs cannot be automated (Brynjolfsson et al., 
2018; Parker & Grote, 2022). Additionally, AI and humans 
each have their strengths. For example, humans are better at 
complex decision-making requiring contextual understand-
ing, while AI is better at collecting and processing a large 
amount of data (Bainbridge, 1983). Rather than whole jobs, 
tasks within jobs are being automated, meaning that humans 
and AI are working collaboratively more than ever.

Increased automation comes with both benefits and 
drawbacks, as is well-documented within human factors 
research. For example, automated systems can improve 
worker safety by taking over dangerous tasks and can 
improve company profitability through better process effi-
ciency (Parker & Grote, 2022). On the other hand, higher 
automation is associated with significant human perform-
ance issues when AI systems malfunction, as they inevitably 
do (Bindewald et al., 2020; Onnasch et al., 2014; Wickens, 
2018). This issue, commonly known as the out-of-the-loop 
performance problem, is due to an overreliance on automa-
tion, complacency, and/or cognitive overload (Endsley & 
Kiris, 1995; Onnasch et al., 2014). Automation can be classi-
fied according to one of four stages of information process-
ing that it acts on: (1) information acquisition; (2) 
information analysis; (3) decision and action selection; (4) 
action implementation) (Kaber & Endsley, 2004; 
Parasuraman, 2000; Wickens, 2018). Within each of these 
stages, the level of automation can vary from no automation 
to full automation. In a meta-analysis performed by 
Onnasch et al. (2014), they found that the performance 
issues when automation fails are exacerbated when higher 
levels of automation are present for stages 3 and 4 (decision 
selection and action implementation), compared to stages 1 
and 2. Essentially, high levels of automation of processes 
involving decision making and action implementation can 
cause important performance issues when manual takeover 
is required. It is thus recommended that workers be kept in 

the loop when it comes to decision selection and action 
implementation (Wickens, 2018). This can be done by allo-
cating the function of decision selection and/or action 
implementation to the worker rather than an AI, or by 
keeping the level of automation to a maximum of medium 
for these two stages of information processing (Onnasch 
et al., 2014).

As the capability and ubiquity of AI are increasing, so 
too is the level of automation for the later stages of informa-
tion processing. AI systems are increasingly capable of proc-
essing complex information, resulting in a greater capacity 
to perform tasks involving higher-level decision-making, 
which used to be performed exclusively by workers. AI sys-
tems can now recognize patterns, handle a large amount of 
data, and make real-time decisions. This increased capability 
of automation in the advanced stages of information proc-
essing leads to quicker and more accurate decision-making 
when all is well but leads to problematic performance when 
a human takeover is required due to malfunction, as dem-
onstrated by the out-of-the-loop performance problem 
(Onnasch et al., 2014).

It is necessary to find ways to mitigate this issue, thus 
improving overall system performance specifically when 
automation malfunctions. One such mitigation is the devel-
opment of competencies through worker training (Bahner 
et al., 2008; Dattel et al., 2023; Parasuraman & Riley, 1997). 
I4.0 and the resulting increased prevalence of human-AI col-
laboration have changed the necessary worker competencies, 
i.e., the skills, abilities, knowledge, and attitudes needed to 
effectively do one’s job (Armstrong & Taylor, 2020; Da Silva 
et al., 2022; Hecklau et al., 2016; Oberl€ander et al., 2020). 
Indeed, different categories of competencies that are chang-
ing in the context of I4.0 have been identified: technical, 
methodological, and personal (Hecklau et al., 2016; Kowal 
et al., 2022). Here, we present only competencies relevant to 
human–AI interaction. For a complete description of all 
competencies, refer to Hecklau et al. (2016). Technical com-
petencies include a greater and deeper understanding of 
processes due to a increased complexity of work systems, as 
well as more comprehensive technical skills for manual take-
over in case of AI malfunction (Gehrke et al., 2015; Pacher 
et al., 2023). Methodological competencies include greater 
analytical and problem-solving capability to detect the 
source of an error within complex systems (World 
Economic Forum, 2016; Morgan, 2014; Pacher et al., 2023). 
Personal competencies include motivation to learn and abil-
ity to work under pressure to be able to adapt to changing 
technology and shorter product life cycles (UK commission 
for employment and skills, 2014; Pacher et al., 2023).

2.2. Worker training

Proper training is necessary for workers to develop these 
competencies. Training research has a century-long history, 
which provides “evidence-based recommendations and best 
practices for maximizing training effectiveness” (Bell et al., 
2017; Salas et al., 2012, p. 80). Four research themes have 
emerged, each contributing to the effectiveness of training: 
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(1) training criteria, (2) trainee characteristics, (3) training 
context, and (4) training design and delivery. A short 
description of each theme will be presented, focusing on the 
relevant findings; for a comprehensive description, refer to 
Bell et al. (2017) and Salas et al. (2012).

2.2.1. Training criteria
Evaluating the effectiveness of training should be done using 
multi-dimensional outcomes (Bell et al., 2017; Kraiger et al., 
1993). Specifically, skill-based outcomes, cognitive outcomes, 
and affective outcomes should be considered. Skill-based 
outcomes include performance metrics and related out-
comes. Cognitive outcomes refer to knowledge organization 
and cognitive state. For example, task engagement represents 
a cognitive state that facilitates knowledge acquisition. 
Affective outcomes relate to trainee motivation and related 
constructs. Considering all three dimensions will provide a 
better understanding of a training’s success since it can 
affect multiple individual and organizational factors directly 
affecting a company’s well-being (Salas et al., 2012).

2.2.2. Trainee characteristics
Individual characteristics that affect trainees’ motivation to 
learn should be considered. This includes personality traits, 
such as trainee trait engagement (general causality orienta-
tion), which refers to one’s perception of control over 
actions and events (Deci & Ryan, 1985). Trainee skills 
should also be taken into consideration so that the training 
can be adequately adapted.

2.2.3. Training context
The success of training depends not only on the training 
itself but on a variety of other factors related to the organ-
izational context. Training effectiveness is heavily influenced 
by supervisor and peer support, as well as organizational 
learning culture. Additionally, it is essential to understand 
that skill decay occurs over that and that refresher training 
may be needed (Bell et al., 2017; Salas et al., 2012). Training 
context is not in the scope of the current experiment since 
our focus is on the short-term outcomes of training.

2.2.4. Training design and delivery
Training should focus on active rather than passive learning. 
Active learning should involve hands-on practice with the 
work system, allowing trainees to practice decision-making. 
In addition, errors should be incorporated into training, 
allowing trainees to be better when errors happen during 
actual work (Salas et al., 2012; Sauer et al., 2016). Active 
learning techniques, such as problem-based learning or 
simulation-based learning, allow trainees to develop flexible 
and adaptive skills necessary to deal with complex work sys-
tems, such as those seen in I4.0 (Bell et al., 2017; Kozlowski 
et al., 2001; L�eger et al., 2012). Active learning also promotes 
trainee motivation and engagement during learning. It is 
essential to design training in a way that promotes trainee 
motivation and engagement, as they are crucial determinants 

of training effectiveness and sustainment (Bell et al., 2017; 
Lazzara et al., 2021; Salas et al., 2012; Van der Klink & 
Streumer, 2002). Additionally, they are strong predictors of 
employee performance, turnover, absenteeism, innovation, 
organizational learning culture, and technology acceptance, 
among others (Akhlaq & Ahmed, 2013; Deci et al., 2017; 
Gerhart & Fang, 2015; Molino et al., 2020; Salas et al., 2012; 
Schmid & Dowling, 2020). The following sections will pre-
sent the concepts of motivation and engagement within the 
context of employee training.

2.3. Worker motivation

Through meta-analytic evidence, theories of human motiv-
ation and work engagement were created. One of these the-
ories, self-determination theory (SDT), provides a robust 
theoretical framework that can be leveraged to understand 
how elements of training design affect trainee motivation 
and engagement. At its core, SDT aims to explain how sit-
uations and environments impact a worker’s motivation and 
engagement (Deci & Ryan, 2008). SDT states that workers 
have innate and universal needs, such as the need to feel a 
sense of self-efficacy (competence), to feel in control of their 
actions and decisions (autonomy), and to have meaningful 
social interactions (relatedness). The satisfaction of these 
needs dictate to what extent workers experience more self- 
determined motivation, i.e., motivation resulting from a 
greater internalization of the motive for completing an 
action. Motivation lies on a continuum, starting from intrin-
sic on one end, to extrinsic at the center, to amotivation on 
the other end. Figure 1 illustrates this continuum. Intrinsic 
motivation relates to performing an action for its inherent 
enjoyment and because it is in line with the individual’s val-
ues, interests, or aspirations. Intrinsic motivation represents 
the most self-determined type and is the strongest predictor 
of worker well-being and absenteeism (Van den Broeck 
et al., 2021). Extrinsic motivation relates to performing a 
task because of some external demand, such as an external 
reward or punishment avoidance. Extrinsic motivation is 
further divided into four types that vary in terms of intern-
alization, i.e., the degree to which the motive for performing 
an action is in line with their values, interests, or aspira-
tions. A more self-determined subtype of extrinsic motiv-
ation, identified motivation, is of particular importance. This 
type of motivation represents completing a task because it is 
perceived as meaningful. Identified motivation is the stron-
gest predictor of workplace performance, continuous effort 
investment, and other organizational citizenship behavior 
(Van den Broeck et al., 2021). Amotivation represents a 
complete lack of motivation to perform an action. SDT’s 
main premise is that satisfying workers’ psychological needs 
of competence, autonomy, and relatedness leads to a greater 
internalization of the motive for learning, which is syn-
onymous with a more intrinsic type of motivation and regu-
lation. In turn, motivation that is more intrinsically 
regulated will lead to workers being more engaged, innova-
tive, generally happier, less likely to change jobs, and greater 
acceptance of technology (Deci et al., 2017; Meyer & Gagn�e, 
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2008; Venkatesh et al., 2002). When these needs are 
thwarted, workers are less intrinsically motivated, which is 
associated with burnout, stress, and disengagement, all of 
which affect their well-being (Deci et al., 2017). 
Unsurprisingly, training effectiveness, skill acquisition, and 
work performance are also negatively affected.

2.4. Worker engagement

A worker’s engagement during training or a task is a direct 
consequence of their motivation and is associated with the 
same outcomes as motivation (e.g., well-being, performance, 
technology acceptance). Task engagement is a multi-dimen-
sional concept consisting of a (1) dispositional (trait) dimen-
sion, a (2) psychological state dimension, and a (3) 
behavioral dimension (Macey & Schneider, 2008; Meyer 
et al., 2010). Trait engagement is defined as a worker’s pre-
disposition “to experience work in positive, active, and ener-
getic ways and to behave adaptively” (Macey & Schneider, 
2008, p. 21). Within the context of SDT, this means that 
some workers are more likely than others to perceive, 
behave, and think in ways that will satisfy their psycho-
logical needs (Deci & Ryan, 1985; Meyer et al., 2010). In 
essence, a worker’s personality traits impact how they cogni-
tively evaluate a situation as being more controlling or 
autonomy-inducing, which affects whether they will experi-
ence more intrinsic or extrinsic motivation and, conse-
quently more engagement (Ryan & Deci, 2008; Szalma, 
2020). State engagement is composed of a cognitive and an 
emotional component (Kahn, 1990; Schaufeli et al., 2002). 
Cognitive engagement is characterized by full concentration 
and mental absorption within a task. Emotional engagement 
encompasses positive and negative affect (valence), and emo-
tional arousal/activation (Lang, 1995; Macey & Schneider, 
2008). Behavioral engagement refers to observable indicators 

of engagement within a work task (Macey & Schneider, 
2008). Both state and behavioral engagement are viewed as 
consequences of need satisfaction, i.e., a more intrinsically 
regulated type of motivation (Meyer et al., 2010).

2.5. Worker training in Industry 4.0

Training workers to develop the competencies to be moti-
vated and performant within I4.0 work systems has been 
consistently raised as a main concern for researchers and 
practitioners alike (Cazeri et al., 2022; UK commission for 
employment and skills, 2014; World Economic Forum, 2016; 
Ivaldi et al., 2022; Pacher et al., 2023; Saniuk et al., 2021). 
Nevertheless, I4.0 research has focused mainly on technical 
and operational aspects rather than human-centric issues 
such as worker training (European Commission et al., 2021; 
Gagn�e et al., 2022; Kaasinen et al., 2019; Kadir et al., 2019; 
Neumann et al., 2021; Rauch et al., 2020). Some authors 
have taken a step forward by assessing how I4.0 technology 
can be used to aid in worker training, with a strong focus 
on virtual, augmented, and mixed reality (Carretero et al., 
2021; Dhalmahapatra et al., 2021; Lopez et al., 2021; Sim~oes 
et al., 2021; Ulmer et al., 2020; Vidal-Balea et al., 2020; 
Zawadzki et al., 2020). For example, Dhalmahapatra et al. 
(2021) evaluated the effectiveness of a virtual reality training 
to improve the safety of crane operators; Zawadzki et al. 
(2020) also assessed the effectiveness of virtual reality train-
ing to improve operational performance; in a similar vein, 
Casillo et al. (2020) evaluated the effectiveness of training 
using chatbots in a manufacturing setting. This research 
generally adopts an active learning approach, as recom-
mended by training literature. In other words, workers are 
able to practice their decision-making skills and make errors 
safely with the help of virtual, augmented, or mixed reality. 
However, it does not seem to account for the importance of 

Figure 1. Motivation and engagement continuum (adapted from Meyer et al., 2010; Ryan & Deci, 2000; Szalma, 2014).
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worker motivation and engagement, as main drivers of 
training effectiveness and other positive outcomes related to 
worker and company well-being (e.g., turnover, technology 
acceptance, worker performance). This hinders our ability to 
design training that enables workers to effectively collaborate 
with highly automated AI systems. To our knowledge, no 
paper has experimentally evaluated, using a multi-dimen-
sional approach recommended in the training literature, the 
impact of using AI as a tool to train workers. In other 
words, no paper has used trainee performance, cognitive 
state, and affective/motivational state in conjunction to bet-
ter understand how an AI can impact training effectiveness.

3. Hypothesis development

In the current study, we aim to understand how training 
design, in the context of highly-automated AI, impacts worker 
training effectiveness, motivation, and engagement. 
Specifically, we aim to understand how levels of automation 
of an AI system used to train workers impacts their motiv-
ation and engagement during training, as well as their ability 
to perform when AI malfunctions. Within the literature, it can 
be seen that full automation of decision selection (Stage 3 of 
information processing) represents the critical boundary after 
which human performance is strongly impacted when auto-
mation fails (out-of-the-loop performance effect) (Onnasch 
et al., 2014). Logically, it can be expected that workers being 
trained with an AI error-detection system (AIEDS) that fully 
automated the decision selection stage will not acquire the 
technical, methodological, and personal competencies to prop-
erly respond to a malfunctioning AI. On the other hand, 
being trained with an AIEDS that only partially automates 
decision selection should mitigate the out-of-the-loop per-
formance effect. Indeed, partial automation during training is 
more aligned with an active learning approach, allowing work-
ers to practice their decision-making and build the necessary 
competencies and motivation. Thus, partial automation of 
decision selection should lead to trainees gaining a deeper 
understanding of the work process being learned, more com-
prehensive technical skills, and better problem-solving capabil-
ities, among others, which translates to better overall 
performance after training. As such, we hypothesize that: 

H1: Training completed with an AI system that partially 
automates decision selection (compared to full automation) 
will lead to better performance after training  

Using a fully automated AI system during training also 
has implications for trainee motivation and engagement. 
Not having the decision-making aspect of the training pre-
sent can have deleterious effects on worker autonomy and 
self-efficacy, two drivers of self-determined motivation and 
engagement. Indeed, full automation leaves participants no 
choice but to agree with the AI’s recommendation, leaving 
little room for decisional latitude or opportunities for them 
to feel a sense of self-efficacy. On the other hand, the par-
tially automated decision-selection merely suggests a deci-
sion, allowing participants to override the AI’s 
recommendation. This may provide participants with a sense 

of decisional freedom while providing enough error-detec-
tion support for participants to feel competent. Thus, partial 
automation of decision selection should better motivate and 
engage trainees by satisfying their psychological needs, lead-
ing to greater skill acquisition. As such, we hypothesize that: 

H2: Training completed with an AI system that partially 
automates decision selection (compared to full automation) 
will lead to more self-determined motivation during training  

H3: Training completed with an AI system that partially 
automates decision selection (compared to full automation) 
will lead to more engagement during training 

4. Materials and methods 

The following section will present the experimental design, 
sample, task, setup, procedure, as well as variable operation-
alization, statistical analysis, and a priori power analysis. 

4.1. Experimental design and sample 

A total of 102 participants completed the laboratory experi-
ment (67 men, 35 women). Gender was self-reported. 
Participants were recruited using a mass email sent to all 
undergraduate students. The average participant age was 21.97 
(SD ¼ 2.69). No participant had any prior experience with the 
task chosen for this experiment. This experiment was reviewed 
and approved by HEC Montreal’s research ethics board (cer-
tificate #2023-5058). Informed consent was obtained, and each 
participant was given 40e for their participation at the end of 
the experiment. The experiment was conducted in French. 

This study used a between-subject design. We have 
devised an experiment based on findings from worker train-
ing literature, i.e., considering the importance of training 
criteria (multi-dimensional evaluation of training effective-
ness), of trainee characteristics (personality factors affecting 
motivation to learn), and of training design (active learning 
with a strong focus on motivation and engagement). Also, 
we have incorporated theoretical knowledge from SDT, 
which allows us to better understand how elements of train-
ing affect trainee motivation and engagement. To this end, 
we manipulated the level of automation of decision selection 
of the AIEDS during training (Part A), resulting in three 
conditions (1. No automation, 2. Full automation, 3. Partial 
automation). During the experimental task itself (Part B), 
automation was removed to simulate a failure of the AIEDS 
and thus evaluate skill acquisition (see Figure 2). Figure 3
shows the level of automation for each condition based on 
the four stages of information processing (Parasuraman 
et al., 2000). Refer back to section 2.1 for more details about 
this model and stages of information processing. 
Participants were randomly assigned to one of three condi-
tions. This experiment was part of a larger experiment 
which consisted of nine conditions after the training. 
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4.2. Training, experimental task, and setup 

To create the experimental task (Part B), members of the 
research team went to the factory in which the product used 
(snowshoe) was built. We observed and filmed the employ-
ees completing their work tasks. We ascertained that each 
employee on the production line was responsible for assem-
bling one component of the snowshoe and checking for 
defects/errors that previous employees may have committed. 
Employees spent approximately 20 seconds on each snow-
shoe before passing it on to the next worker. To maximize 
the study’s ecological validity, we designed the experimental 
task in accordance with what was observed in the factory. 
Snowshoes (Figure 4), composed of many pieces that vary in 
terms of assembly difficulty, were an ideal product because 
they allowed us to completely control the presence of errors. 

To create the training, we based ourselves on the training 
literature. We took an active learning approach, in which 
participants were trained (Part A) with the exact same work 
system (interface) as the experimental task (Part B). In 

addition, errors were incorporated, allowing participants to 
practice their decision-making and develop their technical, 
methodological, and personal competencies. The training 
task (Part A) was identical to the experimental task they had 
to perform afterwards (Part B). 

Participants were instructed that they were the fourth 
worker on a four-worker snowshoe assembly line, i.e., the 
final worker. Their goal was to detect any possible errors 
made by the previous three workers and to finish assembling 
the snowshoe if no error was detected. Participants received 
snowshoes that were 90% assembled. Both tasks in Part A 
and Part B consisted of 30 of these snowshoes, which were 
placed on racks (120 cm x 71 cm x 103 cm) next to the par-
ticipant (see Figure 5 for workstation). For each snowshoe, 
participants scanned the barcode associated with it using a 
barcode scanner, placed it on the workstation, checked it for 
errors, indicated using the computer interface (Figure 6) 
whether or not they detected an error, assembled the 

Figure 2. Experimental design and procedure.

Figure 3. Level of automation for each condition (adapted from Parasuraman et al., 2000).

Figure 4. Snowshoe used in the experiment.
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remaining 10%, then put it back in its original place. Errors 
were artificially and systematically introduced into specific 
snowshoes by the researchers. Six snowshoes out of 30 con-
tained these errors. Each error was unique and always 
appeared in the same snowshoe across participants. Each of 
the six errors was randomly assigned to one of the 30 snow-
shoes in the planning phase of the experiment. The order of 
the appearance of errors was different for Part A and Part B 
of the experiment. 

The experiment was conducted at the DynEO learning factory 
in Aix-en-Provence (France). The room contained two identical 
workstations (see Figure 5), separated with a room divider so 
that participants could not see each other. The experimental 
setup can be seen in the video in the supplementary material 
available on this link: https://youtu.be/xtcpxqcyz8k. 

4.3. Procedure 

Participants were told that the experiment involved evaluat-
ing their ability to detect production errors in snowshoes. 

They were told that they would be trained to complete 
error-detection and assembly tasks, comprising 30 snow-
shoes. They were told that the task they must complete dur-
ing the training (Part A) and the experimental task (Part B) 
were identical; only that the AI would be removed for Part 
B. After signing the consent form, participants put on 
physiological vests under their clothes. They were then 
shown the workstation and the AI interface was explained 
to them, Additionally, the task was explained, and the six 
possible errors were shown. Participants then completed a 
pre-experiment questionnaire consisting of demographics 
and personality (trait engagement) questionnaires before 
moving on to Part A and Part B of the experiment. Both 
parts of the experiment were followed up with a question-
naire. See Figure 2 for the full experimental procedure. 

In the no automation condition, participants were trained 
without any help from an artificial intelligence error-detec-
tion system (AIEDS). In the fully automated AI condition, 
decision selection (stage 3 of information processing), i.e., 
error versus no error, is fully automated by the AIEDS. The 
decision made by the AIEDS is always correct. Figure 6

Figure 5. Participant workstations (Passalacqua et al., 2024).

Figure 6. AIEDS when error is detected (left) and no error detected (right).
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shows the computer interface when the AIEDS detected an 
error and when no error was detected. Appendix A shows 
all possible errors that can be detected. In the partial auto-
mation AI condition, decision selection was partially auto-
mated by the AIEDS. Participants had to make the final 
decision about the presence of an error. The AIEDS acted 
like a decision-support tool by suggesting a decision to the 
participants. The AIEDS was correct in its error detection 
83% of the time. Since each task contained six errors, this 
simply means that one of these errors was missed by the 
AIEDS (false negative). False positives, i.e., when the AIEDS 
detects an error without the presence of one, were not pos-
sible. Participants were informed beforehand of the AIEDS’ 
percentage of reliability since prior studies have found that 
providing participants with accurate information about a 
system’s reliability percentage improves their performance 
when using that system (Avril, 2022). The percentage itself 
was chosen based on past research. Reliability levels under 
70% have been found to not be beneficial in terms of per-
formance (Onnasch, 2015; Wickens & Dixon, 2007). 
Therefore, we opted to approximately split the difference 
between 100% and 70%. Additionally, a reliability percentage 
of approximately 85% has been commonly used in past 
studies (e.g., Avril et al., 2022; Wickens & Dixon, 2007). 

4.4. Variable operationalization and measures 

As recommended, the efficacy of training was evaluated 
using skill-based, cognitive, and affective outcomes (Bell 
et al., 2017; Salas et al., 2012). See Table 1 for a summary of 
variable operationalization and measurement. Whenever 
possible, constructs were evaluated using a multi-method 
approach (perceptually and psychophysiologically). 
Psychophysiological measures allowed us to measure a par-
ticipant’s state without interruption throughout the whole 
task, thus limiting biases associated with using only percep-
tual measures. 

The Hexoskin smart vest (Carr�e Technologies, Montreal, 
Canada) was used to capture the psychophysiological data, 
i.e., heart rate and respiration data. This vest captured 
256 Hz 1-lead electrocardiogram data using a built-in elec-
trode, 128 Hz respiration data using two built-in respiratory 
inductive plethysmography sensors, and 64 Hz acceleration/ 

activity data using a built-in 3-axis accelerometer. The use 
of the Hexoskin smart vest has been evaluated and validated 
by a multitude of studies (Cherif et al., 2018; Jayasekera 
et al., 2021; Smith et al., 2019) 

4.4.1. Performance 
4.4.1.1. Time. The first of two key performance indicators is 
the amount of time taken for a participant to complete the 
task (hereinafter performance time). A lower time indicates 
better performance 

4.4.1.2. Error detection. The second is the participants’ error 
detection mistakes, operationalized as a percentage of cor-
rectness (hereinafter error detection performance). 
Percentage of correctness is negatively affected when partici-
pants fail to detect an error and when they falsely detect an 
error. Each mistake reduces the percentage of correctness by 
1/30 since there are a total of 30 items per task. For 
example, one mistake in the whole task would produce a 
percentage of correctness of 96.96%, while two mistakes 
would lead to 93.33%, and so on. Therefore, a higher per-
centage indicates better performance. 

4.4.2. Motivational needs 
Motivational needs were measured using the autonomy 
(self-determination) and competence subscales of the 
empowerment scale (Spreitzer, 1995). Each subscale is com-
posed of 3 items on a five-point Likert scale. The third psy-
chological need, relatedness, was not addressed in this study 
because it relates to positive social interactions within the 
workplace. The scope of this study did not include any 
social interactions. 

4.4.3. Motivation 
Motivation was assessed using the French version of the 
situational motivation scale, created and validated by Guay 
et al. (2000). This questionnaire is composed of 16 items 
scored on a seven-point Likert scale. It is divided into four 
subscales, each of which represents a type of motivational 
regulation: intrinsic regulation, identified regulation, external 
regulation, and amotivation. 

Table 1. Summary of variable operationalization and measurement.

Variable Measure Measure type Operationalization

Task performance time Video recording Observational Time taken for a participant to complete the task 
(lower¼ better)

Task error detection performance Excel output file Observational Percentage of correctness 
(higher¼ better)

Motivational needs Psychological empowerment scale Self-report Competence and autonomy score
Motivation Situational motivation scale Self-report Intrinsic, identified, external, and amotivation score
Cognitive engagement Absorption subscale of UWES Self-report Cognitive absorption score

Hexoskin vest Psychophysiological LF/HF ratio
Emotional engagement (arousal) Affective slider Self-report Emotional arousal score

Hexoskin vest Psychophysiological Baselined respiration rate
Emotional engagement (valence) Affective slider Self-report Emotional valence score
Behavioral engagement Vigor subscale of UWES Self-report Vigor score

Hexoskin vest (accelerometer) Psychophysiological Standard deviation of the intensity of physical  
effort shown during a task

Trait engagement General causality orientation scale Self-report Autonomy, control, and impersonal score
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4.4.4. Cognitive task engagement 
4.4.4.1. Self-reported. Cognitive engagement was measured 
using the absorption subscale of the Utrecht Work 
Engagement Scale (Schaufeli et al., 2003). The French ver-
sion of the questionnaire was used, which has been validated 
(Zecca et al., 2015). This questionnaire is composed of 9 
items scored on a seven-point Likert scale. 

4.4.4.2. Psychophysiological. Using the Fast Fourier 
Transform on interbeat intervals (RR intervals), we derived 
the absolute power for the low frequency (LF) 0.04-0.15 Hz) 
and high frequency (HF) (0.15-0.4 Hz) bands of heart rate 
variability (HRV). The LF band of HRV is produced by 
both the parasympathetic (PNS) and sympathetic nervous 
system (SNS). On the other hand, the HF band of HRV has 
been shown to be produced mainly by the PNS (Shaffer 
et al., 2014). The SNS mainly controls “fight-or-flight” 
responses, while the PNS mainly controls the “rest-and- 
digest” responses. The LF/HF ratio is intended to estimate 
the ratio between SNS and PNS activity and has been shown 
to be an indicator of cognitive engagement during a task 
(Gao et al., 2020). 

4.4.5. Emotional task engagement 
4.4.5.1. Self-reported. The emotional component of state 
task engagement can be further subdivided into two sub- 
components: valence (happiness/sadness) and arousal (inter-
est/boredom) (Lang, 1995; Macey & Schneider, 2008; 
Passalacqua et al., 2020). We used Betella and Verschure’s 
(2016) affective slider, which consists of two sliders measur-
ing valence and arousal on a scale of 0 to 100. The valence 
slider has sadness on one end and happiness on the other 
end, while the arousal slider has boredom on one end and 
interest on the other. 

4.4.5.2. Psychophysiological. We have used respiration rate 
as an indicator of emotional arousal. This measure has been 
validated as an indicator of sympathetic and emotional 
arousal (Bradley & Lang, 2007). Respiration rate was meas-
ured using the two built-in respiratory inductive plethys-
mography sensors within the Hexoskin vest. Respiration 
data have been baselined at the participant level using a 
period of idle standing as the baseline. 

4.4.6. Behavioral task engagement 
4.4.6.1. Self-reported. Behavioral engagement was measured 
using the vigor subscale of the French version of the 
Utrecht Work Engagement Scale (Schaufeli et al., 2003). 

4.4.6.2. Psychophysiological. Behavioral engagement is oper-
ationalized as the standard deviation of the intensity of 
movement (physical effort) during a task, measured in g- 
force (Gao et al., 2020). This is measured by the 3-axis 
accelerometer of the Hexoskin vest. A smaller standard devi-
ation in movement intensity suggests that individuals are 
maintaining a consistent level of movement, reflecting sus-
tained engagement, while a larger standard deviation 

indicates variability in movement, reflecting fluctuations in 
engagement (Gao et al., 2020). 

4.4.7. Trait task engagement 
Trait task engagement was measured using the French ver-
sion of the general causality orientation scale (Deci & Ryan, 
1985; Meyer et al., 2010). The French version has been vali-
dated by Vallerand et al. (1987). It consists of 12 vignettes 
depicting an achievement-oriented situation, about which 
the participant must answer three questions for each using a 
seven-point Likert scale. Each of the three questions repre-
sents a subscale of the questionnaire: autonomy, control, 
and impersonal. Participants scoring higher in autonomy are 
more likely to perceive situations or tasks as being auton-
omy-promoting and, thus are more likely to experience 
intrinsic, integrated, or identified motivation and higher 
engagement. Participants scoring higher in control are more 
likely to perceive situations or tasks as controlled by an 
external source and, thus are more likely to experience 
introjected or external motivation and less engagement com-
pared to those who score higher in autonomy. Participants 
scoring higher in impersonal are more likely to feel unable 
to have an effect or control situations or tasks. They may 
experience a sense of helplessness and are more likely to 
experience amotivation and lack of engagement (Deci et al., 
2017; Ryan & Deci, 2008; Szalma, 2020). 

4.5 Statistical analysis and research model 

A type-3 analysis of variance (ANOVA) was conducted to 
determine the global effect of AI level of automation on 
each dependent variable. As recommended by both the 
training and motivation literature, trait engagement (individ-
uals’ predisposition to experience certain types of motivation 
and a certain level of engagement) was controlled for. Not 
controlling for these personality traits could introduce intra-
group variability within our experimental conditions that 
can influence how AI type (independent variable) affects our 
dependent variables. Therefore, we attempted to reduce the 
confounding effect of trait engagement by entering it as a 
covariate in our statistical model. Figure 7 presents the 
research model. When we found globally significant effects, 
we used linear regressions to compare the pairwise least 
square means. These tests have been adjusted for multiple 
comparisons using the Holm method. 

4.6 A Priori statistical power calculation 

A priori statistical power calculations allow us to estimate 
the sample size necessary to achieve a sufficient level of stat-
istical power. Statistical power refers to the probability of 
correctly detecting differences within the sample (Cohen, 
1992). G�Power software (Faul et al., 2009) was used to cal-
culate power in the planning phase of the experiment with 
the following parameters. The effect size was unable to be 
estimated from past studies, therefore we selected a small 
value (f¼ 0.15) to be as conservative as possible. A power of 
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0.90 was selected; a minimum of 0.80 is recommended 
(Cohen, 1992). A 0.80 correlation among repeated measures 
was derived from pilot tests. In short, power calculations 
informed us that a sample size of 99 participants was 
deemed sufficient to correctly reject the null hypothesis with 
90% certainty. 

4.7. Transparency and openness 

All raw data, processed data, and statistical outputs on 
which the study’s conclusions are based are available at 
https://data.mendeley.com/datasets/7njpg3g33g/2. Feel free 
to contact the corresponding author should you have any 
questions. This study’s design and its analysis were not pre-
registered. We used R version 4.3.1 (R Core Team, 2021) 
and Statistical Product and Service Solutions (SPSS) version 
26 to conduct our analyses. 

5. Results 

Two participants were excluded due to technical issues with 
the equipment. A total of 100 participants were retained for 
analysis. See Appendix B for descriptive data separated by 
Training/Task and AI level of automation. Error bars on all 
graphs represent the standard error of the mean. No signifi-
cant gender differences were observed. 

5.1. H1: Training completed with an AI system that 
partially automates decision selection (compared to full 
automation) will lead to better performance after 
training 

5.1.1. Performance time 
A type-3 ANOVA showed no significant main effect of AI 
level of automation on performance time in the 

experimental task after controlling for trait engagement, F(2, 
27) ¼ 1.74, p ¼ .195. 

5.1.2. Error detection performance 
A type-3 ANOVA showed a significant main effect of AI 
level of automation on error detection performance in the 
experimental task 2 after controlling for trait engagement, 
F(2, 27) ¼ 5.65, p ¼ .009, gp

2 ¼ .30. Post-hoc pairwise lin-
ear regressions revealed that error detection performance 
was significantly worse when being trained with the fully 
automated AI compared to starting to partial automation 
(t¼−3.02, p ¼ .022) or no automation (t¼−2.80, p ¼
.052). However, there were no significant differences 
between participants were trained with partial automation 
and no automation (t¼ 0.22, p¼ 1). Figure 8 shows these 
results. The x-axis show the condition participants were 
assigned to during training, while the y-axis show the partic-
ipants’ percentage of error detection correctness during the 
experimental task. 

5.2. H2: Training completed with an AI system that 
partially automates decision selection (compared to full 
automation) will lead to more self-determined 
motivation during training 

5.2.1. Motivational needs 
5.2.1.1. Autonomy. A type-3 ANOVA showed a significant 
main effect of AI condition on autonomy after controlling 
for trait engagement, F(2, 94) ¼ 3.80, p ¼ .026, gp

2 ¼ .08. 
Post-hoc pairwise linear regressions revealed that autonomy 
was significantly higher using the partially automated AI 
compared to Full automation AI (t¼ 2.67, p ¼ .024). 
However, no differences were observed between partial auto-
mation and no automation (t¼ 0.97, p ¼ .992) or between 
Fully automated AI and No automation (t¼−1.72, p ¼

Figure 7. Statistical model.
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.266). Figure 9 shows these results. The x-axis shows the 
condition to which participants were assigned, while the y- 
axis shows the questionnaire score of the autonomy subscale 
of the empowerment scale during training (5-point Likert 
scale). 

5.2.1.2. Competence. A type-3 ANOVA showed no signifi-
cant main effect of AI condition on competence after con-
trolling for trait engagement, F(2, 94) ¼ 1.61, p ¼ .206. 

5.2.2. Motivation 
A type-3 ANOVA showed a significant main effect of AI 
condition on identified regulation after controlling for trait 
engagement, F(2, 94) ¼ 3.62, p ¼ .031, gp

2 ¼ .07. However, 
no significant main effect was found for intrinsic motivation 
(F(2, 94) ¼ 1.47, p ¼ .236), external regulation (F(2, 94) ¼
1.164, p ¼ .317), or amotivation (F(2, 94) ¼ 1.03, p ¼ .363) 

Post-hoc pairwise linear regressions revealed that identi-
fied regulation was significantly higher using partially auto-
mated AI compared to full automation AI (t¼ 2.64, p ¼
.029). However, no differences were observed between par-
tial and no automation (t¼ 1.80, p ¼ .224) or between full 
automation and no automation (t¼−0.84, p¼ 1). Figure 10
shows these results. The x-axis shows the condition to which 
participants were assigned, while the y-axis shows the ques-
tionnaire score of the identified regulation subscale of the 

situational motivation scale during training (7-point Likert 
scale). 

5.3. H3: Training completed with an AI system that 
partially automates decision selection (compared to full 
automation) will lead to more engagement during 
training 

5.3.1. Cognitive (state) engagement 
5.3.1.1. Self-report. A type-3 ANOVA showed no significant 
main effect of AI condition on self-reported absorption after 
controlling for trait engagement, F(2, 94) ¼ 2.88, p ¼ .061. 

5.3.1.2. Psychophysiological. A type-3 ANOVA showed no 
significant main effect of AI condition on LF/HF ratio 
(HRV) after controlling for trait engagement, F(2, 91) ¼
0.06, p ¼ .944. 

5.3.2. Emotional (state) engagement 
5.3.2.1. Self-report. A type-3 ANOVA showed a significant 
main effect of AI condition on self-reported arousal after 
controlling for trait engagement, F(2, 94) ¼ 1.37, p ¼ .260. 

A type-3 ANOVA showed no significant main effect of 
AI condition on self-reported valence after controlling for 
trait engagement, F(2, 94) ¼ 0.23, p ¼ .796. 

Figure 8. Error detection during the experimental task.

Figure 9. Perceived autonomy during training.
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5.3.2.2. Psychophysiological. A type-3 ANOVA showed no 
significant main effect of AI condition on respiration rate 
after controlling for trait engagement, F(2, 86) ¼ 2.09, 
p ¼ .130. 

5.3.3. Behavioral engagement 
5.3.3.1. Self-report. A type-3 ANOVA showed no significant 
main effect of AI condition on self-reported vigor after con-
trolling for trait engagement, F(2, 94) ¼ 0.362, p ¼ .697. 

5.3.3.2. Psychophysiological. A type-3 ANOVA showed a 
significant main effect of AI condition on standard deviation 
of the intensity of physical effort after controlling for trait 
engagement, F(2, 91) ¼ 15.34, p < .001, gp

2 ¼ .25. Post-hoc 
pairwise linear regressions revealed the SD of the intensity 
of physical effort was significantly lower using the partially 
automated AI compared to full automation AI (t¼−5.18, p 
< .001) and compared to No automation (t¼−2.29, p ¼
.024). Also, the intensity of physical effort was lower for No 
automation compared to Full automation AI (t¼−2.86, p ¼
.01). Figure 11 shows these results. The x-axis shows the 
condition to which participants were assigned, while the y- 
axis shows the standard deviation of movement intensity 

(G-force) during training, measured using a 3-axis acceler-
ometer. A lower standard deviation indicates a higher 
behavioral engagement. 

6. Discussion 

The following section will discuss the results pertaining to 
each hypothesis, as well as the practical contributions and 
limitations. 

6.1. H1: Training completed with an AI system that 
partially automates decision selection (compared to full 
automation) will lead to better performance after 
training 

Results indicate that training with full automation of deci-
sion selection proved to be problematic when the AI was 
removed. Indeed, participants who were trained with the 
fully automated version of the AIEDS had a significantly 
worse error-detection performance in the experimental task 
(AIEDS malfunction) compared to participants who were 
trained with partial or no automation. Using a fully auto-
mated AI during training has hindered participants’ 

Figure 10. Identified motivation during training.

Figure 11. Intensity of movement (behavioral engagement) during training. 
Note. A lower standard deviation is indicative of higher behavioral engagement (Gao et al., 2020).
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acquisition of competencies, i.e., the skills, abilities, and 
knowledge necessary for manual takeover of the error- 
detection task. No such effect was found when participants 
were trained with partial automation since their error- 
detection performance was equivalent to that of partici-
pants who were trained without automation, thus confirm-
ing H1. These results are in line with previous research on 
automation, indicating that full automation of decision 
selection (stage 3) represents a critical boundary, at which 
point humans are very vulnerable to automation failure. 
Whereas when humans select the final decision (partial 
automation of stage 3), manual performance when automa-
tion malfunctions is less affected (Onnasch et al., 2014; 
Parasuraman et al., 2000). Our results build upon these 
findings, indicating that the level of automation matters 
during training as well. Indeed, the critical boundary of 
automation affects worker skill acquisition, suggesting that 
training with high automation may impede the develop-
ment of the technical, methodological, and personal compe-
tencies necessary to manually takeover for a malfunctioning 
AI. Full automation of decision selection keeps trainees out 
of the decisional loop, not allowing them to practice deci-
sion-making and make errors, creating a passive learning 
approach, rather than an active one. Practitioners creating 
training should avoid automation past the critical bound-
ary, even though the capabilities of AI are increasing. They 
should focus on creating training curricula that employee 
an active learning approach, i.e., problem- or simulation- 
based learning in which trainees could experiment with 
decision-making and with errors. As such, they will be able 
to better comprehend and manage I4.0 work systems, 
which are growing in complexity with every advance in 
technology. 

6.2. H2: Training completed with an AI system that 
partially automates decision selection (compared to full 
automation) will lead to more self-determined 
motivation during training 

6.2.1. Motivational needs 
Participants felt the strongest sense of autonomy when being 
trained with the partially automated AIEDS. To put this 
result into context, it is necessary to break down the partici-
pant/worker role in each AI condition. Within the no auto-
mation condition, participants were responsible for 
examining each snowshoe and deciding whether an error 
was present. While they had complete decision-making free-
dom, error-detection without the AIEDS is repetitive in 
nature, resulting in very low task variety, which may have 
negatively affected their perception of autonomy during 
training. In the fully automated, the AI made the decisions, 
and the worker simply had to implement them, i.e., assem-
bling or discarding the snowshoe, without much leeway in 
terms of decision-making. Participants may have felt that 
the AI was in control of the training rather than themselves, 
negatively affecting their perception of autonomy. In the 
partial automation condition, participants were monitoring 
the AI’s decisions, with the freedom to decide whether to 

accept or reject those decisions. While the AI was doing 
most of the repetitive work (error detection), participants 
were left with a supervisory role, characterized as more 
meaningful and gratifying, which positively affected their 
perception of autonomy. 

Regarding participants’ perception of competence during 
training, we observed no differences between the three con-
ditions. When looking at the mean values for each condi-
tion, we see that all values are above 4.25 on a five-point 
Likert scale, indicating that participants felt a rather strong 
sense of self-efficacy or capability to successfully complete 
the training. A lack of differentiation between conditions 
could be due to the training not being difficult enough. A 
higher degree of difficulty could have put participants’ feel-
ing of competence to the test, which could have resulted in 
significant variability between conditions. Nevertheless, 
equally high competence between conditions indicates that 
participants did not feel less supported or empowered by 
partially automated compared to fully automated AI. 

6.2.2. Motivation 
From most self-determined/internalized to least self-deter-
mined/internalized, four types of motivation were meas-
ured: intrinsic regulation, identified regulation, external 
regulation, and amotivation (see Figure 1). Results indicate 
that identified regulation was higher when participants 
used partially automated AI compared to fully automated 
AI. No differences were found within the other types of 
motivation. Identified regulation represents performing a 
task because it is perceived as meaningful. It implies a sig-
nificant internalization, meaning that the motive for com-
pleting the task has been integrated into the self and has a 
certain means-to-end value for the participant. Putting this 
into context, the results indicated that participants in the 
partial automation condition attributed a greater meaning 
to the completion of the training, compared to the other 
conditions. This can be explained by higher levels of per-
ceived autonomy due to participants in this condition hav-
ing decision authority over the AI. Identified motivation 
has been shown to be the strongest predictor of perform-
ance and organizational citizenship behaviors (e.g., continu-
ous effort investment, commitment) (Van den Broeck 
et al., 2021). These results indicate that partial automation 
should lead to the best long-term outcomes for organiza-
tions. Overall, results show support for H2. The partial 
automation condition led to the most self-determined 
motivation, which is crucial for the success and sustain-
ment of any training (Bell et al., 2017; Lazzara et al., 2021; 
Salas et al., 2012; Van der Klink & Streumer, 2002). As 
such, maximizing the level of automation may not be the 
ideal solution for successful skill acquisition. As the preva-
lence of human-AI collaboration is increasing, it is more 
important than ever for practitioners to strive for a bal-
anced level of automation and design trainings to allow 
trainees to feel in control of their decisions/action rather 
than being controlled by an automated system. 
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6.3. H3: Training completed with an AI system that 
partially automates decision selection (compared to full 
automation) will lead to more engagement during 
training 

6.3.1. Cognitive, emotional, and behavioral engagement 
No significant differences were observed when looking at 
self-reported cognitive engagement, i.e., mental absorption 
during a task, or cognitive engagement measured psycho-
physiologically (LF/HF HRV ratio). 

We observed no differences for emotional arousal meas-
ured perceptually or psychophysiologically (respiration rate). 
For self-reported emotional valence, no differences were 
observed. When looking at the mean values for each condi-
tion, values are between 52-61 (scale is 0-100). This indicates 
a neutral valence, not positive nor negative. The lack of sig-
nificant differences may be due to the training being unable 
to produce any significant affective response from 
participants. 

We observe no significant differences between conditions 
for self-reported behavioral engagement, i.e., the perceived 
investment of physical energy into the task. For psycho-
physiological measurement of behavioral engagement (stand-
ard deviation of the intensity of movement), partial 
automation led to the highest engagement, while full auto-
mation led to the lowest. This means that participants were 
more behaviorally engaged during the training when in the 
partial automation condition. 

Overall, results show some support for H3. The partial 
automation condition seems to lead to the best outcomes 
only in terms of behavioral engagement (psychophysio-
logical). This means that participants were the most physic-
ally engaged in the training when decision selection was 
only partially automated. As seen in SDT, this is most likely 
due to stronger feelings of autonomy and more self-deter-
mined motivation (Deci et al., 2017). Indeed, autonomy and 
self-determined motivation are antecedents of task engage-
ment. Task engagement itself lead to better skill acquisition, 
which could have contributed to the best performance being 
in the partial automation condition. For all other variables, 
we observe no significant differences between the conditions, 
indicating that one does not lead to better or worse out-
comes than the others. 

7. Conclusion 

Using skill-based, cognitive, and affective criteria to evaluate 
the effectiveness of training, we found that partial automa-
tion led to the most positive outcomes. Indeed, workers 
retaining decision-selection authority during training led 
them to feel a stronger sense of decisional latitude (auton-
omy), self-determined motivation, and behavioral engage-
ment during training. In turn, this better allowed workers to 
develop their technical, methodological, and personal skills, 
which led to them being able to better adapt to AI failure, 
as indicated by better error-detection performance. Within 
the context of worker training in Industry 5.0, these results 
imply that AI may have more value as a decision aid rather 
than a decision selector during training. 

From a practical perspective, those responsible for creat-
ing training should be mindful when deciding the level of 
automation an AI system provides at the decision-selection 
stage of information processing. Care should be taken to 
nurture trainee perceptions of autonomy, i.e., their percep-
tion of being in control of their behaviors and actions, 
through increased worker decisional power, for example 
(Gagn�e et al., 2022). These considerations will positively 
impact both the worker and the organization. Workers will 
be more motivated and engaged during training and per-
ceive it as more meaningful, improving their competency 
acquisition. Positive effects are also seen after training 
through improved performance, technology acceptance, and 
well-being (Bell et al., 2017; Deci et al., 2017; Molino et al., 
2020). Organizations will benefit from improved productiv-
ity, reduced turnover, safety incidents, and absenteeism, 
among others (Lazzara et al., 2021; Mann & Harter, 2016; 
Schmid & Dowling, 2020). From a societal perspective, poli-
cymakers can use these insights to guide regulations and ini-
tiatives that support workforce development in the face of 
rapid technological advancement. By promoting training 
programs that balance AI capabilities with human skill and 
decision-making, policies can foster a workforce that is 
adaptable and competent in an increasingly automated 
world. Socially, this research contributes to a narrative that 
values the human element in the age of AI. By ensuring that 
technological advancements do not diminish human impor-
tance in manufacturing systems or in operations but rather 
complement them, we can influence public attitudes towards 
technology in the workplace, enhancing overall quality of 
life. 

Our study has two main limitations. First is that our 
dependent variables were measured in the short term. While 
extrapolation to the long-term can be done through the lens 
of our theoretical framework (SDT), a longitudinal study 
would be ideal to test skill retention, motivation, and 
engagement over time. A second limitation is that our sam-
ple consisted of university students, not actual factory work-
ers. University students may have different levels of 
familiarity with AI systems, varying motivation levels due to 
the experimental context, and less experience in a manufac-
turing setting. Factory workers may have more practical 
experience, pre-existing skills specific to manufacturing envi-
ronments, and resistance to change. These differences could 
influence how each group interacts with AI systems, their 
learning curve, and how they perceive and adapt to AI- 
assisted training. As such, skill acquisition, motivation, and 
engagement could be different between groups. 
Acknowledging this, our results necessitate further validation 
with actual factory workers to enhance their applicability in 
real-world manufacturing settings. Nevertheless, we 
attempted to maximize ecological validity through the selec-
tion of an experimental task that was identical to one of 
those in the actual factory. Additionally, the experiment was 
conducted within a learning factory setting. 

The current research reinforces the need to gain a deeper 
understanding of the impact of new technology on manufac-
turing workers. More research applying self-determination 
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theory to the training of workers using highly-automated AI 
systems should be conducted to explore how to effectively 
support workers’ motivational needs. Additionally, future 
research should validate our current findings longitudinally 
and with a sample of actual factory workers. Lastly, future 
research could experimentally evaluate the use of other I4.0 
technologies for worker training (e.g., augmented/virtual 
reality, digital twin) using the multi-method, multi-dimen-
sional, and human-centered approach used in this paper. 
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Appendix B: Descriptive data by task and condition 

Training 

Experimental task  

Condition

No automation Full automation Partial automation

Variable Mean SD Mean SD Mean SD

Motivation needs (autonomy) 3.60 1.09 3.17 1.24 3.92 0.98
Motivation needs (competence) 4.26 0.61 4.54 0.46 4.31 0.76
Motivation (intrinsic) 2.96 1.34 2.64 1.22 3.14 1.36
Motivation (identified) 2.47 1.29 2.22 0.85 2.90 1.32
Motivation (external) 3.77 1.52 3.63 1.70 4.08 1.68
Motivation (amotivation) 2.48 1.38 2.93 1.50 2.57 1.18
Cognitive engagement (absorption) 3.92 1.09 3.24 0.96 3.52 1.30
Cognitive engagement (LF/HF ratio) 0.686 0.148 0.676 0.151 0.675 0.156
Emotional engagement (arousal) 50.94 23.87 43.76 19.33 52.63 21.79
Emotional engagement (baselined respiration rate) −0.820 4.205 −0.976 5.551 1.071 2.747
Emotional engagement (valence) 62.09 17.70 59.52 17.52 62.94 15.16
Engagement (vigor) 2.65 .80 2.70 .93 2.70 .96
Engagement (movement intensity) 0.054 0.010 0.063 0.013 0.047 0.011

Condition

No automation - No automation Full automation - No automation Partial automation - No automation

Variable Mean SD Mean SD Mean SD

Performance time 15.56 3.37 17.155 4.917 17.954 6.896
Error Detection performance 95.67 3.16 90.606 5.541 95.560 4.100
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