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Abstract

Local perturbations in conservative particle systems can have a
non-local influence on the stationary measure. To capture this phe-
nomenon, we analyze two toy models. We study the symmetric ex-
clusion process on a countable set of sites V with a source at a given
point (called the origin), starting from a Bernoulli product measure
with density ρ. We prove that when the underlying random walk
on V is recurrent, then the system evolves towards full occupation,
whereas in the transient case we obtain a limiting distribution which is
not product and has long-range correlations. For independent random
walkers on V , we analyze the same problem, starting from a Poissonian
measure. Via intertwining with a system of ODE’s, we prove that the
distribution is Poissonian at all later times t > 0, and that the system
“explodes” in the limit t → ∞ if and only if the underlying random
walk is recurrent. In the transient case, the limiting density is a simple
function of the Green’s function of the random walk.

1 Introduction

Introducing local perturbations in conservative particle systems can have
a drastic, i.e., non-local influence on the stationary measure, which can
change from a product form to a measure with long-range correlations. This
has already been studied in [5, 8] where anisotropic perturbations of the
symmetric exclusion process were shown to exhibit long-range correlations,
using a formal series expansion method. See also the more recent work [9],
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where an exclusion process with a driven bond is studied, and [6] where
the growth of the total number of particles in a symmetric exclusion process
with source is studied. The abelian sandpile model [1] is another well-known
important example showing that a conservative diffusive dynamics combined
with sources leads to a self-organized critical state, i.e., a stationary measure
which has power law decay of correlations.

To capture this phenomenon, we analyze in this paper two toy models.
We first consider the symmetric exclusion process with a source at the origin,
in the setting of an infinite graph, and start it from a Bernoulli product
measure of constant density, which is the stationary probability measure
for the dynamics without source. In case the underlying random walk of
the exclusion process is recurrent, we show that the system becomes fully
occupied, whereas in the transient case, a limiting measure is obtained. This
measure is the microscopic analogue of the solution of the Poisson equation,
and it is shown to have long-range correlations. We then study a similar
setting where the source at the origin is replaced by the combination of a
source and a sink, which can be thought of as a coupling to a reservoir. For
the density corresponding to the reservoir density the stationary measure
is a product measure, but for other initial densities, in the transient case
another limiting measure (with identical limiting density) with long-range
correlations is obtained. These results show that a reservoir coupled to
an infinite system directly has very different effects when compared to the
standard setting of boundary reservoirs which produce a non-equilibrium
steady state. The main technique of proof is a combination of duality with
the Feynman-Kac formula. These techniques can be also used in a more
general setting of a finite number of sources and sinks.

Finally, we consider the same setting in the case of independent ran-
dom walkers, where we show that starting from a homogeneous product of
Poissonian distributions, the distribution at any later time is still a Pois-
son product measure, with a density which diverges in the recurrent case,
and has a limit in the transient case. The main tool for the proof is a new
intertwining relation between the independent walkers with a source and a
deterministic system of coupled linear differential equations which can be
solved explicitly.

The rest of our paper is organized as follows. In section 2 we introduce
the exclusion process with source (and possibly sink) at the origin, and
explain the main questions. In section 3 we state and prove the main result,
that is, about invariant measures for the exclusion processes with source or
with source and sink. In section 4 we prove more on these measures for
the process with a source, namely negative correlations and computation
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of covariances. In section 5 we consider the case of independent random
walkers.

2 Setting, notations and definitions

Let V denote a countable set of vertices and (p(x, y), x, y ∈ V ) irreducible
and symmetric random walk transition rates on V , i.e., for every x, y ∈ V ,
p(x, y) = p(y, x) ≥ 0, and there exists n ∈ N such that p(n)(x, y) > 0, where
p(n)(x, y) denotes the corresponding n-step transition rate, i.e.,

p(n)(x, y) =
∑

z1,...,zn−1∈V
p(x, z1) . . . p(zn−1, y),

Note that we do not assume a priori that (p(x, y), x, y ∈ V ) is a probability
transition. In order to avoid existence problems, we will assume that

sup
x∈V

∑
y∈V

p(x, y) <∞.

2.1 Single particle dynamics

We denote by {Xt : t ≥ 0} a continuous-time random walk moving with rate
(p(x, y) : x, y ∈ V ) over the (oriented) edge xy, i.e., the random walk on V
with generator

LRWf(x) =
∑
y∈V

p(x, y)(f(y)− f(x)), (1)

for a function f : V → R. We denote by ERW
x expectation for this random

walk starting at X0 = x.

2.2 Exclusion process

Next, we consider the symmetric exclusion process on V based on (p(x, y) :
x, y ∈ V ), which intuitively speaking consists of independent walkers moving
each one according to the generator LRW and subject to the restriction that
at any instant of time multiple occupancies are forbidden, i.e., all jumps
leading to more than one particle per site are forbidden.

We thus consider configurations of particles with at most one particle
per site and denote the corresponding configuration space by Ω = {0, 1}V .
Elements of Ω are denoted by η, ξ, ζ, and for η ∈ Ω we denote by ηx the
occupation at vertex x ∈ V , i.e, ηx = 1 (resp. ηx = 0) means x is occupied
(resp. empty).
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The exclusion process based on (p(x, y) : x, y ∈ V ) is then defined as the
unique Markov process {η(t) : t ≥ 0} on {0, 1}V with generator given by

LSEPf(η) =
∑
x,y∈V

p(x, y)ηx(1− ηy)(f(ηx,y)− f(η)), (2)

for a local function f : Ω→ R (i.e., depending on a finite number of coordi-
nates ηi, i ∈ V ), where ηx,y is the configuration obtained from η by removing
a particle at x and putting it at y, that is, for ηx = 1, ηy = 0

(ηx,y)z =


ηx − 1 if z = x

ηy + 1 if z = y

ηz otherwise.

(3)

Otherwise, we put ηx,y = η. The existence of the process with generator
(2) is proved in [7, Chapter VIII], that also contains many properties of
the process, including self-duality (see next subsection). The interpretation
of the generator is that particles move in continuous time according to the
hopping rates (p(x, y) : x, y ∈ V ) but jumps to already occupied sites are
suppressed.

If in the exclusion process we start from a finite number of particles,
initially located at sites in a set A = {x1, . . . , xn} ⊂ V then at any later
time, the set of occupied vertices is a finite set A(t) = {x1(t), . . . , xn(t)}.
For n = 2 we write A = {x, y}, A(t) = {x(t), y(t)}. Thus we equivalently
consider the exclusion process as taking values in the set of finite subsets of
V and (with an abuse of notation) we may write its generator also as

LSEPf(A) =
∑
x,y∈V

p(x, y)I(x ∈ A, y /∈ A)(f(Ax,y)− f(A)), (4)

for a local function f , where I denotes the indicator function and Ax,y is
the set obtained by removing x from A and adding y to A. We denote by
ESEP
A the expectation in the process {A(t), t ≥ 0}, by ESEP

x1,...,xn expectation,
by Vn the generator and by Vn(t) the semi-group in the corresponding la-
beled process (x1(t), . . . , xn(t)), where we choose the initial labels, which are
preserved in the course of time. We thus write, for a local function f ,

Vn(t)f(x1, . . . , xn) = ESEP
x1,...,xnf(x1(t), . . . , xn(t)).

A function of the configuration η(t) can then alternatively be viewed as a
symmetric function of x1(t), . . . , xn(t).
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For n independent random walkers (each one with generator (1)) initially
located on x1, . . . , xn, we denote respectively by Un, Un(t), EIRW

x1,...,xn the
corresponding generator, semi-group and expectation, and by X1,t, . . . , Xn,t

their locations at time t > 0 (for n = 2 we write Xt, Yt). More generally, the
independent random walkers process is then a process on NV with formal
generator

LIRWf(η) =
∑
x,y∈V

p(x, y) (ηx(f(ηx,y)− f(η)) + ηy(f(ηy,x)− f(η))) , (5)

working on local functions f : NV → R. We denote by EIRW
η the correspond-

ing expectation, when starting from the configuration η.

2.3 Self-duality for exclusion and random walkers

An important property of the (symmetric) exclusion process is self-duality
(see [7, Chapter VIII]), which is formulated as follows. Let ξ ∈ Ω denote a
finite configuration, i.e.,

∑
x ξx <∞, and, for η ∈ Ω, define

D(ξ, η) = I(ξ ≤ η), (6)

where ξ ≤ η refers to coordinate-wise order, i.e., if there is a particle in ξ at
a site x, then there must also be a particle in η at x. Then we have, for any
finite configuration ξ, for any η ∈ Ω and t > 0

ESEP
η D(ξ, η(t)) = ESEP

ξ D(ξ(t), η). (7)

Let us denote by ξ = ex the configuration with a single particle at x and no
particles elsewhere, then, under the exclusion process {ξ(t), t ≥ 0} = {eXt :
t ≥ 0}, where Xt is the random walk with generator LRW of (1), the duality
relation (7) reads

ESEP
η ηx(t) = ERW

x (ηXt). (8)

The symmetric exclusion process has as reversible probability measures ho-
mogeneous Bernoulli product measures. We denote them by

νρ, ρ ∈ [0, 1], with νρ(ηx = 1) = ρ, for all x ∈ V. (9)

Similarly, there is a self-duality relation for independent random walkers,
which reads as follows. Define the polynomials

DIRW(ξ, η) = I(ξ ≤ η)
∏
i∈V

ηi!

(ηi − ξi)!
,
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where ξ ∈ NV is a finite configuration of the independent random walkers
process, and η ∈ NV . Then we have

EIRW
η (DIRW(ξ, η(t))) = EIRW

ξ (DIRW(ξ(t), η)). (10)

For the proof of this well-known self-duality relation, we refer e.g. to [2].

2.4 The model with a source (or with source and sink)

To define the process with a source (or a source and a sink), we fix a vertex
0 ∈ V , that we call the origin, and call symmetric exclusion process with
source at 0, of intensity λ ≥ 0 the process with generator

LSEP,0f(η) =
∑
x,y

p(x, y)ηx(1− ηy)(f(ηx,y)− f(η)) +λ(1− η0)(f(η0)− f(η)),

(11)
for a local function f , where η0 is the configuration obtained from η by
flipping the occupation variable at the origin, that is,

(η0)z =

{
1− η0 if z = 0

ηz otherwise.
(12)

In other words: particles move according to the symmetric exclusion process,
and whenever the origin is empty at rate λ a particle is added. We denote
by S0(t) the semi-group of this process. We start the process with source at
0 from νρ (defined in (9)), we denote by νρ,0(t) := νρS0(t) the measure at
time t > 0.

Note that we use the sub-index 0 to refer that the process has a source
at the origin; later on, we will use the sub-index 1 for the process with a
source and a sink at the origin.

We then study the following two questions.

1. When is limt→∞ νρ,0(t) equal to δ1, the Dirac measure concentrated
on the fully occupied configuration (that is, such that 1(x) = 1 for any
site x ∈ V )?

2. If limt→∞ νρ,0(t) 6= δ1, what is the limiting measure? What is its
density, and are there non-trivial correlations?

The same questions will also be asked for a model with a source and a sink
at 0, i.e., the process with generator

LSEP,1f(η) =
∑
x,y

p(x, y)ηx(1− ηy)(f(ηx,y)− f(η))

+ λ(1− η0)(f(η0)− f(η)) + µη0(f(η0)− f(η)), (13)
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for an intensity µ > 0, for a local function f . We denote by S1(t) the semi-
group of this process. We start the process with source and sink at 0 from
νρ, we denote by νρ,1(t) := νρS1(t) the measure at time t > 0. Notice that
for this process the Bernoulli product measure with density

ρR :=
λ

λ+ µ
(14)

is reversible, but this fact does not imply that this measure is the only
invariant probability measure, i.e., the two questions asked for the models
with source can be asked for the model with source and sink as well. The
idea is that the source and sink site corresponds to a “reservoir” and that
in the transient case the system can “miss the reservoir”, and therefore
converge to a limiting density different from the density ρR imposed by the
reservoir.

3 Invariant measures

We consider the process with a source, that is, with generator (11), then the
process with a source and a sink, that is with generator (13), and in both
cases we denote by Eη expectation in this process starting from configuration
η ∈ Ω. We denote by Eνρ =

∫
Eηνρ(dη) expectation starting from an initial

configuration η which is νρ distributed. First we show the existence of
limt→∞ νρS0(t) =: µρ,0. This is proved with the help of a dual process,
where particles are moving according to an exclusion process with a sink at
the origin. Then we look for limt→∞ νρS1(t) =: µρ,1.

3.1 Two duals of the model with source and convergence to
an invariant measure for both models, with a source or
with a source and a sink

In this subsection we introduce two alternative duality relations for the
process with a source, analogous to the ones introduced in [7, Chapter III]
for spin systems. For the first one, that is a “killed random walkers dual”,
denote, for A ⊂ V a finite set,

H(A, η) =
∏
x∈A

ηx, (15)

with the convention H(∅, η) = 1. Then, we compute

λ(1−η0)
(
H(A, η0)−H(A, η)

)
= λI(0 ∈ A)(H(A\{0}, η)−H(A, η)) (16)
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where we used

H(A, η0) =

{
H(A, η) if 0 6∈ A(∏

x 6=0,x∈A ηx

)
(1− η0) if 0 ∈ A.

(17)

By combining (15)–(17) with the self-duality relation (7) of the symmetric
exclusion process we find

LSEP,0H(A, η) = LH(A, η), (18)

where the generator L works on the A-variable (i.e., on finite subsets of V )
and is given by

L f(A) =
∑
x,y∈V

p(x, y)I(x ∈ A, y /∈ A)(f(Ax,y)− f(A))

+λI(0 ∈ A)(f(A \ {0})− f(A)), (19)

for a local function f . The dual process {A(t), t ≥ 0} with generator L is a
process taking values in the set of finite subsets of V , and can be described
as follows: particles initially located at the sites of A perform the symmetric
exclusion process starting from A (i.e., there are particles at the sites of A
and no particles elsewhere), and are killed with rate λ when they are at the
origin. Let us denote EdualA expectation in this process starting from A, and
further denote pλt (A,B) the transition probability in this dual process to go
from A to B in time t; hence note that here, as each time we introduce a
transition pt(., .), either for exclusion or for random walker, we assume that
(p(x, y), x, y ∈ V ) is a probability transition.

As a consequence, we have the following.

THEOREM 3.1. Let A ⊂ V be a finite set. Then we have, for every t > 0∫
H(A, η)νρ,0(t)(dη) =

∑
B⊂V

|B|≤|A|,B 6=∅

pλt (A,B)ρ|B| + pλt (A, ∅) = EdualA (ρ|A(t)|),

(20)
and as t→∞ the limiting measure µρ,0 = limt→∞ νρ,0(t) exists, is invariant
and satisfies ∫

H(A, η)µρ,0(dη) = EdualA (ρ|A∞|), (21)

where |A∞| = limt→∞ |A(t)|.
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PROOF. By the duality relation (18) we obtain

EηH(A, η(t)) = EdualA H(A(t), η). (22)

Integrating this relation over νρ (in the η-variable) yields (20). The limit
t→∞ is well-defined because the cardinality of A(t) is non-increasing in t.
The invariance of µρ,0 follows because it is equal to the limit limt→∞ νρ,0(t)
(by [7, Chapter I, Proposition 1.8]).

There is also an alternative duality relation with a Feynman-Kac term,
that can be obtained as follows. If we define, for A ⊂ V a finite set,

H̃(A, η) =
∏
x∈A

(1− ηx), (23)

then we find
LSEP,0H̃(A, ·)(η) = RH̃(·, η)(A),

where the operator R is in Schrödinger operator form and given by

Rf(A) =
∑
x,y∈V

I(x ∈ A, y /∈ A)p(x, y)(f(Ax,y)− f(A))− λI(0 ∈ A)f(A),

for a local function f . As a consequence of the Feynman-Kac formula we
then have

EηH̃(A, η(t)) = ESEP
A

(
e−λ

∫ t
0 I(0∈A(s))dsH̃(A(t), η)

)
. (24)

Upon integrating (24) over the Bernoulli measure νρ gives∫
H̃(A, η)νρ,0(t)(dη) = (1− ρ)|A|ESEP

A

(
e−λ

∫ t
0 I(0∈A(s))ds

)
.

Then we have the following result on the limiting measure µρ,0 for the
dynamics with a source, as well as on µρ,1 for the dynamics with source and
sink.

THEOREM 3.2. I) The model with source. Let {η(t), t ≥ 0} denote
the process with generator (11).

1. If (p(x, y) : x, y ∈ V ) is recurrent then µρ,0 = δ1. Moreover for
any configuration η ∈ Ω, we have limt→∞ δηS0(t) = δ1, where δη
denotes the Dirac measure on configuration η. As a consequence
in that case δ1 is the unique invariant probability measure.
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2. If (p(x, y) : x, y ∈ V ) is transient then limt→∞ νρ,0(t) = µρ,0 with
the following properties

a) Limiting density:

lim
t→∞

Eνρ(1− ηx(t)) = (1− ρ)ERW
x e−λ

∫∞
0 δXs,0 ds, (25)

where δ·,· denotes the Kronecker symbol.

b) Covariances:

covµρ,0(ηx, ηy) = (1− ρ)2
(
ESEP
x,y e

−λ
∫∞
0 (δx(s),0+δy(s),0) ds

−EIRW
x,y e−λ

∫∞
0 (δXs,0+δYs,0) ds

)
.(26)

II) The model with source and sink. Let {η(t), t ≥ 0} denote the
process with generator (13).

1. If (p(x, y) : x, y ∈ V ) is recurrent then limt→∞ νρ,1(t) = νρR
(recall (14)). The same holds for any initial configuration, i.e.,
limt→∞ δη(t) = νρR for every η ∈ Ω.

2. If (p(x, y) : x, y ∈ V ) is transient then limt→∞ νρ,1(t) = µρ,1 with
the following properties

a) Limiting density:

lim
t→∞

Eνρ(ηx(t)) = ρR + (ρ− ρR)ERW
x e−(λ+µ)

∫∞
0 δXs,0 ds.

(27)

b) We have the following formula for the covariances

covµρ,1(ηx, ηy) = (ρ− ρR)2
(
ESEP
x,y e

−λ
∫∞
0 (δx(s),0+δy(s),0) ds

−EIRW
x,y e−λ

∫∞
0 (δXs,0+δYs,0) ds

)
. (28)

PROOF. Part I, case 1. Let us start by the computation starting from
the generator (11) for x ∈ V ,

LSEP,0(1− ηx) =
∑
y∈V

p(x, y)((1− ηy)− (1− ηx))− λδx,0(1− ηx). (29)

Denoting
ψ(x, η) = (1− ηx), (30)
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we can write (29) in the form

LSEP,0ψ(x, ·) =
∑
y∈V

p(x, y)(ψ(y, ·)− ψ(x, ·))− λδx,0ψ(x, ·). (31)

Let us denote by Aλ the operator (with parameter λ) working on the x-
variable as

Aλϕ(x) =
∑
y∈V

p(x, y)(ϕ(y)− ϕ(x))− λδx,0ϕ(x), (32)

which is the sum of the random walk generator LRW and a multiplication
operator with the “potential” −λδx,0. As a consequence, by the Feynman-
Kac formula we obtain

etAλϕ(x) = ERW
x

(
e−λ

∫ t
0 δXs,0 dsϕ(Xt)

)
. (33)

This identity, combined with (31) gives

Eη(1− ηx(t)) = etAλψ(·, η)(x) = ERW
x

(
e−λ

∫ t
0 δXs,0 ds(1− ηXt)

)
. (34)

Integrating over νρ gives∫
νρ(dη)Eη(1− ηx(t)) = (1− ρ)ERW

x

(
e−λ

∫ t
0 δXs,0 ds

)
. (35)

Taking the limit t→∞ gives statements 1 (because the integral on the right
hand side of (35) goes to +∞), and 2a) of Part I of Theorem 3.2.

Part II, case 1. To prove the case with source and sink, start again
from the computation of LSEP,1ηx for the generator (13) and x ∈ V ; we get,

LSEP,1ηx =
∑
y∈V

p(x, y)(ηy − ηx)− (λ+ µ)δx,0ηx + λδx,0. (36)

Let us consider the equation (recall the notation (32))

d

dt
ϕ(x, t) = Aλ+µϕ(·, t)(x) + λδx,0, (37)

Then by the variation of constants method, we find the solution

ϕ(x, t) = etAλ+µϕ(x, 0) +

∫ t

0
e(t−s)Aλ+µδx,0 ds, (38)
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where Aλ+µ as well as etAλ+µ work on the x-variable. Because the semi-
group etAλ+µ can be computed using the Feynman-Kac formula we obtain,
combining (36) with (38), using the analogue of (33),

Eη(ηx(t))

= ERW
x

(
e−(λ+µ)

∫ t
0 δXs,0 dsηXt

)
+ λ

∫ t

0
ERW
x

(
e−(λ+µ)

∫ s
0 δXr,0 drδXs,0

)
ds

= ERW
x

(
e−(λ+µ)

∫ t
0 δXs,0 dsηXt

)
ds

+
λ

λ+ µ

∫ t

0
ERW
x

(
e−(λ+µ)

∫ s
0 δXr,0 dr(λ+ µ)δXs,0

)
ds

= ERW
x

(
e−(λ+µ)

∫ t
0 δXs,0 dsηXt

)
ds+ ρR

∫ t

0
(−1)

d

ds
(esAλ+µ1)(x) ds

= ERW
x

(
e−(λ+µ)

∫ t
0 δXs,0 dsηXt

)
ds

+ρR

(
1− ERW

x

(
e−(λ+µ)

∫ t
0 δXs,0 ds

))
, (39)

which yields items 1 and 2a) of Part II of Theorem 3.2.

Part I, case 2. We now focus on the transient case and prove statement
2b) of part I of Theorem 3.2. We compute the expectation

Eη(ψ(x, η(t))ψ(y, η(t))),

for x, y ∈ V , where we remind the reader the notation (30). First, a genera-
tor computation yields, using self-duality of the symmetric exclusion process
(see (7), (8)), for x, y ∈ V ,

LSEP,0ψ(x, ·)ψ(y, ·) = V2ψ(x, ·)ψ(y, ·)− λ(δx,0 + δy,0)ψ(x, ·)ψ(y, ·), (40)

where V2 denotes the generator of two exclusion particles initially starting
from x, y (cf. subsection 2.2). Using once more the Feynman-Kac formula,
this leads to

Eη(ψ(x, η(t))ψ(y, η(t))) = ESEP
x,y

(
e−λ

∫ t
0 (δx(s),0+δy(s),0) dsψ(x(t), η)ψ(y(t), η)

)
.

(41)
Integrating this equality over νρ (in the η-variable) gives∫

Eη(ψ(x, η(t))ψ(y, η(t))) νρ(dη) = (1− ρ)2ESEP
x,y

(
e−λ

∫ t
0 (δx(s),0+δy(s),0) ds

)
.

(42)
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Taking the limit t→∞ gives

lim
t→∞

∫
Eη(ψ(x, η(t))ψ(y, η(t))) νρ(dη) = (1−ρ)2ESEP

x,y

(
e−λ

∫∞
0 (δx(s),0+δy(s),0) ds

)
,

which proves 2b) of part I of the theorem. Item 2b) of part II is proved
along the same lines.
Using the alternative duality relation (24), we can prove the following more
general statement.

COROLLARY 3.1. Let (p(x, y) : x, y ∈ V ) be transient, then for µρ,0 =
limt→∞ νρS0(t) we have the following. For all x1, . . . , xn, n distinct points
in V , we have∫ n∏

i=1

(1− ηxi)µρ,0(dη)−
n∏
i=1

∫
(1− ηxi)µρ,0(dη)

= (1− ρ)n
(
ESEP
x1,...,xne

−λ
∑n
i=1

∫∞
0 δxi(s),0ds − EIRW

x1,...,xne
−λ

∑n
i=1

∫∞
0 δXi,s,0ds

)
.

(43)

4 Further properties of the invariant measures

4.1 Negative correlations

To derive more properties of the invariant measure µρ,0, we compare the
evolutions of exclusion process and of independent random walkers. We
first prove the following lemma, which will imply negative correlations in
the measure µρ,0. Recall the notation introduced in Subsection 2.2.

LEMMA 4.1. For all t ≥ 0, and for all x1, . . . , xn, n distinct points in V(
ESEP
x1,...,xne

−λ
∑n
i=1

∫ t
0 δxi(s),0ds − EIRW

x1,...,xne
−λ

∑n
i=1

∫ t
0 δXi,s,0ds

)
≤ 0. (44)

PROOF. Let us denote Ψ(x1, . . . , xn) =
∑n

i=1 δxi,0. Then we have, using
the Feynman-Kac formula(

ESEP
x1,...,xne

−λ
∑n
i=1

∫ t
0 δxi(s),0ds − EIRW

x1,...,xne
−λ

∑n
i=1

∫ t
0 δXi,s,0ds

)
= (et(Vn+Ψ)1− et(Un+Ψ)1)(x1, . . . , xn)

=

∫ t

0
(e(t−s)(Vn+Ψ)(Vn −Un)es(Un+Ψ)1)(x1, . . . , xn)ds. (45)
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Here in the last equality we used partial integration, as in [7], Chapter VIII,
proof of Proposition 1.7. Because the function 1 is positive definite, and the
semigroup (es(Un+Ψ)1)(x1, . . . , xn) factorizes, i.e.,

(es(Un+Ψ)1)(x1, . . . , xn) =
∑

z1,...,zn

n∏
i=1

ks(xi, zi),

where
ks(u, v) = EIRW

u

(
e−λ

∫ t
0 δXs,0dsI(Xt = v)

)
,

we have that (es(Un+Ψ)1)(x1, . . . , xn) is a positive definite symmetric func-
tion of x1, . . . , xn. Therefore, by Liggett’s inequality (see [7, Chapter VIII,
Proposition 1.7]), we have ((Vn−Un)es(Un+Ψ)1)(x1, . . . , xn) ≤ 0. The result
then follows from (45) using that e(t−s)(Vn+Ψ) is a positive semigroup (i.e.,
maps non-negative functions to non-negative functions).

Then we have the following corollary for the process with a source.

PROPOSITION 4.1 (Negative correlations). Let (p(x, y) : x, y ∈ V ) be
transient, then for µρ,0 = limt→∞ νρS0(t) we have the following. For all
x1, . . . , xn, n distinct points in V , we have∫ n∏

i=1

(1− ηxi)µρ,0(dη)−
n∏
i=1

∫
(1− ηxi)µρ,0(dη) ≤ 0. (46)

PROOF. This follows by combining Corollary 3.1 with Lemma 4.1.

To complement this result, we show that in general µρ,0 is not a product
measure.

PROPOSITION 4.2. Let (p(x, y) : x, y ∈ V ) be transient, then for 0 < ρ < 1,
µρ,0 = limt→∞ νρS0(t) is not a product measure.

PROOF. We have

Eνρ(1− ηx(t)) = (1− ρ)ERW
x

(
e−λ

∫ t
0 δXs,0 ds

)
=: h(x, t).

Then h(x, t) satisfies

dh(x, t)

dt
= LRWh(x, t)− λδx,0h(x, t),

14



with h(x, 0) = 1−ρ. As a consequence, u(x) = limt→∞ h(x, t) exists because
(p(x, y) : x, y ∈ V ) is transient, and it satisfies

LRWu(x) = λδx,0u(x). (47)

Let us denote by Λ the product measure with
∫

(1−ηx)Λ(dη) = u(x). If this
measure were invariant then, for all functions in the domain of the generator
LSEP,0 we would have

∫
LSEP,0fdΛ = 0.

Now fix x 6= 0 such that p(0, x) > 0 and compute, using the generator
(11) and (40).∫

(LSEP,0(1− ηx)(1− η0))Λ(dη)

= (LRWu(0))u(x) + (LRWu(x))u(0)− p(0, x)(u(0)− u(x))2 − λu(0)u(x)

= −p(0, x)(u(0)− u(x))2 6= 0.

Here in the last step we used (47). So we conclude that Λ is not invariant.
Because we proved earlier that µρ,0 is invariant, it cannot be equal to Λ.

REMARK 4.1. In [11] it is proved that the two-point function on Z with
a source and a sink exhibits negative correlations for all finite times. With
essentially the same proof, Proposition 4.1 holds also when starting from a
product measure for the measure at any finite time. In this sense, it can be
viewed as an extension of [11].

4.2 The covariance

To understand better the covariance in the limiting measure µρ,0, we approx-

imate
(
ESEP
x,y e

−λ
∫∞
0 (δx(s),0+δy(s),0) ds − EIRW

x,y e−λ
∫∞
0 (δXs,0+δYs,0) ds

)
around λ =

0 up to second order in λ. Let us denote by η = ex + ey the configuration
with one particle at x and one at y, so that δx(s),0 + δy(s),0 is the occupation
at zero at time s starting from ex + ey initially. First notice that the ex-
pression

∫∞
0 (δx(s),0 + δy(s),0)ds can be rewritten as

∫∞
0 η0(s)ds where η0(s)

denotes the number of particles at 0 at time s.
The zero-th order of the approximation is clearly zero, and the first order is
zero because we can compute

ESEP
x,y (δx(s),0 + δy(s),0) = ESEP

ξ (η0(s))

=
∑
y

pt(0, y)ηy(0)

= EIRW
η (η0(s)), (48)
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where in the last two lines we used self-duality for SEP and independent
random walkers.

In order to prepare the computation of the second order term, let us
denote by pSEP

t (ex + ey, eu + ev) the transition probability for two exclusion
particles to arrive at time t at the configuration eu+ev when initially started
from ex + ey. and pIRW

t (ex + ey, eu + ev) for the corresponding independent
particles. Let us restrict to the transient case, where the associated Green’s
functions are well defined by

GSEP(x, y;u, v) =

∫ ∞
0

pSEP
t (ex + ey, δu + δv) dt

GIRW(x, y;u, v) =

∫ ∞
0

pIRW
t (ex + ey, eu + ev) dt

G(x, y) =

∫ ∞
0

pt(x, y) dt. (49)

We then have the following.

PROPOSITION 4.3. Assume that the single particle random walk is tran-
sient. In the notation of (26), for the symmetric exclusion process with
source at the origin, we have, as λ→ 0,

covµρ,0(ηx, ηy) = λ2(1− ρ)2ψ(x, y) + o(λ2), (50)

where

ψ(x, y) = 2
∑
z 6=0

G(0, z)
(
GSEP(x, y; 0, z)−GIRW(x, y; 0, z)

)
− 2G(0, 0)GIRW(0, 0;x, y). (51)

PROOF. By expanding the exponential e−λ
∫∞
0 (δx(s),0+δy(s),0)ds up to second

order in λ, we observe that we have to compute∫ ∞
0

∫ ∞
0

ESEP
ex+eyη0(s)η0(r) dsdr −

∫ ∞
0

∫ ∞
0

EIRW
ex+eyη0(s)η0(r) dsdr

= 2

∫ ∞
0

∫ ∞
0

ESEP
ex+eyη0(s)η0(s+ r) dsdr

−2

∫ ∞
0

∫ ∞
0

EIRW
ex+eyη0(s)η0(s+ r) dsdr.
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Here we used the elementary computation∫ ∞
0

ds

∫ ∞
0

drf(s)f(r) = 2

∫
s>r

f(s)f(r)dsdr

= 2

∫ ∞
0

dr

∫ ∞
r

dsf(r)f(s)

= 2

∫ ∞
0

dr

∫ ∞
0

dvf(r)f(r + v).

For the symmetric exclusion process, by self-duality (see (7)), and using also
that η0(s)2 = η0(s) because η0(s) ∈ {0, 1}, we obtain the following.

ESEP
ex+eyη0(s)η0(s+ r)

=
∑

z∈V,z 6=0

pr(0, z)ESEP
ex+ey(η0(s)ηz(s)) + pr(0, 0)ESEP

ex+ey(η0(s))

=
∑

z∈V,z 6=0

pr(0, z)p
SEP
s (ex + ey; e0 + ez)

+ pr(0, 0)(ps(0, x) + ps(0, y)). (52)

By self-duality of independent random walkers (see Subsection 2.3) we have

EIRW
ex+ey(η0(s)η0(s+ r))

=
∑

z∈V,z 6=0

pr(0, z)EIRW
ex+ey(η0(s)ηz(s)) + pr(0, 0)EIRW

ex+ey(η0(s)η0(s))

=
∑

z∈V,z 6=0

pr(0, z)p
IRW
s (ex + ey; 0, z) + pr(0, 0)EIRW

ex+ey(η0(s)(η0(s)− 1))

+ pr(0, 0)(ps(0, x) + ps(0, y))

=
∑

z∈V,z 6=0

pr(0, z)p
IRW
s (x, y; 0, z) + pr(0, 0)(pIRW

s (0, 0;x, y))

+ pr(0, 0)(ps(0, x) + ps(0, y)). (53)

Subtracting (53) from (52) gives∫ ∞
0

∫ ∞
0

ESEP
ex+ey (η0(s)η0(r)) dsdr −

∫ ∞
0

∫ ∞
0

EIRW
ex+ey (η0(s)η0(r)) dsdr

=
∑

z∈V,z 6=0

G(0, z)
(
GSEP(x, y; 0, z)−GIRW(x, y; 0, z)

)
−G(0, 0)GIRW(0, 0;x, y). (54)
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REMARK 4.2. Proposition 4.3 shows that the correlations in the limiting
measure have long-range character, because G(0, 0)GIRW(0, 0;x, y) decays as
a power law when |x|, |y| → ∞, which suggests that the stationary measure
µρ,0 has properties of a self-organized critical state. By this we mean that the
long-range correlations are not a consequence of tuning of parameter such as
the temperature, but they appear spontaneously, because the unperturbed sys-
tem has a conserved quantity. Such long range correlations are also studied
in perturbations of the exclusion process in [8] (including bounded pertur-
bations), and in a translation invariant setting in [5]. In non-equilibrium
steady states, long-range correlations appear in the exclusion process as was
first observed in [12].

5 Independent random walkers

In this section, we consider the same problem of adding a source in the
context of independent random walkers. When initially started from a ho-
mogeneous Poisson measure, we show that at any later time t > 0, we still
have a Poisson measure, and depending on the transience/recurrence of the
underlying random walkers, we obtain a limiting non-homogeneous density
profile, or the density (expected number of particles at each site) blows up
in the limit t → ∞. This result is proved via an intertwining relation with
a deterministic process, which we believe is of independent interest. Notice
that the conservation of Poisson product measures is due to the fact that
particles are added at constant rate λ. If we remove particles at rate µ
(sink), then Poisson product measure are no longer conserved, so we will
not consider this case here.

5.1 Independent random walkers: generator

As in the previous section, let V denote a countable set of vertices and
(p(x, y) : x, y ∈ V ) an irreducible and symmetric random walk transition
probability on V . Recall that the independent random walkers process is a
process on NV with formal generator (5). The independent random walkers
process with source at 0 ∈ V is then defined via the formal generator

LIRW,0f(η) =
∑
x,y∈V

p(x, y) (ηx(f(ηx,y)− f(η)) + ηy(f(ηy,x)− f(η)))

+ λ(f(η + e0)− f(η)). (55)
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The generators (5) and (55) can be rewritten in terms of creation and anni-
hilation operators defined as follows. For a function f : N→ R we define

af(n) = nf(n− 1)I(n ≥ 1), a†f(n) = f(n+ 1) (56)

See also [3] where these operators were introduced in the context of a
“quantum field theory” for reaction-diffusion systems. For a local function
f : NV → R we then define the operators ai, a

†
i for i ∈ V as

aif(η) = ηif(η − ei)
a†if(η) = f(η + ei). (57)

where ηif(η − ei) is a shorthand for aif(η) = 0 if ηi = 0 and aif(η) =
ηif(η − ei) otherwise. The generator (55) can then be rewritten as follows

LIRW,0 = −
∑
x,y∈V

p(x, y)(ax − ay)(a†x − a†y) + λ(a†0 − Id), (58)

where Id denotes the identity operator.

5.2 Intertwining operators

In this subsection we prove that the process with generator (55) starting
from νρ is intertwined with a deterministic process. This amounts to find
a differential operator representation for the creation and annihilation op-
erators (57), in the spirit of [4]. In order to define the intertwiner, we first
introduce for a function f : N→ R the associated generating function

Gf(z) =

∞∑
n=0

f(n)
zn

n!
e−z, (59)

where we implicitly assume that the function f is such that the series defin-
ing Gf(z) is absolutely convergent in an open interval around the origin.
Notice that for z ≥ 0, Gf(z) is precisely the expectation of f w.r.t. Poisson
distribution with parameter z. The following proposition collects intertwin-
ing relations between G and the creation and annihilation operators defined
above.

PROPOSITION 5.1. Let a, a† be defined as above in (56), and G the gener-
ating function (59). Then we have

G(af)(z) = zGf(z)

G(a†f)(z) =
∂Gf

∂z
(z) +Gf(z). (60)
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PROOF. This follows from a simple computation.

We now extend the generating function G to the multi-variate setting by
tensorization. Let Ω̂ denote the configuration space RV . With small abuse
of notation we denote by z configurations in Ω̂. For f : NV → R a local
function depending on ηi, i ∈ Λ with Λ ⊂ V finite, we define,

G f(z) =
∑
ηi,i∈Λ

∏
i∈Λ

zηii
ηi!
e−zif(ηi, i ∈ Λ), (61)

where z = (zi, i ∈ V ) ∈ Ω̂. Notice that if zi ≥ 0 for all i ∈ V , then
G f(z) = νz(f) where, again with a small abuse of notation, νz = ⊗i∈V νzi is
the product of Poisson measures with parameter zi at site i ∈ V .

We have the following intertwining relation. Denote, for f local and
smooth, and z ∈ Ω̂

L f(z) =
∑
x,y∈V

−p(x, y)(zx − zy)(∂x − ∂y)f(z) + λ(∂0f)(z), (62)

with ∂x = ∂
∂zx

. Then L is the generator of a deterministic system of differ-
ential equations

dzx(t)

dt
=
∑
y∈V

p(x, y)(zy(t)− zx(t)) + λδx,0. (63)

Using the generator (1) and the associated semi-group, we can rewrite (63)
as follows

dzx(t)

dt
= (LRWz)x(t) + λδx,0. (64)

This equation can be solved by the classical variation of constants method,
and we obtain

zx(t) = Ex(zXt(0)) + λ

∫ t

0
Ex(δXs,0)ds. (65)

Using proposition 5.1 we then obtain the following intertwining relation and
as a consequence evolution of Poisson product measures.

PROPOSITION 5.2. Let LIRW,0 denote the generator of the independent ran-
dom walkers with source at the origin given in (55) and L the generator
of the deterministic system given in (62). Then we have, for every local
function f : NV → R, such that G f exists and is smoothly depending on z:

GLIRW,0f = L G f. (66)
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As a consequence for any ρ : V → [0,∞), if we denote νρ the product of
Poisson measures with parameter ρ(x) at x ∈ V , and νρ(t) the measure
obtained at time t when starting the Markov process with generator (55)
and initial distribution νρ, then we have

νρ(t) = νρt , (67)

with

ρt(x) = Ex(ρ(Xt)) +

∫ t

0
Ex(δXs,0)ds, (68)

the solution of (65) with initial condition zx(0) = ρ(x). The density ρt(x)
diverges as t → ∞ if and only if the random walk with generator LRW is
recurrent. If this random walk is transient, starting from a homogeneous
Poisson product measure with density ρ, νρ(t) converges, as t → ∞ to the
Poisson product measure with density

ρ∞(x) = ρ+ λ

∫ ∞
0

Ex(δXs,0)ds,

which is a solution of the equation

LRWf(x) = λδx,0.

REMARK 5.1. Connections between deterministic systems of linear differ-
ential equations and a system of independent random walks were studied in
[10], see also [4] where a duality between a system of independent random
walkers and a deterministic system is proved. Here, on the contrary, we
prove an intertwining relation, which can be viewed as a way of recasting
and extending Doob’s theorem on the conservation of Poisson product mea-
sures under independent evolutions, see e.g. [2].
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