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ABSTRACT
In the search of more energy efficient computing devices that could
be assembled to build future exascale systems, this study proposes
a chip to chip comparison between a CPU, a GPU and a FPGA, as
well as a scalability study on multiple FPGAs from two of the avail-
able vendors. The application considered here has been extracted
from a production code in material science. This allows for the
benchmarking of different implementations to be performed on a
production test case and not just theoretical ones. The core algo-
rithm is a matrix free conjugate gradient that computes the total
electrostatic energy with an Ewald summation at each iteration.

This paper depicts the original MPI implementation of the appli-
cation, details a numerical accuracy study and explains the method-
ology followed as well as the resulting FPGA implementation based
on MaxCompiler. The FPGA implementation using 40 bits floating
point number representation outperforms the CPU implementation
both in terms of computing power and energy usage resulting in
an energy efficiency more than 15 times better. Compared to the
GPU of the same generation, the FPGA reaches 60% of the GPU
performance while the ratio of the performance per watt is still
better by a factor of 2. Thanks to its low average power usage, the
FPGA bests both fully loaded CPU and GPU in terms of number of
conjugate gradient iterations per second and per watt. Finally, an
implementation using oneAPI is described as well, showcasing a
new development environment for FPGA in HPC.

CCS CONCEPTS
•Applied computing→Chemistry; •Computingmethodolo-
gies → Parallel algorithms.

KEYWORDS
FPGA, Parallel computing, Super capacitors, numerical accuracy
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1 INTRODUCTION
The energy requirement of the largest HPC systems is already a key
issue and will become even more prominent for coming exascale
systems. As of November 2022, Graphics Processing Unit (GPU)

Figure 1: Supercapacitor system

based accelerators are used in seven out of the ten largest super-
computers in the world. Their superior energy efficiency compared
to general-purpose processors (CPUs) is, to a very large extent, the
reason for this design choice.

Field Programmable Gate Arrays (FPGAs) are generally regarded
as a middle-ground between Application-specific integrated circuits
(ASICs), i.e. dedicated chips, and CPUs. This notion comes from the
reconfigurable nature of these devices, making them more flexible
and less expensive than ASICs (at the cost of lower area and power
efficiency) and generally more power efficient than CPU and even
GPU. Despite being older than GPUs, they have rarely been used in
the HPC industry and have mainly been employed in embedded and
low-power markets. Low programming productivity, lack of porta-
bility between devices and very long compilation times (around 15
hours for some of the builds presented here) are heavy constraints
that have likely prevented their usage in the HPC context. How-
ever, the recent availability of large FPGA devices combined with
more user-friendly programming frameworks like OpenCL [10],
OpenACC [20], Maxeler MaxJ [2] and lately the arrival of Xilinx
Vitis and Intel oneAPI [23], could open the path to their usage in
coming exascale systems.

FPGAs are being tried and used in a wide array of fields and
applications such as medicine coupled with neural network [18],
Convolutional Neural Networks [21], financial simulation [19], nu-
merical simulations on unstructured meshes [13], quantum dynam-
ics [17] and molecular dynamics [11]. In the context of material
science, specialized hardware dedicated toMD simulations has been
created such as the Anton machine [4]. An Anton machine consists
of application-specific integrated circuits (ASICs), which are very



efficient but cannot be changed once created. Recently, important
progress has been made [24, 25] to also employ multi-FPGA sys-
tems for this type of MD simulations. These studies differ from our
work in that system sizes and accuracy requirements allow them to
focus on the asymptotically good scaling approaches with box-cell
filters for short range forces and projection based 3D FFT imple-
mentations for long ranged forces. Another study [15] highlights
strong scaling of all-to-all forces over multiple FPGAs, but does not
cover the periodic forces needed for MD.

This work targets the Metalwalls [5] MD code that is tailored to
calculate highly accurate charge densities for electrodes of super-
capacitors and is more work intensive. The contributions of this
article include firstly a chip to chip comparison between a FPGA,
CPU and GPU of the same generation in terms of both energy and
execution time for this workload. Secondly, we perform a scaling
study and a portability study targeting two systems using multiple
FPGAs from different vendors. To the authors knowledge, this is
the first case of FPGA-accelerated supercapacitor simulation on
multiple FPGAs and one of very few studies using different FPGA
tool chains for relevant applications.

This paper is organized as follows. In Section two, the original
CPU code and GPU reference are described as well as the comput-
ing kernels that are ported to FPGA. In Section three, the main
FPGA implementation is discussed as well as the methodology and
Maxeler tools used to design and optimize it. In Section four, the
results are discussed both in terms of performance and energy effi-
ciency, before presenting first scalability results to multiple FPGA.
In Section five, the scope of the paper is broadened to a port with
the newer oneAPI programming environment to other FPGAs and
another multi-FPGA system architecture.

2 METALWALLS
2.1 Description of Metalwalls code
Metalwalls [5] is a classical molecular dynamic code created by
P. Madden, currently developed and maintained by M. Salanne
from Sorbonne University, Paris, France. The code purpose is to
accurately simulate electrochemical systems like supercapacitors,
devices able to store energy in electrostatic form. Figure 1 shows
the type of system simulated at molecular scale: two carbon elec-
trodes (blue structures) immersed in an ionic liquid (green and red
spheres). By applying electric potentials ΨΩ and −ΨΩ on the two
electrodes, ions migrate within the liquid and ion adsorbtion take
place at the electrodes. As a result, electrodes play the role of capac-
itors, accumulating a charge and thus storing energy. The purpose
of such numerical experiments is to evaluate how the electrodes’
respective charges evolve in time for different setups. The atoms
of the electrodes are represented with gaussian charges and the
electrostatic potential Ψi felt by each electrode’s atom i reads:

∂Uelec
∂Qi

= Ψi (1)

with Uelec the electrostatic energy of the system and Qi the
charge carried by atom i . As the potential on each electrode should
remain constant, we have Ψi = ΨΩ± depending on the electrode in
which i is located. So at each time step, the simulation computes

a new charge density on the electrodes’ atoms {Qi }. This charge
density is the one that minimises the total energy:

U = Uelec −
N∑
i=1

ΨiQi , (2)

and a matrix free conjugate gradient is used to compute this mini-
mum.

The code is written in Fortran 90 and is parallelised with MPI.
The application studied in the context of this paper is the core of
Metalwalls stripped from the time evolution aspects of the physics.
As can be seen on Figure 2, in the overall algorithm, it is the compu-
tation of the electrostatic potential that has the largest contribution
to execution time every time step, which is why it is the focus of
this study, and which is why several physics modules were taken
out (slashed boxes). Given a bulk configuration, i.e. atoms’ position
of the ionic liquid, the application studied in the context of this
paper computes the charge density on the electrodes only once.

Initialisation

Shake

CG Init

Force calculation

Push atoms

Rattle

For all time steps

For each CG iteration

parallel (99.3%)

serial (0.7%)

20K lines
F90

7K lines
F90
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Figure 2: Molecular dynamics algorithm

2.2 Ewald summation
Ewald summation is a method for computing long-range interac-
tions in periodic systems. It is very precise but has a high numerical
cost. As electrostatic interactions are of primary importance in this
context, it is used to maximize accuracy. In Metalwalls it is used for
the Coulomb potential as well as the charge-dipole and the dipole-
dipole interactions with 2D or 3D periodic boundary conditions.
The idea is to split these calculations into a short range and a long
range part. An incomplete way of looking at this algorithm but
sufficient for this paper, is to consider the short range part to be
computed in real space whereas the long range part is computed
in Fourier space. All derivation and implementation details can be
found in [16] and [6].

The distance rc is the distance between two atoms above which
their interaction is considered as long range. In this case the energy
of this interaction is computed in Fourier space, otherwise it is



computed in real space. From a purely numerical point of view,
each component of the total energy can be decomposed in four
terms:

U = Usr +Ulr,0 +Ulr,+ −Uself (3)
where Usr,Ulr,0,Ulr,+ and Uself are respectively the contributions
for the short range part, the long range part for mode 0, the long
range part for all other modes and the self interaction part.

2.3 CPU implementation
A single Conjugate Gradient (CG) iteration sums up the contribu-
tions coming from the four kernels Usr,Ulr,+,Ulr,0 and Uself . The
parallel implementation uses MPI for work distribution. In this
setup, each rank has a copy of all data, only computations are dis-
tributed among ranks. Even if such a strategy does not scale in
memory for a very large number of ranks, it is very efficient in
this case. Thanks to a very low memory footprint, ∼ 50MB for the
test-case considered, which is already a large one for electrochemi-
cal systems, the application can be deployed without any memory
problem on any recent compute node. This distribution saves com-
munications and load balancing efforts between ranks when atoms
move in the liquid as time evolves that would be mandatory in
a domain decomposition parallelisation. The four kernels use all
resources for their computations and are then executed one after
the other. Contributions are then summed up on each rank. To up-
date all ranks, a MPI reduction on the solution vector is performed
once per CG iteration, i.e. all partial sums of the full vector length
owned by each rank are summed up to get the final solution vec-
tor. This is the single moment that requires synchronisation and
communication thanks to the "work only" distribution strategy. In
term of algorithmic complexity,Ulr,0 andUsr kernels are in O(N 2),
Ulr,+ kernel is in O(N ∗ M) and Uself kernel is in O(N ), with M
the number of modes and N the number of atoms. In particular
the reason why the Usr kernel is in O(N 2) here and not the O(N )

expected when using a box-cell list, is because of the size of the
box in the production test case. The cutoff being about half of the
smallest dimension (80.4 and 182.8 respectively, while the other
two dimensions are 194.8 and 421.4 after rounding) prevents such
an acceleration that would be possible when the cutoff is very small
compared to the sizes of the box.

This CPU implementation has been extracted from the produc-
tion code. It has proven its efficiency for graphene [14], with the
model running for weeks on 512 cores while maintaining a parallel
efficiency above 75%. As such, this code is a relevant baseline to
perform comparisons with FPGA implementations running pro-
duction test cases that lead to significant scientific publications in
chemistry. Our implementation focuses on the conjugate gradient
and the electrostatic computations done in one single time step.

2.4 GPU implementation
The GPU implementation was developped using OpenAcc. It com-
putes all Kernels one after another once the input vectors are copied
to the HBM (in the case of a P100 Nvidia GPU) with data present .
A cache blocking strategy is then used for each kernels execution
which uses parallel loop and loop reduction. An atomic update is
used in the respective inner loop of the kernels Ulr,0 and Ulr,+ to
ensure the validity of the computations. For the production test

case, one iteration of the conjugate gradient takes 144 ms on the
P100, almost 8 times faster than the execution on the full CPU used
in this paper.

The reporting system of the supercomputer on which the com-
putations were run indicates an efficiency of 91.6% of the GPU
usage. 17.5% of the time was used by theUlr,+ kernel, 40.7% for the
Ulr,0 kernel, 41.8% for the Usr kernel. This seems to confirm the
memory bound aspect of our implementation on the P100 as, even
though there is a factor 2 between the two kernels’ algorithmic
complexity, the sr kernel has twice the bandwidth requirement of
the Ulr,0 kernel, in this context it is logical that they would have
roughly the same execution time. Furthermore, the Ulr,+ kernel
also represents a bigger computing time than expected based on
algorithmic complexity while requiring an even bigger bandwidth.

2.5 Numerical accuracy analysis
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Figure 3: Error of the physical model compared to the error
of the different numerical floating point representation

As a preliminary study before working on the FPGA implemen-
tation, an analysis was done to estimate the minimal numerical
precision required for the computations to retain results with phys-
ical meaning. On a FPGA, one is not limited to standard IEEE 754
single or double floating point number representations as archi-
tecturally any number of bits can be used for the mantissa and
exponent that represent a floating point number. The question
is to what extent is it possible to lower the precision of number
representation while keeping the correct physics.

The first step is to determine the precision of the physical model.
The parameter rc that splits computations between the real space
and the Fourier space does not impact the solution in theory. How-
ever, it does have an influence numerically.

To measure this influence, a reference solution has been gener-
ated by running the code with quadruple precision for a represen-
tative rc . The quadruple precision (floating point format of 128 bits
with 16 bits exponent and sign, 112 bits mantissa) used was the
Fortran real16 = selected_real_kind(p = 33) that follows the IEEE



754-2008 standard. With this reference, errors could be computed
for different precisions and different rcut values. Runs (complete
conjugate gradient convergence processes) were made with the ref-
erence rc using respectively single precision (SP), double precision
(DP), and a 40 bits FPGA implementation to compute the error com-
pared to the quadruple precision run. An average of the different
errors computed for various runs with different rcuts values using
double precision shows the order of the physical model numerical
accuracy.

Figure 3 shows that using double precision results in data exceed-
ing by a significant margin the physical model’s precision while
single precision is not good enough. Using a 40 bit floating point
representation (8 bit exponent and 32 bit mantissa, down from 11
and 53 respectively in double precision) guarantees a numerical
precision greater than that required by the physical model by a
large enough margin. Performing arithmetic operations on a FPGA
with numbers represented with less bits can result in large sav-
ings in on-chip computing resources. Saved resources on the FPGA
can potentially be used to improve the performance, by increasing
the level of parallelism for instance. However, reducing precision,
even without damaging the physics, leads to slower convergence
rates in iterative algorithms like the conjugate gradient. This means
that resources savings do not translate completely into a higher
performance due to the additional iterations. In our production
test case, the additional iterations number varied between 25% to
50% of the DP runs’ number of iteration. Since in our study the
area savings by lower precision lead to a disproportionally higher
increase in parallelism and throughput, this tradeoff is acceptable
and will result in overall improved CG execution time.

3 FPGA IMPLEMENTATION
3.1 Maxeler hardware and software stack
The FPGA based computing solution proposed by Maxeler is a Data
Flow Engine (DFE), an accelerator board composed of a FPGA and
DDR memory. Eight boards of this type are plugged into a MPC-X
node via PCIe. The MPC-X node is packable in a cluster and is then
connected to host CPU nodes via Infiniband.

On top of this hardware, Maxeler provides a high level program-
ming abstraction for DFE programming. One manipulates Java
objects to design computing kernels with data streams, counters
and accumulators, and link them automatically with FIFO buffers
or add one or several memory interfaces to the DDR memory of
the DFE. The execution of the java code generates the VHDL that
corresponds to the design and it is given as input to the FPGA
vendor toolchain in order to generate the final bitstream. This last
compilation step can last for several hours, even tens of hours.
Therefore it is crucial that the java code can also be directly inte-
grated into a simulator to test the output a real FPGA would give. It
allows the developer to test the correctness of the implementation
on small datasets without having to run on an actual device. This
enables the standard incremental development workflow: new fea-
ture implementation, testing the new implementation to verify its
correctness, estimate the resource consumption and performance
based on a report, and only then compile for real hardware run to
make performance measurements and do production runs.

3.2 Kernels design

1 vo id k0PotCPU ( doub le ∗ c s t , i n t n , doub le ∗ z , doub le ∗ q ,
doub le ∗V) {

2 f o r ( i n t i = 0 ; i < n ; ++ i ) {
3 V[ i ] = 0 ;
4 f o r ( i n t j = 0 ; j < n ; ++ j ) {
5 V[ i ] += f ( z [ i ] , z [ j ] , q [ j ] , c s t , i , j ) ; } } }

Figure 4: Computing kernel structure forUlr,0

Figure 4 shows the structure of the originalUlr,0 kernel. It con-
sists of two nested loops spanning all atoms and computing the
energy of interaction for each (i,j) pair accumulated in the vector V.

On the FPGA, the computing instructions are implemented in a
pipe into which the inputs are streamed in while the outputs are
streamed out. In order to have an efficient design, multiple pipes
are used. Pipes can be seen as vector lanes of a CPU vector unit.
A dedicated vector unit is built here for our algorithm. It follows
the same SIMD principle where the same operation is applied on
different data during the same clock cycle.

All data is either first transferred to the DRAM of the DFE thanks
to an initial function call in the application running on the host,
or directly streamed from the host to the FPGA. In the first case, a
second function call triggers the calculation of a single CG iteration
and the first data is then streamed to the FPGA. Contiguous data
are read in the DRAM and streamed into the kernel in order to fill
all pipes of the kernel at each cycle (i.e. maximizing throughput).
In both cases, once arriving on the chip, data is stored onto on-chip
memory and starts to be used in computations as they flow through
arithmetic operations (additions, multiplications) and mathematical
functions (sine, cosine, erf, exponent). In this kernel, the value V[i] is
computed thanks to an accumulator that will sum the contribution
of the inner loop during n cycles, after which the value is sent to
the CPU memory.

This design leverages fast on-chip memories (block RAMs) that
can be accessed within a single clock cycle. With this implementa-
tion, using P pipes, the memory bus is used only during the first
N /P cycles to load all the data onto the chip but it can become
a bottleneck if the P is big enough and the FPGA workload too
small. Moreover, the on-chip strategy hits a limit when the datasets
are larger than the available on-chip memory, however the largest
system studied so far in the context of this code still fits comfortably.
The PCIe bus is minimally used here after the first N /P cycles as
it transfers only one value every N /P cycles and this transfer is
almost transparent as it is overlapped with the computations of
the DFE. Special care has to be taken to handle the general case
where N is not a multiple of P . Memory padding and validation
flags in the design have to be properly set. It is worth noting that
the array-of-structure layout that stores closely in memory all in-
formation about an atom is more relevant in the FPGA context. The
dedicated vector units designed for our algorithm indeed require
all data related to an atom be available within the same clock cycle.
This feature is orthogonal to the structure-of-array layout required
on CPU and GPU for best performance.

The Usr and Ulr,+ kernels exhibits very similar structures and
thus follow the same DFE implementation principle. Besides a loop



on the number of modes in the Ulr,+ kernel, the major algorith-
mic difference is the way outputs are performed. ForUsr andUlr,0
kernels, the results are sent out every N /P cycles whereas with
Ulr,+, all outputs are done in the last N cycles. The different kernels
outputs are thus not synchronized which prevents summing the
outputs of these three kernels on the FPGA as it would not meet
the hardware scheduling requirements. Because of this issue, the
final sum is performed on the CPU along with the computation
of the self potential contribution Uself , which is computationally
negligible. Also since the data is already on the CPU at this point, it
makes sense to avoid a non trivial implementation of the conjugate
gradient computation on the FPGA and simply do it on the CPU.
Once the residual is computed, if convergence is not reached, the
updated input vector is sent back to the FPGA’s DRAM and the next
CG iteration is triggered. Otherwise, the algorithm is terminated.

The only drawback of the DDR based design is that it is harder
to obtain the timing closure during the hardware compilation, mak-
ing it harder to use all the chip resources available and harder to
increase the clock frequency as well. Timing closure is the syn-
chronization of the different components of the FPGA used in our
design. It is necessary to guarantee accurate results. FPGAs pri-
marily consist of logic, which includes LookUp Tables (LUTs) that
have custom truth tables, and flipflops that are binary shift regis-
ters used for synchronizing the logic. They also contain on-chip
memory such as Ultra RAM (URAM) and Block RAM (BRAM), as
well as Digital Signal Processors (DSPs) that are used for comput-
ing. Achieving timing closure while maintaining performance on a
FPGA requires minimizing the amount of logic used in the design,
while maximizing the number of DSPs available to perform floating
point operations.

The second design on the other hand is identical except it loads
data directly from the host memory to the FPGA on-chip memory.
Since it does not make use of the FPGA DRAM, it does not have
the issue aforementioned. Although, in this design the memory bus
becomes a bottleneck much faster. As shown later on, the design
using direct streaming has been our best performing design.

3.3 Compiling designs with multiple kernels
Compiling designs consists of running the full compiler toolchain
for our implementation in order to obtain bitstreams that will con-
figure the FPGA such that it implements our algorithm. There are
three main parameters to set to maximize performance.

The first one is the number of pipes used in each kernel. A
performance model has been developed in order to evaluate the
potential bottlenecks that would be faced. As the state of the DFE

Table 1: Resource usage of themultiple kernels designs with
direct streaming relative to 1182240 LUTs, 6840 DSPs, 4320
BRAM18 & 960 URAMmemory blocks on-chip.

Design Name 64 bits Design 40 bits Design Final design
Design frequency (MHz ) 200 200 300
Pipes (Ulr,0,Usr,Ulr,+) (8,4,1) (16,8,2) (32,16,4)

Logic (LUTs) 31.75% 27.9% 50.6 %
DSPs 33.7% 27.9% 53.8%

On-chip Mem 34.4% 20.8% 30.5%

Usr

Ulr,0

Ulr,+
LUT + FF DSPBRAM

Figure 5: Multi kernel design’s resources map

is known at each clock cycle and the cost of operations is known,
calculations with a spreadsheet can predict how the design is able
to perform and how much of the resources of the FPGA it will use
[22]. When the number of atoms N and the number of modesM is
known, it is trivial to derive the number of cycles needed by each
kernel. As all kernels run concurrently, maximizing performance
means having a total cycle number as close as possible for every
one of them in order to keep all pipelines filled. As a consequence,
it is possible to find a balance for the number of pipes P for each
kernel since the number of cycles is inversely proportional to it.
For instance, the production test case shown here has to follow the
ratio (8,4,1) for the number of pipes for kernels (Ulr,0,Usr,Ulr,+).

The second parameter to tune is the FPGA frequency which
can in practice go from 100 to 350MHz for the model available in
the DFE (higher frequencies are mostly feasible for designs using
less area). The higher the frequency, the more computations per
second. However, increasing frequency or chip usage by adding
pipes makes it harder to meet timing closure, hence a balance needs
to be found.

Table 1 summarizes the design evolution with the direct stream-
ing strategy. Compilation time for the builds took between 13 hours
and 32 hours each which shows again how important the design
work is, as it saves a lot of compilation time by narrowing down
the number of builds to test. The savings due to precision reduction
enabled to double the number of pipes in each kernel for the 40 bits
builds. During the initial design phase the frequency used was 200
MHz which was pushed to 300 MHz for the final optimized builds
while the total number of pipes was multiplied by 4 from 13 to 52.

A final remark on the design compiled for this Xilinx hardware:
this specific FPGA chip is made of three Super Logic Regions (SLRs)
connected by solders which allow limited communications from
one SLR to another. Since we have three separate kernels which is
as many as the number of SLRs, the third design decision was to
confine each kernel to its own region. This makes the compilation
easier as the resources available to the compiler for each kernel are
explicitly defined this way and the kernels don’t have to compete
for the same resources. In order for the kernels to finish their com-
putation at the approximate same time, the number of pipes in the
kernels respects the (8,4,1) ratio. An immediate consequence of the
combination of this design choice and the synchronicity constraint,



is that the kernel that consumes the most resources becomes the
limiting factor of the whole design. In our case it is theUlr,0 kernel
which fills 87% of its SLR while the two others have more resources
left as can be seen in the resulting floor plan in figure 5.

As discussed, the (8,4,1) ratio is ideal for the production test case
but not for all test cases. A shortcoming of trying to design all
kernels on only one FPGA is that no load balancing can be done
between the kernels at execution time. This issue will be addressed
later with specialized designs described later in this paper.

4 RESULTS
4.1 Computing infrastructures
The Jumax machine from the Juelich supercomputing center was
used for FPGA development and evaluation. It consists of two build
nodes and one node for FPGA executions. The host node consists
of dual socket Zen 1 AMD EPYC 7601 32-Core Processors and the
Maxeler MPC-X consists of 8 MAX5C boards, comprising a Xilinx
VU9P FPGA and 48 GB DDR each. CPU and GPU timings and
energy have been measured on PlaFRIM1, The CPU is an Intel Xeon
Gold 6148 (skylake) running at 2.4GHz. The GPU is a NVidia P100.

4.2 Energy measurements
FPGA energy measurements were made by Maxeler on a dedicated
single server node containing a single VU9P with a counter based
method measuring the PCIe energy usage for the whole FPGA
board. The measurement was then extrapolated to all FPGAs.

CPU and GPU energy measurements are also counter based.
The EnergyScope Optmize [3] technology has been used to pro-
file the energy requirement of these two devices. It catches the
energy data provided by processors and GPUs at a fine-grained
(30-1 Hertz) frequency. For Intel and AMD EPYC processors, the
data is obtained from the Model-specific register (MSR) registers.
For the NVIDIA GPUs the data is obtained by the nvml software
package. EnergyScope Optimize aggregates the data acquired in
every computational unit and in every node to deliver a single tem-
poral reference signal. This tool has been presented at [7] and [8]
and used in [1] for an application in aeronautical industry.

In the context of this paper, for each application run, job initial-
isation and finalisation phases are suppressed from the temporal
reference signal, keeping only the application runtime. Application
startup is detected by a steep increase in power usage. The remain-
ing power values are then averaged and this mean power represents
the power measure for a single run. Ten runs have been performed
on three different NVidia P100 GPU running on different compute
nodes and ten additional run on a single socket Intel Skylake CPU.
For each architecture, the average of the mean power on all runs is
used in Fig 6 as average power requirement, error bars being the
standard deviation.

4.3 Test cases
The production test-case used in this paper simulates the system
studied in [14] using 42508 atoms. It is a numerical experimentation
of potential new supercapacitor technology that uses graphene
electrodes. Large carbon planes with thickness of a single atom and

1https://www.plafrim.fr/

pores that play the role of electrodes. The objective is to evaluate
numerically the efficiency of such a system before performing real
but costly experiments.

4.4 Chip to chip comparison
Figure 6 shows the execution time per iteration, the power require-
ment and the performance per Watt for the CPU, the FPGA and
the GPU implementations. In terms of performance measured here
with the time per CG iteration metric, the FPGA’s performance is 5
times better than the CPU’s and reaches 60% of the GPU’s .

In term of power requirement, the FPGA chip needs three times
less energy than the Intel skylake CPU chip to run at full load and
almost four times less energy than the Nvidia P100 GPU chip. Of
course, this power estimate does not take into account the needs
of the CPU host node which is required to trigger the FPGA the
same way we do not take into account the CPU host node for
the GPU. Indeed, energy measurement were not available on the
hosts, for the FPGAs or the GPUs. However, a rough estimate for
the power requirement of an idle processor is around 100W. This
would bring the global power requirement of the FPGA system
to 150W, lowering the power gain of FPGA to 6% compared to
the CPU and 47% compared to the GPU (which with the idle CPU
would consume about 285W). Controlling several FPGAs with the
same CPU would already reduce the impact of the CPU host power.
This shows that if the FPGA technology is very efficient in term
of average power, energy efficient host nodes are still required to
have energy efficient FPGA based computing systems.

The number of iterations per second and per watt metric is sim-
ilar to an energy to solution criterion and it combines the two
previous aspects. Considering this metric the comparison to CPU
leads up to a factor 16 for our test case, a huge gain in energy
efficiency for the same computation. Compared to the GPU, the
FPGA is performing better by a factor over 2. Finally our measured
computing time with the FPGA is the same as the theoretical com-
puting time given by the number of cycles divided by the frequency.
The fact that both numbers are the same attests to the efficiency
of the current implementation and shows the good predictability
of the FPGA computing time. It also shows the usefullness of the
performance model to assess our results.

4.5 Performance with multiple chips
The parallelization on multiple FPGAs was based on the following
strategy: computations were divided on the CPU so that each FPGA

Table 2: Resource usage of the single kernel designs relative
to 1182240 LUTs, 6840 DSPs, 4320 BRAM18 memory blocks
on-chip.

Design Name DesignUlr,0 DesignUsr DesignUlr,+
Design frequency (MHz ) 300 300 300
Total number of pipes 96 48 42

Logic (LUTs) 52.9% 67.5% 63.2%
DSPs 87.2% 55.4% 83.5%

On-chip Mem 27.2% 25.8% 38.4%
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Figure 6: Execution time, power requirement and performance per Watt comparison for CPU, FPGA and GPU
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Figure 7: Speed up of the different designs

would compute a part of the solution vector similar to the MPI im-
plementation. These parts would then be sent back to the CPU to be
summed into the final solution vector, ending the iteration. If a new
iteration was needed because the residue was not small enough, the
new solution vector would be sent back to the FPGAs. Two designs
were tested initially: the first approach used the multiple kernels
design described in the previous section. The work is divided across
MPI ranks, one per FPGA, and the computations are accelerated on
the FPGAs. At Each iteration, the results are synchronized thanks
to one MPI_ALL_REDUCE() call once the outputs from the FPGAs
have been collected. This approach requires only one FPGA design.
As can be seen on figure 7, we observe better performance as the
number of FPGAs increases but because of the communications
increase, the scaling is poor. Indeed the total bandwidth for the
connection between the CPU node and the FPGA node is only up
to 4 Gb/s which is quickly congested as the number of FPGAs is
increased.

The other approach, more resource effective, was to specialize
FPGAs for a single kernel in order to better fill the chips. The same
kernel was implemented in each SLR, making them completely
synchronous. Table 2 shows how much of the chips resources (in
particular the number of DSPs) were used for the single kernel
designs. Of course since three separate designs were required for
this approach to work, it took a longer time to compile and test
compared to the multiple kernels design.

Another difference compared to the first approach is that the
workload was balanced on the number of FPGAs assigned for each
design. The load balancing was done on the CPU by choosing how
many FPGAs are assigned to which of the 3 specialized designs.
In order to find the most efficient balance, the times of all com-
binations were computed. Starting at three FPGAs, it is trivially
one FPGA per design. But for four FPGAs, the extra FPGA is not
taken advantage of. Indeed the designsUlr,0 andUsr need the same
number of FPGAs in our case while the Ulr,+ is much faster than
them and does not require more FPGAs. As a consequence, the
extra FPGA accelerates one of the first two designs but the other
one takes as much time as before. The total time is even higher
than with three FPGAs because of the additional communications
overhead. With five FPGAs though, we can assign 2 FPGAs each
to the first two designs, and observe a performance twice as good
as with three FPGAs. Unfortunately with six and more FPGAs the
communications overhead is such that the scaling observed is far
from the theoretical scaling.

Both approaches are bottlenecked by the PCIe Gen2 x8 connec-
tion between the CPU node and the FPGA nodes. In order to remedy
to this issue, using the FPGA’s DRAM to save on bandwidth was
included in the design even though it meant decreasing the number
of pipes by 33% and the frequency (from 300 MHz to 260 MHz) in
order to achieve timing closure. This results immediately in a worse
single chip performance but gives much better scaling. Although, it
only manages to overcome the multiple kernels design performance
that does not use the FPGA DRAM at 8 FPGAs. As a note, PCIe
Gen3 x16 can achieve four times greater bandwidth, up to 16GBs.



Had the system been using that technology, we can assume that the
results would have been able to scale much better with all designs.

5 INTEL ONEAPI AND STRATIX 10 VARIANT
Considering the results in the previous sections or other case stud-
ies that show promising performance and efficiency for some HPC
applications on a specific combination of FPGA hardware and de-
velopment tools, a crucial question comes up about the portability
of designs or insights to other FPGA targets. In this section, we in-
vestigate such a port to the Intel oneAPI development environment,
which is an implementation and extension of the SYCL standard
and to the Intel Stratix 10 FPGA architecture. As unified program-
ming model for Intel CPUs, GPUs and FPGAs and conceptually
also open to other vendors, oneAPI has the potential to become
a more lasting and widely adopted tool flow than Maxeler MaxJ.
In contrast to the MaxJ language, which describes the dataflow
architecture on the FPGA in terms of components like streams or
memory blocks along with their behavior, oneAPI and SYCL code
builds upon the C++ syntax to specify the functionality of the FPGA
design. This on the one hand improves the accessibility of this ap-
proach for developers from the HPC domain, who are often familiar
with C/C++ programming. But on the other hand it creates a larger
gap or ambiguity between the code and the final architecture (see
also [12]); ultimately with both tool flows, the designs running on
the FPGA are actually quite similar in order to exploit the potential
of the hardware.

Targeting the Stratix 10 FPGAs in Bittware 520N cards hosted
in Noctua 2 at Paderborn Center for Parallel Computing (PC2), we
want to confirm at the same time, if a different system architecture
can overcome the observed scalability limits. We build upon the
insights from the Maxeler/Xilinx design experience, and directly
aim for three individual single kernel designs to be distributed and
load balanced via a corresponding MPI host implementation.

5.1 oneAPI kernel designs
The core of the FPGA kernels implemented with oneAPI preserves
the nested loop structure of the reference code as depicted in Fig. 4.
The compiler automatically tries to pipeline the loops in a way
that in each cycle one iteration of the inner loop starts (denoted
as Initiation Interval, here II 1) and the inputs for the respective
iteration (in Fig. 4 defined by a pair of (i,j) indices) are fed into a
specialized datapath for the respective function (in Fig. 4, 6 inputs
for the force calculation function f). Once the pipeline is filled,
every cycle one result is emitted at the output port of the datapath.
Up to here, this is the same structure as generated with MaxJ, with
the main difference in the resource consumption and latency of the
arithmetic function blocks selected by the respective tools.

For the accumulation, the developer has for the first time to
manually adapt the code in order to maintain a pipeline with II 1
by implementing the shift register pattern as outlined in the Intel
documentation [9]. The second transformation for all kernels is to
enable on-chip memory buffers for the data that is reused through
multiple iterations of the outer loop. Declaring arrays within the
kernel scope with a compile-time constant size (here an upper limit
of supported atoms) achieves this. In a third step, parallelism is
added via an unrolling annotation for the inner loop. For the designs

presented here, this works well only for powers-of-two, whereas for
other factors, additional effort is required to support the compiler
finding the right banking scheme for local memory. Reconsidering
the accumulation in this context, it is most resource efficient to first
perform a parallel (and latency insensitive) reduction over partial
sums within a parallel block, before feeding the result into a single
shift register. Figure 8 summarizes the updated structure for the
Ulr,0 kernel in contrast to the reference baseline in Figure 4.

For theUsr andUlr,+ kernels, the accumulation was outsourced
to a separate accumulator kernel with the same structure as the
compute kernel by receiving respectively sending the partial block
sum (v_blk in Fig. 8) via a SYCL pipe, which gets translated into a
simple FIFO on FPGA. For the Usr kernel, this resolves an II bottle-
neck introduced by the compiler for the index calculations along
with a subsequent condition (i != jb+jj) in the force calculation.
For theUlr,+, it helps to relax a dependency on intermediate results
per atom and thus allows to also fully pipeline the outer loop, pro-
cessing one (i,j) pair per pipe per cycle once data is available on
chip, like all other oneAPI and Maxeler designs presented here.

5.2 Compiling and analyzing oneAPI kernels
The three kernels along with their respective host interface are
compiled into separate shared library objects, each containing one
corresponding bitstream. With the first synthesis results, an ac-
curacy and convergence problem showed up that was not visible
in emulation. We identified the hardware implementation of the
error function erf(double arg) and erfc(double arg), used in
theUlr,0 andUsr kernels respectively, to contain an approximation
that is not sufficiently accurate for the application requirements.

1 vo id k0PotOneAPI ( doub le ∗ c s t , i n t n , doub le ∗ z , doub le ∗ q ,
doub le ∗V) {

2 doub le Vl [ n_max ] , z l [ n_max ] , q l [ n_max ] ;
3 / / l oop to f i l l l o c a l memory sk ipped here
4 f o r ( i n t i = 0 ; i < n ; ++ i ) {
5 doub le s _ r eg [ II_CYCLES ] = { 0 } ; / / s h i f t r e g i s t e r
6 f o r ( i n t j b = 0 ; j b < n ; j b +=U_BLOCK ) {
7 doub le v_b lk = 0 . 0 ;
8 #pragma un r o l l
9 f o r ( i n t j j = 0 ; j j < n ; j j +=U_BLOCK )
10 v_b lk += f ( z l [ i ] , z l [ j b + j j ] , q l [ j b + j j ] , c s t , i , j ) ;
11 / / here h i d i ng the l a t e n c y o f a c cumu la t i on
12 s _ r eg [ II_CYCLES −1] = v_b lk + s_ r eg [ 0 ] ;
13 / / p a r a l l e l s h i f t l e f t o p e r a t i o n
14 #pragma un r o l l
15 f o r ( uchar s =0 ; s <II_CYCLES −1 ; s ++)
16 s _ r eg [ s ] = s_ r eg [ s + 1 ] ;
17 }
18 doub le v_sum = 0 . 0 ;
19 / / r e d u c t i o n o f p a r t i a l sums from s h i f t r e g i s t e r
20 #pragma un r o l l
21 f o r ( uchar s =0 ; s <II_CYCLES −1 ; ++ s )
22 v_sum += s_ r eg [ s ] ;
23 Vl [ i ] = v_sum ;
24 }
25 / / l oop to wr i t e back Vl sk ipped here
26 }

Figure 8: Outline of structural changes to kernel Ulr,0 for
oneAPI.



Deviations of individual erf()-calls from the C standard library
reference reached up to 1x10−4. To fix the functionality, we referred
to manually calling an accurate implementation of erf(), which
uses the same polynomial approximation as employed in the glibc2
library and originally developed at SunPro, a SunMicrosystems, Inc.
business. We performed some area optimizations by first selecting
the coefficients based on one of multiple possible input intervals
and then reusing the same arithmetic resources for the floating
point operations. With this, we are able to synthesize fully func-
tional double precision designs of all kernels, however the area
overheads are still large.

Table 3: Resource usage of oneAPI single kernel designs rel-
ative to 705500 ALMs, 4713 DSPs, 9094 block RAMs available
for kernels. Effect of unrolling here also denoted as pipes. In
brackets forUlr,0 andUsr estimates with efficient but inaccu-
rate erf approximation.

Design Name oneUlr,0 oneUsr oneUlr,+
Frequency [MHz] 400.00 396.67 322.50
Number of pipes 8 4 8
Logic [ALMs] 62.5% (30.1%) 69.4% (33.2%) 51.3%

DSPs 35.9% (14.2%) 27.3% (13.5%) 39.1%
On-chip Mem 14.5% (14.9%) 27.9% (24.2%) 44.8%

Table 3 summarizes the parallelism, resource consumption and
clock frequencies of kernels synthesized with oneAPI. When com-
paring these results to Table 2, we need to briefly touch upon the
different metrics reported here. Both the Xilinx VU9P targeted by
Maxeler and the Intel Stratix 10 targeted by oneAPI group multiple
LUTs together with twice more FFs into blocks denoted as CLBs for
Xilinx (8 LUTs per CLB) and as ALMs (2 LUTs per ALM) by Intel. In
the reports summarized here, the Maxeler tool output reports the
actual used LUTs (and FFs), whereas the Intel Quartus output re-
ports any ALM as utilized in which at least one LUT or FF is utilized.
Also, the numbers in Table 2 include infrastructure components
like PCIe (DDR controllers are not used and optimized away in the
non-LMEM designs), whereas for Table 3, only the kernel region of
the FPGA is considered, because a fixed shell with PCIe and DDR
controllers blocks the remaining 20%-25% of the resources.

When actually analyzing the oneAPI results in Table 3 in com-
parison to Table 2, we see a small advantage in clock frequency,
but a huge gap of 12x (Ulr,0 and Usr kernels) and 5.25x (Ulr,0 ker-
nel) in achieved parallelism. Firstly, regarding the clock frequency,
oneAPI FPGA compilation and synthesis tools by default aim for
an optimistic target clock frequency of 480MHz. After placement
and routing, the tools automatically reduce the clock according to
the identified latency of the critical path to a working configura-
tion. Due to the current limitation of the designs to power-of-two
parallelism, the presented designs do not approach the resource
limits of the FPGA, which makes it easier to reach high clock fre-
quencies, but overall leaves some performance potential unused.
Looking further at the gap in parallelism, a factor of around 2 can
directly be attributed to the manual erf() implementation in the

2https://www.gnu.org/software/libc/sources.html

Table 4: [LUTs, DSPs] usage of basic arithmetic functions
based on oneAPI reports and Maxeler documentation.

Tool/Target oneAPI/Stratix 10 Maxeler/VU9P
Data Type double ap_float<10,35> double float<8,32>

Multiplication [3253, 14] [ 504, 1 ] [132 , 7 ] [ 427, 0 ]
Addition [3484, 18] [1696, 5 ] [582 , 3 ] [ 95, 4 ]
Division [6034, 50] [1864, 21 ] [3135, 0 ] [1247, 0 ]
exp() [5504, 20] [2218, 9 ] [1290, 38] [ 555, 16]
sqrt() [2613, 28] [1029, 6.5] [1653, 0 ] [ 673, 0 ]

fused sin/cos [7548, 43] [7548, 43 ]?
sin() [1261, 28] [ 771, 10]

first two kernels. Numbers in brackets in Table 3 indicate resource
consumption with the inaccurate erf() function block provided by
the oneAPI library. A function block that is just a bit more resource
intensive, yet accurate, which is present in the Maxeler compiler,
could reduce resource consumption roughly by half and accordingly
enable higher parallelism.

After considering the unused resources and the impact of the
erf() implementation, there is a parallelism gap of roughly 4–5x
that still needs to be investigated. It needs to be noted, that a con-
siderable amount of parallelism was added to the Maxeler designs
only after the transition to 40 bit floating point arithmetic. With the
ap_float type, oneAPI also provides a custom precision floating
point implementation, however, the closest available type with at
least that much precision contains 46 bits (10 bits exponent, 35 bits
mantissa). In Table 4, we summarize the resource consumption for
the floating point operations and functions frequently showing up
within the three kernels. These numbers can not be considered as
apples to apples comparison, since on the one hand the underlying
architectures of LUTs and DSPs of the two FPGA families differs
and on the other hand because of how these numbers were ob-
tained. The oneAPI numbers are extracted from report estimates,
where some of them are evidently adapted to the pipeline context
they are embedded in and thus might differ in other designs or
the final implementation. The Maxeler numbers are taken from
their documentation, except for the erf() function, for which they
were estimated back from synthesis results. This said about the
limited comparability, there seems to be a clear trend pointing to
either a more efficient floating point library provided by Maxeler, or
the VU9P FPGA architecture being more suitable to combine logic
and DSP resources into double precision and 40 bit floating point
arithmetic. Many operations of the ap_float implementation also
show promising improvements over the double precision baseline.
However the sin/cos function block seems not to be adapted and
in the full designs with a double precision host interface, frequent
cast operations cause additional area overheads, such that so far we
have not been able to achieve a higher degree of parallelism with
any ap_float design. With more optimizations or upcoming oneAPI
tool releases, it should be possible to shrink the parallelism gap.

5.3 Experiments
With the double precision oneAPI kernel designs, the production
test case (Section 4.3) was executed on the FPGA partition of the



Noctua 2 system at PC2. Its nodes with Bittware 520N cards con-
taining Stratix 10 GX 2800 FPGAs combine dual socket AMD Milan
Epyc 7713 CPUs with two of the FPGA cards, each communicating
with PCIe Gen3 x8 (physically x16, but not supported by the FPGA
shell). The experiment was conducted such that each MPI rank was
exclusively controlling one FPGA for the computations.
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Figure 9: Multi-FPGA scaling with oneAPI

Figure 9 shows the performance in CG iterations per second
from 3 (minimum required to run the single kernel designs) to 14
ranks. As was to be expected from the limited parallelism within
each FPGA design, the performance does not match the Maxeler
results, with 3 ranks reaching only about half the performance of
the single-FPGA multiple kernel reference (Figure 6). However, the
parallel speedups are perfectly matching the expectations based
on per-kernel throughput, here displayed as superlinear speedup,
since in the setup with 3 FPGAs that is taken as scaling baseline,
the Ulr,0 kernel is underutilized and only catches up towards full
occupancy. Once more and moreUsr andUlr,+ instances are added,
big performance jumps show up at odd FPGA counts, when the next
pair of Usr and Ulr,+ kernels is complete. These scaling results are
promising, but higher performance per kernel needs to be achieved
before coming to clear conclusions at which point communication
might limit further scalability.

6 CONCLUSION
This paper compares the original CPU and GPU implementations
of a matrix free conjugate gradient that minimises the total energy
of a realistic electrochemical system with FPGA implementations.
The first set of FPGA implementations were developed using the
Maxeler software environment to be used on Xilinx hardware. A
numerical accuracy study has enabled the usage of an intermediate
floating point number representation using 40 bits, lying between
the standard single and double IEEE754 representations, without
impacting the physical results of the algorithm. The comparisons
have been performed with a production test case of a size of 42508
atoms. Time and counter based energy measurements have been
performed for all CPU, GPU and FPGA. The production test reveals
that the FPGA is faster than the CPU by a factor of 5. The FPGA
requires also almost 3 times less electrical power to deliver the same
results. Combining these two features leads to an impressive factor
of 16 when considering the number of iterations per second and per

Watt. Compared to a GPU of the same generation, the FPGA only
achieved 60% of its performance but the ratio of the performance
per watt is nonetheless better by a factor of 2. The main limitation
to scalability on this FPGA platform is similar to the one faced
by GPU accelerated computing infrastructures: the interconnect
between the host and the accelerator. It is even stronger in this case
as the PCIe 2.0 interconnect has to be shared between eight FPGAs.

Considering the strong results of the chip to chip comparison,
and despite the early scalability issues, the FPGA technology is, in
our opinion, a clear candidate to be part of large scale HPC systems
up to the exascale class. However, to this end the ecosystem of HPC
capable FPGA accelerator hardware and development tools has to
mature further, reducing frictions in development, portability and
practical usage of this technology. In this sense, the Intel oneAPI
development flow, that we utilized for the final part of this study,
is a promising counterpart to the Maxeler MaxJ approach used for
the main body of this work. While the performance of the Intel
port is not fully competitive yet due to challenges with the floating
point libraries, it has turned out that many of the high-level design
experiences and decisions could be transferred between these quite
radically different FPGA tools, whereas other optimization patterns
had to be completely adapted to the different tool.
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