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Abstract. We consider the assimilation of satellite altimetric data into a general circulation model of the ocean at 
basin scale. The satellite observes only the sea-surface height of the ocean. With the assimilation of these data, we 
aim at reconstructing the four-dimensional space–time circulation of the ocean including the vertical. This problem 
is solved using the variational technique and the adjoint method. In the present case, a strong constraint approach is 
assumed, i.e. the quasi-geostrophic ocean circulation model used is assumed to be exact. The control vector is 
chosen as being the initial state of the dynamical system and it should minimize the mean-square difference between 
the model solution and the observed data. The assimilation procedure has been implemented and has the ability to 
transfer the surface data information downward to the deep flows, and hence to reconstruct the oceanic circulation in 
the various layers used to describe the vertical stratification of the ocean. The paper points out more specifically the 
crucial influence of the choice of the norm in the vector control space on the convergence speed of the optimization 
algorithm. Furthermore, various temporal strategies to perform the assimilation are presented and discussed with 
regard to their ability to properly control the initial state (which is the actual control variable) and the final state.

1. Introduction

The world’s oceans play a major role in our global environment and more especially in

the Earth’s climate. Observations of these oceans have undergone extensive development

in recent years because of the advent of new satellite techniques and especially the use

of altimeter measurements. This has greatly improved our synoptical knowledge of the

oceans. With the availability of Geosat satellite data and more recently of Topex/Poseidon

and ERS1/2 satellite data, the oceanographic community began intensive exploitation of

these new observational sources. They have already given incomparable information for

the study of general ocean circulation, for estimation of the energy levels of the upper

flows, and for examination of the local dynamics of different regions of particular interest,

such as the Gulf Stream area, the Kuroshio extension, the Antarctic circumpolar current

and the manifestations of climatic variability such as El Niño in the tropical Pacific ocean.

At the same time, the modelling of the ocean system has also undergone a considerable

development mostly because of formidable increases in computing capabilities. Together

with climatic studies, an emerging prospect for oceanography is the challenge of the so-

called operational oceanography, i.e. a similar operational system for the oceans to the one

which is currently exploited in meteorological centres for weather prediction.
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At the interface between the two major components of oceanographic science i.e.

observations and models, lies the domain of so-called data assimilation (DA). DA covers all

the mathematical and numerical techniques which allow us to blend as optimally as possible

all the sources of information coming from theory, models and other types of data. (Clearly

these techniques may not only apply in oceanography but to other disciplines.) DA allows

us to recreate the time–space structure of a system from a set of information which has, in

general, a large disparity in nature, in space–time distribution and in accuracy. There are two

main categories of DA methods. Variational methods based on the optimal control theory

and statistical methods based on the theory of optimal statistical estimation. The prototype

of the first class which is actually of interest here is the adjoint method which was first

introduced in meteorology by Penenko and Obraztsov (1976). However, the actual use of

this method in numerical models is relatively recent for atmospheric sciences (see Lewis and

Derber 1985, Le Dimet and Talagrand 1986, Talagrand and Courtier 1987) and even more

so in the ocean (see Thacker and Long 1988, Sheinbaum and Anderson 1990, Moore 1991,

Schröter et al 1993, Nechaev and Yaremchuk 1994). The prototype of statistical methods

is the Kalman filter whose introduction in oceanography dates back roughly a decade (see,

for example, Ghil 1989 and the review by Ghil and Malanotte-Rizzoli 1991). The Kalman

filter was extended to nonlinear cases (Jazwinski 1970, Gelb 1974) but it has been mostly

applied in oceanography to quasi-linear situations of the tropical oceans (Gourdeau et al

1992, Fukumori et al 1993, Fukumori 1995, Cane et al 1996, Verron et al 1998).

All optimal DA techniques encounter major difficulties in practice for computing

reasons: memory size and computing costs. The full Kalman filter would, in principle,

require the manipulation of (N ×N) matrices where N is the state vector dimension which

is typically 107 or 108 in an oceanic problem. The adjoint method often requires several

hundred iterations for the minimization process to converge, thus implying an equivalent

number of model runs.

Another crucial issue in realistic ocean problems, especially true in the mid-latitude

oceans, is the handling of nonlinearity (Miller 1994). The extended Kalman filter which

relies on the linear tangent assumption may be inadequate (Evensen 1992). The adjoint

method, in principle, does not assume linearity but local linearization for the minimization

fails in certain situations and necessitates complex strategies to circumvent the difficulty as

was shown, for example, by Blum et al (1998).

The nature and the distribution of the observations available in oceanography strongly

govern, as well, the assimilation efficiency. As was said previously, today the best

observational network is provided by satellites which measure, for example, the sea-

surface height along the satellite ground tracks. In spite of their unequalled density, these

measurements pose specific problems, the main one being the ability to access or control

the three-dimensional ocean circulation (or four-dimensional if time is added) from data

which are obtained at the surface of the ocean only.

In this paper, we focus our interest on the use of the variational adjoint method in

a relatively simple ocean model in order to try to reconstruct the four-dimensional ocean

system from altimetric surface observations of the ocean. Here, the variational method

uses the strong constraint hypothesis, i.e. the ocean circulation model is assumed to be

exact. The assimilation process is carried out by an identification of the initial state of the

dynamical system which minimizes a cost function. This cost function is the mean-square

difference between the observations and the corresponding model variables. The functional

will be minimized using a numerical unconstrained optimization method. In the present

work, we lean towards the limited memory BFGS (Broyden–Fletcher–Goldfarb–Shanno)

method algorithm (see Gilbert and Lemaréchal 1989). From the optimal control theory
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(see Lions 1968), the gradient vector is obtained analytically from the adjoint state, which

can be interpreted as the Lagrange multiplier of the model equations. This adjoint state

itself is a solution of the adjoint system of the linearized partial derivative equations, which

govern the dynamics of the flow-state, and hence is a backward system of PDE. If the

control space is the initial state space, then the gradient vector depends only on the adjoint

state at the initial instant, which is in fact the final instant of the backward adjoint system.

In practice, the nonlinearities characterizing the mid-latitude ocean dynamics and the huge

size of the problem have hindered considerably utilization of this method in a numerical

model.

In this paper, this approach is shown to be able to control the mesoscale eddy active

ocean circulation and to have the ability to transfer the surface data information downwards

to the deep flows. Furthermore, we analyse how the choice of the norm of the control

space affects the variational assimilation procedure. The identification of the initial state

cannot be performed by a simple resolution of the variational problem over the whole data

assimilation period. So, a judicious choice for the norm combined with an appropriate

temporal strategy is useful in order to obtain convergence of the algorithm to the correct

initial state.

The organization of this paper is as follows. Section 2 concerns the description of the

assimilation problem with the quasi-geostrophic ocean model, the adjoint equations and the

computation of the gradient of the cost function. In section 3, some numerical experiments

on the assimilation data problem using several choices of norm will be given and commented

on. In section 4, several temporal strategies will be discussed with respect to improving the

efficiency of the algorithm. Finally, general conclusions will be given in section 5.

2. Description of the data assimilation problem

2.1. Equations of the oceanic model

The circulation test model used for this study is a layered, quasi-geostrophic ocean model

(see Holland 1978). The dominant (geostrophic) dynamical balance between rotational effect

and pressure gradient is the primary balance which governs most large-scale geophysical

flows. The quasi-geostrophic model describes the temporal evolution of such geostrophic

dynamical equilibrium. It is an approximate model with regard to the full primitive equation

model, in particular because thermodynamics are discarded. However, it has been shown to

be able to realistically reproduce the statistical properties of mid-latitudes ocean circulation

including the very energetic jet and mesoscale features typical of regions like the Gulf

Stream and the Kuroshio (Verron et al 1992, Blayo et al 1994).

The model system is composed of N coupled equations which result from the

conservation law of the potential vorticity. These equations are written as

Dk(θk(9) + f )

Dt
+ δk,NA119N − A21

29k = Fk ∀k = 1, . . . , N in �×]0, T [ (1)

where

• � ⊂ R
2 is the circulation basin and ]0, T [ is the time interval;

• N is the number of layers (1 for the surface layer and N at the bottom);

• 9k is the stream function in layer k;

• θk(9) is the potential vorticity in layer k. It is the sum of the dynamic vorticity and
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the thermal vorticity in layer k





θ1(.)
...

θN (.)



 = [1. − [W ].]

where [W ] is a (N × N) tridiagonal matrix whose coefficients depend only on the physical

parameters

Wk,k−1 = −
f 2

0

Hkg
′

k− 1
2

Wk,k+1 = −
f 2

0

Hkg
′

k+ 1
2

Wk,k =
f 2

0

Hk

(

1

g′

k− 1
2

+
1

g′

k+ 1
2

)

where f0 is the Coriolis force at the reference latitude of �, Hk is the depth of layer k at

rest and g′

k+ 1
2

= g (ρk+1 − ρk)/ρ is the reduced gravity, g is the Earth gravity, ρk is the

fluid density in the layer k and ρ is the reference density.

• f is the Coriolis force. In the β-plane approximation, it varies linearly with respect

to the latitude: f (x, y) = f0 + βy, where (x, y) are Cartesian coordinates of the current

point in �.

• Dk./Dt designates the Lagrangian particular derivative operator in layer k. It is also

expressed as

Dk.

Dt
=

∂.

∂t
−

∂9k

∂y

∂.

∂x
+

∂9k

∂x

∂.

∂y

or by

Dk.

Dt
=

∂.

∂t
+ J (9k, .)

where J (., .) is the Jacobian operator

J (ϕ, ξ) =
∂ϕ

∂x

∂ξ

∂y
−

∂ϕ

∂y

∂ξ

∂x
.

• The two terms 1l(.), l = 1, 2 in equation (1) represent, respectively, the bottom and

the lateral friction dissipations. Sometimes, the lateral friction, parametrized as a biharmonic

−A41
49k , is preferred.

• Fk is the forcing of the dynamical flow. Fk is the surface wind stress applied to the

surface (Fk = 0, ∀k > 2).

2.2. Layer-mode transformation of the stream functions

The layer-mode transformation is, in addition to natural physical considerations, required

by the formulation of the boundary conditions which we will give in section 2.3.

The coupling matrix [W ] can be diagonalized in R as:

[W ] = [P ].diag(λ1, . . . , λN ).[P ]−1

where 0 = λ1 < λ2 6 · · · 6 λN and [P ] is the similarity transformation matrix. The vector





81

...

8N





def
= [P ]−1.





91

...

9N





is called the mode vector of the stream functions.
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2.3. Space boundary conditions

The boundary conditions follow directly from the mass conservation law (see Holland 1978).

They are written as

9k(t) = Ck(t) on ∂� ∀t ∈ [0, T ], ∀k = 1, . . . , N, such that

if 8k = [P −1.9]k

then 81 = 0 in ∂� × [0, T ]

and

∫

�

8k(t) ds = 0 ∀t ∈ [0, T ], ∀k > 2 (2a)

19k(t) = 0 in ∂�×]0, T [ ∀k = 1, . . . , N. (2b)

The equations of the direct model are hence (1), (2a) and (2b). In this respect, we recall

the following existence and uniqueness result due to Bernier (1992).

Theorem 2.1. For θ(t = 0) = θ0 in H−1, system (1), (2a) and (2b) admits a unique solution

in C([0, T ], H−1) ∩ L2(0, T , L2) ∩ L2
loc(0, T , H 1). The semigroup G(t) from H−1 in H−1,

G(t)θ0 = θ(t, x), associated to these equations, is such that there exists a maximal attractor

A which is bounded in L2, compact and connected in H−1 and whose basin of attraction is

the whole space H−1. This attractor has finite Hausdorff and fractal dimensions. For θ0 in

H 1, system (1), (2a) and (2b) admits a unique solution in C([0, T ], H 1) ∩ L2(0, T , H 2).

2.4. Assimilation data

The satellite altimeter observes the sea-surface height or dynamical topography, h, which

is, in the framework of quasigeostrophy, proportional to the upper layer stream function

hobs =
f0

g
9obs

1 . (3)

The measurements are performed along the ground tracks of the satellite thus undersampling

the sea-surface height in time and space according to the satellite orbit characteristics. In the

case of the Topex/Poseidon satellite for example, the period of the satellite is 10 days and the

ground track interval is 316 km at the equator (it decreases with the cosine of the latitude).

Along the tracks, spatial sampling is approximately every 7 km. In the framework of this

paper, the undersampling problem has been momentarily discarded and data are assumed

to be perfectly observed everywhere on the surface. As was mentioned earlier, our aim

is to blend the surface data with the corresponding variable (91 in this case) of the ocean

model for the purpose of improving the numerical reconstruction of the oceanic circulation,

especially ones of the deep ocean flow.

2.5. Cost function and adjoint equation

The control vector is chosen as being the initial state of all layers. The strong constrained

variational problem is to find u = (9k(t = 0))k=1,...,N which minimizes the following

least-square functional or cost function

Jε(u) =
1

2

n
∑

j=1

∫

�

(91(tj ) − 9obs
1 (tj ))

2 ds +
ε

2
‖R(u)‖2 (4)

where

• u is assumed to belong to a certain admissible control space, Uad, of functions satisfying

relation (2a);
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• t1, . . . , tn ∈ [0, T ] are the observation instants. In the present case, the surface stream

function 9obs
1 is assumed to be observed at every instant tj .

• 91(tj ) are the corresponding quantities deduced from the solution of the so-called

state equation (1), (2a) and (2b) in the terminology of optimal control theory, with the

initial condition (9k(t = 0))Nk=1 = u.

• The second term ε/2‖R(u)‖2 in the cost function (4) is Tikhonov’s regularization

term (see Tikhonov and Arsenin 1977). The presence of this term is necessary because

the data are noisy and the inverse problem is ill-posed. In the present nonlinear problem,

several types of regularizations have been tested, the best one was found to be based on the

potential vorticity

‖R(u)‖2 =

N
∑

k=1

Hk

[ ∫

�

((19k)(0) − [W ]k.(9)(0))2 ds

]

. (5)

The parameter ε in the cost function Jε gives a measure of the influence of the regularization

term compared to the quadratic difference between the observations and estimates. The

choice of ε depends mostly on the observation errors: if ε is too large, too smooth fields

are obtained which are inconsistent with the measurements; if ε is too small, the result

is unrealistically noisy. To determine the optimal value, the generalized cross validation

(GCV) method (see Wahba 1980) was used successfully.

The numerical minimization of the cost function Jε can be realized by using various

procedures such as the conjugate gradient methods or the quasi-Newton methods. In the

present work, the M1QN3 algorithm (see Gilbert and Lemaréchal 1989) was found to be

the most efficient and versatile tool.

The gradient vector of the functional is obtained by solving backwards in time the

system of the following quasi-geostrophic adjoint equations

∂

∂t
θ t
k(3) − 1J(9k, 3k) − [W t ]kJ (9, 3) − J (3k, θk(9) + f )

+δk,N A113N − A21
23k = Ek in �×]0, T [ k = 1, . . . , N (6)

where

• 3 = (31, . . . , 3N )t is the N -uplet of the adjoint state. It is the unknown variable of

the system (6).

• θ t
k(3) = −13k + [W t ]k3.

• J (9, 3) = (J (91, 31), . . . , J (9N , 3N ))t .

• Ek is the derivative of the unconstrained functional with respect to 9k

Ek(t) =







































0 if t 6= tj

else, the Dirac function δtj multiplied by the spatial function


















(91(t) − 9obs
1 (t)) −

1

|�|

[ ∫

�

(91(t) − 9obs
1 (t)) ds

]

k = 1

P11 · P −1
1k

|�|

[ ∫

�

(91(t) − 9obs
1 (t)) ds

]

k 6= 1.

The space boundary conditions satisfied by the adjoint state 3 are:

3k(t) = C ′
k(t) in ∂� ∀t ∈ [0, T ], ∀k = 1, . . . , N, such that

if χk = [P t .3]k

then χ1 = 0 in ∂� × [0, T ]
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and

∫

�

χk(t) ds = 0 ∀t ∈ [0, T ] ∀k > 2 (7)

13k(t) = 0 in ∂�×]0, T [ ∀k = 1, . . . , N.

We recall the following existence and uniqueness result for the adjoint state and the

existence result for the optimal control (see Luong 1995).

Theorem. For θ t (3)(t = T ) in H−1, system (6) and (7) admits a unique solution in

C([0, T ], H−1) ∩ L2(0, T , L2). Furthermore, if ε > 0 and if 9obs
1 (tj ) ∈ H 1 ∀j then there

exists an optimal control u ∈ H 1 which minimizes the cost function Jε.

The mathematical problem of identifiability of the initial state from the surface data (or

observability) will deserve more consideration in the future.

2.6. Computation of the gradient vector from the adjoint state

Numerical computation of the direct equations (1), (2a) and (2b) and the adjoint equations

(6) and (7) is performed by using the leap-frog scheme in time and the second-order finite

differences in space.

At the initial instant t = 0, the N functions (9k)k=1,...,N defined by

9k
def
= 9k − 9k|∂�

∀k = 1, . . . , N (8)

are equal to zero on the boundary ∂�. The set of all these functions is in a one-to-one

relation to the set of all functions verifying the first relation (2a) of the space boundary

conditions. The values of 9k at the nodes which are located strictly inside the domain �

will be used for the control of the functional Jε. After these nodes have been numbered,

the admissible control space Uad will be identified to R
m where m is the number of degrees

of freedom. If Uad is equipped with the Euclidean inner product ‖ . ‖E of R
m, then the

gradient vector of the first term of Jε is given from the adjoint state 3, solution of (6) and

(7), at an instant (t = 0) by the formula

∇J0 = [H ](−1. + [W ].)[H−1]







3
0

1

...

3
0

N






(9)

with [H ] = diag(H1, . . . , HN ), Hk is the depth of layer k at rest, and 3
0

k = 30
k − 30

k|∂�
.

The gradient vector of Tikhonov’s term is obtained by taking directly the derivative of (5)

with respect to the control variable u.

2.7. Experimental strategy

The test simulation experiments are performed in a square oceanic box assuming a layered

schematic stratification. The main parameters of the model are chosen to be typical of

the mid-latitudes. The Coriolis parameter is f0 = 9.3 × 10−5 s−1. The stratification

configuration chosen is three-layered with depths of 300, 700 and 4000 m. The basin has

horizontal dimensions of 4000 km × 4000 km. Two main flow cases have actually been

investigated.

• Case 1 considers a simple oceanic box in which a few eddies interact on the f -plane

and has a relatively coarse resolution. Assuming no gradient to the Coriolis force avoids

the formation of western boundary currents and associated resolution issues:

7



(i) the reduced gravities are g′
12 = 0.0357 m s−2 and g′

23 = 0.0162 m s−2, respectively,

at the interface between layers 1 (surface) and 2 and the interface between layers 2 and 3

(bottom);

(ii) the wind stress curl is made of an alternated sinusoidal, (4×4) checkerboard pattern

with a maximum amplitude of 4 × 10−2 m2 s−2 and a zero average;

(iii) the lateral friction A4 has a magnitude of 10−5 m4 s−1 and is parametrized as a

biharmonic;

(iv) the bottom friction coefficient is A1 = 5×10−8 s−1 and is parameterized as a linear

drag for the vorticity;

• Case 2 considers a full oceanic basin on the β-plane and has a high numerical

resolution of 20 km in both horizontal directions. The stratification parameters are fairly

standard as are the forcing and dissipation conditions:

(i) the reduced gravities are g′
12 = 0.0357 m s−2 and g′

23 = 0.0162 m s−2;

(ii) the wind stress curl has a double-gyre sinusoidal structure with an amplitude of

10−4 m2 s−2;

(iii) the lateral friction A4 has a magnitude of 109 m4 s−1 and is parametrized as a

biharmonic;

(iv) the bottom friction coefficient is A1 = 10−7 s−1;

(v) the Coriolis parameter β is 2 × 10−11 m−1 s−1.

In both configurations, the model flow is forced until a statistically steady-state situation

is reached. This normally takes about 20 years of oceanic time. All further assimilation

experiments are performed over time sequences far beyond this transitory spin-up phase.

In the first case, the absence of β-effect leads to spatial organization without any

preferred direction. In the second case, the β-effect promotes the formation of two western

boundary currents cyclonic in the northern gyre and anticyclonic in the southern gyre. These

two currents converge at the mid-latitude to form a strong eastward current flowing in the

open ocean, quite similar to the Gulf Stream (or other western boundary currents) generation

process. In the first case, the eddies are unrealistically large in size (about 1000 km) with

regard to ocean mesoscale eddies. Typical correlation time scale for those eddies was

about 100 days. In the second case, conversely, the general features of the flow patterns

are realistic from a statistical point of view even with this oversimplified geometry. The

transport and energy properties of the main current and of the eddies are quite similar to

the ones observed for the real Gulf Stream system, for example. The eddies are typically

200 km in diameter with a time correlation scale of a few tens of days.

The experimental approach is to perform a series of ‘twin-experiments’ with simulated

data. It is thought to be the first stage of validating an assimilation technique, as with real

observations there is no way to fully assess the performance of an assimilation experiment.

In a twin-experiment investigation, two series of experiments are conducted in parallel: one

reference experiment from which pseudo-data are extracted, one assimilation experiment

which uses these pseudo-data and which is further compared to the reference experiment.

It is possible to sample it in order to mimic the real spatio-temporal distribution of satellite

altimeters. In the present tests, we have not considered this sampling problem per se.

Data are supposed to be obtained on every gridpoint of the model with a time sampling of

1.5 days. Simulated surface data are then provided as observations for the cost function

Jε(u). The first guess of the assimilation experiments is chosen for the three layers of

the model to be completely decorrelated from the ‘true’ solution. (In other words, it is an

arbitrary point of the control space.) It is chosen, for example, as a very distant (in time)

realization of the model. The results of the identification process, i.e. of the assimilation

experiment, are then compared to the reference experiment. Note that, from the assimilation
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point of view, there is a noticeable change in the order of magnitude of the control problem

from case 1 to case 2 as the state vector size increases from about 5000 to about 120 000.

3. Numerical experiments using different Hilbertian norms

In this section, case 1 is considered and investigations are performed on various norms of

the control space based on the stream function L2 norm, its derivatives or a combination of

the previous. Assimilation experiments have been performed with numerical quasi-Newton

minimization of the cost function (4) using the four following norms for the control vector:

(a) B1 norm:

‖9‖2
B1

=

N
∑

k=1

∫

�

8
2

k ds

(b) B2 norm:

‖9‖2
B2

=

N
∑

k=1

∫

�

‖∇8k‖
2 ds

(c) B3 norm:

‖9‖2
B3

=

N
∑

k=1

( ∫

�

‖∇8k‖
2 ds + λk

∫

�

8
2

k ds

)

(d) B4 norm:

‖9‖2
B4

=

N
∑

k=1

∫

�

(18k)
2 ds.

In the expressions of these norms, 8k represents the mode stream functions from which are

deduced its scalar constants on the domain boundary. In the B3 norm, λk are eigenvalues

of the coupling matrix [W ].

From the mathematical point of view, B1 is simply the L2 norm, B2 the H 1 semi-norm,

B3 a weighted H 1 norm and B4 a H 2 semi-norm. From the physical point of view, B1 can

be related to the pressure of the flow field, B2 to the kinetic energy of the flow, B3 to the

total energy of the flow and B4 to the enstrophy.

The numerical method for the large scale minimization carried out in the context of this

study is an unconstrained BFGS quasi-Newton method with limited memory. The M1QN3

algorithm by Gilbert and Lemaréchal (1989) is used for our experiments. This algorithm

uses the BFGS formula which calculates recurrently an approximation of the Hessian at

the current point of the minimization sequence. This BFGS formula requires only the

knowledge of the gradient vector G. Let us now point out the modification of the gradient

due to the change of norm. Among these four norms, it is the discretized stream function

norm, B1, which corresponds to the ‘natural’ Euclidean norm. Each component Gi of the

gradient vector G relatively to the norm B1 represents the limit

lim
α→0

Jε(X + αei) − Jε(X)

α
∀i = 1, . . . , m

with {e1, . . . ,em} being the canonical basis of R
m. In the continuous case, this limit is

obtained from the adjoint state by formula (9). If we equip the control space with an

inner product associated with an arbitrary norm ‖.‖B , and if we define the corresponding

Grammian matrix

[B] ∈ M(Rm) with Bij = 〈ei, ej 〉B (10)
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then the new gradient vector, denoted by GB , of the functional Jε relatively to the norm

‖.‖B can be deduced from the initial gradient G, corresponding to B1 norm, by the formula:

GB = [B]−1 · G. (11)

As the gradient vector of the cost function will vanish in the minimization process, then

formula (11) proves clearly that a change of norm is equivalent to preconditioning on the

left-hand side of the problem ∇Jε = 0 through the matrix [B]−1. In the present situation,

this relation (11) can be interpreted, in the terminology of PDE, as follows: if GB2
denotes

the gradient vector associated with the norm B2, by identification of the gradient vector with

the N(= 3) stream functions, then GB2
is the solution of the following elliptic equation

−1GB2,k = Gk in �

GB2,k = 0 on ∂�
∀k = 1, . . . , N.

In the same way, GB3
satisfies the following equation:

−1GB3,k + λkGB3,k = Gk in �

GB3,k = 0 on ∂�
∀k = 1, . . . , N.

As for the B4 norm, the initial state control space Uad could be imposed to satisfy the

second relation (2b) of space boundary condition in addition to the first relation (2a). Once

that is settled, then the gradient vector GB4
will be the solution of the fourth order elliptic

equation:

−12GB4,k = Gk in �

GB4,k = 0 on ∂�

1GB4,k = 0 on ∂�

∀k = 1, . . . , N. (12)

It is clear that this supplementary boundary condition is necessary to ensure well-posedness

of equation (12).

Therefore, at each iteration step of the minimization algorithm, the use of a ‘non-

Euclidean’ norm requires us to solve an additional elliptic equation to deduce the

corresponding gradient vector. From the computational point of view, the cost to solve

this additional equation is negligible compared with the cost for integration of the forward

direct model (1), (2a) and (2b), and of the backward adjoint equations (6) and (7).

In all these numerical experiments, illustrated below in figures 1–4, the initial estimated

vector to start the minimization algorithm is the same. As mentioned earlier, this is

arbitrarily chosen for the three layers of the model as being completely decorrelated from

the ‘reference state’ (from which pseudo data are extracted). Tikhonov’s regularization

coefficient ε, is constant in all experiments. The issue is to evaluate the impact of various

choices of norm on the efficiency of the minimization procedure.

Figures 1, 2, 3 and 4 relate respectively to the B1, B2, B3 and B4 norms. In the left

pictures of these figures, the values of the two terms of the cost function Jε (see formula (4))

are represented as a function of the iteration number: A-curve gives the magnitude of the

quadratic difference term between the observations and the model estimates; B-curve gives

the magnitude of Tikhonov’s regularization term. In the right pictures, the root-mean-square

(RMS) errors between the assimilated and the reference stream function fields in each layer

1, 2 and 3, are represented with respect to time for the last iteration of the minimization

algorithm.

In addition, concerning the initial and final state convergences, we summarize in table 1

the RMS error values at these two initial and final instants and for the four norms. The

values are normalized with regard to the reference flow and expressed in percentages.
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Figure 1. Minimization with the B1 norm.
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Figure 2. Minimization with the B2 norm.

It appears clearly, especially from the table, that the B3 norm (figure 3) enables the

identified flow trajectory to be close to the ‘true’ flow trajectory, at the initial state as well

as at the final state. Furthermore, the convergence speed of the minimization procedure,

in this case, is relatively faster than for other experiments. For both B1 and B2 norms

(figures 1 and 2), the minimization is rather inefficient and the convergence is slow. The

identified trajectories remain too far from the reference trajectory, particularly at the initial

state. Actually with the B1 norm, if the iteration process is carried out further, at least up

to 1600 iterations, the convergence seems to be reached with an optimum which is close

to the one obtained with the B3 norm. Finally, for the B4 norm (figure 4), the convergence

speed is irregular, and it turns out that the minimization algorithm prematurely ends, owing

to an insufficiency of the decreasing speed of the cost function. More generally, it may

seem natural from a physical point of view that the B3 norm gives the best results, as it
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Figure 3. Minimization with the B3 norm.
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Figure 4. Minimization with the B4 norm.

corresponds to the total energy of the system and hence should be more appropriate than a

standard Euclidean norm.

4. Temporal strategies

In the case of a turbulent dissipative flow, it is well known that the space of states of the

dynamical system can be split into two parts (see Temam 1988). The first part corresponds to

unstable manifolds, which amplify the corresponding modes, the second to stable manifolds,

which damp the corresponding modes. As a consequence, the state variables are very

sensitive to a small number of modes of the control space and they are almost completely

decorrelated with the other modes. Moreover these degrees of sensitivity increase with the

length of the assimilation interval. This is a major drawback for the minimization algorithm

12



Table 1.

Norms B1 B2 B3 B4

t = 0

RMS (k = 1) 44% 58% 7% 79%

RMS (k = 2) 61% 84% 17% 100%

RMS (k = 3) 87% 112% 16% 116%

t = T

RMS (k = 1) 6% 22% 4% 49%

RMS (k = 2) 9% 20% 8% 44%

RMS (k = 3) 4% 25% 3% 46%

when one has long assimilation periods even using an appropriate norm for the control

space. The minimization algorithm modifies only some modes of the ‘first-guess’ and the

process has difficulty in converging towards the desired state during the first few iterations.

On the other hand, if one splits the assimilation period in too small sub-intervals, over

which the cost function is minimized in a sequential way, the propagation of the information

from the surface to the bottom of the basin is not satisfactory. Therefore, surface information

is not properly transmitted for controlling the deep flows. A good compromise was found

using intervals, the length of which is a fraction of the decorrelation scale of the model

dynamics.

The effective convergence of the assimilation process is a trade-off between two

contradictory requirements for the length of the assimilation sequence: (i) it must be shorter

than the predictability scale for the global trajectory optimization to be meaningful, but

(ii) it must be long enough for the deep flow control to be effective. An efficient procedure

is to sample the assimilation in an adequate number of sub-sequences. The variational

assimilation is achieved on each of these sub-sequences, the duration of which satisfies

the previous criterion. These results are of potential importance for altimetry in which the

periodicity of the observational sampling is usually not much smaller than the predictability

scale of the extra-tropical ocean.

With regard to this general approach of splitting the assimilation period in several

sub-intervals, several strategies are possible. The first strategy is to split the period of

assimilation in several sub-periods and to make sequentially the assimilation over each

sub-period. The initial guess of one sub-interval is the final state of the previous sub-

interval. Several examples are shown on figure 5 where the relative RMS errors between

the reference state and the assimilation experiment are presented for each layer. Each

experiment corresponds to a specific length of sub-sequences: 16 sequences of 0.5 month,

eight sequences of 1 month, four sequences of 2 months, two sequences of 4 months and

a standard minimization over 8 months. This experiment is carried out with the norm B3

and only 15 iterations are used for each sub-sequence in time. A good compromise for the

duration of the sub-sequences for the sequential strategy is about 2 months. This sequential

strategy is poor concerning the identification of the initial state but gives a relatively good

result for the estimation of the final state.

A second strategy is a progressive one: the assimilation is first made over some short

sub-period. The identified initial state is given as the first guess for an identification over

a double period. Hence, more and more data are assimilated in time, as the procedure

goes on until all the available data are taken into account. The results of this procedure

are represented on figure 6 for the three layers. This progressive method enables us to
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Figure 5. Sequential strategy with different time sub-

division.

propagate the surface information to the bottom, the results being better and better as the

length of assimilation increases. This progressive procedure is more time-consuming than
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Figure 6. Final convergence using progressive strategy.

the sequential one. Typically the price to pay is two times larger. However, the RMS on the

initial state is much better (less than 10%) while the RMS on the final state is still excellent

(about 1%). Figure 7 completes this view of the progressive process by decomposing

the assimilation process in time sequences and by representing the results for each layer.

For example, the accuracy on the identification of the initial conditions for the deep layer

improves from 45% for the first assimilation step to 8% for the fourth step.

The progressive approach gives better identification for the initial control state.

However, the first sequential strategy may be sufficient if one only aims at properly

recovering the flow fields at the final stage of the time sequence.

We conclude this section by giving some results relative to case 2, i.e. to a large size

problem which has the dimension of a realistic problem, for example for the simulation of

the North Atlantic circulations. Illustrations of the corresponding flows are given in figure 8.

It is clear from figure 8 that, thanks to a correct choice of the norm of the control space

and to the progressive assimilation strategy, the initial state is correctly identified, even in

the bottom layer, whereas only surface data have been assimilated. In this experiment, each

minimization iteration over the temporal assimilation period of 2 months consumes 83 s

CPU time on a C98 Cray computer. A complete assimilation process needs an equivalent

of 500 iterations to converge, consuming about 12 h CPU time.

5. Conclusion

This paper shows that the problem of identifying an oceanic flow field using only surface

information can be solved by the variational adjoint method for the quasi-geostrophic ocean

model. However, the solution does not follow directly from a simple application of the

method and imposes some constraints on the practical achievement of the assimilation.
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Figure 7. Progressive strategy.

The assimilation is formulated as an optimal control problem where the initial state is

the control vector and where the cost function represents the quadratic difference between

observations and model predictions. It is shown that the choice of the norm of control space

is fundamental to obtaining good minimization convergence. A simple use of the Euclidean

norm may fail to overcome various obstacles to convergence, speed of convergence and most

probably local minima. In particular, this has important practical consequences for realistic

size problems where the computing costs involved are considerable. In the present work,

the norms tested belong to a relatively simple class (stream function and/or its derivatives

L2 norms). In the altimeter data assimilation context, we can claim that the norm which is

associated to the total energy of the system is the correct norm for the identification of the

initial state.

One key aspect in the success of assimilation is its ability to transfer the surface data

information downwards to the deep flows. It is suggested that an efficient assimilation

strategy can be constructed by dividing the global time sequence in several time sub-

periods, the individual duration of which must be less than the typical predictability time

scale of the flow. With this sequential approach, an acceptable accuracy can be reached for
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Figure 8. Comparison of the identified flow stream function fields to the reference flow fields.
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the recovery of the final flow state, but the identification of the initial state is poor. The

progressive strategy consists of assimilating data over time periods of increasing length, still

aiming at identifying better and better the initial state. It is approximately twice as time

consuming as the sequential one. However, in this approach, the identification is excellent

for the final state as well as for the initial state.

In the present work, synthetic data are sampled using the whole surface layer. Generally,

in the framework of the realistic oceanic data assimilation, the data are available only along

ground tracks for time intervals corresponding to the satellite repeat period. However, in

practice, the observation data are various in nature and should be combined together in the

same functional to be minimized. Therefore, the optimal initial state would not be as well

estimated because of the relatively small number of observations and their heterogeneous

spatial distribution. Also, we notice that the performances of these methods have been

assessed with a quasi-geostrophic model. It would be interesting to apply them to a more

complicated model such as the primitive equation model and to check whether the initial

condition for these equations can be reconstructed from the surface observations.
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