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Abstract—Outlier detection in sensor data has recently gained
significant recognition, particularly with the proliferation of
wireless sensor networks (WSNs) and the Internet of Things
(IoT). Several challenges face outlier detection in WSNs and IoTs,
including sensor nodes’ limited energy and processing capabilities
and high communication costs. This paper presents a novel deep
learning-based outlier detection approach for IoT sensor data in
hierarchical edge computing. First, we proposed a hierarchical
edge computing framework to save energy, provide load balance,
and low latency data processing at sensor ends. Then, we designed
an outlier detection algorithm that resides on each edge server.
The proposed algorithm consists of two modules: a predictor
model and an outlier detector. The predictor module uses Long
Short-Term Memory (LSTM) networks to predict the subsequent
data measurements of sensor nodes. The predicted values are then
passed to an outlier detector module, which decides whether a
data point is an outlier.

Index Terms—Internet of Things, Wireless Sensor Networks,
Edge Computing, outlier detection, Deep learning, Short-Term
Memory (LSTM).

I. INTRODUCTION

The Internet of Things (IoT) [1] is an emerging technology
that has aroused widespread interest from both research and
industry communities in the past few years. An IoT can
broadly be described as a network of interrelated physical
objects (e.g., cars, houses, laptops, thermostats, watches) that
can transfer and exchange data through a wireless network
without explicit human intervention. These devices are typi-
cally equipped with sensors, actuators, processors, and other
embedded technologies that allow them to sense, collect, and
share data about the environment in which they are operated.
IoTs are being used in diverse fields, including environment
monitoring [2], medicine and health care [3], transportation
[4], agriculture [5], intelligent buildings [6], logistics [7], and
manufacturing [8].

Wireless Sensor Networks (WSNs), which consist of many
wirelessly interconnected sensor nodes and one or more base
stations (sink nodes), are among the primary building blocks
that enable the operation of IoT applications. A sensor node
in a WSN is typically composed of a microcontroller, radio
transceiver, memory, power supply, and one or several sensors
[9].

Wireless sensor nodes are usually constrained in terms of
energy, memory, and processing. Hence they are unable to
carry out complex computational tasks. Computation offload-
ing [10] is a viable technique that can prolong the lifetime

of sensor nodes by relocating computational tasks from these
devices to resource-abundant servers such as clouds.Yet, cloud
servers are usually insufficient to meet the high-performance
requirements of some IoT applications due to several reasons
such as high latency, limited bandwidth, and security issues.
Edge computing, where computing resources are distributed
closer to end nodes, is a new paradigm that aims to over-
come some of the issues faced by cloud computing. It can
significantly save bandwidth, reduce communication latency,
improve security, and provide real-time services.

Due to the effects of hostile environments and the innate
limitations in sensor capabilities, the data collected from IoT
and WSNs is often uncertain and prone to errors and faults.
Outliers are one of the most common faults that may severely
affect the quality of sensory data. Outliers, also termed anoma-
lies, are defined in various ways depending on the discipline in
which they are being studied. Barnett and Lewis [11] defined
an outlier as “An observation (or subset of observations) which
appears to be inconsistent with the remainder of that set of
data”. Similarly, the authors in [12] have defined an outlier as
“a data point which is significantly different from other data
points, or does not conform to the expected normal behaviour,
or conforms well to a defined abnormal behaviour”. In the
context of WSN and IoT, outliers are those sensor readings that
do not follow the normal pattern of sensed data. Outliers may
arise from three primary sources: (i) Errors caused by impaired
readings generated by faulty sensors, (ii) Events that occur due
to a sudden or unexpected change in the sensed environment
(e.g., forest fire, earthquakes,air pollution) , (iii) Malicious
attacks such as denial of service, black hole, and sinkhole
attacks.

Regardless of the application field or the outlier source,
detecting outliers in sensor data is essential for ensuring high
data quality and reliability, enhancing the system’s security,
and maximizing the network’s lifetime.

In the last decade, several approaches have been proposed
to address the outlier detection [13]-[15] (anomaly detection)
problem in sensor data. However, most of these approaches are
computationally costly or incur high communication overhead.

The main contributions of this paper are as follows:

1) A hierarchical edge computing model is proposed, which
relocates computing workloads from cloud centers to
edge servers to provide more processing capabilities and



low latency analysis on the premise of enhancing the sys-
tem’s performance and lowering the energy consumption.

2) An LSTM-based outlier detection approach for sensor
data is proposed. This approach is deployed and executed
at each edge node. The proposed approach consists of
two modules: a predictor model and an outlier detector.
The predictor model employs LSTM to forecast the sub-
sequent sensor data measurements. The outlier detector
identifies outliers by computing the distances between the
predicted and the actual values.

The remainder of this paper is organized as follows. Sec-
tion II reviews the literature related to outlier detection in
sensor data. Section III defines in detail the proposed system
architecture. Section IV provides a detailed description of our
proposed scheme. The performance evaluation and the results
are presented in Section V. Finally. We conclude the paper in
Section VI.

II. RELATED WORKS

As mentioned above, several methods have been pro-
posed to deal with the outlier detection problem in WSNs.
These methods can be grouped into five main categories:
(i) statistical-based techniques, (ii) classification-based tech-
niques, (iii) nearest neighbor-based techniques, (iv) clustering-
based techniques and (v) artificial intelligence-based tech-
niques [16].

Recently, deep learning algorithms have been leveraged
for outlier detection in wireless sensor networks. The au-
thors in [17] employed autoencoder neural networks to detect
anomalies in WSNs. They designed a two-part algorithm that
resides on sensors where outliers are identified locally without
communicating with a central IoT cloud or nearby sensors and
on the cloud to detect global outliers. The performance of the
proposed method was evaluated on a real sensor dataset, and
the obtained results were very promising.

In [18], an artificial neural network-based outlier detection
model is proposed for WSNs in smart buildings. In this
work, an ANN model is designed to forecast the temperature
values of each sensor node. A temperature data is regarded
as an outlier if the difference between the predicted and the
actual value exceeds a certain threshold. The authors of have
also designed an optimized ANN model to increase detection
accuracy in the case of a significant environmental temperature
change. The experimental results showed that the two ANN-
based models could effectively forecast the temperature values
in WSNs, and the optimized ANN performed better when the
environment temperature changed significantly.

In [19], the authors proposed a new scheme to detect outliers
in sensor networks by using a bidirectional Long Short-
Term Memory Recurrent Neural Network (BLSTM-RNN)
and a modified version of the auto-encoder called Smooth
Auto-Encoder (SmAE). SmAE is used to learn strong plus
discriminative feature representations. BLSTM-RNNs are em-
ployed for maturity voting for collective outlier detection. The
experimental results on the Intel Berkeley Research Laboratory
(IBRL) dataset show that the proposed scheme reaches higher
accuracy and recall than existing techniques.
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Fig. 1. System architecture

In 2022, Zhang et al. [20] designed a scheme that con-
siders temporal and spatial dimensions to detect outliers in
multimodal WSN data flows based on Graph neural networks
(GNN) and attention mechanism. First, the temporal and
modal correlation features derived from each sensor are com-
bined into a single vector representation using Graph Attention
Network. Afterward, it is aggregated with the spatial features
representing the nodes’ spatial position relationship. Finally,
the current time-series data of sensor nodes are forecasted, and
anomalous states are detected according to the fusion features.
The simulation results have shown that the proposed scheme
has a better detection performance than the traditional graph
convolution network method combined with LSTM.

III. SYSTEM ARCHITECTURE

The architecture of our proposed system is illustrated in
Figure 1, it can be seen as a three-tiered structure consisting
of a central cloud server in the first tier, multiple edge servers
in the second tier, and multiple sensor nodes in the third tier.
Their roles are described as follows:

« Sensor nodes: Sensor nodes are small and low-power
devices that are equipped with a microcontroller, a radio
transceiver, a memory, a battery, and one or more sensors.
They are responsible for periodically collecting data from
their surroundings and transmitting it to nearby edge
servers via a wireless medium.

« Edge servers: Edge servers are powerful computers
that are geographically distributed around the sensor
nodes. They are intermediaries between the end devices
(sensor nodes) and the cloud server. Each edge server
is responsible for two main tasks: (i) predicting the
subsequent measurements of sensor nodes, (ii) perform
outlier detection and send the results to the cloud server.

o Cloud server: The cloud server stores and analyzes the
data received from the edge servers and makes decisions
accordingly.

IV. PROPOSED SCHEME

In this section, we will describe in detail our proposed
scheme to detect outliers in sensor data. The proposed method
consists of two modules: an LSTM-based prediction model
that forecasts the subsequent sensor measurements based on
the previous records and an outlier detector that decides
whether a data measurement is an outlier.



A. Predictor model

The predictor module of our proposed approach is based on
LSTMs. LSTMs [21] are a specialized type of recurrent neural
network (RNN) which have been widely used in different
domains, such as natural language processing (NLP) and big
data prediction. They were designed to overcome the vanishing
and exploding gradients problem experienced by traditional
RNNs. A conventional LSTM consists of an input, hidden
layer (LSTM), and output layer. The LSTM layer comprises
several memory blocks, each containing one or more memory
cells and three multiplicative gates: forget, input, and output
(As depicted in Figure 2):

o The forget gate is responsible for deciding whether the
information from the previous timestamp is to be kept or
thrown away.

e The input gate decides whether the memory cell is
updated by combining the second sigmoid layer’s output
and the tanh layer’s output.

o The cell state is responsible for long-term memory and is
calculated based on the previous cell state and the outputs
of the forget and input gates.

« The output gate specifies which data from the current cell
state will be used as output.
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Fig. 2. Structure of the LSTM cell.

The following equations can define the entire computation
of long short-term memory networks:

FO = o(Wh"=D, 20 4 by) )
i = o(W;[nY, 28] + b)) )
C® = tanh(We [0 2®] + be) 3)
c® = fO o clt-1 4 i) o oM 4)
o™ = a(W,[htY M) +p,) (5)
hY = tanh(C®) x o) (6)

Table I lists the main symbols and notations used in the
above equations. In the present study, we have designed three
LSTM-based predictor models: the temperature forecasting
model, the humidity forecasting model, and the voltage fore-
casting model.

TABLE I
SUMMARY OF SYMBOLS AND NOTATIONS
Symbols and Notations Description
F@& i@ o The forget, input, and output gate
at time t, respectively.
o Logistic sigmoid function
Wy, Wi, Wo Weight matrices of the forget, input
and output gates, respectively.
by, bi, bo,bo The biases of the forget, input, output
gates, and the cell state, respectively.
RE=1) p(® The hidden state of the previous and
timestamp, respectively.
z® The current input
c® The current cell state
c® The new memory cell state candidate
©) Element-wise (Hadamard) product.

B. Outlier detector

Once the LSTM predictor model forecasts the next sensor
data measurement, this module detects outliers at each time
step. The predicted data measurement is passed to this module,
and then an outlier score is assigned to a given sensor reading
based on the distance between this reading and the value
predicted by the LSTM model. Outlier scores are computed
using the Euclidean distance given in Equation (7). Data
measurements with scores greater than a given threshold are
considered outliers. The threshold value is calculated using the
equation

O(yt) = diy,.y1) = V (Yt — y1)? (7)
Where:
O(y:) : denotes the outlier score of a data measurement.
y¢ : 1s the actual value.
y; : is the predicted value.
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~

A = O(minOutlier) (8)
Where:
A : denotes the threshold value.
minQutlier : is the minimum outlier value in a dataset.

The edge computing process of the outlier detection is
summarized as follows:

1) Each sensor node S; periodically collects environmental
data and offloads it to a nearby edge server. The process
of collecting and transmitting sensor data to edge servers
is represented in Algorithm 1.

2) Each edge server runs one copy of the LSTM prediction
model and performs two tasks: (i) predicts the subsequent
sensor data measurement using the LSTM prediction
model, and (ii) performs outlier detection. When a data
point is received, it is sent to the predictor module to
forecast its next timestamp value. The predicted and
actual values are then passed to the outlier detector. Then
the following check is made: if the difference between the
predicted value and the actual value exceeds a certain
threshold, this value will be considered an outlier. Once
the detection is done, the original data and the detection
results are sent to the cloud for further analysis. Algo-
rithm 2 describes in detail the outlier detection process.



Algorithm 1 Collection-Propagation
1: Begin

- V : a set of vectors containing captured values from
different sources {Vy, V1, ...,V }
- Texp : waiting time to receive data from sources
- Aut : Level of battery in percent
- Thrld : Threshold or critical value of Level of battery
-Init (Texp) : initialise the waiting time value;
-To-Edge-Server (V) : send the vector V to the correspond-
ing edge server ;

2: repeat

3: Init (Texp);

4:  repeat

5: Receive-Data(); /*Run the sub process : sensing and

receiving data */

6: Insert the received value into Vi ; /*Run the sub
process : sensing and receiving data */

7:  until ( Texp expired )

8:  To-Edge-Server (V);

9: until ( Aut < Thrid)

10: End.

Algorithm 2 Edge-Analyse
1: Begin
- Sni : a set of received values from sensor node i
- A : Threshold value
- Count — received : Vector to store the number of
received data from each sensor-node initialised to zero
- LSTM(V) : a method to predict the next sensor data
measurement based on current vector V
- Buf fer : a set of vectors which store the last predicted
values by LSTM module of each sensor node i
- Si : Sensor node i
- Alert(Si) : detection of an outlier measurement from
sensor node i
2: while (True) do
3:  wait until received sensing vector data Vi, from a sensor
node i;
increments Count-received [i] ;
if (Count-received [i] != 1) && ( Buffer[i] - Vi > X\ )
then
Alert(Si);
end if
Buffer [i] = LSTM(Vi);
Send-cloud (Vi); /*Send the vector Vi to the cloud for
a global detection */
10: end while
11: End.
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3) Upon receiving data from the edge servers, the cloud
server stores this data on online database servers. After-
ward, it analyzes this data and makes decisions accord-

ingly.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we have used our proposed method to
detect outliers in temperature, humidity, and voltage data. First,

we designed three LSTM-based predicting models named
Temp-Forecasting model, Hum-Forecasting model, and Volt-
Foreasting model. Then, Outliers are detected based on the
results obtained from these predicting models. This study is
accomplished using Google colaboratory (Colab). The imple-
mented code is written in Python version 3.7.14, and the three
LSTM-based prediction models were built using TensorFlow
2.8.2 and Keras 2.8.0. Pandas, NumPy, and matplotlib are
some of the libraries used for data analysis in this work.

A. Dataset Description

The Intel Berkeley Research Lab (IBRL) dataset [22] is
a publicly available real-world dataset released by IBRL labs.
This dataset consists of sensor measurements gathered from 54
Mica2Dot sensor nodes deployed in IBRL between February
28th and April 5th, 2004. The sensed data was collected
once every 31 seconds using the TinyDB in-network query
processing system. This dataset contains 2.3 million rows
and eight columns. The columns’ names and explanations are
presented in Table II. The two columns labeled Date and Time
were combined into a single column called Date_Time. Epoch
is a sequence number that increases monotonically with each
mote, Moteids range from 1 to 54, the temperature is expressed
in degrees Celsius (°C), the humidity is temperature-corrected
relative humidity and ranges from 0 to 100%, Light is in Lux,
and voltage is in volts.

In the experiments, we selected the temperature, humidity,
and voltage measurements recorded from 28-03-2004 to 05-
03-2004 (12000 log rows). Since this data is not annotated
and lack labeled information, data preprocessing is required
before creating the forecasting models.

To evaluate the performance of our proposed approach, we
have generated twelve synthetic datasets by injecting outliers
into the original dataset. Outliers are injected into the original
dataset by sampling a certain percentage of data measurements
and randomly flipping their values.

B. Performance Metrics

To assess the performance of our proposed method, we
select three evaluation metrics: accuracy (ACC), F1-score, and
False Alarm Rate (FAR). They are calculated as follows:

TP+TN
A =
ce TP+ FP+TN+FN ©)
Precision x Recall
F1 =2 10
~Seore ¥ Precision + Recall (10
Where : TP
Precision = ————— 11
recision TP+ FP (11)
TP
== 12
Recall TP+ FN (12)
FP
FAR= ————— 1
R FP+TN (13)

Where TP (True Positive) denotes the number of correctly
detected outliers, FP (False Positive) is the number of normal



TABLE II
DESCRIPTION OF THE VARIABLES IN THE IBRL DATASET.

Date Time Epoch | Mote_id | Temperature | Humidity | Light | Voltage
yyyy-mm-dd | hh:mm:ss.xxx int int real real real real
TABLE III
LSTM-BASED PREDICTION MODELS SETTINGS.
Model Dependant/independent variables Hideen Nodes per Dropout B?tCh Epoch Learning Optimizer
Layers h_layers size rate
Temp_Forecasting Model Humidity,voltage/ temperature 1 75 0.2 5 1000 0.0001 Adam
Hum_Forecasting Model Temperature, voltage/ humidity 1 50 0.2 32 2000 0.0001 Adam
Volt_Forecasting Model Temperature, humidity/ voltage 1 50 0.2 32 500 0.0001 Adam

measurements that were incorrectly identified as outliers, TN
(True Negative) is the number of correctly identified normal
measurements, and FN (False Negative) denotes the number
of outliers that were incorrectly identified as normal.

C. Numerical Results and Discussion

1) Prediction models: In this study, we have used 80% of
the dataset to train the three LSTM-based prediction models
and the remaining 20% to test their performances. These
models are trained using only normal data (without outliers).

We have conducted numerous experiments to find the
optimal hyper-parameters for the three models. The hyper-
parameters considered for these three models are batch size,
epoch, learning rate, and optimization algorithm. The Mean
Squared Error (MSE) was employed as the loss function. Table
IIT lists the optimal hyper-parameters used for training the
LSTM-based prediction models. The comparisons between the
predicted and actual values of the temperature, humidity, and
voltage are shown in Figure 3. We can see from the figure that
the predicted values of the temperature, humidity, and voltage
almost coincide with the actual values, which validates our
forecasting models and allow us to proceed to the next phase,
the outlier detection.

The Root Mean Squared Error (RMSE), given in (14), has
been used to evaluate the predictive performances of the three
predicting models. The RMSE should have a value that is as
low as possible. Table IV shows the predictive performances
of the three LSTM-based forecasting models. The results
show that the Temp Forecasting model reported the forecasted
temperature with an RMSE of 0.068, and the Hum-Forecasting
model predicted the relative humidity with an RMSE of 0.113.
The Volt-Forecasting model provides the expected voltage with
an RMSE of 0.006.

RMSE = (14
TABLE IV
PREDICTION MODELS PERFORMANCE’S RESULTS.
Model RMSE(Training)| RMSE(Test)
Temp_Forecasting Model | 0.084 0.068
Hum_Forecasting Model | 0.164 0.131
Volt_Forecasting Model | 0.008 0.006

2) Outliers detection model: In the last experiment, we
aimed to ensure that the proposal could detect outliers with
a higher percentage. As detailed in the section IV, once
the LSTM predictor model forecasts the next sensor data
measurement, the detection of outliers can be launched at
each time step. In fact, we have computed the accuracy
(ACC), the F1 score and the FAR rate for each model namely:
temperature, humidity and voltage model. We have also added
outlier values for each dataset (5%, 10%, 15% and 20%) in
order to evaluate the robustness of our proposal. The tables
IV, V and VI show that the obtained results can be considered
as good. We can easly notice that the worst result is 94.5% for
the accuracy when we added 20% outlier values to the voltage
dataset. As for the other metrics (F1_score and FAR), the rates
are acceptable. This can be explained by the fact that when
we chose outliers to add to the datasets, this process caused
confusion with other existing outliers in the same datasets.

TABLE V

PERFORMANCE RESULTS OF TEMPERATURE OUTLIER DETECTION.
Datasets ACC(%) | F1_Score(%)| FAR(%)
Temp_with_5%of_outliers | 98.4 86 1.3
Temp_with_10%of_outliers| 97 86 2.4
Temp_with_15%of_outliers| 96.3 85.9 2.8
Temp_with_20%of_outliers| 95 84.4 4

TABLE VI

PERFORMANCE RESULTS OF HUMIDITY OUTLIER DETECTION.

Datasets ACC(%) | F1_Score(%)| FAR(%)
Hum_with_5%_of_outliers 98.5 87 1.3
Hum_with_10%_of_outliers | 97 86 2.4
Hum_with_15%_of _outliers | 96.1 86 2.7
Hum_with_20%_of_outliers | 95.8 85 29

TABLE VII

PERFORMANCE RESULTS OF VOLTAGE OUTLIER DETECTION.

Datasets ACC(%) | F1_Score(%)| FAR(%)
Volt_with_5%_of_outliers 97 79 2.3
Volt_with_10%_of_outliers | 96.6 85 3
Volt_with_15%_of_outliers | 95 84.5 4
Volt_with_20%_of_outliers | 94.5 85.7 5

VI. CONCLUSION

This paper proposes a novel deep learning-based outlier
detection method for IoT sensor data in hierarchical edge
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computing. The proposed scheme consists of two modules: an
LSTM-based predictor, which predicts the subsequent sensor
data measurement, and an outlier detector, which decides
whether a data point is an outlier. Experimental results reveal

the

efficiency of our proposed method for outlier detection in

sensor data. We plan in future work to improve the present
paper by adding a mechanism for finding the best edge and
cloud servers to run our predictor and outlier detection models.
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