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Filling Crosswords is Very Hard?

Laurent Gourvèsa, Ararat Harutyunyana, Michael Lampisa,1,2, Nikolaos
Melissinosa,3

aUniversité Paris-Dauphine, Université PSL, CNRS, LAMSADE, 75016, Paris, France

Abstract

We revisit a classical crossword filling puzzle which already appeared in Garey&
Jonhson’s book. We are given a grid with n vertical and horizontal slots and a
dictionary with m words. We are asked to place words from the dictionary in
the slots so that shared cells are consistent. We attempt to pinpoint the source
of intractability of this problem by carefully taking into account the structure
of the grid graph, which contains a vertex for each slot and an edge if two slots
intersect. Our main approach is to consider the case where this graph has a
tree-like structure. Unfortunately, if we impose the common rule that words
cannot be reused, we discover that the problem remains NP-hard under very
severe structural restrictions, namely, if the grid graph is a union of stars and
the alphabet has size 2, or the grid graph is a matching (so the crossword is a
collection of disjoint crosses) and the alphabet has size 3. The problem does
become slightly more tractable if word reuse is allowed, as we obtain an mtw

algorithm in this case, where tw is the treewidth of the grid graph. However,
even in this case, we show that our algorithm cannot be improved to obtain
fixed-parameter tractability. More strongly, we show that under the ETH the
problem cannot be solved in time mo(k), where k is the number of horizontal
slots of the instance (which trivially bounds tw).

Motivated by these mostly negative results, we also consider the much more
restricted case where the problem is parameterized by the number of slots n.
Here, we show that the problem does become FPT (if the alphabet has con-
stant size), but the parameter dependence is exponential in n2. We show that
this dependence is also justified: the existence of an algorithm with running
time 2o(n

2), even for binary alphabet, would contradict the randomized ETH.
After that, we consider an optimization version of the problem, where we seek
to place as many words on the grid as possible. Here it is easy to obtain a
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1
2 -approximation, even on weighted instances, simply by considering only hori-
zontal or only vertical slots. We show that this trivial algorithm is also likely to
be optimal, as obtaining a better approximation ratio in polynomial time would
contradict the Unique Games Conjecture. The latter two results apply whether
word reuse is allowed or not.

Finally, we present some special cases where the problem is decidable in
polynomial time. In particular, we present three reductions, one to 2-SAT, the
second to Maximum Matching and the third to Exact Matching.

Keywords: Crossword Puzzle, Treewidth, ETH

1. Introduction

Crossword puzzles are one-player games where the goal is to fill a (tradi-
tionally two-dimensional) grid with words. Since their first appearance more
than 100 years ago, crossword puzzles have rapidly become popular. Nowadays,
they can be found in many newspapers and magazines around the world like
the New York Times in the USA, or Le Figaro in France. Besides their obvious
recreational interest, crossword puzzles are valued tools in education [2] and
medicine. In particular, crossword puzzles participation seems to delay onset
of accelerated memory decline [21]. They are also helpful for developing and
testing computational techniques; see for example [23]. In fact, both the design
and the completion of a puzzle are challenging. In this article, we are interested
in the task of solving a specific type of crossword puzzle.

There are different kinds of crossword puzzles. In the most famous ones,
some clues are given together with the place where the answers should be lo-
cated. A solution contains words that must be consistent with the given clues,
and the intersecting pairs of words are constrained to agree on the letter they
share. Fill-in crossword puzzles do not come with clues. Given a list of words
and a grid in which some slots are identified, the objective is to fill all the
slots with the given words. The list of words is typically succinct and provided
explicitly.

In a variant of fill-in crossword puzzle currently proposed in a French TV
magazine [16], one has to find up to 14 words and place them in a grid (the grid
is the same for every instance, see Figure 1 for an illustration). The words are
not explicitly listed but they must be valid (for instance, belong to the French
language). In an instance of the game, some specified letters have a positive
weight; the other letters have weight zero. The objective is to find a solution
whose weight – defined as the total sum of the letters written in the grid – is at
least a given threshold.

The present work deals with a theoretical study of this fill-in crossword puz-
zle (the grid is not limited to the one of Figure 1). We are mainly interested in
two problems: Can the grid be entirely completed? How can the weight of a so-
lution be maximized? Hereafter, these problems are called Crossword Puzzle
Decision and Crossword Puzzle Optimization (CP-Dec and CP-Opt in
short), respectively.
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Figure 1: Place valid words in this grid. In a possible instance, letters S, U, I, V, R, E, and
T have weight 7, 5, 4, 2, 6, 1, and 3, respectively. Any other letter has null weight. Try to
obtain at least 330 points.

CP-Dec is not new; see GP14 in [6]. The proof of NP-completeness is cred-
ited to a personal communication with Lewis and Papadimitriou. Thereafter,
an alternative NP-completeness proof appeared in [4] (see also [14]). Other
articles on crossword puzzles exist and they are mostly empirically validated
techniques coming from Artificial Intelligence and Machine Learning; see for
example [7, 17, 15, 1, 23, 22] and references therein.

Our Results Our goal in this paper is to pinpoint the relevant structural
parameters that make filling crossword puzzles intractable. We begin by exam-
ining the structure of the given grid. It is natural to think that, if the structure
of the grid is tree-like, then the problem should become easier, as the vast ma-
jority of problems are tractable on graphs of small treewidth. We only partially
confirm this intuition: by taking into account the structure of a graph that en-
codes the intersections between slots (the grid graph) we show in Section 3 that
CP-Opt can be solved in polynomial time on instances of constant treewidth.
However, our algorithm is not fixed-parameter tractable and, as we show, this
cannot be avoided, even if one considers the much more restricted case where
the problem is parameterized by the number of horizontal slots, which trivially
bounds the grid graph’s treewidth (Theorem 3). More devastatingly, we show
that if we also impose the natural rule that words cannot be reused, the problem
already becomes NP-hard when the grid graph is a matching for alphabets of size
3 (Theorem 5), or a union of stars for a binary alphabet (Theorem 4). Hence,
a tree-like structure does not seem to be of much help in rendering crosswords
tractable.

We then go on to consider CP-Opt parameterized by the total number of
slots n. This is arguably a very natural parameterization of the problem, as
in real-life crosswords, the size of the grid can be expected to be significantly
smaller than the size of the dictionary. We show that in this case the problem
does become fixed-parameter tractable (Corollary 9), but the running time of
our algorithm is exponential in n2. Our main result is to show that this disap-
pointing dependence is likely to be best possible: even for a binary alphabet,
an algorithm solving CP-Dec in time 2o(n

2) would contradict the randomized
ETH (Theorem 13). Note that all our positive results up to this point work for
the more general CP-Opt, while our hardness results apply to CP-Dec.

Afterwards, in Section 5 we consider the approximability of CP-Opt. Here,
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it is easy to obtain a 1
2 -approximation by only considering horizontal or vertical

slots. We are only able to slightly improve upon this, giving a polynomial-time
algorithm with ratio 1

2 +O( 1
n ). Our main result in this direction is to show that

this is essentially best possible: obtaining an algorithm with ratio 1
2 + ε would

falsify the Unique Games Conjecture (Theorem 16).
Before concluding, we explore in Section 6 the cases where CP-Dec can

be resolved in polynomial time. We propose reductions from CP-Dec to some
well-known problems that belong to P .

2. Problem Statement, Encoding and Preliminaries

We are given a dictionary D = {d1, . . . dm} whose words are constructed
on an alphabet L = {l1, . . . l`} of constant size (i.e., ` = O(1)), and a two-
dimensional grid consisting of horizontal and vertical slots. A slot is composed
of consecutive cells. Horizontal slots do not intersect each other; the same goes
for vertical slots. However horizontal slots can intersect vertical slots. A cell
is shared if it lies at the intersection of two slots. Unless specifically stated,
n, m and ` denote the total number of slots, the size of D, and the size of L,
respectively.

In a feasible solution, each slot S receives either a word of D of length |S|, or
nothing (we sometimes say that a slot receiving nothing gets an empty word).
Each cell gets at most one letter, and the words assigned to two intersecting
slots must agree on the letter placed in the shared cell. All filled horizontal slots
get words written from left to right (across) while all vertical slots get words
written from top to bottom (down).

There is a weight function w : L → N. The weight of a solution is the total
sum of the weights of the letters placed in the grid. Observe that the weight of
a solution is smaller than the total sum of the weights of its words because, in
the former, the letters of the shared cells are counted only once.

The two main problems studied in this article are the following. Given a
grid, a dictionary D on alphabet L, and a weight function w : L → N, the
objective of Crossword Puzzle Optimization (CP-Opt in short) is to find
a feasible solution of maximum weight. Given a grid and a dictionary D on
alphabet L, the question posed by Crossword Puzzle Decision (CP-Dec
in short) is whether the grid can be completely filled or not?

Two cases will be considered: whether each word is used at most once, or if
words can be assigned multiple times. In this article, we will sometimes suppose
that some cells are pre-filled with some elements of L. In this case, a solution
is feasible if it is consistent with the pre-filled cells. Below we propose a first
result when all the shared cells are pre-filled.

Proposition 1. CP-Dec and CP-Opt can be solved in polynomial time if all
the shared cells in the grid are pre-filled, whether word reuse is allowed or not.

Proof. If word reuse is allowed, then for each combination of letters placed in
these cells, we greedily fill out the rest of each slot with the maximum value
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word that can still be placed there. This is guaranteed to produce the optimal
solution. On the other hand, if word reuse is not allowed, we construct a bipar-
tite graph, with elements of D on one side and the slots on the other, and place
an edge between a word and a slot if the word can still be placed in the slot. If
we give each edge weight equal to the value of its incident word reduced by the
weight of the letters imposed by the shared cells of the slot, then an optimal
solution corresponds to a maximum weight matching.

One can associate a bipartite graph, hereafter called the grid graph, with each
grid: each slot is a vertex and two vertices share an edge if the corresponding
slots overlap. The grid (and then, the grid graph) is not necessarily connected.

Let us also note that so far we have been a bit vague about the encoding
of the problem. Concretely, we could use a simple representation which lists
for each slot the coordinates of its first cell, its size, and whether the slot is
horizontal or vertical; and then supplies a list of all words in the dictionary and
an encoding of the weight function. Such a representation would allow us to
perform all the basic operations needed by our algorithms in polynomial time,
such as deciding if it is possible to place a word d in a slot S, and which letter
would then be placed in any particular cell of S. However, one drawback of this
encoding is that its size may not be polynomially bounded in n + m, as some
words may be exponentially long. We can work around this difficulty by using
a more succinct representation: we are given the same information as above
regarding the n slots; for each word we are given its total weight; and for each
slot S and word d, we are told whether d fits exactly in S, and if yes, which
letters are placed in the cells of S which are shared with other slots. Since
the number of shared cells is O(n2) this representation is polynomial in n+m
and it is not hard to see that we are still able to perform any reasonable basic
operation in polynomial time and that we can transform an instance given in
the simple representation to this more succinct form. Hence, in the remainder,
we will always assume that the size of the input is polynomially bounded in
n+m.

We will rely on the Exponential Time Hypothesis (ETH) of Impagliazzo,
Paturi, and Zane [11], which states the following:

Conjecture 1. Exponential Time Hypothesis: there exists an ε > 0, such that
3-SAT on instances with n variables and m clauses cannot be solved in time
2ε(n+m).

Note that it is common to use the slightly weaker formulation which states
the ETH as the assumption that 3-SAT cannot be solved in time 2o(n+m). This
is known to imply that k-Independent Set cannot be solved in time no(k)[3].
We use this fact in Theorem 3. In Section 4 we will rely on the randomized
version of the ETH, which has the same statement as Conjecture 1 but for
randomized algorithms with expected running time 2ε(n+m).
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3. When the Grid Graph is Tree-like

In this section we are considering instances of CP-Dec and CP-Opt where
the grid graph is similar to a tree. First, we give an algorithm for both problems
in cases where the grid graph has bounded treewidth and we are allowed to reuse
words. We show that this algorithm is essentially optimal. Then, we show that
CP-Dec and CP-Opt are much harder to deal with, in the case where we are
not allowed to reuse words, by proving that the problems are NP-hard even
for instances where the grid graph is just a matching. For the instances such
that CP-Dec is NP-hard, we know that CP-Opt is NP-hard. That happens
because we can assume that all the letters have weight equal to 1. Hence, a
solution for CP-Dec is an optimal solution for CP-Opt.

3.1. Word Reuse

We propose a dynamic programming algorithm for CP-Opt and hence also
for CP-Dec. Note that it can be extended to the case where some cells of the
instance are pre-filled.

Theorem 2. If we allow word reuse, then CP-Opt can be solved in time (m+
1)tw(n+m)O(1) on inputs where tw is the treewidth of the grid graph.

Proof. As the techniques we are going to use are standard we are sketching some
details. For more details on tree decomposition (definition and terminology) see
[3, Chap. 7]. Assuming that we have a rooted nice tree decomposition of the
grid graph, we are going to perform dynamic programming on the nodes of this
tree decomposition. For a node Bt of the given tree decomposition of the grid
graph we denote by B↓t the set of vertices of the grid graph that appears in
the nodes of the subtree with Bt as a root. Since each vertex of the grid graph
corresponds to a slot, we interchangeably mention a vertex of the grid graph
and its corresponding slot. In particular, we say that a solution σ assigns words
to the vertices of the grid graph, and σ(v) denotes the word assigned to v.

For each node Bt of the tree decomposition we are going to keep all the
triplets (σ,W,Wt) such that:

• σ is an assignment of words to the vertices of Bt;

• W is the weight of σ restricted to the vertices appearing in Bt;

• and Wm is the maximum weight, restricted to the vertices appearing in
B↓t , of an assignment consistent with σ.

In order to create all the possible triplets for all the nodes of the tree decom-
position we are going to explore the nodes from leaves to the root. Therefore,
each time we visit a node we assume that we have already created the triplets
for all its children. Let us explain how we deal with the different types of nodes.

In the Leaf nodes we have no vertices so we keep an empty assignment (σ
does not assign any word) and the weights W and Wm are equal to 0.
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For an Introduce node Bt we need to take in consideration its child node.
Assume that u is the introduced vertex; for each triplet (σ,W,Wm) of the child
node we are going to create all the triplets (σ′,W ′,W ′m) for the new node as
follows. First we find all the words d ∈ D that fit in the corresponding slot
of u and respect the assignment σ (i.e., if there are cells that are already filled
under σ and d uses these cells then it must have the same letters). We create
one triplet (σ′,W ′,W ′m) for each such a d as follows:

• We set σ′(u) := d and σ′(v) := σ(v) for all v ∈ Bt \ {u}.

• We can easily calculate the total weight, W ′, of the words in Bt where the
shared letters are counted only once under the assignment σ′.

• For the maximum weight W ′m we know that it is increased by the same
amount as W ; so we set W ′m = Wm +W ′ −W .

Observe that we do not need to consider the intersection with slots whose ver-
tices appear in B↓t \Bt as each node of a tree decomposition is a cut set.

Finally, we need to take in consideration that we can leave a slot empty. For
this case we create a new word d∗ which, we assume that, fits in all slots and d∗
has weight 0. Because the empty word has weight 0, W ′ and W ′m are identical
to W and Wm so for each triplet of the child node, we only need to extend σ
by assigning d∗ to u. In the case we assign the empty word somewhere we will
consider that the cells of this slot are empty unless another word d 6= d∗ uses
them.

For the Forget nodes we need to restrict the assignments of the child node
to the vertex set of the Forget node, as it has been reduced by one vertex (the
forgotten vertex), and reduce the weight W (which we can calculate easily).
The maximum weight is not changed by the deletion.

However, if we restrict the assignments we may end up with several triplets
(σ,W,Wm) with identical assignments σ. In that case we are keeping only the
triplet with maximum Wm. Observe that we are allowed to keep only triplets
with the maximum Wm because each node of a tree decomposition is a cut set
so the same holds for the Forget nodes. Specifically, the vertices that appear in
the nodes higher than a Forget node Bt of the tree decomposition do not have
edges incident to vertices in B↓t \Bt so we only care for the assignment in Bt.

Finally, we need to consider the Join nodes. Each Join node has exactly two
children. For each possible assignment σ on the vertices of this Join node, we
create a triplet iff this σ appears in a triplet of both children of the Join node.

Because W is related only to the assignment σ, it is easy to see that it will be
the same as in the children of the Join node. So we need to find the maximum
weight Wm. Observe that between the vertices that appear in the subtrees of
two children of a Join node there are no edges except those incident to the
vertices of the Join node. Therefore, we can calculate the maximum weight Wm

as follows: first we consider the maximum weight of each child of the Join node
reduced by W , we add all these weights and, in the end, we add again the W .
It is easy to see that this way we consider the weight of the cells appearing in
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each subtree without those of the slots of the Join node and we add the weight
of the words assigned to the vertices of the Join node in the end.

For the running time we need to observe that the number of nodes of a
nice tree decomposition is O(tw · n) and all the other calculations are polyno-
mial in n + m so we only need to consider the different assignments for each
node. Because for each vertex we have |D|+ 1 choices, the number of different
assignments for a node is at most (|D|+ 1)tw+1.

It seems that the algorithm we propose for CP-Dec is essentially optimal,
even if we consider a much more restricted case.

Theorem 3. CP-Dec with word reuse is W[1]-hard parameterized by the num-
ber of horizontal slots of the grid, even for alphabets with two letters. Further-
more, under the ETH, no algorithm can solve this problem in time mo(k), where
k is the number of horizontal slots.

Proof. We perform a reduction from k-Independent Set, where we are given
a graph G = (V,E) with |V | vertices and |E| edges and are looking for an
independent set of size k. This problem is well-known to be W[1]-hard and not
solvable in |V |o(k) time under the ETH [3]. We assume without loss of generality
that |E| 6= k. Furthermore, we can safely assume that G has no isolated vertices.

We first describe the grid of our construction which fits within an area of
2k − 1 lines and 2|E| − 1 columns. We construct:

1. k horizontal slots, each of length 2|E| − 1 (so each of these slots is as long
horizontally as the whole grid). We place these slots in the unique way
so that no two of these slots are in consecutive lines. We number these
horizontal slots 1, . . . , k from top to bottom.

2. |E| vertical slots, each of length 2k−1 (so each of these slots is long enough
to cover the grid top to bottom). We place these slots in the unique way
so that no two of them are in consecutive columns. We number them
1, . . . , |E| from left to right.

Before we describe the dictionary, let us give some intuition about the grid.
The main idea is that in the k horizontal slots we will place k words that signify
which vertices we selected from the original graph. Each vertical slot represents
an edge of E, and we will be able to place a word in it if and only if we have
not placed words representing two of its endpoints in the horizontal slots.

Our alphabet has two letters, say 0, 1. In the remainder, we assume that
the edges of the original graph are numbered, that is, E = {e1, . . . , e|E|}. The
dictionary is as follows:

1. For each vertex v we construct a word of length 2|E| − 1. For each i ∈
{1, . . . , |E|}, if the edge ei is incident on v, then the letter at position 2i−1
of the word representing v is 1. All other letters of the word representing
v are 0. Observe that this means that if ei is incident on v and we place
the word representing v on a horizontal slot, the letter i will appear on
the i-th vertical slot. Furthermore, the word representing v has a number
of 1s equal to the degree of v.
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2. We construct k + 1 words of length 2k − 1. One of them is simply 02k−1.
The remaining are 02j−2102k−2j , for j ∈ {1, . . . , k}, that is, the words
formed by placing a 1 in an odd-numbered position and 0s everywhere
else. Observe that if we place one of these k words on a vertical slot, a 1
will be placed on exactly one horizontal slot.

u1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

v1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

u1v1 u1v2 u1v3 u1v4 u2v1 u2v2 u2v3 u2v4

(α) We can not fill the first vertical slot.

v1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

v2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

v3 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

v4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

u1v1 u1v2 u1v3 u1v4 u2v1 u2v2 u2v3 u2v4

(β) We can fill all vertical slots.

u1

u2

v1

v2

v3

v4

Figure 2: In the left, we have the given graph where we want to find an independent set of
size 4. In the right, we have the created grid. (α): We have placed the word that represents
u1 (in the first horizontal slot) and the word that represents v1 (in the second horizontal slot).
Because both forces 1s in the vertical slot that represents the edge u1v1, we cannot fill this
slot. This happens because S = {u1, v1} is not an independent set of the starting graph. (β):
We have placed the words that represent v1, . . . , v4 into the horizontal slots. Now, we can
fill all vertical slots as we have a maximum of one 1 per vertical slot. This happens because
S = {v1, . . . , v4} is an independent set of the starting graph.

This completes the construction. We now observe that we have constructed
exactly k horizontal slots, therefore, if the reduction preserves the answer, the
hardness results for k-Independent Set transfer to our problem, since we
preserve the value of the parameter.

We claim that if there exists an independent set of size k in G, then it is
possible to fill the grid. Indeed, take such a set S and for each v ∈ S we place
the word representing v in a horizontal slot. Consider the i-th vertical slot. We
will place in this slot one of the k + 1 words of length 2k − 1. We claim that
the vertical slot at this moment contains the letter 1 at most once, and if 1
appears it must be at an odd position (since these are the positions shared with
the horizontal slots). If this is true, clearly there is a word we can place. To
see that the claim is true, recall that since S is an independent set of k distinct
vertices, there exists at most one vertex in S incident on ei.
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For the converse direction, recall that |E| 6= k. This implies that if there
is a way to fill out the whole grid, then words representing vertices must go
into horizontal slots and words of length 2k − 1 must go into vertical slots. By
looking at the words that have been placed in the horizontal slots we obtain
a collection of k (not necessarily distinct) vertices of G. We will prove that
these vertices must actually be an independent set of size exactly k. To see this,
consider the i-th vertical slot. If our collection of vertices contained two vertices
incident on ei, it would have been impossible to fill out the i-th vertical slot,
since we would need a word with two 1s. Observe that the same argument rules
out the possibility that our collection contains the same vertex v twice, as the
column corresponding to any edge ei incident on v would have been impossible
to fill.

Notice that the number of horizontal slots is an upper bound on the size of
a minimum vertex cover of the grid graph which also bounds the treewidth of
the grid graph. This shows that the algorithm of Theorem 2 for CP-Dec is
essentially optimal.

3.2. No Word Reuse

If a word cannot be reused, then CP-Dec looks more challenging. Indeed,
in the following theorem we prove that if reusing words is not allowed, then the
problem becomes NP-hard even if the grid graph is acyclic and the alphabet
size is 2. (Note that if the alphabet size is 1, the problem is trivial, independent
of the structure of the graph.)

Theorem 4. CP-Dec is NP-hard, even for instances where all of the following
restrictions apply: (i) the grid graph is a union of stars (ii) the alphabet contains
only two letters (iii) words cannot be reused.

Proof. We show a reduction from 3-Partition. Recall that in 3-Partition we
are given a collection of 3n distinct positive integers x1, . . . , x3n and are asked
if it is possible to partition these integers into n sets of three integers (triples),
such that all triples have the same sum. This problem has long been known
to be strongly NP-hard [6] and NP-hardness when the integers are distinct was

shown by Hulett et al. [10]. We can assume that
∑3n
i=1 xi = nB and that if a

partition exists each triple has sum B. Furthermore, we can assume without
loss of generality that xi > 6n for all i ∈ {1, . . . , 3n} (otherwise, we can simply
add 6n to all numbers and adjust B accordingly without changing the answer).

Given an instance of 3-Partition as above, we construct a crossword in-
stance as follows. First, the alphabet only contains two letters, say the letters
∗ and !. To construct our dictionary we do the following:

1. For each i ∈ {1, . . . , 3n}, we add to the dictionary one word of length xi
that begins with ! and n − 1 words of length xi that begin with ∗. The
remaining letters of these words are chosen in an arbitrary way so that all
words remain distinct.
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2. For each i, j, k ∈ {1, . . . , 3n} with i < j < k we check if xi+xj+xk = B. If
this is the case, we add to the dictionary the word ∗2i−2!∗2j−2i−1!∗2k−2j−1!∗6n−2k.
In other words, we constructed a word that has ∗ everywhere except in
positions 2i− 1, 2j− 1, and 2k− 1. The length of this word is 6n− 1. Let
f be the number of words added to the dictionary in this step. We have
f ≤ (3n

3 ) = O(n3).

We now also need to specify our grid. We first construct f horizontal slots,
each of length 6n − 1. Among these f slots, we select n, which we call the
“interesting” horizontal slots. For each interesting horizontal slot, we construct
3n vertical slots, such that the i-th of these slots has length xi and its first cell
is the cell in position 2i − 1 of the interesting horizontal slot. This completes
the construction, which can clearly be carried out in polynomial time. Observe
that the first two promised restrictions are satisfied as we have an alphabet with
two letters and each vertical slot intersects at most one horizontal slot (so the
grid graph is a union of stars).

We claim that if there exists a partition of the original instance, then we
can place all the words of the dictionary on the grid. Indeed, for each i, j, k ∈
{1, . . . , 3n} such that {xi, xj , xk} is one of the triples of the partition, we have
constructed a word of length 6n−1 corresponding to the triple (i, j, k), because
xi + xj + xk = B. We place each of these n words on an interesting horizontal
slot and we place the remaining words of length 6n − 1 on the non-interesting
horizontal slots. Now, for every i ∈ {1, . . . , 3n} we have constructed n words,
one starting with ! and n − 1 starting with ∗. We observe that among the
interesting horizontal slots, there is one that contains the letter ! at position
2i − 1 (the one corresponding to the triple containing xi in the partition) and
n − 1 containing the letter ∗ at position 2i − 1. By construction, the vertical
slots that begin in these positions have length xi. Therefore, we can place all n
words corresponding to xi on these vertical slots. Proceeding in this way we fill
the whole grid, fulfilling the third condition.

For the converse direction, suppose that there is a way to fill the whole
grid. Then, vertical slots must contain words that were constructed in the
second step and represent integers xi, while horizontal slots must contain words
constructed in the first step (this is a consequence of the fact that xi > 6n for
all i ∈ {1, . . . , 3n}). We consider the n interesting horizontal slots. Each such
slot contains a word that represents a triple (i, j, k) with xi + xj + xk = B. We
therefore collect these n triples and attempt to construct a partition from them.
To do this, we must prove that each xi must belong to exactly one of these
triples. However, recall that we have exactly n words of length xi (since all
integers of our instance are distinct) and exactly n vertical slots of this length.
We conclude that exactly one vertical slot must have ! as its first letter, therefore
xi appears in exactly one triple and we have a proper partition.

Actually, the problem remains NP-hard even in the case where the grid graph
is a matching and the alphabet contains three letters. This is proved for grid
graphs composed of T s, where a T is a horizontal slot solely intersected by the
first cell of a vertical slot.
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Theorem 5. CP-Dec is NP-hard, even for instances where all of the following
restrictions apply: (i) each word can be used only once (ii) the grid is consisted
only by T s and (iii) the alphabet contains only three letters.

In order to prove this theorem we need first to define a restricted version of
Exactly-1 3-SAT.

Definition 1 (Restricted Exactly 1 (3,2)-SAT). Assume that φ is a CNF
formula where each clause has either three or two literals and each variable
appears at most three times. We want to determine whether there exists a
satisfying assignment so that each clause has exactly one true literal.

Lemma 6. The Restricted Exactly-1 (3,2)-SAT is NP-complete.

Proof. We show a reduction from Exactly-1 3-SAT which is known to be
NP-complete [6] (lo4, one-in-three 3sat).

Let I = (φ,X) be an instance of Exactly-1 3-SAT with |X| = n variables
and m clauses. If there exists a variable x with k > 3 appearances, we replace
each appearance with a fresh variable xi, i ∈ [k] and add to the formula the
clauses (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) . . . (¬xk ∨ x1). We repeat this for all variables
that appear more than three times. Let I ′ = (φ′, X ′) be this new instance.

We claim that I = (φ,X) is a yes instance of Exactly-1 3-SAT iff I ′ =
(φ′, X ′) is a yes instance of Restricted Exactly-1 (3,2)-SAT.

Let S : X → {T, F} be a satisfying assignment for φ such that each clause of
φ has exactly one true literal. It is not hard to see that S′ : X ′ → {T, F} such
that S′(x) = S(x) if x ∈ X and S′(xi) = S(x) if xi replaces one appearance of
x ∈ X, is a satisfying assignment for φ′ such that each clause of φ′ has exactly
one true literal.

Conversely, let S′ : X ′ → {T, F} be a satisfying assignment for φ′ such that
each clause of φ′ has exactly one true literal. Let xi, i ∈ [k], be the variables
replacing x. Because we have clauses (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) . . . (¬xk ∨ x1) we
know that all the xi, i ∈ [k], must have the same value in order to guarantee
that all of these clauses have exactly one true literal. Furthermore, is not hard
to see that S : X → {T, F} where S(x) = S′(x) if x ∈ X ′ and S(x) = S′(x1)
if x1 replaces one appearance of x, then S is a satisfying assignment for φ such
that each clause of φ has exactly one true literal.

Now, let us give a construction that we are going to use.
Construction.
Let φ be an instance of Restricted Exactly 1 (3,2)-SAT with variables
X = {x1, . . . , xn} and clauses C = {c1, . . . , cm}. We will construct an instance
of the crossword problem with alphabet L = {s1, s2, s3} where each letter has
weight 1. The dictionary D is as follows.

Let nlj ∈ {2, 3} be the number of literals in cj . For each variable xi, let
ai ≤ 3 be the number of its appearances in φ. Then, we create 3ai words, di,k,T ,
di,k,F and di,k, for each k ∈ [ai] as follows.

• di,k,T and di,k,F have length m+ n+ 3i+ k,
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• the last letter of di,k,T is sk,

• the last letter of di,k,F is sk′ where k′ := k + 1 when k < ai, otherwise
k′ := 1,

• if the k-th appearance of xi is positive then, di,k,T starts with s1 and di,k,F
starts with s2,

• if the k-th appearance of xi is negative then, di,k,T starts with s2 and
di,k,F starts with s1,

• the word di,k has length m+ i+ 1 and starts with sk, and

• all the other letters of these words can be chosen arbitrarily.

Observe that the above process gives three words for each literal in φ.
For each clause cj , j ∈ [m], we construct nlj distinct words dtj , t ∈ [nlj ] of

length 1+j such that one of them starts with the letter s2, the other nlj−1 words
start with s1, and the unspecified letters can be chosen arbitrarily. Observe that
we have enough positions in order to create nlj − 1 distinct words starting with
s1, which indicates that we can create nlj pairwise distinct words for each cj .

In order to finish our construction we have to specify the grid. For each
clause cj and each literal l in cj we construct two pairs of slots as follows. Let
l be the k-th appearance of variable xi, k ∈ [ai]. The first pair of slots (type 1)

consists of one horizontal slot hSloti,kj,1 of length m+n+ 3i+k, and one vertical

slot vSloti,kj,1 of length m + i + 1 such that, the last cell of the horizontal slot
and the first cell of the vertical slot is the shared cell. The second pair of slots
(type 2) consists of one horizontal slot hSloti,kj,2 of length m + n + 3i + k, and

one vertical slot vSloti,kj,2 of length j + 1, that share their first cells. Here let us
mention that the grid we constructed is consisted only by T s.

Before we continue with the proof let us observe that in the instance of
crossword puzzle we created the number of slots in the grid is equal to the
number of words in the dictionary. Furthermore, we can specify in which slots
each word can be assigned by considering the size of the words and slots. For
any i ∈ [n] and k ∈ [ai] the word di,k can be assigned only to the vertical slots
of the type 1 pairs of slots. For any j ∈ [m] and t ∈ [nlj ] the word dtj can be
assigned only to the vertical slots of the type 2 pairs of slots. The rest of the
words can be assigned to horizontal slots of any type.

Let us first prove the following property where j(i, k) denotes the index of
the clause where the k-th occurrence of xi appears.

Property 1. For any given i ∈ [n], slots hSloti,kj(i,k),1 and vSloti,kj(i,k),1 for k ∈
[ai] are all filled iff we have assigned either all the words of {di,k,T : k ∈ [ai]},
or all the words of {di,k,F : k ∈ [ai]}, to the slots hSloti,kj(i,k),1, k ∈ [ai].

Proof. In one direction, if we have assigned to slots hSloti,kj(i,k),1, k ∈ [ai], all

the words of {di,k,T : k ∈ [ai]} or all the words of {di,k,F : k ∈ [ai]}, then all the
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letters s1, . . . , sai appear exactly once in the end of these ai slots. Because the
words of {di,k: k ∈ [ai]} start exactly with this set of letters, there is a unique

way to assign them properly to the slots vSloti,kj(i,k),1, k ∈ [ai].

Conversely, assume that all the type 1 pairs of slots of xi are filled. Because
the only words that have the same length as slots vSloti,kj(i,k),1, k ∈ [ai], are the

words of {di,k : k ∈ [ai]}, we know that in the end of slots hSloti,kj(i,k),1, k ∈ [ai],

each letter of {s1, . . . , sai} appears exactly once. It is not hard to see that no
combination of words except {di,k,T : k ∈ [ai]} or {di,k,F : k ∈ [ai]}, gives the
same letters in the shared positions.

Now we are ready to present the proof of Theorem 5.

Proof. We show a reduction from Restricted Exactly 1 (3,2)-SAT. We
claim that φ is a yes instance of Restricted Exactly 1 (3,2)-SAT iff we can
fill all the slots of the grid.

Suppose f : X → {T, F} is a truth assignment so that each clause of φ has
exactly one true literal that satisfies φ.

We are going to show a way to fill all the slots of the grid. Each variable
xi appears in ai literals; let l(i, k), k ∈ [ai], be these literals and j(i, k) ∈ [m],
k ∈ [ai], be the indices of the clauses cj(i,k) that contain the corresponding
literals.

For each variable xi, fill the 3ai slots hSloti,kj(i,k),1, hSloti,kj(i,k),2 and vSloti,kj(i,k),1
for all k ∈ [ai] as follows. If f(xi) = T , then:

• assign di,k,T to hSloti,kj(i,k),1 for all k ∈ [ai] and

• assign di,k,F to hSloti,kj(i,k),2 for all k ∈ [ai].

Otherwise (f(xi) = F ):

• assign di,k,F to hSloti,kj(i,k),1 for all k ∈ [ai] and

• assign di,k,T to hSloti,kj(i,k),2 for all k ∈ [ai].

Finally, in both cases, we assign the words of {di,k : k ∈ [ai]} to the slots

vSloti,kj(i,k),1 for k ∈ [ai] in any way they fit.

In order to fill the grid completely, for each j ∈ [m], we assign to the nlj
slots, vSloti,kj,2, the words dk

′

j for k′ ∈ [nlj ] in any way they fit.
It is not hard to see that we have assigned words to slots of the same length.

It remains to prove that the words we have assigned have the same letters in
the shared positions.

First observe that for a variable xi and the slots hSloti,kj(i,k),1, k ∈ [ai], we

have put either {di,k,T : k ∈ [ai]} or {di,k,F : k ∈ [ai]}. Therefore, we know by

Property 1 that we can use the words of {di,k : k ∈ [ai]} in the slots vSloti,kj(i,k),1,

k ∈ [ai].
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In the nlj slots, vSloti,kj,2, related to clause cj , we have put the words dk
′

j ,
k′ ∈ [nlj ]. One of these words starts with s2 and the nlj − 1 others start with
s1. We will show that the same holds for the words we have assigned in the nlj
slots hSloti,kj,2.

Observe that each literal l ∈ cj can be described by a unique triplet (j, i, k)
where j ∈ [m] is the index of the clause, i ∈ [n] is the index of the variable xi
on which l is built, and k ∈ [ai] is the number of times that xi has appeared in
φ until now. We claim that if the literal l described by (j, i, k) satisfies cj , then

the word assigned to hSloti,kj,2 starts with s2, otherwise it starts with s1.
If l satisfies cj , then either l = xi and f(xi) = T or l = ¬xi and f(xi) = F .

If l = xi (resp., l = ¬xi), then we have assigned di,k,F (resp., di,k,T ) to hSloti,kj,2
which starts with s2 because f(xi) = T (resp., f(xi) = F ). If l does not satisfy
cj , then we used di,k,T (resp., di,k,F ) which starts with s1.

Finally, because we assumed that each clause is satisfied by exactly one
literal, we know that one of the clause words starts with s2 and the other
nlj − 1 clause words start with s1.

Conversely, we claim that if we can fill the whole grid, then we can construct
a truth assignment f : X → {T, F} such that each clause of φ has exactly one
true literal. Furthermore, one such assignment is the following:

f(xi) =

{
T, if di,1,T is assigned to hSloti,1j(i,1),1,

F, otherwise.
(1)

We first prove the following claim.

Claim. Let l be the literal of a clause cj corresponding to the k-th appearance
of some variable xi. l is true under the truth assignment (1) iff the word in

hSlotsi,kj,2 starts with s2.

Proof. Due to its length, hSlotsi,kj,2 receives either di,k,T or di,k,F , and one
of these words starts with s2 whereas the other starts with s1. Therefore, we
have two cases. In the first case di,k,F starts with s2, then di,k,T starts with s1
and l = xi. In the second case, di,k,T starts with s2, di,k,F starts with s1 and
l = ¬xi.

Assume that di,k,F (resp., di,k,T ) starts with s2. By construction, we have
that l = xi (resp., l = ¬xi).

If di,k,F (resp., di,k,T ) is assigned to hSlotsi,kj,2, then di,k,T (resp., di,k,F )

is assigned to hSlotsi,kj,1. By Property 1 we know that hSlotsi,1j,1 must contain
di,1,T (resp., di,1,F ) so f(xi) = T (resp., f(xi) = F ). So, if di,k,F (resp., di,k,T ) is

assigned to hSlotsi,kj,2, then we know that f(xi) = T (resp., f(xi) = F ) and l = xi
(resp., l = ¬xi) which means that l must be true under the truth assignment
(1).

In reverse direction, if we have assigned di,k,T (resp., di,k,F ) to hSlotsi,kj,2,
then we know that f(xi) = F (resp., f(xi) = T ) and l = xi (resp., l = ¬xi)
thus, l is false under the truth assignment (1).

15



Based on the previous claim, we will show that each clause has exactly one
true literal under the truth assignment f given in (1).

For any j ∈ [m] there are exactly nlj pairs (i, k) where i ∈ [n] and k ∈ [ai]
such that the k-th appearance of xi is in cj . Let Cj be the set that contains
contains all these pairs (i, k).

Observe that for each pair (i, k) ∈ Cj there exists a pair of slots hSlotsi,kj,2,

vSlotsi,kj,2 which share their first cells. Because the grid is full, the nlj vertical

slots, vSlotsi,kj,2, where (i, k) ∈ Cj , must contain the words dtj , t ∈ [nlj ]. One
of these words starts with s2 and nlj − 1 others start with s1. Therefore, the

same must hold for the words that have been assigned in the slots hSlotsi,kj,2 for
(i, k) ∈ Cj .

Using the previous claim, we know that one of the literals in cj is true and
the other nlj − 1 are false under the truth assignment 1. Therefore, if we can
fill the whole grid, then there exists a truth assignment such that exactly one
literal of each clause of φ is true.

Remark 1. In our construction each T has unique shape4 so the problem re-
mains NP -hard even in this case.

Remark 2. Theorem 3 can be adjusted to work also for the case where word
reuse is not allowed. We simply need to add a suffix of length logm to all words
of length 2k − 1 and add rows to the grid accordingly. Hence, under the ETH,
no algorithm can solve this problem in time mo(k), where k is the number of
horizontal slots.

Finally, we present two algorithms. The first is a modification of the algo-
rithm presented in Theorem 2.

Theorem 7. If word reuse is not allowed, then CP-Opt can be solved in time
4m(m+ 1)twnO(1) on inputs where tw is the treewidth of the grid graph.

Proof. The algorithm is similar to the one presented for Theorem 2. The main
difference is that, for each node of the tree decomposition, we also need to keep
a subset of the dictionary. This subset, S, indicates which words have been
already used to fill the slots represented by vertices in the B↓t \ Bt, where t is
the considered node. We will say that S is the set of used words. Since we
do not want to reuse words, we only keep the tuples where, for any pair (σ, S)
appearing in a tuple it holds that:

• σ(v) 6= σ(u) for all v, u ∈ Bt where v 6= u and

• σ(v) /∈ S for all v ∈ Bt.

4Two crosses are of the same shape if they are identical: same number of horizontal cells,
same number of vertical cells, and same shared cell.
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This increases the number of tuples we need to keep by a factor of 2m. We also
need to pay attention when we consider Join and Forget nodes. In a Forget
node t, if c is the child node, v ∈ Bc \Bt and we have a tuple for c that includes
the pair (σ, S) then we create a tuple for t in the same way we created it in
Theorem 2 and we include the set S ∪ σ(v) as the set of used words. Finally in
the Join nodes we keep a tuple for a pair (σ, S) if there exist tuples stored for
the children of the considered node such that:

• the assignments of both tuples is σ and

• the sets S1, S2 stored in the tuples of the children nodes are disjoint, i.e.
S1 ∩ S2 = ∅.

This resolves to an algorithm with running time 4m(m+ 1)twnO(1).

For the second algorithm, observe that by filling the slots represented by a
vertex cover of the grid graph, all the shared cells are pre-filled. Since there are
at most (m+ 1)k (where k is the size of the vertex cover) ways to assign words
to these slots, by Proposition 1, we get the following corollary.

Corollary 8. Given a vertex cover of size k of the grid graph we can solve
CP-Dec and CP-Opt in time (m + 1)k(n + m)O(1). Furthermore, as vertex
cover we can take the set of horizontal slots.

Therefore, the bound given in Remark 2 for the parameter vertex cover is
tight.

4. Parameterized by Total Number of Slots

In this section we consider a much more restrictive parameterization of the
problem: we consider instances where the parameter is n, the total number
of slots. Recall that in Theorem 3 (and Remark 2) we already considered the
complexity of the problem parameterized by the number of horizontal slots of
the instance. We showed that this case of the problem cannot be solved in mo(k)

and that an algorithm with running time roughly (m+ 1)k is possible whether
word reuse is allowed or not.

Since parameterizing by the number of horizontal slots is not sufficient to
render the problem FPT, we therefore consider our parameter to be the total
number of slots. This is, finally, sufficient to obtain a simple FPT algorithm.

Corollary 9. There is an algorithm that solves CP-Dec and CP-Opt in time
O∗((`+1)n

2/4), where n is the total number of slots and ` the size of the alphabet,
whether word reuse is allowed or not.

Proof. Since there are n slots in the instance, even if the grid is a complete
bipartite graph, the instance contains at most n2/4 cells which are shared be-

tween two slots. In time (`+1)n
2/4 we consider all possible letters that could be

placed in these cells. Finally, as we have shown in Proposition 1, each of these
instances can be solved in polynomial time.
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Even though the running time guaranteed by Corollary 9 is FPT for pa-
rameter n, we cannot help but observe that the dependence on n is rather
disappointing, as our algorithm is exponential in the square of n. It is there-
fore a natural question whether an FPT algorithm for this problem can achieve
complexity 2o(n

2), assuming the alphabet size is bounded. The main result of
this section is to establish that this is likely to be impossible.

Overview Our hardness proof consists of two steps. In the first step we
reduce 3-SAT to a version of the same problem where variables and clauses
are partitioned into O(

√
n+m) groups, which we call Sparse 3-SAT. The

key property of this intermediate problem is that interactions between groups
of variables and groups of clauses are extremely limited. In particular, for
each group of variables Vi and each group of clauses Cj , at most one variable
of Vi appears in a clause of Cj . We obtain this rather severe restriction via
a randomized reduction that runs in expected polynomial time. The second
step is to reduce Sparse 3-SAT to CP-Dec. Here, every horizontal slot will
represent a group of variables and every vertical slot a group of clauses, giving
O(
√
n+m) slots in total. Hence, an algorithm for CP-Dec whose dependence

on the total number of slots is subquadratic in the exponent will imply a sub-
exponential time (randomized) algorithm for 3-SAT. The limited interactions
between groups of clauses and variables will be key in allowing us to execute
this reduction using a binary alphabet.

Let us now define our intermediate problem.

Definition 2. In Sparse 3-SAT we are given an integer n which is a perfect
square and a 3-SAT formula φ with at most n variables and at most n clauses,
such that each variable appears in at most 3 clauses. Furthermore, we are
given a partition of the set of variables V and the set of clauses C into

√
n

sets V1, . . . , V√n and C1, . . . , C√n of size at most
√
n each, such that for all

i, j ∈ [
√
n] the number of variables of Vi which appear in at least one clause of

Cj is at most one.

Now, we are going to prove the hardness of Sparse 3-SAT, which is the
first step of our reduction.

Lemma 10. Suppose the randomized ETH is true. Then, there exists an ε > 0
such that Sparse 3-SAT cannot be solved in time 2εn.

The first step of our reduction will be to prove that Sparse 3-SAT cannot
be solved in sub-exponential time (in n) under the randomized ETH, via a
reduction from 3-SAT. To do this, we will need the following combinatorial
lemma.

Lemma 11. For each ε > 0 there exists C > 0 such that for sufficiently large n
we have the following. There exists a randomized algorithm running in expected
polynomial time which, given a bipartite graph G = (A,B,E) such that |A| =
|B| = n and the maximum degree of G is 3, produces a set V ′ ⊆ A ∪ B with
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|V ′| ≥ 2(1− ε)n and a coloring c : V ′ → [k] of the vertices of V ′ with k colors,
where k ≤ C

√
n, such that for all i ∈ [k] we have |c−1(i)| ≤

√
n and for all

i, j ∈ [k] the graph induced by c−1(i) ∪ c−1(j) contains at most one edge.

Proof. Let k = Cd
√
ne, where C is a sufficiently large constant (depending only

on ε) to be specified later. We color each vertex of the graph uniformly at
random from a color in [k], call this coloring c. Let Xi,j be the set of edges
which have as endpoints a vertex of color i and a vertex of color j.

Our algorithm is rather simple: initially, we set V ′ = V . Then, for each
i, j ∈ [k] we check whether Xi,j contains at most one edge. If yes, we do nothing;
if not, we select for each edge e ∈ Xi,j an arbitrary endpoint and remove that
vertex from V ′. In the end we return the set V ′ that remains and its coloring.
It is clear that this satisfies the property that c−1(i) ∪ c−1(j) contains at most
one edge for the graph induced by V ′ for all i, j ∈ [k], so what we need to argue
is that (i) |c−1(i)| ≤

√
n for all i with high probability and (ii) that V ′ has

the promised size with at least constant probability. If we achieve this it will
be sufficient to repeat the algorithm a polynomial number of times to obtain
the claimed properties with high probability, hence we will have an expected
running time polynomial in n.

For the first part, fix an i ∈ [k] and observe that E[|c−1(i)|] ≤ 2
√
n

C . To prove
that all |c−1(i)| are of size at most 4

√
n/C with high probability (and hence also

at most
√
n for C sufficiently large), we will use Chernoff’s Inequality.

Proposition 12 (Chernoff’s Inequality). Let X be a binomial random variable

and ε > 0. Then P [|X − E[X]| > εE[X]] < 2e−ε
2E[X]/3

We take ε = 1. It follows that P [|c−1(i)| > 4
√
n/C] ≤ 2e−2

√
n/3C . Now,

taking the union bound, we obtain that almost surely for all color i, |c−1(i)| <
4
√
n/C
The more interesting part of this proof is to bound the expected size of V ′.

Let e be an edge whose endpoints are colored with colors i and j. We say that
e is good if no other edge in G has one endpoint colored i and the other colored
j by the coloring c. Let u and v be the endpoints of e. The probability of
another edge having endpoints of colors i and j in the graph G − {u, v} is at

most 2|E|
C2n ≤

6
C2 . The probability that at least one of the at most four edges

incident to e has endpoints colored i and j is at most 4
C
√
n

. Thus, the probability

that e is good is at least 1− 6
C2 − 4

C
√
n
> 1− 7

C2 , if n is sufficiently large. Let

X be the number of edges which are not good. Then, E[X] ≤ 7C−2|E|. By
Markov’s Inequality P [X > 21C−2|E|] < 1/3. Thus, with probability at least
2/3, our algorithm will remove at most 21C−2|E| ≤ 63C−2n vertices. Since
we have promised to remove at most 2εn vertices, it suffices to select any value
C ≥ 8√

ε
.

Now, we present the proof of Lemma 10

Proof. Suppose that the statement is false, therefore for any ε > 0 we can solve
Sparse 3-SAT in which the number of variables and clauses can be upper-
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bounded by N in expected time 2εN using some supposed algorithm. Fix an
arbitrary ε′ > 0. We will show how to solve an arbitrary instance of 3-SAT
with n variables and m clauses in expected time 2ε

′(n+m) using this supposed
algorithm for Sparse 3-SAT. If we can do this for any arbitrary ε′, this will
contradict the randomized ETH.

Start with an arbitrary 3-SAT instance φ with n variables and m clauses.
We first edit φ to ensure that each variable appears at most three times. In
particular, if x appears k > 3 times, we replace each appearance of x with a fresh
variable xi, i ∈ [k], and add the clauses (¬x1∨x2)∧(¬x2∨x3)∧ . . .∧(¬xk∨x1).

The number of variables in the new instance is at most n+3m. The number
of clauses is at most 4m. This is because every new clause and every new variable
corresponds to an occurrence of an original variable in an original clause and
there are at most 3m such occurrences.

We now have an instance φ′ equivalent to φ with at most n+ 3m variables
and at most 4m clauses, such that each variable appears at most 3 times. Let N
be the smallest perfect square such that N ≥ n+ 4m. We have N < 10(n+m).
What we need now is to produce a partition of the vertices and clauses of φ′.

In order to produce this partition we invoke Lemma 11 on the incidence
graph of φ′, that is, the bipartite graph where we have variables on one side and
clauses on the other, and edges signify that a variable appears in a clause. Add
some dummy isolated vertices on each side so that both sides of the incidence
graph contain N vertices. We invoke Lemma 11 by setting ε to be ε′/80. We

obtain a coloring of all but at most ε′N
40 ≤

ε′(n+m)
4 of the vertices of the incidence

graph.
Let U be the set of variables and clauses that correspond to uncolored ver-

tices of the incidence graph. Then, for each such variable we produce two
formulas (one by setting it to True and one by setting it to False), and for each
such clause, at most 3 formulas (one by setting each of the literals of the clause
to True). We thus construct at most 3ε

′(n+m)/4 ≤ 2ε
′(n+m)/2 new formulas, such

that one of them is satisfiable if and only if φ was satisfiable. We will then use
the supposed algorithm for Sparse 3-SAT to decide each of these formulas one
by one.

Each new formula we have contains at most N variables and at most N
clauses, and by Lemma 11 we have partitions of the variables and clauses into
C
√
N groups, where C is a constant (that depends on ε′). By setting N ′ =

dCe2N we can view these instances as instances of Sparse 3-SAT, because then
the number of groups becomes equal to the square root of the upper bound on
the number of variables and clauses, and by the properties of Lemma 11 there
is at most one edge between each group of variables and each group of clauses.
Since we suppose that for all ε > 0 such instances can be solved in time 2εN

′
,

by setting ε = ε′/50dCe2 we can solve each formula in 2ε
′(n+m)/5. The total

expected running time of our algorithm is at most 2ε
′(n+m)/2 · 2ε′(n+m)/5 · (n+

m)O(1) ≤ 2ε
′(n+m), so we contradict the ETH.

We are now ready to prove the main theorem of this section.
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Theorem 13. Suppose the randomized ETH is true. Then, there exists an
ε > 0 such that CP-Dec on instances with a binary alphabet cannot be solved
in time 2εn

2 ·mO(1). This holds also for instances where all slots have distinct
sizes (so words cannot be reused).

Proof. Suppose for the sake of contradiction that for any fixed ε > 0, CP-Dec
on instances with a binary alphabet can be solved in time 2εn

2 ·mO(1). We will
then contradict Lemma 10. In particular, we will show that for any ε′ we can
solve Sparse 3-SAT in time 2ε

′N , where N is the upper bound on the number
of variables and clauses. Fix some ε′ > 0 and suppose that φ is an instance
of Sparse 3-SAT with at most N variables and at most N clauses, where N
is a perfect square. Recall that the variables are given partitioned into

√
N

sets, V1, . . . , V√N and the clauses partitioned into
√
N sets C1, . . . , C√N . In the

remainder, when we write V (Cj) we will denote the set of variables that appear
in a clause of Cj . Recall that the partition satisfies the property that for all

i, j ∈ [
√
N ] we have |Vi ∩ V (Cj)| ≤ 1. Suppose that the variables of φ are

ordered x1, x2, . . . , xN .
We construct a grid as follows: for each group Vi we construct a horizontal

slot and for each group Cj we construct a vertical slot, in a way that all slots

have distinct lengths. More precisely, the i-th horizontal slot, for i ∈ [
√
N ] is

placed on row 2i− 1, starts in the first column and has length 2
√
N + 2i. The

j-th vertical slot is placed in column 2j − 1, starts in the first row and has
length 5

√
N + 2j. (As usual, we number the rows and columns top-to-bottom

and left-to-right). Observe that all horizontal slots intersect all vertical slots; in
particular, the cell in row 2i − 1 and column 2j − 1 is shared between the i-th
horizontal and j-th vertical slot, for i, j ∈ [

√
N ]. We define L to contain two

letters {0, 1}.
What remains is to describe the dictionary.

• For each i ∈ [
√
N ] and for each assignment function σ : Vi → {0, 1} we

construct a word wσ of length 2
√
N + 2i. The word wσ has the letter

0 in all positions, except positions 2j − 1, for j ∈ [
√
N ]. For each such

j, we consider σ restricted to Vi ∩ V (Cj). By the properties of Sparse
3-SAT, we have |Vi ∩ V (Cj)| ≤ 1. If Vi ∩ V (Cj) = ∅ then we place letter
0 in position 2j − 1; otherwise we set in position 2j − 1 the letter that
corresponds to the value assigned by σ to the unique variable of Vi∩V (Cj).

• For each j ∈ [
√
N ] and for each satisfying assignment function σ : V (Cj)→

{0, 1}, that is, every assignment function that satisfies all clauses of Cj ,

we construct a word w′σ of length 5
√
N + 2j. The word w′σ has the letter

0 in all positions, except positions 2i − 1, for i ∈ [
√
N ]. For each such

i, we consider σ restricted to Vi ∩ V (Cj). If Vi ∩ V (Cj) = ∅ then we
place letter 0 in position 2i − 1; otherwise we set in position 2i − 1 the
letter that corresponds to the value assigned by σ to the unique variable
of Vi ∩ V (Cj).

The construction is now complete. We claim that if φ is satisfiable, then
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it is possible to fill out the grid we have constructed. Indeed, fix a satisfying
assignment σ to the variables of φ. For each i ∈ [

√
N ] let σi be the restriction

of σ to Vi. We place in the i-th horizontal slot the word wσi
. Similarly, for each

j ∈ [
√
N ] we let σ′j be the restriction of σ to V (Cj) and place w′σ′j

in the j-th

vertical slot. Now if we examine the cell shared by the i-th horizontal and j-th
vertical slot, we can see that it contains a letter that represents σ restricted
to (the unique variable of) Vi ∩ V (Cj) or 0 if Vi ∩ V (Cj) = ∅, and both the
horizontal and vertical word place the same letter in that cell.

For the converse direction, if the grid is filled, we can extract an assignment
σ for the variables of φ as follows: for each x ∈ Vi we find a Cj such that x
appears in some clause of Cj (we can assume that every variable appears in
some clause). We then look at the cell shared between the i-th horizontal and
the j-th vertical slot. The letter we have placed in that cell gives an assignment
for the variable contained Vi∩V (Cj), that is x. Having extracted an assignment
to all the variables, we claim it must satisfy φ. If not, there is a group Cj that
contains an unsatisfied clause. Nevertheless, in the j-th vertical slot we have
placed a word that corresponds to a satisfying assignment for the clauses of Cj ,
call it σj . Then σj must disagree with σ in a variable x that appears in Cj .
Suppose this variable is part of Vi. Then, this would contradict the fact that we
extracted an assignment for x from the word placed in the i-th horizontal slot.

Observe that the new instance has n = 2
√
N slots. If there exists an algo-

rithm that solves CP-Dec in time 2εn
2

mO(1) for any ε > 0, we set ε = ε′/8 (so
ε only depends on ε′) and execute this algorithm on the constructed instance.

We observe that m ≤ 2
√
N · 7

√
N , and that 2εn

2 ≤ 2ε
′N/2. Assuming that N

is sufficiently large, using the supposed algorithm for CP-Dec we obtain an
algorithm for Sparse 3-SAT with complexity at most 2ε

′N . Since we can do
this for arbitrary ε′, this contradicts the randomized ETH.

5. Approximability of CP-Opt

This section begins with a
(
1
2 +O( 1

n )
)
-approximation algorithm which works

when words can, or cannot, be reused. After that, we prove that under the
unique games conjecture, an approximation algorithm with a significantly better
ratio is unlikely.

Theorem 14. CP-Opt is ( 1
2 + 1

2(εn+1) )-approximable in polynomial time, for

all ε ∈ (0, 1].

Proof. Fix some ε ∈ (0, 1]. Let kv := min(d 1εe, n−h) and rv := dn−hkv e, where h
is the number of horizontal slots in the grid. Create rv groups of vertical slots
G1, . . . , Grv such that |Gi| ≤ kv for all i ∈ [rv] and G1 ∪ . . . ∪ Grv covers the
entire set of vertical slots. For each Gi, guess an optimal choice of words, i.e.,
identical to a global optimum, and complete this partial solution by filling the
horizontal slots (use the aforementioned matching technique where the words
selected for Gi are excluded from D). Each slot of

⋃
j 6=iGj gets the empty word.
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Since |Gi| ≤ kv, guessing an optimal choice of words for Gi by brute force
requires at most (m + 1)kv combinations. This is done rv times (once for each
Gi). The maximum matching runs in time O((m + n)2 ·mn). In all, the time
complexity of the algorithm is O((m+ 1)kv · rv · (m+n)2 ·mn) ≤ O((m+ 1)1/ε ·
εn · (m+ n)2 ·mn).

Assume that, given an optimal solution, W ∗H and W ∗V are the total weight
of the words assigned to the horizontal and vertical slots, respectively, both
including the shared cells. Furthermore, let W ∗S be the weight of the letters
assigned to the shared cells in the optimal solution. Observe that the weight
of the optimal solution is W ∗H +W ∗V −W ∗S and the weight of our solution is at
least W ∗H + 1

rv
(W ∗V −W ∗S).

We repeat the same process, but the roles of vertical and horizontal slots are
interchanged. Fix a parameter kh := min(d 1εe, h). Create rh := d hkh e groups of

horizontal slots G1, . . . , Grh such that |Gi| ≤ kh for all i ∈ [rh] and G1∪. . .∪Grh
covers the entire set of horizontal slots. For each Gi, guess an optimal choice of
words and complete this partial solution by filling the vertical slots. Each slot
of
⋃
j 6=iGj gets the empty word.

Using the same arguments as above, we can conclude that the time com-
plexity is O((m + 1)1/ε · εn · (m + n)2 ·mn) and that we return a solution of
weight at least W ∗V + 1

rh
(W ∗H −W ∗S).

Finally, between the two solutions, we return the one with the greater weight.
It remains to argue about the approximation ratio. We need to consider two
cases: W ∗H ≥W ∗V and W ∗V > W ∗H .

SupposeW ∗H ≥W ∗V . The first approximate solution has valueW ∗H+ 1
rv

(W ∗V −
W ∗S) ≥ 1+1/rv

2 (W ∗H+W ∗V−W ∗S). If kv = n−h then rv = 1 and our approximation

ratio is 1. Otherwise, kv = d 1εe and rv = d n−hd1/εee ≤
n−h
d1/εe + 1 = n−h+d1/εe

d1/εe . It

follows that 1
rv
≥ d1/εe

n−h+d1/εe . Use n− h+ d1/εe ≤ n+ 1
ε and d1/εe ≥ 1/ε to get

that 1
rv
≥ 1/ε

n+1/ε = 1
εn+1 . Our approximation ratio is at least 1+1/(εn+1)

2 .

Suppose W ∗V > W ∗H . The second approximate solution has value W ∗V +
1
rh

(W ∗H −W ∗S) > 1+1/rh
2 (W ∗H +W ∗V −W ∗S). If kh = h, then our approximation

ratio is 1. Otherwise, kh = d 1εe and, using the same arguments, our approxima-

tion ratio is at least 1+1/(εn+1)
2 .

Note that 1+1/(εn+1)
2 ≤ 1. In all, we have a 1+1/(εn+1)

2 -approximate solution

in O((m+ 1)1/ε · εn · (m+ n)2 ·mn) for all ε ∈ (0, 1].

The previous approximation algorithm only achieves an approximation ra-
tio of 1

2 + O( 1
n ), which tends to 1

2 as n increases. At first glance this is quite
disappointing, as someone can observe that a ratio of 1

2 is achievable simply
by placing words only on the horizontal or the vertical slots of the instance5.
Nevertheless, we are going to show that this performance is justified, as im-

5This placement is done in a way that maximizes the weight, using the matching technique
as in the proof of Proposition 1.
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proving upon this trivial approximation ratio would falsify the Unique Games
Conjecture (UGC).

Before we proceed, let us recall some relevant definitions regarding Unique
Games. The Unique Label Cover problem is defined as follows: we are given
a graph G = (V,E), with some arbitrary total ordering ≺ of V , an integer R,
and for each (u, v) ∈ E with u ≺ v a 1-to-1 constraint π(u,v) which can be
seen as a permutation on [R]. The vertices of G are considered as variables
of a constraint satisfaction problem, which take values in [R]. Each constraint
π(u,v) defines for each value of u a unique value that must be given to v in order
to satisfy the constraint. The goal is to find an assignment to the variables
that satisfies as many constraints as possible. The Unique Games Conjecture
states that for all ε > 0, there exists R, such that distinguishing instances of
Unique Label Cover for which it is possible to satisfy a (1 − ε)-fraction of
the constraints from instances where no assignment satisfies more than an ε-
fraction of the constraints is NP-hard. In this section we will need a slightly
different version of this conjecture, which was defined by Khot and Regev as the
Strong Unique Games Conjecture. Despite the name, Khot and Regev showed
that this version is implied by the standard UGC. The precise formulation is
the following:

Theorem 15. [Theorem 3.2 of [13]] If the Unique Games Conjecture is true,
then for all ε > 0 it is NP-hard to distinguish between the following two cases
of instances of Unique Label Cover G = (V,E):

• (Yes case): There exists a set V ′ ⊆ V with |V ′| ≥ (1 − ε)|V | and an
assignment for V ′ such that all constraints with both endpoints in V ′ are
satisfied.

• (No case): For any assignment to V , for any set V ′ ⊆ V with |V ′| ≥ ε|V |,
there exists a constraint with both endpoints in V ′ that is violated by the
assignment.

Using the version of the UGC given in Theorem 15 we are ready to present
our hardness of approximation argument for the crossword puzzle.

Theorem 16. Suppose that the Unique Games Conjecture is true. Then, for
all ε with 1

4 > ε > 0, there exists an alphabet Σε such that it is NP-hard to
distinguish between the following two cases of instances of the crossword problem
on alphabet Σε:

• (Yes case): There exists a valid solution that fills a (1− ε)-fraction of all
cells.

• (No case): No valid solution can fill more than a ( 1
2 + ε)-fraction of all

cells.

Moreover, the above still holds if all slots have distinct lengths (and hence
reusing words is trivially impossible).
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Proof. Fix an ε > 0. We will later define an appropriately chosen value ε′ ∈ (0, ε)
whose value only depends on ε. We present a reduction from a Unique Label
Cover instance, as described in Theorem 15. In particular, suppose we have
an instance G = (V,E), with |V | = n, alphabet [R], such that (under UGC) it
is NP-hard to distinguish if there exists a set V ′ of size (1−ε′)n that satisfies all
its induced constraints, or if all sets V ′ of size ε′n induce at least one violated
constraint for any assignment. Throughout this proof we assume that n is
sufficiently large (otherwise the initial instance is easy). In particular, let n > 20

ε .
We construct an instance of the crossword puzzle that fits in anN×N square,

where N = 4n+n2. We number the rows 1, . . . , N from top to bottom and the
columns 1, . . . , N from left to right. The instance contains n horizontal and n
vertical slots. For i ∈ [n], the i-th horizontal slot is placed in row 2i, starting
at column 1, and has length 2n + n2 + i. For j ∈ [n], the j-th vertical slot is
placed in column 2j, starts at row 1 and has length 3n+n2+j. Observe that all
horizontal slots intersect all vertical slots and in particular, for all i, j ∈ [n] the
cell in row 2i, column 2j belongs to the i-th horizontal slot and the j-th vertical
slot. Furthermore, each slot has a distinct length, as the longest horizontal slot
has length 3n+ n2 while the shortest vertical slot has length 3n+ n2 + 1.

We define the alphabet as Σε = [R] ∪ {∗}. Before we define our dictionary,
let us give some intuition. Let V = {v1, . . . , vn}. The idea is that a variable
vi ∈ V of the original instance will be represented by both the i-th horizontal
slot and the i-th vertical slot. In particular, we will define, for each α ∈ [R]
a pair of words that we can place in these slots to represent the fact that vi
is assigned with the value α. We will then ensure that if we place words on
both the i-th horizontal slot and the j-th horizontal slot, where (vi, vj) ∈ E,
then the assignment that can be extracted by reading these words will satisfy
the constraint π(vi,vj). The extra letter ∗ represents an indifferent assignment
(which we need if (vi, vj) 6∈ E).

Armed with this intuition, let us define our dictionary.

• For each i ∈ [n], for each α ∈ [R] we define a word d(i,α) of length 2n +
n2 + i. The word d(i,α) has the character ∗ everywhere except at position
2i and at positions 2j for j ∈ [n] and (vi, vj) ∈ E. In these positions the
word d(i,α) has the character α.

• For each j ∈ [n], for each α ∈ [R] we define a word d′(j,α) of length

3n + n2 + j. The word d′(j,α) has the character ∗ everywhere except at

position 2j and at positions 2i for i ∈ [n] and (vi, vj) ∈ E. In position 2j
we have the character α. In position 2i with (vi, vj) ∈ E, we place the
character β ∈ [R] such that the constraint π(vi,vj) is satisfied by assigning
β to vi and α to vj . (Note that β always exists and is unique, as the
constraints are permutations on [R], that is, for each value α of vj there
exists a unique value β of vi that satisfies the constraint).

This completes the construction. Suppose now that V = {v1, . . . , vn} and
that we started from the Yes case of Unique Label Cover, that is, there
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ith

∗
∗
α
∗
∗
∗
β
∗
∗

jth

∗
∗
α
∗
∗
∗
β

ith ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

jth ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Figure 3: This is a part of the grid we construct. Here, we have assumed that (vi, vj) ∈ E
and assigning α to vi and β to vj satisfies the constraint π(vi,vj). The words that fit in the

ith horizontal slot forcing the same symbol in all the cells that correspond to existing edges.
Here we have forced the letter α. If both the ith horizontal and vertical slots are filled, then
the vertical words force letters in the rest of the slots that satisfy the constraints. Notice that
filling the ith vertical and horizontal slots together with the jth vertical and horizontal slots
is equivalent to assigning to vi and vj integers from [R] such that the constraint π(vi,vj) is

satisfied.

exists a set V ′ ⊆ V such that |V ′| ≥ (1− ε′)n and all constraints induced by V ′

can be simultaneously satisfied. Fix an assignment σ : V ′ → [R] that satisfies
all constraints induced by V ′. For each i ∈ [n] such that vi ∈ V ′ we place in the
i-th horizontal slot (that is, in row 2i) the word d(i,σ(vi)). For each j ∈ [n] such
that vj ∈ V ′ we place in the j-th vertical slot the word d′(j,σ(vj)). We leave all

other slots empty. We claim that this solution is valid, that is, no shared cell is
given different values from its horizontal and vertical slot. To see this, examine
the cell in row 2i and column 2j. If both of the slots that contain it are filled,
then vi, vj ∈ V ′. If (vi, vj) 6∈ E and i 6= j, then the cell contains ∗ from both
words. If i = j, then the cell contains σ(vi) from both words. If i 6= j and
(vi, vj) ∈ E, then the cell contains σ(vi). This is consistent with the vertical
word, as the constraint π(vi,vj) is assumed to be satisfied by σ. We now observe
that this solution covers at least 2(1− ε′)n3 cells, as we have placed 2(1− ε′)n
words, each of length at least n2 + 2n, that do not pairwise intersect beyond
their first 2n characters.

Suppose now we started our construction from a No instance of Unique
Label Cover. We claim that the optimal solution in the new instance cannot
cover significantly more than half the cells. In particular, suppose a solution
covers at least (1 + ε′)n3 + 10n2 cells. We claim that the solution must have
placed at least (1 + ε′)n words. Indeed, if we place at most (1 + ε′)n words, as
the longest word has length n2 +4n, the maximum number of cells we can cover
is (1 + ε′)n(n2 + 4n) ≤ (1 + ε′)n3 + 4(1 + ε′)n2 < (1 + ε′)n3 + 10n2. Let x be the
number of indices i ∈ [n] such that the supposed solution has placed a word in
both the i-th horizontal slot and the i-th vertical slot. We claim that x ≥ ε′n.
Indeed, if x < ε′n, then the total number of words we might have placed is at
most (n− x) + 2x < (1 + ε′)n, which contradicts our previous observation that
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we placed at least (1 + ε′)n words. Let V ′ ⊆ V be defined as the set of vi ∈ V
such that the solution places words in the i-th horizontal and vertical slot. Then
|V ′| ≥ ε′n. We claim that it is possible to satisfy all the constraints induced by
V ′ in the original instance, obtaining a contradiction. Indeed, we can extract
an assignment for each vi ∈ V ′ by assigning to vi value α if the i-th horizontal
slot contains the word d(i,α). Note that the i-th horizontal slot must contain
such a word, as these words are the only ones that have an appropriate length.
Observe that in this case the i-th vertical slot must also contain d′(i,α). Now, for

vi, vj ∈ V ′, with (vi, vj) ∈ E we see that π(vi,vj) is satisfied by our assignment,
otherwise we would have a conflict in the cell in position (2i, 2j). Therefore, in
the No case, it must be impossible to fill more than (1 + ε′)n3 + 10n2 cells.

The only thing that remains is to define ε′. Let C be the total number of
cells in the instance. Recall that we proved that in the Yes case we cover at least
2(1−ε′)n3 cells and in the No case at most (1+ε′)n3 +10n2 cells. So we need to
define ε′ such that 2(1− ε′)n3 ≥ (1− ε)C and (1 + ε′)n3 + 10n2 ≤ ( 1

2 + ε)C. To
avoid tedious calculations, we observe that 2n3 ≤ C ≤ 2n3 + 8n2. Therefore, it
suffices to have 2(1−ε′)n3 ≥ 2(1−ε)(n3+4n2) and (1+ε′)n3+10n2 ≤ (1+2ε)n3.
The first inequality is equivalent to (ε−ε′)n ≥ 4(1−ε) and the second inequality
is equivalent to (2ε − ε′)n ≥ 10. Since we have assumed that n ≥ 20/ε, it is
sufficient to set ε′ = ε/2.

6. Special Cases Solvable in Polynomial Time

In this section we give some instances of CP-Dec which can be solved in
polynomial time when word reuse is not allowed. Hereafter, we will always
silently assume that word reuse is not allowed. We propose reductions from
these instances to some well-known problems that belong to P . The first of
these problems is 2-SAT which can be solved in linear time (see [5]). The second
problem is the maximum matching problem. In a bipartite graph G = (V,E)
this problem can be solved in O(

√
|V |(|E| + |V |) [9]. For general graphs, a

much more involved algorithm by Micali and Vazirani matches the previous
performance [18]. Finally, we will reduce some instances of CP-Dec to the
Exact Matching problem. Karzanov in [12] proved that Exact Matching with
0-1 weights can be solved in polynomial time in complete balanced bipartite
graphs. In general graphs, under the same weight restrictions, there exists an
RNC algorithm by Mulmuley et al. [19], which implies that Exact Matching
is solvable in randomized polynomial time – though we note that finding a
deterministic polynomial time algorithm for Exact Matching is a notorious open
problem.

If the grid graph of the crossword puzzle is a matching, then we will call
crosses the pairs of slots that intersect. We will say that a pair of words (di, dj),
i 6= j and i, j ∈ [m], indicated by their indices (i, j), can be assigned to a cross
C if di fits into the horizontal slot of this cross, dj fits into the vertical slot and
they have the same letter in the shared cell. In the sequel, pairs (i, j) and (j, i)
for any i 6= j and i, j ∈ [m] will count as different pairs.
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Proposition 17. CP-Dec can solved in polynomial time for instances where
all of the following conditions apply: (i) the grid consists of n/2 crosses, (ii) for
any cross of the grid we have at most two pairs of words that can fit into it.

We can recognize this kind of instances in polynomial time by counting the
pairs that fit in each cross as follows. For each cross Ck, k ∈ [n/2],

• first we find the set Dk,h of words that fit into the horizontal slot of Ck,

• for each word di ∈ Dk,h we find the set of words dj , different from di, that
can fit into the vertical slot of Ck, and such that di and dj agree on the
shared cell of Ck; let Dk,i,v be this set,

• let Pk = {(i, j) | di ∈ Dk,h and dj ∈ Dk,i,v} be the set of pairs that can be
assigned to Ck,

• the number of pairs that fit in Ck is: np(Ck) =
∑
i:di∈Dk,h

|Dk,i,v|.

So we can recognize if we have this kind of instance by checking if np(Ck) ≤ 2
for all k ∈ [n/2]. Furthermore, the above process is polynomial and can give
us the pairs of words that can be assigned to each cross. Now, we are going to
present the proof of Proposition 17.

Proof. First let D = {d1, . . . , dm} be the dictionary, Ck, k ∈ [n/2], be all the
crosses of the grid and Pk, k ∈ [n/2], the pairs of word indices that can be
assigned to Ck. Observe that if Pk = 0 for some k ∈ [n/2], then we know that
we can not completely fill the grid. Moreover, if Pk = 1, for some k ∈ [n/2],
then there exists only one pair (i, j) for the cross Ck so we can assign the only
pair of words that fits into Ck and reduce the instance by removing Ck from the
grid, and the words from the dictionary. Therefore, we can assume that Pk = 2
for all k ∈ [n/2].

From the sets Pk, k ∈ [n/2], we will construct an instance of 2-SAT that is
satisfiable if and only if we can completely fill the given grid without reusing the
words of the dictionary D. Before we continue the construction, let us mention
that 2-SAT can be solved in linear time [5].

We start by creating
∑
k∈[n/2] |Pk| = n variables as follows; for each k ∈ [n/2]

and each (i, j) ∈ Pk we create the variable xk,i,j . Let X be the set of all the
variables we created. Now, we will construct a CNF formula φ such that each
clause contains at most two variables. First we add in φ n/2 clauses ck, k ∈ [n/2]
as follows. For each cross Ck, k ∈ [n/2], we add the clause ck = (xk,i,j ∨ xk,i′,j′)
where (i, j) and (i′, j′) are in Pk.

After that, for all i ∈ [m] let Xi be the set of variables related to the word di,
i.e., Xi := X ∩ {xk,i,j , xk,j,i | k ∈ [n/2] and dj ∈ D}. If |Xi| ≥ 2, then for any
pair of variables x, x′ ∈ Xi, x 6= x′, we add in φ a new clause (¬x ∨ ¬x′). That

process creates
∑
i∈[m]

(|Xi|
2

)
< mn2 additional clauses as |Xi| ≤ n. Therefore,

the number of clauses in φ is O(mn2).
It remains to prove that φ is satisfiable if and only if we can completely

fill the grid. Assume that φ is satisfiable and f : X → {T, F} is a satisfying
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assignment. Then, we claim that for each k ∈ [n/2] there exists at least one
variable xk,i,j such that f(xk,i,j) = T . For k ∈ [n/2], we select one such a
variable, xk,i,j , and we assign di horizontally and dj vertically to the cross Ck.

Let us argue why there is always such a variable for each k ∈ [n/2]. By
construction, for each k ∈ [n/2] we have a clause ck that can be satisfied only if
a variable xk,i,j , such that (i, j) ∈ Pk, has the value T . So, we know that for each
k ∈ [n/2] we have one such a variable. Furthermore, since (i, j) ∈ Pk, the words
di and dj fits to the horizontal and vertical slots of the cross Ck respectively.

We need to prove that we have not assigned the same word to more than
one crosses. Assume that we have assigned a word di to two different crosses.
Then, there exist two variables x and x′ in Xi such that f(x) = f(x′) = T .
This is a contradiction because for each such pair of variables we have a clause
(¬x ∨ ¬x′).

For the reverse direction we will show the following. If the grid is completely
filled then the truth assignment f such that

f(xk,i,j) =

{
T, if we have assigned the pair (i, j) ∈ Pk to the cross Ck,
F, otherwise,

is a satisfying assignment for the formula φ. First, observe that for each k ∈ [n/2]
the clause ck is satisfied because in Ck we have assigned a pair (i, j) ∈ Pk (these
are the only pairs that can be assigned to Ck) so the variable xk,i,j that appears
positively in ck takes the value T by f . In order to complete the proof we need
to show that at most one of the variables in Xi is true. Observe that if two of
them are true then we know that we have two pairs of words containing di and
they are assigned to a cross. This is a contradiction because we can not reuse
words.

If the shared cell of a cross is the first cell of the vertical slot, then the
cross is called T because the slots have the form of a capital T . The next
proposition shows that under some restrictions, the crossword problem can be
solved efficiently if the grid is only made of T ’s. We remark that the grid could
have an unbounded number of different kinds of T ’s.

Proposition 18. CP-Dec can be solved in polynomial time if the alphabet L
has only 2 letters, l1 and l2, and the grid has the following properties: (i) it
only consists of T ’s and (ii) all the horizontal slots have length `h and all the
vertical slots have length `v, where `h 6= `v.

Proof. Starting from the dictionaryD, we can create two disjoint sub-dictionaries
Dh and Dv containing the words that can fit into the horizontal slots and vertical
slots, respectively.

Now, let di, i ∈ [|Dh|] be the words in Dh and d′i, i ∈ [|Dv|] be the words in
Dv. Furthermore, let m1 and m2 be the number of words in Dv that start with
l1 and l2, respectively. Finally, let us call Ti, for each i ∈ [n/2], the T ’s of the
grid.
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Observe that, for any completely filled grid, we know the minimum and
the maximum possible number of appearances of the symbol l1 in the shared
cells. In particular, since m2 words of Dv do not start with l1 we have at least
w1 = max{0, n/2 − m2} appearances and since m1 words of Dv start with l1
we have at most w2 = min{n/2,m1} appearances. So we need to decide if
there exists a way to fill completely the horizontal slots of the grid that forces
w appearances of l1 in the shared cells for a w ∈ {w1, . . . , w2}.

Based on Dh and the T ’s we will construct an instance of the Exact
Matching problem. First, we create a complete balanced bipartite graph
G = (V,U,E) where V = {v1, . . . , v|Dh|} represents the words in Dh, vertices
uj ∈ U where j ∈ [n/2] represent the T ’s of the grid and vertices uj ∈ U such
that j ∈ {n/2 + 1, . . . , |Dh|} are added so that G is balanced.

It remains to assign weights to the edges. For each edge (vi, uj) ∈ E, if
i ∈ [|Dh|], j ∈ [n/2] and di contains symbol l1 in the position of the shared cell
of the horizontal slot of Tj , then (vi, uj) has weight 1, otherwise its weight is 0.

Now it is not difficult to observe that G has a perfect matching of weight
exactly w if and only if we can fill all the horizontal slots of the grid with words
of Dh such that l1 appears exactly w times in the shared cells. Finally, we can
decide if G has a perfect matching of weight w, for any w ∈ {w1, . . . , w2}, in
polynomial time by using Theorem 1 in [12].

Remark 3. The same proof works if instead of T ’s (where two slots intersect
only in the first position of the vertical slot), one has crosses such that any two
slots that intersect do so only at the same position of the vertical slot.

At first sight, the case covered by Proposition 18 looks restricted but it
necessitates to match three objects (1 horizontal word, 1 vertical word, and a
cross) and 3D-matchings are, in general, hard problems [6].

Proposition 19. CP-Dec can be solved in polynomial time if the instance has
the following properties: (i) the grid graph is a matching and (ii) the number of
different types of crosses6 is a constant.

Proof. First, we will prove that if we know the number of appearances of each
letter in the shared cells of each type of crosses, then we can find a way to fill
the grid (if there exists one) using the maximum matching problem.

Let t ∈ N be the number of different types of crosses and let L = {l1, . . . , l`}
be the alphabet. Furthermore, suppose that the given instance has a solution
and that we are given values ai,j , i ∈ [`] and j ∈ [t] which indicate the number
of appearances of the letter li in the shared cell of type j crosses in this solution.
In the end we will repeat the algorithm for all combinations of such values, so
we can assume that these values are given to us in the input. We will therefore
look for a solution that agrees with the given values ai,j .

Now, we construct the following bipartite graph.

6Two crosses are of the same type if they are identical: same number of horizontal cells,
same number of vertical cells, and same shared cell.
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• For each pair (i, j) ∈ [`]× [t] we create a set Vi,j = {vi,j,k, v′i,j,k | k ∈ [ai,j ]}
of 2ai,j vertices. Furthermore, let V be the set

⋃
(i,j)∈[`]×[t] Vi,j .

• For each word d ∈ D we create a vertex ud. Let U be the set of these
vertices.

• For all d ∈ D and (i, j) ∈ [`]× [t], if the word d fits in the horizontal slot
of a cross of type j and it forces the letter li in the shared cell of this slot,
then we add all the edges (ud, vi,j,k) where k ∈ [ai,j ].

• Finally, for all d ∈ D and (i, j) ∈ [`]× [t], if the word d fits in the vertical
slot of a cross of type j and it forces the letter li in the shared cell of this
slot, then we add all the edges (ud, v

′
i,j,k) where k ∈ [ai,j ].

Now, we claim that this graph has a matching that covers all the vertices in
V if and only if we can completely fill the grid in a way that respects the given
appearances of the letters. That is, for each letter i ∈ [`] and each type j ∈ [t]
there are exactly ai,j crosses of type j that contain i in the shared cell in the
solution.

In one direction, assume that we have an assignment of words in the grid
that respects the given appearances of the letters. For each (i, j) ∈ [`] × [t] let
Di,j be the set of words that have been assigned to the crosses of type j and
these words force the letter li in the shared cell. Observe that Di,j has size 2ai,j
as it respects the appearances of the letters and for each d ∈ Di,j the vertex ud
is adjacent to vi,j,k, for all k ∈ [ai,j ], if d has been assigned to a horizontal slot
or is adjacent to v′i,j,k, for all k ∈ [ai,j ] if d has been assigned to a vertical slot.

Now we are going to create a matching of the graph. Starting from an empty
set S, for each (i, j) ∈ [`]× [t] and each word d in Di,j , if d has been assigned to
a horizontal slot, then we add in S an edge (ud, vi,j,k) for some k in [ai,j ] that
covers an uncovered vertex vi,j,k; otherwise we add an edge (ud, v

′
i,j,k) for some

k in [ai,j ] that covers an uncovered vertex v′i,j,k (we know that there are enough
vertices by the previous observations).

Observe that S is a matching because each time we add an edge incident to
two uncovered vertices. Furthermore, because the size of Di,j is 2ai,j and we
have exactly ai,j horizontal and ai,j vertical slots we know that we will cover all
the vi,j,k with the corresponding vertices of the horizontal slots and all the v′i,j,k
with the corresponding vertices of the vertical slots. Hence, S is a matching
that covers all the vertices of V .

For the reverse direction, assume that S is a matching that covers all the
vertices of V . Because V is an independent set we know that for all v ∈ V there
exists an edge (ud, v) ∈ S for some word d ∈ D and ud ∈ U . We will assign
words to the slots of the grid as follows. For each edge (ud, vi,j,k) we assign
the word d to an empty horizontal slot of a cross of type j. Because all vi,j,k,
k ∈ [ai,j ], are adjacent to vertices ud such that d fits in the horizontal slots of
crosses of type j and forcing the letter li in the shared cells, we have filled all
the horizontal slots in a way that respects the given appearances of the letters.

Now, we are going to fill the vertical slots. For each edge (ud, v
′
i,j,k) we assign

the word d to an empty vertical slot of a cross of type j where the shared cell
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has the letter li. Because for a given pair (i, j) ∈ [`] × [t] we have ai,j vertices
vi,j,k and v′i,j,k we know that we have forced exactly ai,j times the letter li in
the shared cell of crosses of type j, so we have the exact number of vertical slots
we want.

Finally, because the total number of vertices in V is the same as the number
of slots in the grid, we know that we have completely filled the grid.

Now, note that we can decide in polynomial time if there exists such a
matching (by finding a maximum matching).

In order to complete the proof we need to show that the different guesses
for the number of appearances ai,j , (i, j) ∈ [`]× [t] is polynomially bounded by
the input size. Fix a type j and suppose it has νj crosses. Enumerating all
the possible ai,j ’s is equivalent to choosing ` − 1 positions in a row vector of

size νj + `− 1 (the chosen cells “separate” the ai,j ’s). Then, there are
(
νj+`−1
`−1

)
choices, which is upper bounded by

(
n+`−1
`−1

)
.

Finally, because we have t types of crosses, the total number of guesses is
O(nt`) which is polynomial as t and ` are constant.

So far we have assumed that the size of the alphabet is constant. In contrast,
the next two propositions hold without this hypothesis. Therefore, there are
independent of Proposition 19.

Proposition 20. CP-Dec can be solved in polynomial time when the grid
consists of identical crosses. This holds even if the size of the alphabet is not
constant.

Proof. Let D be the dictionary of size m and let n/2 be the number of crosses
in the grid. In order to answer the question we will create a graph G on m
vertices such that G has a matching of size at least n/2 if and only if we can
completely fill the grid. We construct G = (V,E) as follows: V has exactly one
vertex vi for each word di ∈ D and E contains the edge (vi, vj) if and only if at
least one of the pairs of words (i, j) or (j, i) fits in a cross.

Now, observe that an edge of G gives us a pair of words that can fit into a
cross. Therefore, each matching S represents pairs of words that (all of them)
fit in crosses. Because the words are represented by vertices in the graph, the
pairs we take from a matching are independent as each vertex is covered at most
once by S. Finally, if the matching has at least n/2 edges then we know that
we have enough pairs to fill the grid completely.

Conversely, if we can cover the grid completely, then there exist n/2 distinct
pairs of words that fit in a cross. For each of these pairs we have an edge in G.
Furthermore, the set of these edges is a matching as we have not used the same
word twice so there are no two edges incident to the same vertex. Hence, G has
a matching of size at least n/2.

Because we can find a maximum matching of a graph in polynomial time we
know that we can decide if we can fill the whole grid in the same time.

Proposition 21. CP-Dec is polynomial time reducible to 0-1 Exact Matching
if the grid has the following properties: (i) it is a matching and (ii) the number
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of different types of crosses is a constant. This holds even if the size of the
alphabet is not constant.

Proof. Let t ∈ N be the number of different types of crosses. Let ak, for k ∈
[t], be the number of crosses of type t in the grid. We assume w.l.o.g. that
the number of words |D| = m is even. We first create a multi-graph where
parallel edges are allowed, and we assign weights to the edges from the set
{0,m0, . . . ,mt−1} as follows:

• Let G = (V,E) be a complete graph with m vertices and give weight 0 to
each edge.

• For each k ∈ [t], add a set of edges Ek such that (vi, vj) ∈ Ek if one of
the pairs of words (i, j) or (j, i) fits in a cross of type k ∈ [t]. Give weight
mk−1 to all the edges in Ek.

In order to distinguish the parallel edges, denote by (vi, vj)k the edge (vi, vj) ∈
Ek. Now, we claim that this graph has a perfect matching of weight W =∑
k∈[t] akm

k−1 if and only if we can fill the grid completely.
Assume that the grid is filled and construct a perfect matching as follows.

Start from an empty set S. For each cross, add to S the edge (vi, vj)k where
(i, j) is the pair of words allocated to the cross and k is the type of the cross.
Since reusing words is not allowed, we know that S is a matching. Furthermore,
because each cross of type k has an edge of Ek, we get that S has weight W .
Finally, S can be extended to a perfect matching of the same weight because
all the vertices have edges of weight 0 between them.

Conversely, assume that the graph has a perfect matching S of weight W .
Observe that any perfect matching has exactly m/2 edges. Therefore we know
that we have at most m/2 edges from each set Ek, for any k ∈ [t]. Now we are
going to show that we need exactly ak edges from each set Ek. In particular,
we claim that for any k ∈ {1, . . . , t} we have that |S ∩Ek| = ak. We prove this
by induction.

Base Case (t): Assume that there exists a perfect matching S with weight
W such that |S ∩Et| = bt 6= at. Assume that bt < at. Since 0 ≤ bt, we get that
1 ≤ at. Even if we use a maximum number of edges of maximum weight (i.e.,
m/2 edges of weight mt−2), we cannot compensate, i.e., S cannot have weight
W because mt−2 ·m/2 < mt−1. Now, we have to check the case bt > at. Since
S has weight at least (at + 1)mt−1, we have W ≥ (at + 1)mt−1. That gives us:∑
k∈[t]

akm
k−1 ≥ (at + 1)mt−1 ⇒

∑
k∈[t−1]

akm
k−1 ≥ mt−1 ⇒ mt−2

∑
k∈[t−1]

ak ≥ mt−1

which is a contradiction since
∑
k∈[t−1] ak ≤ m/2. Therefore, for any perfect

matching of weight W it must be |S ∩ Et| = at.
Induction Hypothesis ({k, k + 1, . . . , t}, k > 1): We assume that, for a

given k > 1, |S ∩ Ei| = ai holds for all i ∈ {k, k + 1, . . . , t}.
Induction Step (k−1): For every l ∈ {k, . . . , t} we know that |S∩El| = al.

Therefore, the set S′ = S \
⋃t
l=k(S ∩ El) has weight exactly

∑k−1
l=1 alm

l−1.
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Assume that k − 1 = 1; then
∑k−1
l=1 alm

l−1 = a1. Since S′ consists only of
edges in E1 ∪E, the edges in E1 have weight 1 and the edges in E have weight
0, so we can conclude that S′ contains exactly a1 edges from E1.

Now, we consider the case k − 1 > 1. Similarly to the base case, assume
that |S′ ∩ Ek−1| = bk−1 and bk−1 < ak−1. In this case, even if we use a
maximum number of edges (i.e., m/2) of maximum weight (i.e., mk−2), we
cannot compensate, i.e., mk−2 · m/2 < mk−1. Now we prove that, assuming
bk−1 > ak−1 leads to a contradiction. Indeed, in this case S′ has weight at least
(ak−1 + 1)mk−2 which implies that:∑
l∈[k−1]

alm
l−1 ≥ (ak−1 + 1)mk−2 ⇒

∑
l∈[k−2]

alm
l−1 ≥ mk−2 ⇒ mk−3

∑
l∈[k−2]

ak ≥ mt−1

The last inequality contradicts the fact that
∑
l∈[k−2] ak ≤

∑
l∈[t] at ≤ m/2.

Hence, bk−1 = ak−1.
Finally, observe that for any k ∈ [t] each edge in S ∩ Ek gives us a pair of

words that fits into a cross of type k. Moreover, because S is a matching and
|S ∩ Ek| = ak for all k ∈ [t], we can completely fill the grid.

Now, starting from the graph we created in the first reduction, we will cre-
ate an instance of 0-1 Exact Matching, using the same technique as Papadim-
itriou and Yannakakis in their proof of Proposition 1 of [20]. We build the
new graph G′ by replacing each edge (vi, vj)k, k ∈ [t], with a path, pi,j,k =
〈viuki,j,1 . . . uki,j,2mk−1vj〉. Assign weight 0 to the edges (uki,j,2mk−1 , vj) and (uki,j,l, u

k
i,j,l+1),

where l < 2mk−1 is odd. All the other edges of the path have weight 1.
Now, let Ei,j,k be the edges of a path pi,j,k. Observe that for any perfect

matching M ⊆ E′ of G′ and any path pi,j,k, the set of edges M ∩ Ei,j,k:

• either, contains edges of total weight 0 and it does not cover any endpoint
of pi,j,k,

• or, it contains edges of total weight mk−1 and it covers both vi and vj .

Based on this observation we can transform any perfect matching of G into a
perfect matching of G′ with the same weight and vice versa.

Finally, since G′ has O(mt) vertices, the starting instance of CP-Dec is
polynomial time reducible to 0-1 Exact Matching.

We can also use the technique of Papadimitriou and Yannakakis [20] in
the proof of Proposition 18, giving us Corollary 22 which more general than
Proposition 18.

Corollary 22. CP-Dec with alphabet of constant size is polynomial time re-
ducible to 0-1 Exact Matching if the grid has the following properties: (i) it is a
matching, (ii) all shared cells are at the same position of the vertical slots, (iii)
all vertical slots have the same length lv and (iv) there is no horizontal slot of
length lv.

The details are omitted but observe that we don’t need to construct a com-
plete bipartite graph and we can allow weights up to mk, where m = O(|D|)
and k = O(|L|), before we apply the aforementioned technique.
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7. Conclusion

We studied the parameterized complexity of some crossword puzzles under
several different parameters and we gave some positive results followed by proofs
which show that our algorithms are essentially optimal. Based on our results
the most natural questions that arise are:

• What is the complexity of CP-Dec when the grid graph is a matching
and the alphabet has size 2?

• Can Theorem 13 be strengthened by starting from ETH instead of ran-
domized ETH?

• Can we beat the
(
1
2 +O( 1

n )
)
-approximation ratio of CP-Opt if we restrict

our instances?

• Can Theorem 15 be strengthened by dropping the UGC?

Finally, as a future work, we could consider a variation of the crossword
puzzle problems where each word can be used a given number of times. This
would be an intermediate case between word reuse and no word reuse.
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