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Abstract

Estimation of Distribution Algorithms (EDAs) are one branch of Evolutionary Algo-
rithms (EAs) in the broad sense that they evolve a probabilistic model instead of a popu-
lation. Many existing algorithms fall into this category. Analogous to genetic drift in EAs,
EDAs also encounter the phenomenon that updates of the probabilistic model not justified
by the fitness move the sampling frequencies to the boundary values. This can result in a
considerable performance loss.

This paper proves the first sharp estimates of the boundary hitting time of the sampling
frequency of a neutral bit for several univariate EDAs. For the UMDA that selects µ best
individuals from λ offspring each generation, we prove that the expected first iteration when
the frequency of the neutral bit leaves the middle range [ 1

4
, 3

4
] and the expected first time

it is absorbed in 0 or 1 are both Θ(µ). The corresponding hitting times are Θ(K2) for the
cGA with hypothetical population size K. This paper further proves that for PBIL with
parameters µ, λ, and ρ, in an expected number of Θ(µ/ρ2) iterations the sampling frequency
of a neutral bit leaves the interval [Θ(ρ/µ), 1 −Θ(ρ/µ)] and then always the same value is
sampled for this bit, that is, the frequency approaches the corresponding boundary value
with maximum speed.

For the lower bounds implicit in these statements, we also show exponential tail bounds.
If a bit is not neutral, but neutral or has a preference for ones, then the lower bounds on

∗A small subset of the results presented in this work were already stated, without proof or proof idea, in the
conference paper [1, Theorem 4.5], namely that the expected time the frequency of a neutral bit takes to hit the
absorbing states 0 or 1 is Θ(K2) for cGA and Θ(µ) for UMDA. Our work now extends the UMDA result to the
PBIL, strenghthens all lower bounds by regarding the event of leaving the middle range [ 1

4
, 3

4
] of the frequency

range, adds a tail bound for the lower bounds, and adds domination arguments allowing to extend the lower
bounds to bits that are neutral or prefer a particular value. Also, complete proofs are given for all results. Both
authors contributed equally to this work and both act as corresponding authors.
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the times to reach a low frequency value still hold. An analogous statement holds for bits
that are neutral or prefer the value zero.

1 Introduction

Estimation of Distribution Algorithms (EDAs) are evolutionary algorithms (EAs) that evolve a
probabilistic model instead of a population. An iteration of an EDA usually consists of three
steps. (i) Based on the current probabilistic model, a population of individuals is sampled.
(ii) The fitness of this population is determined. (iii) Update of the probabilistic model: Based on
the fitness of this population and the probabilistic model, a new probabilistic model is computed.

Different probabilistic models and update strategies form different specific algorithms in this
framework. In multivariate EDAs, the probabilistic model contains dependencies among the
variables. Examples for multivariate EDAs include Mutual-Information-Maximization Input
Clustering [2], Bivariate Marginal Distribution Algorithm [3], the Factorized Distribution Algo-
rithm [4], the Extended Compact Genetic Algorithm [5], and many others.

For univariate EDAs, the bit positions of the probabilistic model are mutually indepen-
dent. Univariate EDAs include Population-Based Incremental Learning (PBIL) [6, 7] with spe-
cial cases Univariate Marginal Distribution Algorithm (UMDA) [8] and Max-Min Ant System
with iteration-best update (MMASib) [9], and the Compact Genetic Algorithm (cGA) [10]. Since
the dependencies in multivariate EDAs bear significant difficulties for a mathematical analysis,
almost all theoretical results for EDAs regard univariate models [11]. This paper also deals
exclusively with univariate EDAs.

In evolutionary algorithms, it is known that the frequencies of bit values in the population are
not only influenced by the contribution of the bit to the fitness, but also by random fluctuation
stemming from other bits having a stronger influence on the fitness. These random fluctuations
can even lead to certain bits converging to a single value different from the one in the optimal
solution. This effect is called genetic drift [12, 13].

Genetic drift also happens in EDAs. González, Lozano, and Larrañaga [14] showed that for
the 2-dimensional OneMax function, the sampling frequency of PBIL can converge to any search
point in the search space with probability near to 1 if the initial sampling frequency goes to that
search point and the learning rate goes to 1. Droste [15] noticed the possibility of the cGA
getting stuck, but he only analyzed the runtime conditional on it being finite, and no analysis of
genetic drift or stagnation times was given. Costa, Jones, and Kroese [16] proved that a constant
smoothing parameter for the Cross Entropy (CE) algorithm (which is equivalent to a constant
learning rate ρ for PBIL) results in that the probability mass function converges to a unit mass
at some random candidate, but no convergence speed analysis was given. In summary, as Krejca
and Witt said in [11], the genetic drift in EDAs is a general problem of martingales, that is, that
a random process with zero expected change will eventually stop at the absorbing boundaries of
the range. Witt [17] and Lengler, Sudholt, and Witt [18] recently showed that genetic drift can
result in a considerable performance loss on the OneMax function.

In this work, we shall quantify this effect asymptotically precisely for several EDAs and this
via proven results. The few previous works in this direction have obtained the following results.
Friedrich, Kötzing, and Krejca [19] showed that for the cGA with hypothetical population size
K, the frequency of a neutral bit position is arbitrary close to the borders 0 or 1 after expected
ω(K2) generations. Though not stated in [19], from its Corollary 9, we can derive an upper
bound of O(K2) for the expected time of leaving the interval [1

4 , 3
4 ], and O(K2 log K) for expected

hitting time of a boundary value. For the UMDA selecting µ best individuals from λ offspring,
the situation is similar [19]. After ω(µ) iterations, the frequencies are arbitrary close to the
boundaries and the expected hitting time can be shown to be O(µ log µ) via similar arguments
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as above. Sudholt and Witt [20] mentioned that the boundary hitting time of the cGA is Θ(K2),
but without a complete proof (in particular, because they did not discuss what happens once the
frequency leaves the interval [1

6 , 5
6 ]). Although Krejca and Witt [21] focused on the lower bound

of the runtime of the UMDA on OneMax, we can derive from it that the hitting time of the
boundary 0 is at least Ω(µ). This follows from the drift of φ in Lemma 9 in [21] together with
the additive drift theorem [22].

Our results: While the results above give some indication on the degree of stability of PBIL
and the cGA, a sharp proven result is still missing. This paper overcomes this shortage and gives
precise asymptotic hitting times for PBIL (including the UMDA and the MMASib) and the cGA.
With a simultaneous analysis of the UMDA and the cGA, we prove that for the UMDA selecting
µ best individuals from λ offspring on some D-dimensional problem, the expected number of
iterations until the frequency of the neutral bit position is absorbed in 0 or 1 for the UMDA
without margins or when the frequency hits the margins {1/D, 1−1/D} for the UMDA with such
margins is Θ(µ), and the corresponding hitting time is Θ(K2) for the cGA with hypothetical
population size K. This paper also gives a precise asymptotic analysis for PBIL selecting µ best
individuals from λ offspring and with a learning rate of ρ: In expectation in Θ(µ/ρ2) generations
the sampling frequency of a neutral bit position leaves the interval [Θ(ρ/µ), 1−Θ(ρ/µ)] and then
always the same value is sampled for this position.

For the lower bounds implicit in these estimates we prove an exponential tail bound in
Theorem 2.

We also extend the lower bound results to bit positions that are neutral or have a preference
for some bit value (Section 6). For example, we prove that for PBIL it takes an expected number
of Ω(µ/ρ2) iterations until the sampling frequency of a position that is neutral or prefers a one
(neutral or prefers a zero) reaches the interval [0, 1

4 ] ([ 3
4 , 1]). The corresponding hitting time is

Ω(K2) for the cGA.
The remainder of this paper is organized as follows. Section 2 briefly introduces PBIL and

the cGA under the umbrella of the n-Bernoulli-λ-EDA framework proposed in [19]. Our notation
for our results is fixed in Section 3. Section 4 and Section 5 discuss how fast the frequency of
a neutral bit position approaches the boundaries. Section 6 extends the lower bound results of
Section 4 to bit positions that are neutral or have some preference. Finally, in Section 7 we argue
how our results allow to interpret existing research results and how they give hints on how to
choose the parameters of these EDAs.

2 The n-Bernoulli-λ-EDA Framework

Since the n-Bernoulli-λ-EDA framework proposed in [19] covers many well-known EDAs including
PBIL and the cGA, we use it to make precise these two EDAs.

We note that often margins like 1/D and 1 − 1/D are used, that is, the frequencies are
restricted to stay in the interval [1/D, 1 − 1/D]. This prevents the frequencies from reaching the
absorbing states 0 and 1. To ease the presentation, we regard the EDAs without such margins.
We note that, trivially, the time to reach an absorbing state is not smaller than the time to
reach a margin value. Hence an upper bound on the hitting time of the absorbing states is also
an upper bound for the time to reach or exceed the margin values. Our main result on lower
bounds, Corollary 3, shows a lower bound for the time to reach a frequency value in [0, 1

4 ]∪ [ 3
4 , 1].

This again is a lower bound for the time to reach (or exceed) the margin values or the absorbing
states.

The n-Bernoulli-λ-EDA framework for maximizing a function f : {0, 1}D → R is shown in
Algorithm 1. By suitably specifying the update scheme φ, we derive PBIL and the cGA. The
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general idea of population-based incremental learning (PBIL) is to sample λ individuals from the
current distribution, select µ best of them, and use these (with a learning rate of ρ) and the
current distribution to define the new distribution. Formally, the update scheme is

pt
j = ϕ(pt−1, (Xi, f(Xi))i=1,...,λ)j

= (1 − ρ)pt−1
j +

ρ

µ

µ
∑

i=1

X̃t
i,j ,

(1)

where ρ is the learning rate and X̃t
1, ..., X̃t

µ are the selected µ best individuals from the λ offspring.
The cross entropy algorithm (CE) has various definitions according to the problems to be

solved. The basic CE algorithm for discrete optimization [16] samples N individuals from the
current distribution, selects Nb best of them, and uses these (with a time-dependent smoothing
rate of αt) and the current distribution to define the new distribution. The formal update scheme
is (1) with µ, λ and ρ respectively replaced by Nb, N and αt. The basic CE is equal to PBIL
except that the learning rate is fixed for PBIL, whereas CE utilizes time-dependent learning
rates. When referring to the CE algorithm in this paper, we mean this version from [16], but
we denote its parameters by µ, λ and ρt instead of Nb, N and αt to reflect the similarity with
PBIL.

Two special cases of PBIL have been regarded in the literature. The univariate marginal
distribution algorithm (UMDA) only uses the samples of this current iteration to define the next
probabilistic model, hence it is equivalent to PBIL with a learning rate of ρ = 1. The λ-max-
min ant system (λ-MMAS) only selects the best sampled individual and the current model to
construct the new model, hence it is the special case with µ = 1.

Algorithm 1 The n-Bernoulli-λ-EDA framework with update scheme ϕ to maximize a function
f : {0, 1}D → R

1: p0 = ( 1

2
, 1

2
, . . . , 1

2
) ∈ [0, 1]D

2: for t = 1, 2, . . . do

3: for i = 1, 2, . . . , λ do

%%Sampling of the i-th individual Xt
i = (Xt

i,1, . . . , Xt
i,D)

4: for j = 1, 2, . . . , D do

5: Xt
i,j ← 1 with probability pt−1

i and
Xt

i,j ← 0 with probability 1− pt−1

i ;
6: end for

7: end for

%%Update of the frequency vector

8: pt
← ϕ(pt−1, (Xi, f(Xi))i=1,...,λ);

9: end for

The compact genetic algorithm (cGA) with hypothetical population size K, not necessarily
an integer, samples two individuals and then changes the frequency of each bit position by an
absolute value of 1/K towards the bit value of the better individual (unless the two sampled
individuals have identical values in this position). Formally, we have λ = 2 in the n-Bernoulli-λ-
EDA framework and the update scheme is

pt
j = ϕ(pt−1, (Xi, f(Xi))i=1,...,λ)j

=











pt−1
j + 1

K , if Xt
(1),j > Xt

(2),j

pt−1
j − 1

K , if Xt
(1),j < Xt

(2),j

pt−1
j , if Xt

(1),j = Xt
(2),j ,

(2)
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where {Xt
(1), Xt

(2)} = {Xt
1, Xt

2} such that f(Xt
(1)) ≥ f(Xt

(2)). We shall always make the follow-

ing well-behaved frequency assumption (first called so in [23], but made in many earlier works
already): Any two frequencies the cGA can reach differ by a multiple of 1/K. In the case of no
margins, this means that the cGA can only use frequencies in {0, 1/K, 2/K, . . . , 1}. Note that
K needs to be even so that the initial frequency 1/2 is also a multiple of 1/K. When using the
margins 1/D and 1 − 1/D, the set of reachable frequency boundaries is {1/D, 1/D+ 1/K, 1/D +
2/K, . . . , 1 − 1/D}. To have 1/2 in this set, 1 − 2/D needs to be an even multiple of 1/K.

3 Notation Used in Our Analyses

Genetic drift is usually studied via the behavior of a neutral bit position. Let f : {0, 1}D → R be
an arbitrary fitness function with a neutral bit position. Without loss of generality, let the first bit
position of the fitness function f be neutral, that is, we have f(0, X2, . . . , XD) = f(1, X2, . . . , XD)
for all X2, . . . , XD ∈ {0, 1}. Then we can simply assume that X̃t

i,1 = Xt
i,1, i = 1, . . . , µ in (1),

and Xt
(1),1 = Xt

1,1, Xt
(2),1 = Xt

2,1 in (2). Let pt = pt
1 be the frequency of the neutral bit position

after generation t. For PBIL, we have

pt =







1
2 , t = 0,

(1 − ρ)pt−1 + ρ
µ

µ
∑

i=1

Xt
i,1, t ≥ 1,

(3)

where the Xt
i,1 are independent 0, 1 random variables with Pr[Xt

i,1 = 1] = pt−1.
For the cGA, we have

pt =



















1
2 , t = 0,










pt−1 + 1
K , if Xt

1,1 > Xt
2,1

pt−1 − 1
K , if Xt

1,1 < Xt
2,1

pt−1, if Xt
1,1 = Xt

2,1

, t ≥ 1,

where Xt
1,1 and Xt

2,1 are independent 0, 1 random variables with Pr[Xt
1,1 = 1] = Pr[Xt

2,1 = 1] =
pt−1.

We observe that this random process (pt) is independent of f, D, and, in the case of PBIL,
λ. We also have

E[pt | pt−1] = pt−1,

that is, both PBIL and the cGA are balanced in the sense of [19].
Finally, let T = min{t | pt ∈ {0, 1}} be the hitting time of the absorbing states 0 and 1.
We are now ready to prove our matching upper and lower bounds for the hitting time T . We

start with lower bounds in Section 4 as these are easier to prove and thus a good warm-up for
the upper bound proofs in Section 5.

4 Lower Bounds on the Boundary Hitting Time

To prove our lower bounds, we use the following version of the Hoeffding-Azuma inequality for
maxima, see [24, Theorem 3.10 and (41)] and note that in (41) the absolute value should be
inside the maximum, as can be seen from the proof in [24].
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Theorem 1 ([24]). Let a1, . . . , am ∈ R, and S1, . . . , Sm be a martingale difference sequence with
|Sk| ≤ ak for each k. Then for any s ≥ 0,

Pr

[

max
k=1,...,m

∣

∣

∣

∣

∣

k
∑

i=1

Si

∣

∣

∣

∣

∣

≥ s

]

≤ 2 exp

(

− s2

2
∑m

i=1 a2
i

)

.

Now we prove our lower bounds. We first derive tail bounds in Theorem 2, and use the tail
bounds to further obtain our lower bounds on the expected hitting time of the absorbing states.
The expectations of hitting times are asymptotically equal to (and necessarily not less than) the
expected times of leaving the frequency range (1

4 , 3
4 ), so we determine these in Corollary 3, which

are also of independent interest.

Theorem 2. Consider using an n-Bernoulli-λ-EDA to optimize some function f with a neutral
bit position. Let pt, t = 0, 1, 2, . . . denote the frequency of the neutral bit position after iteration
t.

(a) If the EDA is PBIL with learning rate ρ and selection size µ, then for all γ > 0 and T ∈ N

we have

Pr[∀t ∈ [0..T ] : |pt − 1
2 | < γ] ≥ 1 − 2 exp

(

− γ2µ

2ρ2T

)

.

(b) If the EDA is the cGA with hypothetical population size K, then for all γ > 0 and T ∈ N

we have

Pr[∀t ∈ [0..T ] : |pt − 1
2 | < γ] ≥ 1 − 2 exp

(

−γ2K2

2T

)

.

Proof. For PBIL, building on the notation introduced in Section 3, we consider the random
process

Ztµ+a = (1 − ρ)ptµ + ρpt(µ − a) + ρ

a
∑

i=1

Xt+1
i,1 ,

where t = 0, 1, . . . , and a = 0, 1, . . . , µ − 1. For a = 0, we obviously have Ztµ/µ = pt, that is,
the Z-process contains the process (pt) we are interested in. Noting that Z(t+1)µ can also be

written as Ztµ+µ = (1 − ρ)ptµ + ρpt(µ − µ) + ρ
µ
∑

i=1

Xt+1
i,1 , it is also not difficult to see that for all

k = 0, 1, . . . , we have

Pr[Zk+1 = Zk + ρ − ρpt | Z1, . . . , Zk] = pt,

Pr[Zk+1 = Zk + 0 − ρpt | Z1, . . . , Zk] = 1 − pt,
(4)

where t = ⌊k/µ⌋. Consequently,

E[Zk+1 | Z1, . . . , Zk] = Zk

and the sequence Z0, Z1, Z2, . . . is a martingale. For k = 1, 2, . . . , let Rk = Zk − Zk−1 define the
martingale difference sequence. By (4),

|Rk| ≤ max{ρ(1 − pt), ρpt} ≤ ρ.

By the Hoeffding-Azuma inequality (Theorem 1), we have

Pr

[

max
k=1,...,tµ

∣

∣

∣

∣

∣

k
∑

i=1

Ri

∣

∣

∣

∣

∣

≥ M

]

≤ 2 exp

(

− M2

2tµρ2

)

. (5)
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Recalling Z0 = µ
2 and pt = Ztµ/µ, we have

Pr

[

max
k=1,...,t

∣

∣pk − 1
2

∣

∣ ≥ M/µ

]

≤ Pr

[

max
k=1,...,tµ

∣

∣

∣

∣

∣

k
∑

i=1

Ri

∣

∣

∣

∣

∣

≥ M

]

.

(6)

Combining (5) and (6) with M = γµ, we obtain

Pr

[

max
k=1,...,t

∣

∣pk − 1
2

∣

∣ ≥ γ

]

≤ 2 exp

(

− γ2

2tρ2

)

and thus we prove the result for PBIL.
For the cGA, we may simply regard the process Zk = pk. Since for all k = 0, 1, . . . ,

Pr[Zk+1 = Zk + 1
K | Z1, . . . , Zk] = pk(1 − pk),

Pr[Zk+1 = Zk − 1
K | Z1, . . . , Zk] = pk(1 − pk),

Pr[Zk+1 = Zk | Z1, . . . , Zk] = 1 − 2pk(1 − pk),

we have E[Zk+1 | Z1, . . . , Zk] = Zk. The martingale difference sequence Rk := Zk −Zk−1 satisfies
|Rk| ≤ 1

K . By the Hoeffding-Azuma inequality, we have

Pr

[

max
k=1,...,t

∣

∣pk − 1
2

∣

∣ ≥ M

]

= Pr

[

max
k=1,...,t

∣

∣

∣

∣

∣

k
∑

i=1

Ri

∣

∣

∣

∣

∣

≥ M

]

≤ 2 exp

(

−M2K2

2t

)

.

Taking M = γ we prove our result for the cGA.

Let T0 the first time the frequency of the neutral bit position is in [0, 1
4 ] ∪ [ 3

4 , 1]. Then we
know T0 = min{t | |pt − 1

2 | ≥ 1
4 }. Hence, via taking T = µ/(32ρ2) for PBIL and T = K2/32 for

the cGA in Theorem 2, we could easily obtain the expected hitting time, as shown in Corollary 3.

Corollary 3. Consider using an n-Bernoulli-λ-EDA to optimize some function f with a neutral
bit position. Let T0 denote the first time the frequency of the neutral bit position is in [0, 1

4 ]∪[ 3
4 , 1].

For PBIL, we have E[T0] = Ω( µ
ρ2 ), in particular, E[T0] = Ω(µ) for the UMDA and E[T0] = Ω( 1

ρ2 )

for the λ-MMAS. For the cGA, we have E[T0] = Ω(K2).

We note that the lower bound proof for PBIL can be extended to CE, either by simply
replacing ρ by the supremum ρsup = sup{ρt | t ∈ N} and obtaining a lower bound of Ω(µ/ρ2

sup),

or by replacing tρ2 in (5) by
∑t

s=1 ρ2
t . With a suitable choice of t, this gives a bound taking into

account the particular values of (ρt). We omit the details.

5 Upper Bounds on the Boundary Hitting Time

We now prove that, roughly speaking, the lower bounds shown in the previous section are asymp-
totically tight. To prove our upper bounds, we use the following two lemmas.

7



Lemma 4. For all z ≥ 0 and z0 > 0, we have

√
z ≤

√
z0 + 1

2 z
−1/2
0 (z − z0) − 1

8 z
−3/2
0 (z − z0)2

+ 1
16 z

−5/2
0 (z − z0)3.

Proof. For the convenience of the proof, let x =
√

z and a =
√

z0. We consider the function

g(x) = x − a − 1
2 a−1(x2 − a2) + 1

8 a−3(x2 − a2)2

− 1
16 a−5(x2 − a2)3

= − 1
16 a−5x6 + 5

16 a−3x4 − 15
16 a−1x2 + x − 5

16 a

and show that g(x) ≤ 0. Since

g′(x) = − 3
8 a−5x5 + 5

4 a−3x3 − 15
8 a−1x + 1

and

g′′(x) = − 15
8 a−5x4 + 15

4 a−3x2 − 15
8 a−1

= − 15
8 a−5(x4 − 2a2x2 + a4)

= − 15
8 a−5(x2 − a2)2 ≤ 0,

we know that g′(x) is monotonically decreasing. Since g′(0) = 1 and g′(a) = 0, we observe that
g(x) increases in [0, a) and decreases in [a, ∞). Therefore, g(x) ≤ g(a) = 0.

An easy calculation gives the following second-order and third-order central moments of the
frequency of the neutral bit position in PBIL and the cGA.

Lemma 5. For PBIL, we have

Var[pt | pt−1] =
ρ2

µ
pt−1(1 − pt−1),

E[(pt − E[pt | pt−1])3 | pt−1]

=
ρ3

µ2
pt−1(1 − pt−1)(1 − 2pt−1).

For the cGA, we have

Var[pt | pt−1] =
2

K2
pt−1(1 − pt−1),

E[(pt − E[pt | pt−1])3 | pt−1] = 0.

Proof. For PBIL, note that
∑µ

i=1 Xt
i,1 ∼ Bin(µ, pt−1). Thus we have

Var

[

µ
∑

i=1

Xt
i,1

∣

∣

∣

∣

∣

pt−1

]

= µpt−1(1 − pt−1),

E





(

µ
∑

i=1

Xt
i,1 − E

[

µ
∑

i=1

Xt
i,1

∣

∣

∣

∣

∣

pt−1

])3
∣

∣

∣

∣

∣

∣

pt−1
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= µpt−1(1 − pt−1)(1 − 2pt−1).

Hence, recalling that pt = (1 − ρ)pt−1 + ρ
µ

µ
∑

i=1

Xt
i,1, and noting that centered moments are

invariant to translations with constants and that constant scaling factors can be pulled out in
the corresponding power, we have

Var[pt | pt−1] =

(

ρ

µ

)2

Var

[

µ
∑

i=1

Xt
i,1

∣

∣

∣

∣

∣

pt−1

]

=
ρ2

µ
pt−1(1 − pt−1)

and

E[(pt − E[pt | pt−1])3 | pt−1]

=

(

ρ

µ

)3

E





(

µ
∑

i=1

Xt
i,1 − E

[

µ
∑

i=1

Xt
i,1

∣

∣

∣

∣

∣

pt−1

])3
∣

∣

∣

∣

∣

∣

pt−1





=
ρ3

µ2
pt−1(1 − pt−1)(1 − 2pt−1).

For the cGA, we compute

Var[pt | pt−1] = E[(pt − E[pt | pt−1])2 | pt−1]

= pt−1(1 − pt−1)

(

1

K

)2

+ pt−1(1 − pt−1)

(

− 1

K

)2

=
2

K2
pt−1(1 − pt−1)

and

E[(pt − E[pt | pt−1])3 | pt−1]

= pt−1(1 − pt−1)

(

1

K

)3

+ pt−1(1 − pt−1)

(

− 1

K

)3

= 0.

We are now ready to prove the following upper bounds for the hitting time of the absorbing
states of the frequency of a neutral bit position. We consider EDAs without margins here, but
since the time to reach an absorbing state is not smaller than the time to reach a margin value,
we know that an upper bound on the hitting time of the absorbing states is also an upper bound
for the time to hit a margin value when margins are used.

Theorem 6. Consider using an n-Bernoulli-λ-EDA to optimize some function f with a neutral
bit position.

• If the EDA is PBIL with ρ < 1, including the case of the λ-MMAS, then the following
holds. Let c ∈ (1

2 , 1√
2
). We say that the frequency pt of the neutral bit position runs away

from time t onwards if

(a) pt ≤ c ρ
µ and in all iterations t′ > t all samples have a zero in the neutral bit position,

or

9



(b) pt ≥ 1 − c ρ
µ and in all iterations t′ > t all samples have a one in the neutral bit

position.

For T̃ denoting the first t such that pt runs away from time t on, we have E[T̃ ] = O( µ
ρ2 ).

• If the EDA is the UMDA, that is, PBIL with ρ = 1, then the first hitting time T of the
absorbing states {0, 1} satisfies E[T ] = O(µ).

• For the cGA, the expected first time to reach an absorbing state satisfies E[T ] = O(K2).

Proof. Let qt = min{pt, 1 − pt} and Yt =
√

qt. Then T = min{t | qt = 0} and T̃ = min{t | qt ≤
c ρ

µ}. Due to the symmetry, we just discuss the case when qt−1 = pt−1. Obviously, pt−1 ≤ 1
2 in

this case. Let us assume that pt−1 > c ρ
µ . Using Lemma 4 with z = pt and z0 = pt−1, we have

E[
√

pt | pt−1] ≤ E[Yt−1| pt−1] + 1
2 p

−1/2
t−1 E[pt − pt−1| pt−1]

− 1
8 p

−3/2
t−1 E[(pt − pt−1)2 | pt−1]

+ 1
16 p

−5/2
t−1 E[(pt − pt−1)3 | pt−1]

and thus

E[Yt−1 − √
pt | Yt−1] ≥ − 1

2 p
−1/2
t−1 E[pt − pt−1 | pt−1]

+ 1
8 p

−3/2
t−1 E[(pt − pt−1)2 | pt−1]

− 1
16 p

−5/2
t−1 E[(pt − pt−1)3 | pt−1].

(7)

We analyze PBIL first, which includes the UMDA. We start by showing that, regardless of
p0, the expected time to reach pt ∈ P := [0, cρ/µ] ∪ [1 − cρ/µ, 1] is O(µ/ρ2). Via Lemma 5, we
have

E[Yt−1 − √
pt | Yt−1] ≥ 1

8
p

−3/2
t−1

ρ2

µ
pt−1(1 − pt−1)

− 1

16
p

−5/2
t−1

ρ3

µ2
pt−1(1 − pt−1)(1 − 2pt−1)

=
ρ2

16µ
p

−1/2
t−1 (1 − pt−1)

(

2 − ρ

µpt−1
(1 − 2pt−1)

)

≥ ρ2

16µ
p

−1/2
t−1 (1 − pt−1)

(

2 − 1

c

)

,

where the last estimate follows from pt−1 ≥ cρ/µ and from the fact that 0 < pt−1 ≤ 1
2 implies

0 ≤ 1 − 2pt−1 < 1. Since pt−1 ≤ 1
2 , we have p

−1/2
t−1 (1 − pt−1) ≥

√
2

2 . Hence E[Yt−1 −√
pt | Yt−1] ≥

c1ρ2/µ, where c1 =
√

2
32 (2 − 1

c ). Using qt = min{pt, 1 − pt}, we have

E[Yt−1 − Yt | Yt−1] ≥ E[Yt−1 − √
pt | Yt−1] ≥ c1ρ2/µ. (8)

By artificially modifying the process (Yt) once it goes below cρ/µ, e.g., by defining (Ỹt) via Ỹt = Yt

if Yt ≥ cρ/µ and Ỹt = 0 otherwise, we can ensure that we have a drift of E[Ỹt−1 − Yt | Yt−1 >
0] ≥ c1ρ2/µ until we reach zero. Such an artificial extension of a process beyond the region of
interest, to the best of our knowledge, was in the theory of evolutionary algorithms first used
in [25]. With this artificial extension we can now use the Additive Drift Theorem [22] with target

10



Ỹt = 0 and Ỹ0 =
√

1
2 and obtain that the expected time for the Ỹ -process to reach or go below

√

cρ/µ, equivalently to the pt process reaching P , is at most Ỹ0

c1ρ2/µ = 16
2−1/cµ/ρ2 = O(µ/ρ2).

We note here that for the UMDA, that is, PBIL with ρ = 1, the pt process reaching P hits the
absorbing states {0, 1} since cρ/µ = c/µ < 1/µ and the frequencies are well-behaved. Hence, we
have E[T ] = O(µ) for the UMDA.

Now we continue to discuss the neutral frequency’s behavior of PBIL once it has reached P .
W.l.o.g. let pt ≤ cρ/µ. Then the probability that all of the next µ⌈1/ρ⌉ samplings have a zero
in the neutral bit position is at least

(1 − pt)
µ⌈1/ρ⌉ ≥

(

1 − cρ

µ

)µ⌈1/ρ⌉

≥
(

1 − cρ

µ

)µ 2

ρ

=

(

1 − cρ

µ

)2c( µ

cρ
−1)(

1 − cρ

µ

)2c

≥ exp(−2c)

(

1 − 2c
cρ

µ

)

≥ exp(−2c)(1 − 2c2) > 0,

where the second inequality uses ⌈1/ρ⌉ ≤ 2/ρ since ρ ≤ 1, the antepenultimate inequality uses the
Bernoulli’s inequality, the penultimate inequality uses µ ≥ 1 and ρ ≤ 1, and the last inequality
uses c < 1/

√
2. In this case, the frequency after these ⌈1/ρ⌉ iterations is

pt+⌈1/ρ⌉ = (1 − ρ)⌈1/ρ⌉pt ≤ (1 − ρ)1/ρpt ≤ pt

e
≤ c

e

ρ

µ
.

Therefore, with a similar calculation, it is easy to see that the probability that all of the next
µ⌈1/ρ⌉ samplings have a zero in the neutral bit position (from the (t + ⌈1/ρ⌉ + 1)-th iteration
to the (t + 2⌈1/ρ⌉)-th iteration) is at least (exp(−2c)(1 − 2c2))1/e, and pt+2/ρ ≤ (c/e2)(ρ/µ).
A simple induction gives that the probability that all samplings have a zero in the neutral bit
position from the (t + (n − 1)⌈1/ρ⌉ + 1)-th iteration to the (t + n⌈1/ρ⌉)-th iteration is at least

(exp(−2c)(1 − 2c2))1/en−1

. Therefore, the probability that only zeros are sampled in the neutral
bit position is at least

∞
∏

i=0

(exp(−2c)(1 − 2c2))1/ei

= (exp(−2c)(1 − 2c2))
∑

∞

i=0

1

ei

= (exp(−2c)(1 − 2c2))1/(1−e−1) > 0,

where the last inequality uses exp(−2c)(1 − 2c2) > 0.
Let us divide the run of the EDA into phases. The first phase starts with the first iteration,

each subsequent phase starts with the iteration following the end of the previous phase. A phase
ends when for the first time after reaching in this phase a pt-value in P an unexpected value is
sampled in the neutral bit position. That is, when a one is sampled if the first pt-value in P
is in [0, c ρ

µ ] or when a zero is sampled when the first pt-value is at least 1 − c ρ
µ . By the above,

we know the following about these phases. We call a phase successful when it never samples
the unexpected value, thus it will not end. From the above calculation, we know the success
probability is at least (exp(−2c)(1 − 2c2))1/(1−e−1), which is a positive constant. Consequently,
there is an expected constant number of phases, one of which is successful (namely the last).
In each phase, successful or not, it takes an expected time of O(µ/ρ2) until the frequency of
the neutral bit position reaches a value in P . In the successful phase, the frequency then runs
away. For the unsuccessful phases, we now show that the phase ends after an expected number
of additional O(1/ρ) iterations after reaching a frequency value in P .

11



Note that this means analyzing a run of the algorithm starting (in iteration t + 1) with the
neutral frequency pt in P , say w.l.o.g. in [0, c ρ

µ ], conditional on the event that at some future
time a one is sampled in this position.

Let U be the event that the phase under investigation is unsuccessful. Let X ∈ {1, 2, . . . } be
minimal such that in iteration t + X a one is sampled in the neutral bit position of a selected
individual. Conditional on U , the random variable X is well-defined (that is, finite). For X = s
to hold, in particular no one can be sampled in the iterations t + 1, . . . , t + (s − 1), and this
implies not sampling a one in iteration t + (s − 1) when the current value of the frequency is
pt(1 − ρ)s−1. Consequently, the expected length (number of iterations) of an unsuccessful phase
is

E[X | U ] =

∞
∑

s=1

s Pr[X = s | U ] =
1

Pr[U ]

∞
∑

s=1

s Pr[X = s]

≤ 1

Pr[U ]

∞
∑

s=1

sµpt(1 − ρ)(s−1) (9)

using a union bound over the µ samples in iteration t + (s − 1).
To estimate this expectation, we first compute Pr[U ]. For any k ∈ N, we have

Pr[U ] ≥ Pr[X ≤ k] = 1 − Pr[X > k]

= 1 −
k
∏

i=1

Pr[X > i | X > i − 1]

= 1 −
k−1
∏

i=0

(

1 − pt(1 − ρ)i
)µ

≥ 1 − exp

(

−µpt

k−1
∑

i=0

(1 − ρ)i

)

= 1 − exp

(

−µpt
1 − (1 − ρ)k

1 − (1 − ρ)

)

≥ 1 −
(

1 − 1

2
µpt

1 − (1 − ρ)k

ρ

)

= µpt
1 − (1 − ρ)k

2ρ

using the well-known estimates 1 + x ≤ exp(x) valid for all x ∈ R and exp(−x) ≤ 1 − x
2 valid for

all 0 ≤ x ≤ 1. Taking the supremum over all k ∈ N, we obtain Pr[U ] ≥ µpt

2ρ .

To estimate the infinite sum in (9), we first recall the elementary formula
∑∞

s=1 sxs = x
(1−x)2

for 0 < x < 1, which follows from computing A :=
∑∞

s=1 sxs = x
∑∞

s=1(s − 1)xs−1 +
∑∞

s=1 xs =
xA + x

1−x and solving for A. From this, we obtain

∞
∑

s=1

sµpt(1 − ρ)(s−1) = µpt
1

ρ2

and finally

E[X | U ] ≤
µpt

1
ρ2

µpt

2ρ

=
2

ρ
.
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Consequently, an unsuccessful phase in total takes an expected number of O(µ/ρ2) + O(1/ρ) =
O(µ/ρ2) iterations.

By Wald’s equation, recalling that we have an expected constant number of unsuccessful
iterations, we see that the total time until the frequency of the neutral bit position runs away is
O(µ/ρ2) iterations.

For the cGA, in a similar manner as in the first part of the analysis for PBIL, by Lemma 5,
equation (7) becomes

E[Yt−1 − √
pt | Yt−1] ≥ 1

8
p

−3/2
t−1

2

K2
pt−1(1 − pt−1)

=
1

4
p

−1/2
t−1

1 − pt−1

K2
≥ 1

4

√
2

2

1

K2
=

√
2

8

1

K2
.

Hence,

E[Yt−1 − Yt | Yt−1] ≥ E[Yt−1 − √
pt | Yt−1] ≥

√
2

8 /K2.

Via the Additive Drift Theorem [22] and Y0 =
√

1
2 , we know that the expected time for the

Y -process to reach zero is at most Y0/
√

2
8K2 = 4K2.

We now briefly show that the upper bound proof can, under suitable assumptions, also be
applied to CE with small modifications. Assume that the learning rate sequence (ρt) has both
supremum and infimum, and let ρsup = sup{ρt | t ∈ N} and ρinf = inf{ρt | t ∈ N}. Consider the
first generation when the frequency reaches P̃ := [0, cρsup/µ] ∪ [1 − cρsup/µ, 1]. Following similar
arguments as above, we can obtain that the corresponding value in the right side of (8) becomes
c1ρ2

inf/µ, and hence the expected reaching time is O(µ/ρ2
inf).

For the neutral frequency’s behavior once it has reached P , we discuss the case when there
exists a positive constant c′ < 2 so that ρsup/ρinf ≤ c′. In this case, we refine c ∈ (1/2,

√

1/(2c′)).
Then we can obtain that the probability that all samplings have a zero in the neutral bit position
from the (t + i⌈1/ρinf⌉ + 1)-th iteration to the (t + (i + 1)⌈1/ρinf⌉)-th iteration is at least

(

exp

(

−2cρsup

ρinf

)

(

1 −
2c2ρ2

sup

ρinf

))1/ei

≥
(

exp(−2cc′)(1 − 2c2c′)
)1/ei

> 0

for i = 0, 1, . . . , and the frequency after these ⌈1/ρinf⌉ iterations is at most cρsup/(ei+1µ). Hence,
the probability that only zeros are sampled in the neutral bit position is at least

(

exp(−2cc′)(1 − 2c2c′)
)1/(1−e−1)

> 0.

Similarly, we could calculate that an unsuccessful phase ends after an expected number of ad-
ditional O(ρsup/ρ2

inf) iterations after reaching a frequency value in P̃ . Hence, for CE, the total
time until the frequency of the neutral bit position runs away is O(µ/ρ2

inf) iterations.
We note that Corollary 3 and Theorem 6 give sharp bounds for several hitting times. For the

UMDA without margins, the expected first time when the frequency of the neutral bit position
is absorbed in 0 or 1 is Θ(µ), and the corresponding hitting time is Θ(K2) for the cGA. For
PBIL without margins and any c ∈ (1/2, 1/

√
2), the expected first time that the frequency of

the neutral bit position hits cρ/µ or 1 − cρ/µ is Θ(µ/ρ2). As discussed in the second paragraph
in Section 2, these results also hold for the hitting time of the margins {1/D, 1 − 1/D} when
running EDAs with such margins.
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6 Extending the Lower Bounds to Bit Positions with Pref-

erence: Domination Results

In the previous Sections 4 and 5, we discussed how fast neutral bit positions approach the bound-
aries of the frequency range. In many situations, e.g., for the benchmark functions OneMax or
LeadingOnes, bit positions are not neutral, but are neutral or have a preference of one bit-value
(here the value one). Precisely, we say some bit position, w.l.o.g., the first bit position, of the
fitness function f is neutral or prefers a one (we also say weakly prefers a one) if and only if

f(0, X2, . . . , XD) ≤ f(1, X2, . . . , XD)

for all X2, . . . , XD ∈ {0, 1}. We say that the bit position weakly prefers a zero if f(0, X2, . . . , XD) ≥
f(1, X2, . . . , XD) for all X2, . . . , XD ∈ {0, 1}.

If seems natural that for a bit that weakly prefers a one, the time for its frequency to reach
or go below a certain value satisfies the same lower bounds as proven for neutral bit positions,
and an analogous statement should be true for bits that weakly prefer a zero. This is what we
show in this section.

To prove this result, we first establish the following dominance result, which we expect to be
useful also beyond this work. It in particular shows that when comparing two runs of an EDA,
the first one starting with a higher frequency in a neutral bit position than the second, then in
the next generation the frequency in the first run stochastically dominates the one in the second
run. This statement remains true if the position in the first run is not neutral, but weakly prefers
ones. A simple induction extends this statement to all generations. While not important for our
work, we add that we believe that the lemma below does not remain true when both functions
can be such that the first bit weakly prefers a one, since other bits’ contributions to the fitness
should be considered as well. Also, simple examples show that our claim is false for the cGA
without well-behaved frequencies.

Lemma 7. Consider using an n-Bernoulli-λ-EDA to optimize (i) some function f such that the
first bit weakly prefers a one and (ii) some function g with the first bit being neutral. Assume that
the first process is started with a frequency vector u0 and the second with a frequency vector v0

such that u0
i = v0

i for i = 2, . . . , D, and u0
1 ≥ v0

1 . Assume that in the case of the cGA, the
well-behaved frequency assumption holds.

Let ut and vt be the corresponding frequency vectors generated in the t-th generation. Then
ut

1 � vt
1 for all t ∈ N.

Analogously, if f is such that the first bit weakly prefers a zero and we start with u0
1 ≤ v0

1,
then ut

1 � vt
1 for all t ∈ N.

Proof. We only show the result for weak preference of a one as the other statement can be shown
in an analogous fashion or by regarding (−f, −g, 1 − u, 1 − v) instead of (f, g, u, v).

We first show the claim for the first iteration and later argue that an easy induction shows it
for any time t.

For PBIL (or CE), we recall from Section 3 that in the second process in an iteration t started
with a frequency vt−1

1 of the neutral first bit of g, the next frequency of this neutral position is
distributed as

(1 − ρ)vt−1
1 + ρ

1

µ
Y, (10)

where Y ∼ Bin(µ, vt−1
1 ). In the first process, a closer inspection of the update rule (1) shows the

frequency of the position weakly preferring a one changes from ut−1
1 to

ut
1 ∼ (1 − ρ)ut−1

1 + ρ
1

µ
X, (11)
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where X � Bin(µ, vt−1
1 ).

If u0
1 ≥ v0

1 , then Bin(µ, u0
1) stochastically dominates Bin(µ, v0

1), and hence u1
1 � v1

1 by (10)
and (11).

For the cGA with the well-behaved frequency assumption, we note that u0
1 ≥ v0

1 implies
u0

1 = v0
1 or u0

1 ≥ v0
1 + 1/K. We only regard the latter, more interesting case. We show u1

1 � v1
1

using the definition of domination, that is, that Pr[u1
1 ≤ λ] ≤ Pr[v1

1 ≤ λ] holds for all λ ∈ R. We
discuss differently the following three cases.

• Assume λ < v0
1 . Since u0

1−1/K ≥ v0
1 > λ from our assumption, we have Pr[u1

1 ≤ λ] = 0 ≤ Pr[v1
1 ≤ λ].

• Assume v0
1 ≤ λ < u0

1. In this case, Pr[u1
1 ≤ λ] ≤ u0

1(1 − u0
1) ≤ 1

4 and Pr[v1
1 ≤ λ] =

1 − v0
1(1 − v0

1) ≥ 1 − 1
4 , which gives the claim.

• Assume λ ≥ u0
1. Since v0

1 + 1/K ≤ u0
1 ≤ λ from our assumption, we have Pr[v1

1 ≤ λ] = 1 ≥
Pr[u1

1 ≤ λ].

Hence, we have u1
1 � v1

1 .
To extend our proof to arbitrary generation t, we note that if we have ut−1

1 � vt−1
1 , then

(see, e.g., [26, Theorem 12]) we can find a coupling of the two probability spaces describing the
states of the two algorithms at the start of iteration t in such a way that for any point ω in the
coupling probability space we have ut−1

1 ≥ vt−1
1 . Conditional on this ω, we can use the above

argument for one iteration and obtain ut
1 � vt

1. This implies that we also have ut
1 � vt

1 without
conditioning on an ω.

From Lemma 7, we now easily derive that our lower bounds shown in Section 4, suitably
adjusted, also hold for bits that weakly prefer one value. Theorem 8 discusses the case when a
bit weakly prefers a one.

Theorem 8. Consider using an n-Bernoulli-λ-EDA to optimize some function f with a bit
weakly preferring a one. Let pt, t = 0, 1, 2, . . . denote the frequency of this position after iteration
t. Let T0 = min{t | pt ≤ 1

4 } denote the first time this frequency is in [0, 1
4 ].

(a) Let the EDA be PBIL with learning rate ρ and selection size µ. Then E[T0] = Ω( µ
ρ2 ), in

particular, E[T0] = Ω(µ) for the UMDA and E[T0] = Ω( 1
ρ2 ) for the λ-MMAS. Again for

PBIL, for all γ > 0 and T ∈ N we have

Pr[∀t ∈ [0..T ] : pt > 1
2 − γ] ≥ 1 − 2 exp

(

− γ2µ

2ρ2T

)

.

(b) Let the EDA be the cGA with hypothetical population size K. Then E[T0] = Ω(K2) and
for all γ > 0 and T ∈ N we have

Pr[∀t ∈ [0..T ] : pt > 1
2 − γ] ≥ 1 − 2 exp

(

−γ2K2

2T

)

.

Proof. Let g be some function with first bit position truly neutral, let p̃t, t = 0, 1, 2, . . . denote
the frequency of this position after iteration t, and let T̃0 = min{t | p̃t ≤ 1

4 } denote the first time
this frequency is in [0, 1

4 ]. Noting that p̃0 = p0 = 1
2 , we apply Lemma 7 and observe that pt � p̃t

for all t. This together with Theorem 2 shows the tail bounds.
From pt � p̃t for all t, we also deduce T0 � T̃0 � min{t | pt ∈ [0, 1

4 ] ∪ [ 3
4 , 1]} =: T ′

0 and thus
E[T0] ≥ E[T ′

0]. By Corollary 3, T ′
0 satisfies the lower bounds we claim for the expectation of T0,

and so does T0 itself.
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In an analogous fashion, we obtain Corollary 9 the corresponding result for bits weakly
preferring a zero.

Corollary 9. Consider using an n-Bernoulli-λ-EDA to optimize some function f with a bit
weakly preferring a zero. Let pt, t = 0, 1, 2, . . . denote the frequency of this position after iteration
t. Let T0 = min{t | pt ≥ 3

4 } denote the first time this frequency is in [ 3
4 , 1].

(a) Let the EDA be PBIL with learning rate ρ and selection size µ. Then E[T0] = Ω( µ
ρ2 ), in

particular, E[T0] = Ω(µ) for the UMDA and E[T0] = Ω( 1
ρ2 ) for the λ-MMAS. Again for

PBIL, for all γ > 0 and T ∈ N we have

Pr[∀t ∈ [0..T ] : pt < 1
2 + γ] ≥ 1 − 2 exp

(

− γ2µ

2ρ2T

)

.

(b) Let the EDA be the cGA with hypothetical population size K. Then E[T0] = Ω(K2) and
for all γ > 0 and T ∈ N we have

Pr[∀t ∈ [0..T ] : pt < 1
2 + γ] ≥ 1 − 2 exp

(

−γ2K2

2T

)

.

We have just extended our previous lower bounds to the case of bit positions preferring a
particular value. One may ask whether similar results can be obtained for upper bounds as
well. Let us comment on this question. Let us, as in Theorem 8 and its proof, denote by pt

the frequencies of a position preferring a one and by T0 the first time this frequency has reached
or exceeded a particular value (e.g., 3

4 or the upper boundary of the frequency range). Let us

denote by p̃t and T̃0 the corresponding random variables for a neutral bit position. Then again
pt � p̃t implies T0 � T̃0, so (informally speaking or made precise via a coupling argument) pt

reaches the target not later than p̃t.
However, we do not have any good upper bounds on T̃0, neither on its expectation nor in the

domination sense. On the technical side, the reason is that we regarded the symmetric process
qt = min{pt, 1 − pt} in Section 5. The true reason is that also the process itself (when regarding
a neutral bit position) is symmetric: With probability 1

2 each, the first visit to a boundary is
to 1

D and to 1 − 1
D . However, if the first visit is to 1

D , then it takes quite some time to reach
1 − 1

D . Consequently, the distribution of the first hitting time of 1 − 1
D is not well concentrated,

and consequently, its expectation might be significantly larger than the first hitting time of
{ 1

D , 1 − 1
D }. For this reason, we currently do not see how our domination arguments allow

to deduce from our results on neutral bit positions reasonable upper bounds on hitting times
of frequencies of positions with weak preferences. However, we expect that in most situations
where bits with weak preferences occur, one would rather try to exploit the preference to show
stronger upper bounds than in the neutral case. For this reason, trying to retrieve information
from the neutral case might not be too interesting anyway.

7 Discussion

Just like classic evolutionary algorithms, EDAs are subject to genetic drift and this can, even
when using margins for the frequency range, lead to a suboptimal performance.

For several classical EDAs, this paper proved the first sharp estimates of the expected time
the sampling frequency of a neutral bit position takes to leave the middle range [1

3 , 3
4 ] or to reach

the boundaries. These times, roughly speaking, are Θ(K2) iterations for the cGA and Θ(µ/ρ2)
iterations for PBIL (and consequently Θ(µ) for its special case UMDA).
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These results are useful both to interpret existing performance results and to set the param-
eters right in future applications of EDAs. As an example of the former, we note that the recent
work [27] shows that the UMDA with c log D ≤ µ = o(D), c a sufficiently large constant, with
λ ≤ 71µ, and with the margins 1/D and 1 − 1/D, has a weak performance of exp(Ω(µ)) on the
D-dimensional DeceptiveLeadingBlocks benchmark function. This runtime is at least some
unspecified, but most likely large polynomial in D; it is super-polynomial as soon as µ is chosen
super-logarithmic. For our work, we know that the expected time for the frequency of a neutral
bit position to reach the boundaries is only O(µ) iterations. Since the DeceptiveLeading-

Blocks function, similar to the classic LeadingOnes function, has many bit positions that for
a long time behave like neutral, a value of µ = o(D) results in that a constant fraction of these
currently neutral bit positions will have reached the boundaries at least once within the first D
iterations. Hence also without looking at the proof of the result in [27], which indeed exploits
the fact that frequencies reach the margins to show the weak performance, our results already
indicate that the weak performance might be caused by the use of parameter values leading to
strong genetic drift.

For a practical use of EDAs, our tail bounds of Theorem 2 can be helpful. As a quick
example, assume one wants to optimize some function via the cGA and one is willing to spend a
computational budget of F fitness evaluations. Since the cGA performs two fitness evaluations
per iteration, this is equivalent to saying that we have a budget of T = F/2 iterations. From
Theorem 2(b), with γ = 1/4, and a simple union bound over the D bit positions, we see that
the probability that one of the (temporarily) neutral bit positions leaves the middle range [ 1

4 , 3
4 ]

is at most D · 2 exp(− γ2K2

2T ). Consequently, by using a parameter value of K ≥ 1
γ

√

F ln(20D),

we obtain that with probability at least 90% no neutral position leaves the middle range (and,
with the results of Section 6, no position that weakly prefers one bit value leaves the middle
range into the opposite direction). Phrased differently, this means that within this time frame,
only those positions approach the boundaries for which there is a sufficiently strong signal from
the objective function. While this consideration cannot determine optimal parameters for each
EDA and each objective function, it can at least prevent the user from taking parameters that
are likely to give an inferior performance due to genetic drift. Since genetic drift has been shown
to lead to a poor performance in the past, we strongly recommend to choose the parameters K
and µ large enough so that estimates based on Theorem 2 guarantee that positions without a
fitness signal stay in the middle range.
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