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ABSTRACT
In the unsplittable flow on a path problem (UFP) we are given a

path with edge capacities and a collection of tasks. Each task is

characterized by a subpath, a profit, and a demand. Our goal is to

compute a maximum profit subset of tasks such that, for each edge

e , the total demand of selected tasks that use e does not exceed the

capacity of e . The current best polynomial-time approximation fac-

tor for this problem is 2+ ε for any constant ε > 0 [Anagostopoulos

et al.-SODA 2014]. This is the best known factor even in the case of

uniform edge capacities [Călinescu et al.-IPCO 2002, TALG 2011].

These results, likewise most prior work, are based on a partition

of tasks into large and small depending on their ratio of demand

to capacity over their respective edges: these algorithms invoke

(1 + ε)-approximations for large and small tasks separately.

The known techniques do not seem to be able to combine a big
fraction of large and small tasks together (apart from some special

cases and quasi-polynomial-time algorithms). The main contribu-

tion of this paper is to overcome this critical barrier. Namely, we

present a polynomial-time algorithm that obtains roughly all profit

from the optimal large tasks plus one third of the profit from the op-

timal small tasks. In combination with known results, this implies

a polynomial-time (5/3 + ε)-approximation algorithm for UFP.
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Our algorithm is based on two main ingredients. First, we prove

that there exist certain sub-optimal solutions where, roughly speak-

ing, small tasks are packed into boxes. To prove that such solutions

can yield high profit we introduce a horizontal slicing lemma which
yields a novel geometric interpretation of certain solutions. The

resulting boxed structure has polynomial complexity, hence cannot

be guessed directly. Therefore, our second contribution is a dynamic

program that guesses this structure (plus a packing of large and

small tasks) on the fly, while losing at most one third of the profit

of the remaining small tasks.
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• Theory of computation→ Scheduling algorithms; Dynamic
programming; • Mathematics of computing → Linear program-

ming;
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1 INTRODUCTION
Unsplittable Flow on a Path (UFP) is an important and well-studied

problem.We are given an undirected pathG = (V ,E)with a capacity
u(e) ∈ N+ for each edge e ∈ E and a set of n tasks T where each

task i ∈ T is characterized by a subpath P(i) connecting its start (i.e.,
leftmost) vertex s(i) ∈ V and its end (i.e., rightmost) vertex t(i) ∈ V ,

a demand d(i) ∈ N+, and a profit (or weight)w(i) ≥ 0. LetTe denote
the subset of tasks i with e ∈ P(i). Let also w(T ′) :=

∑
i ∈T ′ w(i)

and d(T ′) :=
∑
i ∈T ′ d(i) for T

′ ⊆ T . The goal is to select a subset of

tasks T ′ ⊆ T of maximum profitw(T ′) such that, for each edge e ,
the total demand d(T ′ ∩Te ) of the selected tasks using e does not
exceed u(e).
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The problem has many applications in areas such as bandwidth

allocation [8, 16, 22], multi-commodity demand flow [15], caching

[17], scheduling [4], and resource allocation [7, 11, 18, 23]. For

instance, one can interpret the path as a communication channel

and the tasks as requests to use a portion of the available bandwidth

on some subpath. From a scheduling perspective, the edges on the

path can be seen as discrete time slots and the tasks as jobs that

request to run during certain time intervals and that need certain

portions of a shared time-varying resource during their execution.

Also note that if the path E consists of a single edge only, we obtain

the knapsack problem. Thus UFP generalizes the latter and hence it

is weakly NP-hard; and it is also known to be strongly NP-hard [10,
17]. The best known polynomial-time approximation algorithm for

UFP has a ratio of 2 + ε [3]. This result, likewise most prior work

[10, 11, 13, 15], is based on a classification of tasks as large and small.

Intuitively, a small task i has a demand d(i) which is at most an ε2
-

fraction of the capacityu(e) of any edge e ∈ P(i). For the small tasks

there is a (1+O(ε))-approximation algorithm via LP-rounding [15],

and for the large tasks there is a (1 + ε)-approximation algorithm

via dynamic programming [3]. Hence by taking the best of the two

solutions, one obtains a (2 +O(ε))-approximation. However, there

are no non-trivial polynomial time algorithms known that compute

solutions with (a big number of both) large and small tasks together.

On the other hand, there is a quasi-polynomial time approximation

scheme (QPTAS) [5, 9], i.e., a (1 + ε)-approximation algorithm with

a running time of npoly(log(n))
for any constant ε > 0. This gives

hope to achieve better approximation ratios in polynomial time,

possibly even a PTAS. The latter is considered an important open

problem.

1.1 Our Results and Techniques
A major obstacle for constructing a PTAS for UFP is that one needs

to compute solutions that combine large and small tasks with high

profit together. In this paper, we overcome this obstacle and demon-

strate how to compute such solutions efficiently. As a consequence

we break for the first time the approximation barrier of 2 for polyno-

mial time algorithms and general instances, achieving the following

result.

Theorem 1. There is a deterministic polynomial-time (5/3 + ε)-
approximation algorithm for UFP.

We next describe our approach in more detail. Our starting point

is a different classification of tasks into large and small, which is

based on prior work by the authors of this paper [21] plus some ad-

ditional ideas. Let optL and optS denote the profit of large and small

tasks, resp., in the optimal solution. The LP-rounding approach of

Chekuri, Mydlarz, and Shepherd [15] allows us to compute a solu-

tion of value at least (1−O(ε))optS using small tasks only. The main

contribution of this paper is a polynomial-time dynamic program

(DP) that computes a solution whose profit is essentially at least

optL + optS /3. It then follows easily that the claimed approxima-

tion ratio can be obtained by combining our DP with the algorithm

in [15].

One of our key ideas is to define boxed solutions in which the

small tasks are packed in a very structured way into boxes, see Fig. 1.
Suppose we want to compute a fractional solution where large tasks

are taken integrally. In particular, for a small task i , we are allowed

to pack a fraction xi ∈ [0, 1] of i using capacity xi · d(i) on each

edge of P(i) and providing a profit xi ·w(i). It is not a problem that

the small tasks are taken fractionally since we can round them at

the end with a negligible loss.

We define a collection of boxes, where a box B is specified by

a subpath P(B) and a capacity u(B). Box paths induce a laminar

family. There exists a geometric packing of boxes inside the capacity

profile, where the horizontal position of each box B is determined

by P(B), and its vertical position is induced by the laminar family:

the roots of the laminar family are placed at the bottom of the

capacity profile, and the remaining boxes on top of them as low

as possible in a recursive way. The space left free by the boxed

packing is sufficient to accommodate (non-geometrically) all large

tasks, hence providing a profit of optL .

Small tasks are fractionally packed inside boxes, so that the

fractional tasks T ′ assigned to box B define a feasible solution on

path P(B) with uniform capacity u(B) (in particular, for each i ∈ T ′,
P(i) ⊆ P(B)). We show that there exists a fractional packing of this

form of profit roughly optS /2. The key idea to show the existence

of such a boxed packing is a novel horizontal slicing lemma (see also
Fig. 2). A common geometric visualization of a feasible UFP solution

T ′ is as follows. Imagine each task i ∈ T ′ as a rectangle R(i) with
base sitting on P(i) and with height given by d(i). Suppose that

you are allowed to slice vertically each R(i) into pieces and then

translate vertically each piece. Then there exists a feasible geometric
packing of the vertical slices inside the capacity profile, which

follows trivially from the definition of feasibility. Instead, we exploit

an alternative geometric viewpoint: imagine that each R(i) can only

be sliced horizontally, and then horizontal slices can be translated

vertically. We show that a geometric packing of horizontal slices

exists, provided that T ′ uses at most one half of the capacity on

each edge, fractionally or integrally.

Using the above lemma, we proceed roughly as follows. We

select all small tasks from OPT (fractionally) to an extent of 1/2

each, losing a factor 2 in the profit of small tasks. Thus they use

only one half of the capacity of each edge e , or more precisely, at

most f (e)/2 where f (e) is the capacity used by the small tasks of

OPT on e . Hence, we can invoke the horizontal slicing lemma to

find a fractional geometric packing within the profile given by f .
With an additional rounding step we can assume that each f (e) is
zero or a power of 1+ε . The boxes are then obtained by horizontally
slicing the capacity profile f according to horizontal lines at heights

(1 + ε)i , for all i ∈ N (that implies a further slicing of slices at the

boundary between boxes). The slices inside each box naturally

induce a fractional solution.

Let OPT
′
be the fractional boxed solution derived from the above

discussion, and let opt
′
L and opt

′
S be the corresponding profit as-

sociated with large and small tasks, resp. It remains to compute a

boxed solution of sufficiently high value compared with OPT
′
: note

that this is a non-trivial task since the boxed structure is unknown

and guessing it in one step would take super-polynomial time. The

rough idea is as follows. Suppose that, given a box B, we are able
to guess the boxes B1, . . . ,Bq right above B. Suppose also that we

are able to guess all the large tasks L(B) whose path is contained

in P(B) but not in any P(Bi ). It is not hard to define a dynamic

program that scans the edges of P(B) from left to right and, in some

sense, performs this guessing for us.
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Figure 1: The boxes and small tasks of a boxed solution. The light gray box B has capacityU and uses the path P .

Then we might proceed as follows. We start with any root box B,
and compute an optimal fractional solution x(B) for B over small

tasks with path in P(B). Then we solve recursively the subproblems

induced by each box Bj above B. In each such subproblem we need

to remember the tasks of L(B) that use the leftmost or rightmost

edge of Bj (boundary large tasks). Furthermore, we have to re-

member that each small task i can be used only up to an amount of

1−xi (B). Clearly, in the following recursive steps on some box B we

will have to remember all the ancestor boxes B whose path contains

P(B), with the associated fractional solutions, plus all the boundary

large tasks induced by those boxes. This high-level approach has

three main difficulties that we need to address:

• We might select small tasks in a sub-optimal way w.r.t. OPT
′

since we compute the fractional solutions for the boxes step

by step in the order given by the laminar family, instead of

computing a (global) solution for all boxes simultaneously in

one step. Using a simple but non-trivial charging argument,

we show that despite this issue our DP obtains a profit of at

least
2

3
opt
′
S from the small tasks.

• The laminar family can contain chains (i.e., sequences of

boxes one on top of the next one) of unbounded length. This

implies that, for a given box B, we are not able to remember

all the boundary large tasks induced by ancestor boxes B.

We show that it is possible to create some slack capacity on

each edge so that from time to time we are allowed to forget
boundary large tasks of sufficiently small demand. This way,

we need to remember only Oε (1) boundary large tasks for

each box.

• For the same reason as above, we are also not able to re-

member all the fractional solutions associated with ancestor

boxes B of B. Also in this case, we are allowed to forget the

fractional solution of ancestor boxes that appearmuch below
B: this leads to a slight overcounting of the profit of small

tasks that, however, we are able to keep under control within

our charging scheme.

The definition of boxes and small tasks guarantees that we can

round small tasks at the end of the process with a small loss in the

profit using ideas in [15], and thus obtain an integral solution.

1.2 Other Related Work
Prior to the mentioned (2+ ε)-approximation algorithm for UFP [3]

there were algorithms known for the problem with this approxima-

tion guarantee for the special cases of uniform edge capacities [11]

and under the no-bottleneck-assumption [15] (which requires that

maxi ∈T d(i) ≤ mine ∈E u(e)), as well as algorithms with approxi-

mation ratios of O(logn) [6] and (7 + ε) [10] for the general case.
Somewhat interestingly, our approach does not seem to benefit (in

terms of a better approximation factor) from uniform edge capaci-

ties.

There are PTASes known for the special cases when the demand

of each task is proportional to its weight [9]; when one can slightly

shorten the path of each input task [9]; when there is an edge used

by all input tasks [21]; when the profit of each task i is proportional
to its “area” |P(i)| · d(i) [21]; and when one can select each task an

arbitrary number of times [21]. The integrality gap of LP relaxations

for UFP is studied, among others, in [2, 14].

For Unsplittable Flow on a Tree, i.e., the natural generalization
of UFP where the input graph is a tree, the best known result

is an O(k · logn)-approximation [1] where k denotes the path-

width of the tree (which is bounded by O(logn)). This result holds
even for submodular objectives. Thus the result refines and gen-

eralizes the previously known O(log
2 n)-approximation [14] for

linear objectives. Under the no-bottleneck-assumption there is a

48-approximation [15]. Unlike for paths, the problem on trees is

known to be APX-hard even for unit demands and trees of depth 3

whose edges have capacities of either 1 or 2 [19].

Another interesting generalization of UFP is bag UFP, where
tasks are partitioned into subsets (bags), and at most one task per

bag can be selected. This captures situations where a task can be

scheduled at different times [1, 12, 20].

2 OVERVIEW AND TASK CLASSIFICATION
Our starting point is a classification of tasks which is partially

inspired by prior work of the authors of this paper [21]. We sketch

the basic ideas and formally define the properties that we will use

in the rest of the paper. The technical details (which do not involve

substantially new ideas) are given in Appendix A.

In [21] it is shown how to define an almost optimal solution

OPTslack that leaves on each edge e a certain amount of slack

δe ≥ 0 such that there are only few tasks in OPTslack ∩Te that are

relatively large compared to δe . Such tasks are defined to be the
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large tasks. All other tasks in OPTslack ∩Te have a total capacity

of at most O(δe/ε
3) and are defined to be the small tasks1. Starting

with this classification and applying some shifting arguments, we

can prove the following lemma, where, roughly speaking, f (e) is
the capacity used by the small tasks in OPTslack ∩Te .

Lemma 2. Let ε > 0 be an arbitrary constant. For a UFP instance
with optimal value opt, there exists disjoint subsets of tasksOPTL ⊆ T
and OPTS ⊆ T , a value f (e) ≥ 0 for each edge e , and two constants
µ1, µ2 ∈ (0, ε

4) with µ1 < µ2/(1+ε)
1/ε3

such that the following holds.
Let

TL = {i ∈ T : d(i) ≥ µ2 · f (e) for some edge e ∈ P(i)} (large tasks)

TS = {i ∈ T : d(i) < µ1 · f (e) for every edge e ∈ P(i)} (small tasks)
Then:

(1) OPTL ⊆ TL and OPTS ⊆ TS ;
(2) w(OPTL ∪ OPTS ) ≥ (1 −O(ε))opt;
(3) µ1 and µ2 are contained in a set of size Oε (1);

Furthermore, for every edge e , the following properties hold:
(4) f (e) ∈ {(1 + ε)i : i ∈ N0} ∪ {0};
(5) There are at most 1/(µ2 · ε

4) tasks i ∈ Te ∩ OPTL such that
d(i) ≥ µ2 · f (e);

(6) The total demand of tasks Te ∩ OPTS is at most f (e).
(7) f (e) + d(Te ∩ OPTL) ≤ u(e) − ε4 · f (e).

Note that some of the tasks are neither small nor large. However,

by choosing µ1 and µ2 appropriately, we can ensure that they can

be discarded with a small loss of the profit.
2

Let optL := w(OPTL) and optS = w(OPTS ). In order to obtain

our (5/3 + ε)-approximation algorithm, we use two subroutines,

yielding different approximation guarantees with respect to optL
and optS . For the small tasks, we use a result in [15] to achieve the

following.

Lemma 3. There is a deterministic polynomial-time algorithm that
computes a solution with profit at least (1 −O(ε)) · optS .

Proof. In [15] the authors define P(A,W ) to be the class of

problems of the form max{wx : Ax ≤ b,x ∈ [0, 1]n } for some

{0, 1}-matrix A, a vector w ∈ W and a vector b ∈ Zm . Moreover,

they define Pdem (A,W ) to be the class of problems of the form

max{wx : A[d]x ≤ b,x ∈ [0, 1]n } for somew ∈W and vectors b ∈
Zm , d ∈ Zn+ and dmax ≤ bmin with dmax = maxi ∈[n] di and bmin =

mini ∈[m] bi and whereA[d] is obtained from taking a {0, 1}-matrix

and multiplying the entry in each column i by di . Additionally, they

define Pεdem (A,W ) to be the class of problems where additionally

dmax ≤ εbmin. A collection of vectorsW ⊆ Zn is defined to be

closed if for any vector w ∈W the vector w ′ obtained by setting

some w j = 0 is also inW . Based on these definitions, they prove

the following lemma.

Lemma 4 (Corollary 3.4 in [15]). Let A be a {0, 1} matrix and
W be a closed collection of vectors. If the integrality gap for the
collection of problems P(A,W ) is at most Γ, then the integrality gap

1
Throughout this paper, whenever needed and w.l.o.g., we assume that ε is sufficiently

small and that 1/ε is integral.

2
The parameters µ1 and µ2 are unknown and depend on the optimal solution. However,

in our algorithm, we can enumerate all possibilities of µ1 and µ2 , and there are only

Oε (1) many options according to Lemma 2.

for the collection of problems Pεdem (A,W ) for ε < (3 −
√

5)/2 is

at most 1+
√
ε

1−
√
ε−ε

Γ. This holds even under the weaker condition that
maxj Ai jdj ≤ εbi for each i = 1, 2, . . . ,m.

For UFP, the respective classes of problems P(A,W ) represent
UFP-instances in which all tasks have unit demand. Using flow-

arguments one can show that the LP-relaxation for such instances is

exact and hence Γ = 1 in our case. The condition that maxj Ai jdj ≤
εbi for each i = 1, 2, . . . ,m replaces the conditions that dmax ≤

εbmin and dmax ≤ bmin and hence the integrality gap for UFP-

instances in which for each task i it holds that d(i) ≤ εu(e) for each

e ∈ P(i) is bounded by
1+
√
ε

1−
√
ε−ε

. Hence, if for each task i it even

holds that d(i) ≤ ε2u(e) for each e ∈ P(i) then the integrality gap

is even bounded by
1+ε

1−ε−ε2
≤ 1 + 3ε for a sufficiently small ε , in

particular, it is necessary that ε2 < (3 −
√

5)/2.

Note that in [14] a statement for larger values for ε is shown: the
authors prove that for any fixed δ > 0 the integrality gap is at most

O(log(1/δ )/δ3) if for each task i we have that d(i) ≤ (1− δ )u(e) for
each e ∈ P(i). Hence, this statement allows that 1 − δ is arbitrarily

close to 1 and guarantees a constant integrality gap for any fixed δ .
Note however that this statement does not immediately imply that

the integrality gap is 1 +O(ε) if d(i) ≤ ε2u(e) for each e ∈ P(i).
□

If optS ≥ (3/5)·opt then Lemma 3 yields a (5/3+ε)-approximation.

For instances where optS < (3/5) · opt and hence optL ≥ (2/5) · opt

we obtain a (5/3 + ε)-approximation from the following lemma. By

taking the best of the two solutions we obtain Theorem 1.

Lemma 5. There is a deterministic polynomial-time algorithm that
computes a solution with profit at least optL + (1/3 −O(ε))optS .

We devote the rest of the paper to prove Lemma 5. In Section 3,

we show that there exists a structured solution that we call a boxed
solution which yields a profit of at least optL + (1/2 −O(ε)) · optS .

In Section 4, we present a DP that computes a boxed solution with

a (smaller, but still large enough) profit of at least optL + (1/3 −

O(ε)) · optS .

3 BOXED SOLUTIONS
In this section we transform OPT into a (fractional) solution OPT

′

with profit at least optL + (1/2 −O(ε)) · optS . In addition, OPT
′
is

a boxed solution as defined later.

Before defining OPT
′
, we present a technical lemma that might

be useful also for related problems. Suppose we are given a frac-

tional solution x defined via a value xi ∈ [0, 1] ∩ Q for each task i .
Consider a rectangle R(i) for each task i with height xid(i) and with
horizontal coordinates s(i) and t(i) where we assume that the ver-

tices ofG correspond to the coordinates 1, 2, . . . , |V |. We will define

vertical coordinates later. We slice these rectangles horizontally

into uniform slices. Formally, we cut each rectangle R(i) into a set

R(i) of xid(i)/∆ smaller rectangles, each with height ∆ and with

the same horizontal coordinates as R(i), where ∆ ≥ 0 is the largest

value such that xid(i)/∆ ∈ N for each i . For each task i , we want
to assign a vertical coordinate hi j to each slice Rj ∈ R(i) such that

hi j + ∆ ≤ u(e) for each e ∈ P(i) and such that all slices of all tasks

are pairwise non-overlapping, apart from their boundaries possibly,
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e

Figure 2: The rectangles represent slices of tasks that are
drawn non-overlappingly within the capacity profile. Note
that the solution uses only half of the capacity of e, however,
if the tasks in the figure using e hadmore slices, we could not
draw their slices as non-overlapping rectangles any more.
This is the reason why we require that the tasks use only
half of the available capacity on each edge. The horizontal
lines represent the boundaries of the boxes.

see Figure 2. So intuitively, all slices are packed within the capac-

ity profile. We call such a height-assignment

{
hi j

}
i ∈TS ,Rj ∈R(i)

a

horizontally-sliced geometric packing of x . If all edges of G have

the same capacity, the existence of such a packing follows easily

from the fact that interval graphs are perfect graphs and hence the

clique and the coloring numbers coincide [24]. If the edges of G
have different capacities, then such an assignment might not exist,

even if x is a feasible fractional solution, see Figure 2. However, we

prove that it exists if the fractional solution x uses at most half of

the capacity of each edge.

Lemma 6 (Horizontal slicing lemma). Let x be a fractional so-
lution for a given UFP instance that satisfies

∑
i ∈Te xi · d(i) ≤ u(e)/2

for each edge e . Then there exists a horizontally-sliced geometric
packing of x .

Proof. Assume w.l.o.g. that ∆ = 1 which can be achieved by

scaling all edge capacities and task demands by 1/∆. We will show

how to pack all slices (which then have unit height). Formally, we

show how to solve inductively the following problem. Consider

any subpath E ′ ⊆ E with leftmost edge eL and rightmost edge eR
such that u(e) ≥ max{u(eL),u(eR )} for every edge e ∈ E ′ strictly
between eL and eR . Let S

′
be the set of slices that intersect E ′. Then

there is an assignment h of an integer height hj ≥ 0 to each slice

j ∈ S ′ such that: (1) for any slice j, hj + 1 ≤ mine ∈E′∩P (j) u(e)
and (2) for any two slices j, j ′ ∈ S ′ with hj = hj′ it holds that
P(j) ∩ P(j ′) = ∅.

The lemma statement follows from the claim when E ′ equals
the entire path E. (By appending two dummy edges eL and eR
with capacity 0 at the endpoints of E, we can ensure that u(e) ≥
max{u(eL),u(eR )} for every edge e ∈ E strictly between eL and eR .)

The proof of the claim is by induction. For the base case of the

induction, E ′ consists of two edges eL and eR (the claim is clearly

true if E ′ has only one edge). We consider each slice j that contains
both eL and eR (middle slice) and slice it vertically at the middle

point v
middle

between the two edges, hence getting two slices j
left

and j
right

. We denote by pieces the resulting set of slices (consisting
of the two parts of middle slices plus the remaining slices). We

now sort arbitrarily the pieces to the left of v
middle

, and we assign

the (odd) height 2j − 1 to the j-th piece in this order, j ≥ 1. We

remark that these heights are upper-bounded by u(eL) − 1 since by

assumption the total height of slices using eL is at most u(eL)/2.
Similarly, we sort arbitrarily the pieces to the right of v

middle
and

we assign the (even) height 2j−2 to the j-th piece in this order, j ≥ 1.

Note that we might assign different heights to the two pieces of the

same middle slice: we resolve this conflict by re-assigning to both

those pieces the minimum of the two mentioned heights. Note that

the odd (resp., even) heights over edge eR (resp., eL) correspond to

free regions. Thus property (2) is satisfied. Since the original heights

satisfy property (1) and we only move slices down, property (1) is

also satisfied at the end of the process.

Consider next the inductive step (with more than 2 edges). Let

eM = (a,a + 1) denote an edge with smallest capacity strictly

between eL and eR . Denote by SM the slices containing eM that we

call the middle slices. We split each s ∈ SM vertically at the middle

coordinate v
middle

= a + 1/2 into two slices j
left

and j
right

similarly

to the base case. We again denote by pieces the resulting set of slices.
We consider separately the pieces to the left and right of v

middle
,

and use the inductive hypothesis to derive an assignment of heights

hleft
and hright

to the left and right pieces, respectively. Also in this

case, we need to resolve conflicts due to different heights of pieces

of the same middle slice. This fixing is slightly more involved than

in the base case. For each height h′ of any left piece we define one

left block as the minimum-width unit-height slice that contains all

the left pieces at height h′. We similarly define right blocks.

Observe that each piece is fully contained in some block: we will

modify the heights of the blocks so that blocks containing the two

pieces of the same middle slice have the same height and blocks are

non-overlapping: this naturally induces a packing of the slices that

satisfies (2). We say that a block is critical if it contains a piece of a

middle slice.We temporarily remove all non-critical blocks, that will

be re-packed later. We assign odd heights to the critical left blocks

similarly to the base case, however considering first the critical left

blocks Bcrit

L spanning edge eL , and then the remaining critical left

blocks B
crit

L . Note that the blocks Bcrit

L will have a height of at most

u(eL) − 1 since they occupy at most half of the capacity u(eL), and

the blocks B
crit

L will have a height of at most u(eM ) − 1 since all

critical blocks together occupy at most half of the capacity u(eM ).
We symmetrically pack the critical right blocks. Next, similarly to

the base case, whenever two critical blocks containing pieces of the

same middle slice have different heights, we assign to both blocks

the minimum of those two heights. By the same argument as in the

base case the geometric packing of critical blocks remains feasible

and the pieces corresponding to critical blocks satisfy (1).

We can now pack independently the left and right non-critical

blocks: we focus on the left such blocks, the other case being sym-

metric. Let us further partition left non-critical blocks into the top
ones, whose pieces have height at least u(eM ) in h

lef t
, and the re-

maining bottom ones. We assign the corresponding height in hlef t

to the top left non-critical blocks. The pieces corresponding to these

blocks satisfy (1) by inductive hypothesis.
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The bottom left non-critical blocks are packed from bottom to top

as low as possible, considering first the blocks Bn−crit

L spanning eL ,

and then the remaining blocks B
n−crit

L . Note that |Bcrit

L ∪ Bn−crit

L | ≤

u(eL)/2 by construction and assumption: hence the heights between

0 and u(eL) − 1 not assigned to Bcrit

L are more than sufficient to

accommodate Bn−crit

L . Similarly, |Bcrit

L ∪ Bn−crit

L ∪ B
crit

L ∪ B
n−crit

L | ≤

u(eM ) by construction, hence the heights between 0 and u(eM ) − 1

not assigned to Bcrit

L ∪ B
n−crit

L ∪ B
crit

L are sufficient to accommodate

B
n−crit

L . Thus the pieces of bottom left non-critical blocks satisfy

(1). Furthermore, since the geometric packing of blocks is globally

feasible, all pieces satisfy (2). □

Let us remark that the factor 2 in the above lemma is in some

sense tight: to see that, consider three consecutive edges with ca-

pacities 1, 2, and 1 from left to right, and a feasible integral solution

consisting of 2 tasks of demand 1 and spanning the leftmost two

edges and rightmost two edges, resp.

Based on OPTS , OPTL , and f we construct now a solution in

which the small tasks are assigned fractionally into boxes, as defined
below.

Definition 7 (Types). An edge e is of type j ∈ N0 if f (e) = (1 +
ε)j and we write type(e) = j . If f (e) = 0 then we define type(e) = −1.
The type of a task i ∈ T is the minimum edge type among all edges
on P(i), i.e., type(i) = mine ∈P (i) type(e).

Given an assignment of a type to each edge, we say that a type-j
task i ∈ T is small (resp. large) if d(i) < µ1 · (1 + ε)

j
(resp. d(i) ≥

µ2 · (1 + ε)j ), and denote the resulting set by TS (resp. TL). This
definition is equivalent to the definition in Lemma 2.

Definition 8 (Boxes). A box B is a pair (P(B), type(B)) consist-
ing of a subpath P(B) of the graph G and a type type(B) ∈ N0. It
has a capacity of u(B), which is defined as u(B) = 0 if type(B) = −1,
u(B) = 1 if type(B) = 0, and u(B) = (1 + ε)type(B) − (1 + ε)type(B)−1

otherwise.

One can naturally define a notion of feasibility for a fractional

solution x w.r.t. a box B by interpreting B as a UFP instance on path

P(B) and with uniform edge capacity u(B).
To define the boxes for our instance, the reader may imagine that

we take the profile given by f (with values that are powers of 1+ ε)
and draw horizontal lines with y-coordinates 1, 1 + ε, (1 + ε)2, . . .
into it. Formally, for each j ∈ N0 ∪ {−1} and for every maximally

large subpath P of G in which each edge is of type j or larger, we
introduce a box B = (P , j). As a result, an edge e of type j ≥ 0 (with

thus f (e) = (1 + ε)j ) is used by one box of each type −1, . . . , j and
by no box of type greater than j . The total capacity of these boxes is
(1 + ε)j . Observe that the paths of the boxes form a laminar family,

i.e., for any two boxes (P1, j1), (P2, j2) we have P1 ⊆ P2 or P2 ⊆ P1

or P1 ∩ P2 = ∅. Given an arbitrary assignment of a type to each

edge, we say that a set of boxes and the sets of large and small tasks

TL and TS are induced by the edge types when defined according

to our definitions above.

Definition 9 (Boxed solution). A boxed solution consists of
an assignment type : E → N0 ∪ {−1} of types to edges, a set of boxes
B and sets TL and TS of large and small tasks induced by these edge

types, a subset SL ⊆ TL of large tasks, and for each box B a feasible
fractional solution {xi (B)}i ∈TS for the small tasks such that:

(1) for each edge e , the total demand of the large tasks from SL∩Te
plus the total capacity of the boxes from B using e is at most
u(e);

(2) each edge of type j is used by at most 1/(µ2ε
4) large tasks

i ∈ SL such that d(i) ≥ µ2(1 + ε)
j ;

(3) for every box B = (P , j) ∈ B, d(i) < µ2(1 + ε)
j ≤ ε2u(B) for

each i ∈ TS if xi (B) > 0;
(4) For every small task i ∈ TS ,

∑
B∈B,i ∈TS xi (B) ≤ 1.

Lemma 10. There exists a boxed solution OPT
′ with profit opt

′ ≥

optL + (1/2−O(ε)) ·optS such that for each edge e of type j ≥ 0, there
is an amount of ε4 · (1 + ε)j unused capacity, i.e., the total demand of
the large tasks from SL ∩Te plus the total capacity of the boxes using
e is at most u(e) − ε4 · (1 + ε)j .

Proof. We define the assignment type based on the function f
due to Lemma 2 and let B be the set of boxes induced by type. We

define SL := OPTL . The first two properties of a boxed solution as

well as the additional property in Lemma 10 follow from Lemma 2.

It only remains to construct the set of fractional solutions x(B)
so that Property 3 of a boxed solution holds. We start from OPTS .

By taking a fraction 1/2 of each such task, we obtain a fractional

solution {yi }i ∈TS satisfying the conditions of the horizontal slicing

Lemma 6 with respect to the UFP instance induced by small tasks

and edge capacities f (e). Hence we obtain a horizontally-sliced

geometric packing of y within the capacity profile f . We draw

a rectangle R(B) for each box B = (P , j) where the left and right

coordinates of R(B) are given by the leftmost and rightmost vertices

of P , and the bottom and top coordinates are (1 + ε)j−1
and (1 + ε)j

if j ≥ 1 and 0 and 1 if j = 0. We further horizontally slice the slices

which cross the box boundaries, so that each horizontal slice is fully

contained in some box (and hence might have smaller height than

∆).
We next shrink and move some slices as follows. First of all, we

shrink the heights of all slices by a factor 1 + ε . Next, for every
type j, we consider all slices of type j that are assigned to boxes of

types smaller than j − (1/ε3) and we move all such slices to type-j
boxes. With a geometric sum argument one can easily show that

these slices fit into the free space in type j boxes generated in the

shrinking step.

For each box B the slices in B induce a fractional solution x(B):
for each task i we define the value xi (B) such that slices of a total

height of xid(i) are contained in B. Note that x(B) is feasible for B
by construction. Also, the total value

∑
B∈B

∑
i ∈TS xi (B)w(i) of the

fractional solutions x(B) is at leastw(OPTS )/(2(1+ ε)) by construc-
tion. The tasks fractionally assigned to a box of type j have a type
in {j, . . . , j + (1/ε3)}. In particular, each such task i has demand

less than µ1 · (1+ ε)
j+(1/ε3)

(by the definition of small tasks), which

is less than µ2 · (1 + ε)
j
using the definition of µ1 and µ2. Hence,

Property 3 of a boxed solution is satisfied. We define OPT
′
to be the

union of SL and the fractional solutions x(B) for all boxes B. Then
OPT

′
is a boxed solution satisfying all properties and its weight is

at least optL + (1/2 −O(ε)) · optS . □
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4 AN IMPROVED APPROXIMATION
ALGORITHM

In this section, we present a polynomial time algorithm that com-

putes a feasible UFP solution with profit at least optL + (1/3−O(ε)) ·
optS . In order to simplify the presentation, we will assume that in

OPT
′
for each edge e we have 1 ≤ type(e) ≤ K for some constant

K = Oε (1), and describe an algorithm for this case. In Section 4.3

we will generalize our construction to arbitrary edge types.

We recall that in the standard linear programming relaxation

LPU FP for UFP we have variables xi ∈ [0, 1] for each task i , and
we have to satisfy the capacity constraints

∑
i :e ∈P (i) xid(i) ≤ u(e)

for every edge e . The objective is to maximize

∑
i ∈T xiw(i). Let

type(B) denote the type of a given box B. We say that a task i is

B-large (resp., B-small) if P(i) ⊆ P(B) and d(i) ≥ µ2 · (1 + ε)
type(B)

(resp., d(i) < µ2 · (1 + ε)
type(B)

). The leftmost and rightmost edges

of P(B) are denoted by ℓ(B) and r (B), resp. Given a collection of

boxes B and a set of tasks T ′ (that are intuitively placed outside

the boxes) we define their total demand w.r.t. edge e as d(T ′∩Te )+∑
B∈B:e ∈P (B) u(B).

4.1 The Algorithm
We first use a DP to compute a feasible fractional solution. Next we

round this solution to an integral one.

Our DP runs in phases, one for each type. Intuitively, in the j-th
phase it places small tasks into the boxes of type j via LP-rounding.
In particular, each type j box B is filled fractionally with B-small

tasks, where some fractional portions of those tasks might have

already been selected in previous phases (and we cannot select

these portions again). Additionally, we guess the boxes of type j + 1

that, figuratively, are placed on top of the boxes of type j, and the

B-large tasks (which are not completely contained in P(B′) for any
top box B′). Each box of type j + 1 yields a subproblem on which

we recurse.

More formally, we define a DP that we denote by DPmain . Each

DP cell is indexed by a tuple (B, SL ,B) where B is a box and intu-

itively, B are the boxes below B and SL are the corresponding large

tasks that we guessed in previous phases, and which interact with

B. We allow only tuples that satisfy the following conditions:

(1) B = Bj is a box with type(B) = j ∈ {−1, . . . ,K};
(2) B = {B−1, . . . ,Bj−1} is a collection of boxes with type(Bi ) =

i for all i and P(B−1) ⊇ . . . ⊇ P(Bj );

(3) |SL | ≤ M , whereM := 2(K + 1)/(µ2 · ε
4);

(4) SL consists of B′-large tasks i for some B′ ∈ B with P(i) ∩
{ℓ(B), r (B)} , ∅ and P(i) ⊈ P(B);

(5) The total demand of SL and B ∪ {B} w.r.t. to every e ∈ P(B)
is at most u(e).

We associate a bottom-up fractional solution to B as follows. First,

we define a fractional solution x(B−1) for the box B−1 (with zero

capacity) to be xi (B−1) = 0 for each task i . Then, for each k ≤ j
we compute an optimal fractional solution of small tasks for Bk
disallowing to select the fractions of the tasks that are already

assigned to the boxes Bk ′ with k ′ < k . Formally, inductively for

k = 0, . . . , j we let x(Bk ) be an optimal fractional solution to LPU FP
(1) over Bk -small tasks, (2) with uniform capacity u(Bk ), and (3)

with the additional constraints that xi (Bk ) ≤ 1 −
∑k−1

k ′=−1
xi (Bk ′)

for any task i . Observe that, for any task i and box Bk , xi (Bk ) ≤ 1.

The value of DPmain (B, SL ,B) is defined as follows. Intuitively,

we consider any possible way to place boxes Btop directly on top

of B, and any possible set of large tasks contained in P(B) but not
completely within the path of any box fromBtop . The profit is given

by the value of the large tasks, the LP value of x(B) associated with
B, and the sum of the DP values for the problems induced by each

box from Btop . Formally,

DPmain (B, SL ,B) ← max

Btop,S topL

{
w(S

top
L ) +

∑
i
xi (B)w(i)

+

q∑
k=1

DPmain (B
top
k , (S

top
L ∪ SL) ∩ (Tℓ(B) ∪Tr (B)),B ∪ {B})

}
where the maximum is taken over:

(1) Btop = {B
top
1
, . . . ,B

top
q }, 0 ≤ q ≤ |P(B)|, for boxes B

top
i =

(P
top
i , type(B) + 1) where P

top
i ⊆ P(B) and P

top
i is entirely

to the left of P
top
i+1

for each i = 1, . . . ,q − 1 (we require that

Btop = ∅ if type(B) = K );

(2) S
top
L is a collection of B-large tasks i where P(i) ⊈ P

top
j for

any j, such that |(SL ∪ S
top
L ) ∩Te | ≤ M for every e ∈ P(B);

(3) the total demand of SL ∪S
top
L and B∪{B}∪Btop w.r.t. each

e ∈ P(B) is at most u(e).

Denote by ALG the fractional solution which corresponds to the

value of DPmain ((G,−1), ∅, ∅). Observe that ALG might not be a

feasible boxed solution, however it is a feasible UFP solution.

Unfortunately, we cannot compute the values ofDPmain directly

using the above formula since there exists an exponential number of

choices for the pairs (Btop , S
top
L ). We will therefore use a secondary

DP, next called DPsub , for this goal. Intuitively, we scan the edges

er of B from right to left, and each time guess whether there exists

some box Btop with r (Btop ) = er . Furthermore, we guess a set of

large tasks using the edge er .
Formally, we label the edges of G with integers from 1 to n − 1

from left to right (so that e − 1 is the edge to the left of e etc.). We

defineTe = ∅ if e ≤ 0 or e ≥ n. A cell ofDPsub is indexed by a tuple

(B, SL ,B, er ,Lr ), where (B, SL ,B) is restricted in the same way as

for DPmain . Furthermore er ∈ P(B) and Lr is a set of at most M
B-large tasks whose path contains er , or er ∈ {ℓ(B) − 1, r (B)+ 1} in

which case Lr is irrelevant. For each fixed (B, SL ,B) we fill in the

values ofDPsub by considering the edges er ∈ P(B)∪{ℓ(B)−1, r (B)+
1} from left to right and we assume that we already computed all

values for the cells DPmain (B
′, S ′L ,B

′) with type(B′) > type(B).
The base case is DPsub (B, SL ,B, ℓ(B) − 1,Lr ) = 0. In the remain-

ing casesDPsub (B, SL ,B, er ,Lr ) is themaximum over the following

two values. The first value intuitively corresponds to the case that

there is no top box using edge er :

max

Lℓ

{w(Lr \Ter−1) + DPsub (B, SL ,B, er − 1,Lℓ)}

where the maximum is taken over

• Lℓ is a set of B-large tasks i with er − 1 ∈ P(i) such that

|Lℓ | ≤ M , and that Lℓ is consistent with Lr , i.e., Lℓ ∩Ter =
Lr ∩Ter−1;

• |(Lℓ ∪ Lr ∪ SL) ∩Te | ≤ M for every e ∈ P(B);
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• the total demand of Lℓ ∪ Lr ∪ SL and B ∪ {B} w.r.t. every
e ∈ P(B) is at most u(e).

The second value intuitively corresponds to the case that there is

some top box ending at er :

max

Btop,Lℓ

{
w(Lr \Tℓ(Btop )−1

) + DPmain
(
Btop ,

(SL ∪ Lr ∪ Lℓ) ∩ (Tℓ(Btop)) ∪Tr (Btop))),B ∪ {B}
)

+ DPsub (B, SL ,B, ℓ(B
top ) − 1,Lℓ)

}
where the maximum is taken over:

• Btop = (P top , type(B) + 1) with P top ⊆ P(B), r (Btop ) = er ,
and P(i) ⊈ P top for any i ∈ Lr ;
• Lℓ is a set of at mostM B-large tasks i with ℓ(Btop )−1 ∈ P(i)
such that Lℓ ∩Ter = Lr ∩Tℓ(Btop )−1

;

• |(Lℓ ∪ Lr ∪ LS ) ∩Te | ≤ M for every e ∈ P(B);
• the total demand of Lℓ ∪ Lr ∪ SL and B ∪ {B,Btop } w.r.t
every e ∈ P(B) is at most u(e).

At the end of the process we set

DPmain (B, SL ,B) ←
∑
i
xi (B) ·w(i)+DPsub (B, SL ,B, r (B)+ 1, ∅).

It is not hard to see that the computation of table DPsub (hence of

table DPmain ) takes polynomial time.

4.2 Approximation Ratio
We show that the profit of our DP solution is at least optL + (1/3 −

O(ε))optS . Observe that by Property 3 of the boxed solution and

using the rounding algorithm from [15], we can round the fractional

solution over small tasks into an integral solution (while keeping

feasibility) by losing only a factor of 1+ ε in the profit. This implies

Lemma 5.

Let APX be a solution with the same large tasks as OPT
′
, with

the same boxes as OPT
′
, and with the small tasks APXS that are

obtained by executing the same procedure as in the DP algorithm

for every box. Formally, for each box B we compute the bottom-up

fractional solution x(B) as described in Section 4.1 and we define

x :=
∑
B x(B). To prove that the computed solution has large profit,

we use a charging argument to show that the profit of APXS is

at least a (1/3 − O(ε))-fraction of optS . In our dynamic program,

at every step, we take the choice that maximizes the profit of the

respective subproblem. Thus, by an induction on the DP-cells one

can show that the profit of the computed solution ALG is at least

the profit of APX.

Lemma 11. The DP computes a solution with a profit of at least
optL + (1/3 −O(ε)) · optS .

Proof. From the previous discussion, we only need to show

that apxS ≥ (1/3 − O(ε))optS , where apxS denotes the profit of

APXS . We use a charging argument. For each box B let y(B) denote
the fractional solution according to OPT

′
and let y :=

∑
B y(B).

Recall that yi ≤ 1/2 for each task i . Let y
(1)

i := max{xi + yi − 1, 0}

for each task i . The reader may imagine that for every task i we
consider the interval [0, 1), associate the subinterval [0,xi ) with

APXS , associate the subinterval [1−yi , 1)with OPT
′
S , and theny

(1)

i
represents the length of the intersection of these two intervals. For

each task i we havey
(1)

i ≤ xi/2 sinceyi ≤ 1/2 and thus xi +yi −1 ≤

xi − 1/2 ≤ xi/2. Therefore, opt
′
S,1 :=

∑
i w(i)y

(1)

i ≤ apxS /2. Let

y
(2)

i := yi − y
(1)

i which intuitively represents the part of [1 − yi , 1)
that has not been associated with APXS . For each box B we define

a value y
(2)

i (B) such that y
(2)

i (B) ≤ yi (B) and
∑
B y
(2)

i (B) = y
(2)

i .

Note that in every step of the computation, y
(2)

i units of task i
are still available to be selected and hence when the algorithm

computes the solution for a box B, one possible solution is given

by y
(2)

i (B) for each task i . Therefore, for each box B it holds that∑
i w(i)xi (B) ≥

∑
i w(i)y

(2)

i (B) and therefore apxS =
∑
i w(i)xi =∑

B
∑
i w(i)xi (B) ≥

∑
B
∑
i w(i)y

(2)

i (B) =
∑
i w(i)y

(2)

i =: opt
′
S,2.

Therefore, we have opt
′
S = opt

′
S,1 + opt

′
S,2 ≤ (3/2)apxS , hence

apxS ≥ (2/3) · opt
′
S ≥ (1/3 −O(ε)) · optS . □

4.3 General Case
In the general case with more than Oε (1) levels, the following

problems arise. First, we can no longer “remember” all previously

selected large tasks, i.e., we would need to allow the set SL in the

definition of the DP-cells to contain more thanOε (1) tasks. Using a

technique from [21] we “forget” all but Oε (1) of these large tasks

and ensure that the total demand of the forgotten tasks is bounded

by a slack of ε4 · (1 + ε)j that we leave on every edge of level j,
like our boxed solution due to Lemma 10. Also, the size of the set

of previously selected boxes B underneath a given box B can be

Ωε (1). To this end, we remember only the last (i.e., largest) Oε (1)

boxes in B. As a result, it might be that we select a small task to a

larger extent than one fractional unit (even though at the end we

obtain its profit at most once) and thus waste space in some box B.
We can, however, show that the total wasted capacity on each edge

is at most an ε-fraction of the capacity of B and hence here we lose

only a factor of 1 + ε in the approximation ratio.

The main changes to Section 4 are the following.

• Instead of allowing the considered tasks and boxes to use the

full capacity u(e) of each edge e , we leave ε4 · (1 + ε)type(e)

units of unused capacity, like OPT
′
(see Lemma 10). This

unused capacity is referred to as the slack.
• We do not remember all previously selected large tasks but

“forget” those that are sufficiently small compared to the

capacity of the current box. We will show that the total

demand of the forgotten tasks fits into the slack that we

leave.

• Also, we cannot remember all ancestor boxes B of a given

box B but only Oε (1) of them. Recall that we remembered

the previously selected (fractions of) small tasks indirectly

by remembering B. Since we can remember onlyOε (1) such

boxes, we will “forget” some of the previously selected (frac-

tions of) small tasks. As a result, we might select a small task

(fractionally) more than once. However, we will show that

we can repair this at the end at a negligible cost.

For technical reasons, we first apply a shifting argument to group

the edge types into groups such that each group consists of K =
Oε (1) consecutive types and there is a gap of cε = Ωε (1) types

between two groups. In more details, let cε be the smallest integer
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constant such that 1/(1 + ε)cε ≤ ε . For an integer a ≥ 1 define

GAP (a) :=
⋃
k ∈N0

cε−2⋃
ℓ=−1

{a · cε + k · cε /ε + ℓ}.

Lemma 12. There is a constant a∗ ∈ {0, . . . , 1/ε − 1} and a boxed
solution OPT

′′ defined via a set of large tasks SL , a set of small
tasks TS , a set of boxes B, and a fractional solution {xi (B)}i ∈TS
for each box B ∈ B with weight opt

′′ ≥ optL + (1/2 − O(ε))optS ,
xi (B) = 0 for each task i in each box B such that type(B) ∈ GAP (a

∗)

and, additionally, for each box B and edge edge e ∈ P(B) we have∑
i ∈Te∩TS d(i)xi (B) ≤ (1 − ε)u(B).

Proof. Observe that, for two different valuesa,a′ ∈ {0, . . . , 1/ε−
1} we have that GAP

(a) ∩ GAP
(a′) = ∅. Therefore, there is a value

a∗ ∈ {0, . . . , 1/ε − 1} such that in OPT
′
the profit of the frac-

tions of the small tasks that are assigned to boxes with a type in

GAP
(a∗)

is at most ε · opt
′
S where opt

′
S denotes the total profit of

the small tasks in OPT
′
. For each box B in OPT

′
, denote by x ′(B)

the fractional solution of OPT
′
for box B. We define a new frac-

tional solution x ′′(B) by defining x ′′i (B) := (1 − ε)x ′i (B) for each

box B with type(B) < GAP
(a∗)

and each task i and x ′′i (B) := 0 for

each box B with type(B) ∈ GAP
(a∗)

and each task i . We lose one

factor 1 − ε due to the fractions of small tasks in boxes whose type

is in GAP
(a∗)

and another factor 1 − ε due to rounding down the

fractional solution in the boxes whose type is not in GAP
(a∗)

. We

define OPT
′′
to be the solution obtained by the large tasks from

OPT
′
, the boxes from OPT

′
, and the fractional solution x ′′(B) for

each box B. □

Let OPT
′′
be the solution obtained from the above lemma. For

the constant a∗ there are only Oε (1) possibilities and we guess the

correct value in our algorithm. Note that this splits the edge and

box types into groups G0 = {−1, . . . ,a∗cε − 2}, G1 = {(a
∗ + 1)cε −

1, . . . ,a∗cε+cε /ε−2},G2 = {a
∗cε+cε+cε /ε−1, . . . ,a∗cε+2cε /ε−2},

... such that only boxes with a type in some group Gi have small

tasks assigned to them in OPT
′′
. By K = cε /ε we denote an upper

bound on the size of a group.

For each integer j we define T ≥j to be all tasks i with d(i) ≥

µ2(1+ε)
j
. Let alsoK ′ be the smallest integer that satisfies (1+ε)K

′

≥

2(1 + ε)2/ε9
, and K(j) := min{K , j + 1}.

4.4 The Algorithm
As in Section 4.1, each DP cell is index by a tuple (B, SL ,B) where
now:

• B = Bj is a box, j = type(B);
• B = {Bj−K (j), . . . ,Bj−1} is a collection of up to K boxes

with type(Bk ) = k for each k ∈ {j − K(j), . . . , j − 1} and

P(Bj−K (j)) ⊇ . . . ⊇ P(Bj−1) ⊇ P(Bj );

• SL consists of tasks i ∈ T
≥type(B)−K ′

with P(i)∩{ℓ(B), r (B)} ,
∅, and P(i) ⊈ P ;
• |SL ∩ Te | ≤ M ′ := 2M(K ′ + 1) for every e ∈ P(B), where
M := 1/(µ2ε

4);

• The total demand of SL and B ∪ {B} on every edge e ∈ P(B)

is at most u(e) − ε4 · (1+ ε)type(B)
if type(B) ≥ 0 and at most

u(e) if type(B) = −1.

So in contrast to Section 4 we do not use the full capacity of each

edge e but leave a slack of ε4 · (1 + ε)type(B)
. Note that our boxed

solution OPT
′
(and hence also OPT

′′
) satisfies this property (see

Lemma 10).

We slightly change the definition of bottom-up fractional so-

lutions as follows: given a cell (B, SL ,B) let B
′ ⊆ B denote the

boxes B′ ∈ B such that type(B′) ∈ Gℓ′ for the group Gℓ′ with

type(B) ∈ Gℓ′ . We compute the bottom-up fractional solution x(B)
based on the boxes B′ only, rather than based on all boxes B. We

set x(B) = 0 for the boxes not belonging to any group.

Since now the number of levels can be larger than a constant,

we cannot afford to remember all large tasks that we selected previ-

ously. Hence, we modify the DP-transition such that intuitively we

“forget” some of the large tasks, similar as in [21]. More formally,

when we reduce the problem of a DP-cell (B, SL ,B) with B = (P , j)

to DP-cells of the form (Btop , S
top
L ,B

top ) with Btop = (P top , j + 1)

then we do not add to S
top
L the tasks i of SL that satisfy d(i) <

µ2(1+ ε)
type(Btop )−K ′

. In order to argue that the computed solution

is still feasible, we use the slack of ε4 · (1+ ε)type(B)
that we have on

each edge and argue that the total capacity of the forgotten tasks is

upper-bounded by this slack.

Formally, we change the transition of DPsub as follows. The

value DPsub (B, SL ,B, er ,Lr ) is again the maximum over the fol-

lowing two values. The first value intuitively corresponds to the

case that there is no top box using edge er :

max

Lℓ

{w(Lr \Ter−1) + DPsub (B, SL ,B, er − 1,Lℓ)}

where the maximum is taken over

• Lℓ is a set of B-large tasks i with er − 1 ∈ P(i) which is

consistent with Lr , i.e. Lℓ ∩Ter = Lr ∩Ter−1;

• |(Lℓ ∪ Lr ∪ SL) ∩Te | ≤ M ′ for every e ∈ P(B);
• for each e ∈ P there are at most 2M tasks i ∈ (Lℓ ∪ Lr ∪

SL) ∩Te such that d(i) ≥ µ2(1 + ε)
type(B)

;

• the total demand of Lℓ ∪ Lr ∪ SL and B ∪ {B,Btop } is at

most u(e) − ε4 · (1 + ε)type(B)
on every e ∈ P if type(B) ≥ 0

and at most u(e) if type(B) = −1.

The second value, which intuitively corresponds to the case that

there is some top box ending at er , is

max

Btop,Lℓ

{
w(Lr \Tℓ(Btop )−1

) + DPmain
(
Btop ,

(SL ∪ Lr ∪ Lℓ) ∩ (Tℓ(Btop)) ∪Tr (Btop))) ∩T
≥type(Btop )−K ′),

B ∪ {B} \ Bout
)
+ DPsub (B, SL ,B, ℓ(B

top ) − 1,Lℓ)
}
.

Here Bout = {Bout } where Bout is the box of smallest type in B,

unless type(B0) = −1 in which case Bout = ∅. Furthermore, the

maximum is taken over:

• Btop = (P top , type(B) + 1) with P top ⊆ P(B), r (Btop ) = er ,
and P(i) ⊈ P top for any i ∈ Lr ;
• Lℓ is a set of B-large tasks i with ℓ(Btop ) − 1 ∈ P(i), and
Lℓ ∩Ter = Lr ∩Tℓ(Btop )−1

;

• |(Lℓ ∪ Lr ∪ LS ) ∩Te | ≤ M ′ for every e ∈ P(B);
• for each e ∈ P there are at most 2M tasks i ∈ (Lℓ ∪ Lr ∪

SL) ∩Te such that d(i) ≥ µ2(1 + ε)
type(B)

;
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• the total demand of Lℓ ∪ Lr ∪ SL and B ∪ {B,Btop } is at

most u(e) − ε4 · (1 + ε)type(B)
on every e ∈ P if type(B) ≥ 0

and at most u(e) if type(B)) = −1.

At the end of the process we set

DPmain (B, SL ,B) ←
∑
i
xi (B) ·w(i)+DPsub (B, SL ,B, r (B)+ 1, ∅).

The dynamic program runs in polynomial time since the num-

ber of DP-cells is bounded by a polynomial and also the transi-

tion clearly runs in polynomial time. The final solution consists of

all large tasks that were selected at some point, and a fractional

solution of small tasks defined as follows. For each box B we de-

fine its bottom-up fractional solution x(B) based on the boxes B′

that are placed underneath B in the same group as B, i.e., the
boxes B′ for which P(B) ⊆ P(B′) holds and such that there is a

group Gℓ with type(B) ∈ Gℓ and type(B′) ∈ Gℓ . We define the

final solution by setting x̄i := min{1,
∑
B xi (B)} for each task i

corresponding to some box. We will show later that in case that

x̄i <
∑
B xi (B) this yields only a negligible loss in the profit. It is

convenient to define values x̄i (B) as follows. Let B−1, . . . ,Bℓ be

the boxes containing i , with type(Bj ) = j. If
∑ℓ
j=−1

xi (Bj ) ≤ 1, we

set x̄i (Bj ) = xi (Bj ) for all j. Otherwise, let ℓ
′
be the smallest index

such that

∑ℓ′

j=−1
xi (Bj ) > 1. We set x̄i (Bj ) = xi (Bj ) for j < ℓ

′
,

x̄i (Bℓ′) = 1 −
∑ℓ′−1

j=−1
xi (Bj ), and x̄i (Bj ) = 0 for j > ℓ′. Observe that

in all cases we have x̄i (Bj ) ≤ xi (Bj ) and
∑
j x̄i (Bj ) = x̄i . We also

define xwaste

i (B) := xi (B) − x̄i (B) ≥ 0.

Since we forgot some of the large tasks it is not immediately

clear that the computed solution is a feasible boxed solution. To this

end, we prove the following lemma in which we show in particular

that on each edge e , the total demand of the forgotten large tasks

fits into the slack of ε4 · (1 + ε)type(B)
.

Lemma 13. The dynamic program computes a feasible solution.

Proof. Let e be an edge and let B = (P , j) be the box of maximum

type in the computed solution that satisfies e ∈ P(B). Let S ′L denote

the large tasks using e in the computed solution. The DP-transition

guarantees us that the total demand of the boxes plus the total

demand of all tasks in S ′L ∩T
≥type(B)−K ′

is at most u(e) − ε4 · (1 +

ε)type(B)
. We would like to bound the total demand of all tasks in

S ′L \T
≥type(B)−K ′

by ε4 · (1 + ε)type(B)
.

Let i ∈ S ′L \T
≥type(B)−K ′

. Then i was selected before the box B
was processed, so there must be a level j ′ in which it was chosen

such that d(i) ≥ µ2 · (1 + ε)j
′

but d(i) < µ2 · (1 + ε)j
′+1

with

j ′ < type(B) − K ′. So intuitively, i is large for level j ′ but not for
level j ′ + 1. The number of such large tasks using e (for this specific
value j ′) is bounded by 2M since each such task must use the closest

edge on the left or the closest edge on the right of e that is of level

j ′. Therefore, the total demand of the tasks in S ′L \T
≥type(B)−K ′ ∩Te

is bounded by

d(S ′L \T
≥type(B)−K ′ ∩Te ) <

type(B)−K ′−1∑
j′=0

2Mµ2 · (1 + ε)
j′+1

≤ 2Mµ2

1

ε
(1 + ε)type(B)−K ′+1 ≤ ε4 · (1 + ε)type(B)

due to our choice of K ′. Hence, the computed solution is feasible.

□

4.5 Approximation Ratio
We argue that the computed solution has large profit. Like in Sec-

tion 4 we use a charging argument. For the sake of analysis, let

APX be a solution with the same large tasks as OPT
′′
, with the

same boxes as OPT
′′
, and by computing a bottom-up fractional

solution for all boxes as described above. First, we argue that in the

recursion, the DP might indeed select the large tasks and the boxes

such that at the end all large tasks and all boxes from OPT
′′
are

chosen. (Note however, since in each step the DP takes the choice

that maximizes the profit, the DP might select other tasks for the

final solution.)

Lemma 14. In OPT
′′, for each integer j each edge e is used by at

mostM ′ large tasks inT ≥j−K
′

which also use an edge of type at most
j.

Proof. Let i be a large task using e in OPT
′′
with i ∈ T ≥j−K

′

which also uses an edge of type at most j. If d(i) < µ2 · (1 + ε)
j+1

then let j ′ be the largest integer such that d(i) ≥ µ2 · (1 + ε)j
′

but d(i) < µ2 · (1 + ε)j
′+1

, otherwise let j ′ := j. We have that

j ≥ j ′ ≥ j − K ′. Then, P(i) contains the closest edge e ′ on the left

of e or on the right of e with f (e ′) = (1+ ε)j
′

(and hence of type j ′).
In OPT

′′
each edge e ′ of type j ′ is used by at most M = 1/(µ2ε

4)

tasks i ′ with d(i ′) ≥ µ2 · (1 + ε)
j′
. Hence, the total number of large

tasks using e in OPT
′′
with i ∈ T ≥j−K

′

and which also use an edge

of type j is bounded by 2(K ′ + 1)M = M ′. □

The tasks SL in the tuple (B, SL ,B) corresponding to a DP-cell

of DPmain are large tasks in T ≥type(B)−K ′
that use an edge of type

smaller than type(B) outside the path P(B) of B. Due to Lemma 14

there can be at mostM ′ such tasks on each edge e ∈ P(B). Therefore,
it is justified to require that |SL ∩Te | ≤ M ′ for each edge e of P(B)
in the definition of the DP-cells of DPmain . Moreover, this also

justifies that we require that |(Lℓ ∪ Lr ∪ SL) ∩Te | ≤ M ′ for every
e ∈ P(B) in DPsub . Finally, note that in OPT

′′
each edge of type j

is used by at mostM large tasks i ∈ SL such that d(i) ≥ µ2(1 + ε)
j

which justifies that we require this also in the definition of DPsub .
Therefore, in the recursion the DP could choose all large tasks and

all boxes from OPT
′′
in the respective maximization steps.

Denote by apx the weight of APX and by apxS the weight of the

small tasks in APX. For each box B denote by x(B) the resulting
fractional solution.

Profit from small tasks. Recall that when we process a DP-cell

(B, SL ,B) then we compute the bottom-up solution x(B) and to this
end considered the boxes B′ ⊆ B that belong to the same group

as B. Note that when we process the current DP-cell, we assume

that for each B′ ∈ B \ B′ one has x(B′) = 0. However, consider

the boxes
˜B underneath B. When we compute x(B), we neglect

the value of x(B′) for B′ ∈ ˜B. As a consequence, it might happen

that

∑
B xi (B) > 1 for some task i which is bigger than the final

fractional value x̄i = min{1,
∑
B xi (B)} for i . We argue now that

we still obtain a profit of at least optL + (
1

3
−O(ε))optS overall.

For each box B let y(B) denote the fractional solution according

to OPT
′′
and let y :=

∑
B y(B). Recall that yi ≤ 1/2 for each task
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i . Denote by opt
′′
S the weight of the small tasks in OPT

′′
and by

apxS the weight of the small tasks in APX. We want to prove that

opt
′′
S ≤

3

2
apxS . To this end, we split the solution y into two parts as

in Section 4.2. For the first part, lety
(1)

i := max{x̄i+yi−1, 0} for each

task i . We have that yi ≤ 1/2 and thus x̄i +yi − 1 ≤ x̄i − 1/2 ≤ x̄i/2

which implies that y
(1)

i ≤ x̄i/2. Therefore, opt
′′
S,1 :=

∑
i w(i)y

(1)

i ≤

apxS /2. For the second part, let y
(2)

i := yi − y
(1)

i . For each box

B we can find a value y
(2)

i (B) (which intuitively represents the

part of y
(2)

i in the box B) such that y
(2)

i (B) ≤ yi (B) and overall∑
B y
(2)

i (B) = y
(2)

i .

Consider a DP-cell (B, SL ,B). Assume that type(B) < GAP since

otherwise x(B) = x̄(B) = y(B) = 0. Let B′ ⊆ B denote the boxes

B′ ∈ B such that type(B′) ∈ Gℓ′ for the group Gℓ′ with type(B) ∈
Gℓ′ .

For each box B recall that x(B) is the computed bottom-up frac-

tional solution. Note that in every step of the computation, y
(2)

i
units of task i are still available to be selected and hence when we

compute the (bottom-up fractional) solution for a box B, one possi-

ble solution is given by y
(2)

i (B) for each task i . Therefore, for each

box B it holds that

∑
i w(i)xi (B) ≥

∑
i w(i)y

(2)

i (B). Unfortunately,

we cannot infer directly that also

∑
i w(i)x̄i (B) ≥

∑
i w(i)y

(2)

i (B).
This can happen if

∑
B′∈B∪ ˜B∪{B } xi (B

′) > 1 for some task i with

xi (B) > 0. In particular, when we compute x(B), then some space

of B will be wasted by (fractions of) tasks that we select for the

box B but which were already selected in the boxes
˜B. However,

since the heights of the boxes are geometrically increasing, we

will show that in this way we waste at most an ε-fraction of the

capacity of B on each edge. Since also the solution y does not use

the full capacity in each box B (see Lemma 12) we can argue that

still

∑
i w(i)x̄i (B) ≥

∑
i w(i)y

(2)

i (B) holds.
Let us assume that type(B) ≥ K + 1, since otherwise x(B) = x̄(B)

(in this case
˜B = ∅). We have that xwaste

i (B) ≤
∑
B′∈ ˜B

xi (B
′). We

also have that x(B′) defines a feasible fractional solution w.r.t. each

box B′. Hence, for each edge e ∈ P(B), we obtain

∑
i ∈Te

d(i)xwaste

i (B) ≤
∑

i ∈Te ,B′∈ ˜B

d(i)xi (B
′)

≤
∑

B′:type(B′)≤type(B)−cε

u(B′) = (1 + ε)type(B)−cε ≤ εu(B) .

In the second last inequality above we used that, if type(B) ∈ Gℓ ,

then, for any B′ ∈ ˜B, type(B′) ∈ Gℓ′ for some ℓ′ < ℓ or x(B′) = 0.
In the last inequality we used the definition of cε .

One feasible solution to box B is y
(2)

i (B) + xwaste

i (B) for each
task i . Since x(B) is the optimal solution to box B (considering

the already selected fractions of tasks in the boxes B), we have∑
i xi (B) ≥

∑
i y
(2)

i (B) + x
waste

i (B) and hence we have

∑
i
w(i)x̄i (B) =

∑
i
w(i)(xi (B) − x

waste

i (B)) ≥
∑
i
w(i)y

(2)

i (B)

for each box B. We conclude that

apxS :=
∑
i
w(i)x̄i =

∑
B

∑
i
w(i)x̄i (B)

≥
∑
B

∑
i
w(i)y

(2)

i (B) =
∑
i
w(i)y

(2)

i =: opt
′′
S,2.

Putting everything together one achieves:

opt
′′
S = opt

′′
S,1 + opt

′′
S,2 ≤

3

2

apxS .

Finally, we note that in each step the DP takes the decision that

optimizes the value of the computed solution. Therefore, by an

induction over the DP-cells one can show that the DP computes a

solution whose profit is at least apx ≥ optL +
2

3
opt
′′
S ≥ optL + (

1

3
−

O(ε))optS . Finally, we round the fractional solution over small tasks

into an integral solution (while keeping feasibility) while losing

at most a factor of 1 + ε in the profit of the small tasks, using the

algorithm in [15]. This completes the proof of Theorem 1.

A PROOF OF LEMMA 2
We start from an optimal solution OPT with profit opt. First, we

use a result by the authors of this paper [21] to create some slack
capacity on each edge by deleting some tasks from OPT, and after-

wards we use a shifting argument to define the large and the small

tasks. We assume that the constant ε > 0 is sufficiently small and

that 1/ε is an integer.

Lemma 15 (Lemma 2.1 from [21]). Let ε̃ > 0 be a constant. For
a UFP instance with an optimal solution OPT, there exists a feasible
solution ÔPT with profit ôpt ≥ (1 − O(ε̃)) · opt such that for each
edge e there is a value ˜δe ≥ 0 satisfying the following properties:

(1) either ˜δe = (1/ε̃
2)j for some integer j ≥ 0, or ˜δe = 0;

(2) d(Te ∩ ÔPT) ≤ u(e) − ˜δe ;
(3) there are at most 1/ε̃5 tasks i ∈ Te ∩ ÔPT such that d(i) ≥

ε̃2 · ˜δe ;
(4) the total demand of all tasks i ∈ Te ∩ ÔPT such that d(i) <

ε̃2 · ˜δe is at most 5
˜δe/ε̃

3.

The following lemma is a corollary of Lemma 15.

Lemma 16. Let ε > 0 be a constant. For a UFP instance with an
optimal solution OPT, there exists a feasible solution ÔPT with profit
ôpt ≥ (1−O(ε)) ·opt such that for each edge e there is a value δe ≥ 0

which satisfies the following properties:

(1) d(Te ∩ ÔPT) ≤ u(e) − 3δe ;
(2) there are at most 16/ε5 tasks i ∈ Te ∩ ÔPT such that d(i) ≥

ε2 · δe ;
(3) the total demand of all tasks i ∈ Te ∩ ÔPT such that d(i) <

ε2 · δe is at most 80δe/ε
3.

Proof of Lemma 16 using Lemma 15. Weapply Lemma 15with

ε̃ := ε/
√

3 and obtain ÔPT and { ˜δe }e . For every edge e , let δe = ˜δe/3.

Then Property 1 of the lemma statement holds, and ε̃2 · ˜δe = ε2 · δe .

There are at most 1/ε̃5 ≤ 16/ε5
tasks i ∈ Te ∩ ÔPT such that d(i) ≥

ε2 · δe , and in addition, the total demand of all tasks i ∈ Te ∩ ÔPT

such that d(i) < ε2 · δe is at most 5
˜δe/ε̃

3 ≤ 80δe/ε
3
. □

We apply Lemma 16 and obtain the set ÔPT and {δe }e . Next, we
use a shifting argument to define the large and the small tasks in
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Lemma 2. Define α = ε8/(1 + ε)1/ε
3

. For every k ∈ {1, . . . , 1/ε} we

define a set of tasks Ẑ (k ) as:

Ẑ (k ) := {i ∈ ÔPT | d(i) < (αk/ε4) · δe for every e ∈ P(i)}.

We define a profile
ˆf (k ) by ˆf (k )(e) := d(Ẑ (k ) ∩Te ) + 2δe for each

edge e . Thus the demand of the tasks in Ẑ (k ) using the edge e is at

most
ˆf (k )(e). We round each value

ˆf (k )(e) to a power of (1 + ε) to

obtain a profile f (k ) defined by f (k )(e) := (1 + ε) ⌊log
1+ε

ˆf (k )(e)⌋
. As

a result,
ˆf (k)(e) ≥ f (k )(e) > ˆf (k )(e)/(1 + ε) and f (k)(e) ≥ δe for

every e .

Fact 17. f (k )(e) ≤ δe/ε
4 for any k ∈ {1, . . . , 1/ε} and for any

edge e ∈ E.

Proof. We have

f (k)(e) ≤ ˆf (k )(e) ≤ d(Ẑ (k ) ∩Te ) + 2δe ≤ 80δe/ε
3 + 2δe ≤ δe/ε

4,

where the third inequality follows by Lemma 16 and the fact that

any task i ∈ Ẑ (k ) ∩ Te is such that d(i) < (αk/ε4) · δe < ε2 · δe ,
and the last inequality holds since we assume that ε is sufficiently

small. □

Intuitively we want to shrink each task in Ẑ (k) by an ε fraction

so that all tasks in Ẑ (k ) fit into the profile f (k ). However, we cannot
simply reduce the demand of each task. Instead, using the following

lemma, we obtain a subset Z (k ) ⊆ Ẑ (k ) such that for each edge e

the total demand of the tasks in Z (k ) ∩Te is at most (1 − ε) times

the total demand of the tasks in Ẑ (k ) ∩Te .

Lemma 18 (Follows from [15]). Consider a UFP instance such
that for each input task i it holds that d(i) ≤ ε2 · u(e) for every edge
e ∈ P(i). Let Ŝ be a set of tasks that is a feasible solution to this
instance. Let β ∈ (0, 1) be any constant. Then there is a subset S ⊆ Ŝ
such that on each edge e the total demand of the tasks in S using e is
at most β · u(e) and thatw(S) ≥ (β −O(ε))w(Ŝ).

We apply Lemma 18with Ŝ := Ẑ (k ), β := 1−ε , andu(e) := ˆf (k )(e)
for every edge e . The condition of the lemma is satisfied, since for

every task i ∈ Ẑ (k) and for every edge e ∈ P(i), we have

d(i) < (αk/ε4) · δe < ε2 · ˆf (k )(e).

Let Z (k) ⊆ Ẑ (k ) be the set S obtained from Lemma 18. Then

w(Z (k )) ≥ (1 −O(ε))w(Ẑ (k )) and, for each edge e , we have

d(Z (k ) ∩Te ) ≤ ˆf (k )(e) · (1 − ε) < ˆf (k )(e)/(1 + ε) < f (k )(e). (1)

We define ÕPT

(k)
= (ÔPT\Ẑ (k ))∪Z (k). We note that ÔPT\Ẑ (k )

and Z (k ) are disjoint subsets of ÔPT and hence ÕPT

(k )
⊆ ÔPT. We

then define the small tasks OPT
(k )
S and the large tasks OPT

(k )
L as

follows:

OPT
(k )
S := {i ∈ ÕPT

(k )
: d(i) < µ

(k )
1
·f (k )(e) for every edge e ∈ P(i)}

OPT
(k )
L := {i ∈ ÕPT

(k )
: d(i) ≥ µ

(k )
2
·f (k )(e) for some edge e ∈ P(i)}

where we define µ
(k)
1
= αk and µ

(k )
2
= αk−1 · ε4

.

Fact 19. OPT
(k )
S ⊆ Z (k ) and OPT

(k)
L ⊆ ÔPT \ Ẑ (k ).

Proof. Consider any task i ∈ OPT
(k )
S . For every edge e ∈ P(i),

we have d(i) < µ
(k )
1
· f (k)(e) ≤ αk · δe/ε

4
by Fact 17. Thus i ∈ Ẑ (k )

and hence i ∈ Z (k ).
Next, consider any task i ∈ OPT

(k )
L . There exists some edge

e ∈ P(i) such that d(i) ≥ µ
(k)
2
· f (k )(e) = (αk−1 · ε4) · f (k )(e) >

(αk/ε4) · δe . Thus i < Ẑ
(k )

and hence i ∈ ÔPT \ Ẑ (k ). □

From Fact 19, OPT
(k )
L ∩ OPT

(k )
S = ∅. However, there might be

tasks in ÕPT

(k)
that are neither in OPT

(k )
S nor in OPT

(k )
L . We denote

them byOPT
(k )
M := ÕPT

(k )
\(OPT

(k )
S ∪OPT

(k )
L ). Tomake our shifting

argumentation work, we first prove that each task can appear in at

most one such set OPT
(k)
M .

Lemma 20. For each pairk,k ′ ∈ N+ withk , k ′ we haveOPT
(k )
M ∩

OPT
(k ′)
M = ∅.

Proof. Assume thatk ′ > k . Let i ∈ OPT
(k ′)
M . Then for every edge

e ∈ P(i) we have d(i) < µ
(k ′)
2
· f (k

′)(e) since otherwise i ∈ OPT
(k ′)
L .

Using Fact 17, we have

d(i) < µ
(k ′)
2
· f (k

′)(e) ≤ µ
(k ′)
2
· (1/ε4) ·δe ≤ µ

(k )
1
·δe ≤ µ

(k)
1
· f (k)(e).

Hence i < OPT
(k )
M . □

Due to Lemma 20 we can find a value k∗ ∈ {1, . . . , 1/ε} such that

opt
(k∗)
M ≤ ε · opt, where opt

(k∗)
M = w(OPT

(k∗)
M ). For this value k∗, let

µ1 = µ
(k∗)
1

and µ2 = µ
(k∗)
2

, which satisfy that µ1, µ2 ∈ (0, ε
4) and

µ1 < µ2/(1 + ε)
1/ε3

. Using µ1 and µ2, we define the sets TL and TS

using the formula in the lemma statements. Let OPTL = OPT
(k∗)
L ,

OPTS = OPT
(k∗)
S ,

ˆf = ˆf (k
∗)
, f = f (k

∗)
, and Ẑ = Ẑ (k

∗)
. Proper-

ties 1, 3, and 4 of Lemma 2 follow directly from the construction,

and Property 6 of Lemma 2 follows from Eq. (1) and Fact 19. It only

remains to show Properties 2, 5, and 7 of Lemma 2.

To show Property 2 of Lemma 2, we have

w(OPTL ∪ OPTS )

≥ w
(
ÕPT

(k∗))
− ε · opt (since opt

(k∗)
M ≤ ε · opt)

≥ (1 −O(ε)) ·w(ÔPT) − ε · opt (construction of ÕPT

(k∗)
)

≥ (1 −O(ε)) · opt . (by Lemma 16)

To show Property 5 of Lemma 2, first, we note that OPTL ⊆ ÔPT.

Thus by Lemma 16, there can be at most 16/ε5
tasks i ∈ Te ∩OPTL

such that d(i) ≥ ε2 · δe . Also by Lemma 16, the total demand of the

tasks i ∈ Te ∩ OPTL with d(i) < ε2 · δe is at most 80δe/ε
3
. Hence,

among the latter tasks there can be at most
80δe /ε3

µ2 ·f (e)
≤

80δe /ε3

µ2 ·δe
=

80/(µ2 · ε
3) tasks i with d(i) ≥ µ2 · f (e) in Te ∩ OPTL . Therefore,

at each edge e , the total number of tasks i ∈ Te ∩ OPTL such that

d(i) ≥ µ2 · f (e) is at most (16/ε5) + 80/(µ2 · ε
3), which is at most

1/(µ2 · ε
4) for sufficiently small ε .
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Finally, we show Property 7 of Lemma 2. For each edge e , we
have

d(OPTL ∩Te )

≤ d((ÔPT \ Ẑ ) ∩Te ) (by Fact 19)

= d(ÔPT ∩Te ) − d(Ẑ ∩Te ) (since Ẑ ⊆ ÔPT)

≤ u(e) − 3δe − d(Ẑ ∩Te ) (by Property 1 of Lemma 16)

= u(e) − ˆf (e) − δe (by the definition of
ˆf (e))

≤ u(e) − f (e) − δe (since f (e) ≤ ˆf (e))

≤ u(e) − f (e) − ε4 · f (e) (by Fact 17).

We completed the proof of Lemma 2.
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