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Abstract

The heavy-tailed mutation operator proposed in Doerr, Le,
Makhmara, and Nguyen (GECCO 2017), called fast mutation to agree
with the previously used language, so far was proven to be advanta-
geous only in mutation-based algorithms. There, it can relieve the
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contains all proofs and other details that had to be omitted in the conference version for
reasons of space. Also, we have greatly expanded the experimental section.
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algorithm designer from finding the optimal mutation rate and never-
theless obtain a performance close to the one that the optimal muta-
tion rate gives.

In this first runtime analysis of a crossover-based algorithm using
a heavy-tailed choice of the mutation rate, we show an even stronger
impact. For the (1+(λ, λ)) genetic algorithm optimizing theOneMax

benchmark function, we show that with a heavy-tailed mutation rate
a linear runtime can be achieved. This is asymptotically faster than
what can be obtained with any static mutation rate, and is asymp-
totically equivalent to the runtime of the self-adjusting version of the
parameters choice of the (1 + (λ, λ)) genetic algorithm. This result is
complemented by an empirical study which shows the effectiveness of
the fast mutation also on random satisfiable MAX-3SAT instances.

1 Introduction

It is often cited as a strength of evolutionary algorithms (EAs) that by setting
the parameters right the algorithm can be adjusted to the particular problem
to be solved. However, it is also known that this process of optimizing the
parameters is time-consuming and needs a lot of expert knowledge.

The theoretical research in this field (see, e.g., [AD11, DN20, Jan13,
NW10]) has contributed to this challenge via mathematical runtime anal-
yses for general parameter values, which allow to understand the influence
of the parameter on the performance and allow to derive optimal param-
eter values. Examples include (i) the works of Jansen, de Jong, and We-
gener [JJW05] as well as Doerr and Künnemann [DK15], which determine
the runtime of the (1 + λ) EA on OneMax for general value of λ and from
this conclude that a linear speed-up with regard to the number of itera-
tions exists only for λ = O

(

log(n) log log(n)
log log log(n)

)

, (ii) Witt’s analysis [Wit06] of the

runtime of the (µ + 1) EA for general values of µ on the LeadingOnes

benchmark, which in particular shows that for µ = O( n
logn

) a larger parent
population does not lead to an asymptotic slow-down of the algorithm, or
(iii) the results of Lehre [Leh10, Leh11] and many follow-up works, which for
many non-elitist algorithms determine asymptotically precise thresholds for
the selection pressure that separate a highly inefficient regime from one with
polynomial runtimes.

Concerning the mutation rate p of the standard bit mutation operator
for bit strings of length n, which is our main object of interest in this work,
a large number of classic results suggests that a value of p = 1

n
or close by

is a good choice. We note that a mutation rate of p = 1
n
means that on

average a single bit is flipped. The recommendation p = 1
n
can already be
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found in [Bäc93, Müh92]. Rigorously proven results show, among others,
that only p = Θ( 1

n
) can give an O(n logn) runtime of the (1 + 1) EA on

OneMax [GKS99], that the asymptotically optimal mutation rate for the
(1+1) EA on LeadingOnes is approximately p = 1.59

n
, that p = (1±o(1)) 1

n

is the asymptotically best mutation rate of the (1 + 1) EA for all pseudo-
Boolean linear functions [Wit13], that only a mutation rate below c

n
, where c

is a specific constant, guarantees a polynomial runtime of the (1 + 1) EA on
all monotonic functions [DJS+13, Len18], and that (1±o(1)) 1

n
is the optimal

mutation rate for the (1 + λ) EA on OneMax when λ is small [GW17].
In the light of this previous state of the art, it came as a surprise when

Doerr, Le, Makhmara, and Nguyen [DLMN17] determined the runtime of the
(1 + 1) EA on jump functions for general mutation rates and observed that
here much higher mutation rates were optimal1. The jump function Jumpnk

(we deviate here from the notation of [DLMN17]) is a function defined on bit-
string of length n which is mostly identical to the easy OneMax function,
but which has a valley of low fitness of Hamming width k−1 around the global
optimum. Consequently, elitist algorithms can leave this local optimum only
by flipping k specific bits (and [Doe20a] suggests that non-elitist algorithms
cannot do better). As shown in [DLMN17], for this multimodal benchmark
function the insights gained previously on unimodal functions like OneMax,
linear functions, or LeadingOnes do not apply. The optimal mutation
rate for Jumpnk was found to be (1 ± o(1)) k

n
. Deviating from this optimal

rate by a small constant factor leads to a runtime increase by a factor of
eΩ(k). Consequently, the choice of the mutation rate for this problem is truly
delicate.

To overcome this difficulty, the use of a random mutation rate chosen ac-
cording to a heavy-tailed distribution, more specifically, a power-law distri-
bution with exponent β > 1, was suggested. This mutation operator, called
fast mutation in agreement with previous uses of heavy-tailed distributions
in continuous evolutionary computation [SH87, YL97, YLL99], samples a
random number α ∈ [1..⌊n

2
⌋] with probability proportional to α−β and then

flips each bit independently with rate α
n
. Each application of this operator

samples the value of α independently.
The main result in [DLMN17] is that the (1 + 1) EA with this mutation

operator optimizes Jumpnk in a time that is only by a factor of O(kβ−0.5)

1As a reviewer of [ABD20] pointed out, in [Prü04] an upper bound was shown for the
runtime of the (1 + 1) EA with general mutation rate on the hurdle problem with hurdle
width 2 and 3. This upper bound is minimized by the mutation rates 2

n
and 3

n
. This

could have been seen earlier as a hint that larger mutation rates can be useful. Since the
central research question discussed in [Prü04] was whether crossover is beneficial or not,
apparently this detail was overlooked by the broader scientific audience.

3



larger than the time resulting from standard bit mutation with the optimal
rate. Given that missing the optimal rate (which is only accessible when
knowing k) by a small constant factor already incurs a runtime increase by
a factor of eΩ(k), the O(kβ−0.5) price for having a one-size-fits-all mutation
operator appears to be a good investment. From the asymptotic point of
view β should be taken arbitrarily close to 1, but the experiments conducted
in [DLMN17] suggested that β = 1.5 is a good choice. Both theory and
experiments showed that the choice of β is not overly critical. For this reason,
it is fair to call fast mutation a parameterless operator.

Since the fast mutation operator is nothing else than a random linear com-
bination of standard bit mutation operators with rates α

n
, α = 1, . . . , ⌊n

2
⌋, it

is not surprising that the resulting runtime is higher than the one from the
best of these individual operators. Rather, it is surprising that by simply
averaging over the available options, one comes relatively close to the opti-
mum, and this in a scenario where for static rates a small deviation from the
optimum leads to a significantly increased runtime.

In this work, we observe an even more surprising strength of the fast
mutation operator. We investigate how the (1 + (λ, λ)) genetic algorithm
((1+(λ, λ)) GA), first proposed in Doerr, Doerr, and Ebel [DDE15], performs
with the fast mutation operator. The (1 + (λ, λ)) GA is an evolutionary
algorithm that creates λ offspring from a unique parent individual with an
unusually high mutation rate (independently, apart from the fact that they
all have the same Hamming distance from the parent), selects the best of
these, and creates another λ individuals via a biased crossover between this
mutation winner and the original parent. The best of these is taken as the
new parent individual if it is at least as good as the previous parent (see
Section 2 for more details).

This combination of a high mutation rate and crossover with the parent
as repair mechanism allows the algorithm to more efficiently explore the
search space when the parameters are chosen suitably. Both from informal
considerations and from existing runtime results, the right parameterization
seems to be that the mutation rate is p = λ

n
and the crossover bias, that

is, the rate with which the crossover offspring takes bits from the mutation
winner, is c = 1

λ
. The informal argument for this is that a single application

of mutation and crossover generates a bit string distributed as if generated
via standard bit mutation with rate 1

n
.

With a number of runtime analyses [DDE15, BD17, DD18, ADK19] sup-
porting this choice2, we fix this relation of the three parameters in the re-

2We note that the work [ADK20] conducted in parallel to ours suggests that a different
choice is necessary when large fitness valleys need to be crossed.
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mainder of this work. Since the mutation rate is the starting point of our
research, we can alternatively first choose a mutation rate of type p = α

n
and

then set λ = pn and c = 1
pn
.

The right choice of the mutation rate is non-trivial. The good news
from [DDE15] is that any rate between p = ω( 1

n
) and p = o( logn

n
) leads to

a runtime of o(n log n) on OneMax, that is, asymptotically faster than the
performance of classic evolutionary algorithms. The optimal mutation rate
of

p = Θ

(

1

n

√

log(n) log log(n)

log log log(n)

)

,

however, is non-trivial to find [DD18]. It yields an expected runtime on
OneMax of

E[T ] = Θ

(

n

√

log(n) log log log(n)

log log(n)

)

.

Our main research goal in this work is understanding how the (1 +
(λ, λ)) GA performs when instead of standard bit mutation with a fixed
mutation rate p the fast mutation operator is used. With the previously sug-
gested relations between mutation rate, offspring number, and crossover bias,
this means that first a number α is sampled from a power-law distribution,
then λ = α offspring are generated via flipping ℓ bits chosen uniformly at
random, where ℓ ∼ Bin(n, α

n
),3 and finally λ times a biased crossover with

bias c = 1
α
between parent and mutation winner is performed. We call this

modified algorithm the fast (1 + (λ, λ)) GA.
Our main result is that not only the use of the fast mutation operator

in the (1 + (λ, λ)) GA relieves us from finding a good mutation rate, but
surprisingly we can even obtain a runtime that is faster than the runtime of
the (1+ (λ, λ)) GA with any fixed mutation rate: If the power-law exponent
β satisfies 2 < β < 3, then the fast (1 + (λ, λ)) GA has an expected runtime
of O(n) on OneMax.

We note that a linear runtime of the (1 + (λ, λ)) GA on OneMax was
obtained earlier with a self-adjusting choice of the mutation rate based on
the one-fifth rule [DD18]. While this worked well on OneMax, experimen-
tal [GP14] and theoretical [BD17] studies on satisfiable MAX-3SAT in-
stances showed that this approach carries the risk that the population size
λ increases rapidly because the problem structure may just not allow a one-
fifth success rate, regardless how large λ is. Since this behavior increases the
time complexity of each iteration, it leads to a significant performance loss.

3This mutation can be interpreted as a standard bit mutation with rate α

n
, but condi-

tional on having the same number of flipped bits for all individuals.
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Such problems, naturally, cannot arise with the static behavior of the fast
mutation operator.

Via an empirical study, we show that the fast mutation operator indeed
without any modification also solves well the satisfiable MAX-3SAT in-
stances for which the one-fifth rule variant of the (1+(λ, λ)) GA did not per-
form well in [BD17] (unless enriched with a suitable cap on λ). However, our
study also shows that on OneMax itself, the self-adjusting (1+(λ, λ)) GA is
by a constant factor faster than the fast (1+(λ, λ)) GA. Since the runtime loss
from a degenerate behavior of the one-fifth rule version of the (1+(λ, λ)) GA
can be large (due to the population size of order n), we draw from these re-
sults the recommendation to use the more robust fast (1 + (λ, λ)) GA on a
novel problem rather than the self-adjusting (1 + (λ, λ)) GA.

2 Notation and Problem Statement

The (1 + (λ, λ)) GA, first presented in [DDE15], has the following working
principles. It stores one current individual x, which is initialized with a
random bit string. Each iteration of the (1+(λ, λ)) GA consists of two phases,
which are themutation phase and the crossover phase. In the mutation phase
the algorithm first chooses the mutation strength ℓ following the binomial
distribution with parameters n and p, where p is usually called the mutation

rate. It then creates λ mutants by copying the current individual x and
flipping exactly ℓ bits which are chosen uniformly at random, independently
for each mutant. After that the mutant with the best fitness is chosen as the
winner of the mutation phase x′ (all ties are broken uniformly at random).
In the crossover phase the algorithm λ times performs a crossover between x
and x′ by taking each bit from x′ with probability c and from x otherwise.
The probability c is called the crossover bias. The best crossover offspring y
(all ties are again broken uniformly at random) is compared with the current
individual x. If y is not worse, then it replaces x. The main hope behind
this algorithm is that with a high mutation rate, the mutation winner x′

contains some beneficial solution elements, and that the crossover with the
parent acts as repair mechanism that removes the destructions caused by the
high mutation rate.

As it was discussed in the introduction, the standard parameter setting
proposed in [DDE15] uses the mutation rate p = λ

n
and the crossover bias

c = 1
λ
. However, there is not strong recommendation on how to choose λ.

For the static choice [DDE15] suggests to use λ = ω(1) and λ = o(log(n))
in order to have a o(n log n) runtime on OneMax, but this runtime is still
super-linear. It was also shown in [DDE15] that choosing a fitness-dependent
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λ =
√

n
n−f(x)

gives a linear runtime on OneMax. In [DD18] it was shown

that if we control λ according to the one-fifth rule we also get a Θ(n) runtime
on OneMax.

In this paper we propose to choose λ in each iteration from some heavy-
tailed distribution. More precisely, the probability that we choose λ = i
is

Pr[λ = i] =

{

Cβ,ui
−β , if i ∈ [1..u],

0, otherwise,

where β ∈ R is the power-law exponent of the distribution (which is always
considered as a constant), u ∈ N is an upper bound on the choice of λ (and
may depend on n), and Cβ,u := (

∑u
i=1 i

−β)−1 is the normalization coeffi-
cient. All our runtime results on OneMax will hold for the classic choice
u = ⌊n/2⌋. We introduce this additional parameter because the Max-SAT
analyses in [BD17] showed that sometimes a stricter upper bound on λ is
necessary. For that reason, it is interesting to see also in the OneMax anal-
yses how small an upper bound on λ can be taken so that a linear runtime
is still obtained.

The detailed pseudocode of the fast (1 + (λ, λ)) GA is shown in Algo-
rithm 1. Our main result will be that this simple way of choosing λ gives us

a linear runtime for all β ∈ (2, 3) and u ≥ ln
1

3−β (n).

2.1 Useful Tools

In this section we collect some classic results which are used in our proofs.
First, to be able to make the transition between the number of iterations and
the number of fitness evaluations, we use Wald’s equation [Wal45].

Lemma 1 (Wald’s equation). Let (Xt)t∈N be a sequence of real-valued ran-

dom variables and let T be a positive integer random variable. Let also all

following conditions be true.

1. All Xt have the same finite expectation.

2. For all t ∈ N we have E[Xt1{T≥t}] = E[Xt] Pr[T ≥ t].

3.
∑+∞

t=1 E[|Xt|1{T≥t}] <∞.

4. E[T ] is finite.

Then we have

E

[

T
∑

t=1

Xt

]

= E[T ]E[X1].
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Algorithm 1: The fast (1+ (λ, λ)) GA with power-law exponent β
and upper limit u maximizing f : {0, 1}n → R

1 x← random bit string of length n;
2 while not terminated do

3 Choose λ from [1..u] with Pr[λ = i] ∼ i−β ;

4 Choose ℓ ∼ Bin
(

n, λ
n

)

;
5 for i ∈ [1..λ] do
6 x(i) ← a copy of x;

7 Flip ℓ bits in x(i) chosen uniformly at random;

8 end

9 x′ ← argmaxz∈{x(1),...,x(λ)} f(z);

10 for i ∈ [1..λ] do
11 Create y(i) by taking each bit from x′ with probability 1

λ
and

from x with probability λ−1
λ
;

12 end

13 y ← argmaxz∈{y(1),...,y(λ)} f(z);

14 if f(y) ≥ f(x) then
15 x← y;
16 end

17 end

We use the following inequality to estimate the probability that at least
one of λ Bernoulli trials succeeds.

Lemma 2. For all p ∈ [0, 1] and all λ > 0 we have

1− (1− p)λ ≥ λp

1 + λp
.

Proof. By [RS14, Lemma 8] (or (1.4.19) in [Doe20b]) we have (1−p)λ ≤ 1
1+λp

.
Hence,

1− (1− p)λ ≥ 1− 1

1 + λp
=

λp

1 + λp
.

We frequently use the following bounds on the partial sums of the gener-
alized harmonic series.

Lemma 3. For all s ∈ R such that s ≥ 1 and for all α 6= 1 we have
∑⌈s⌉

i=1 i
−α ≥ s1−α−1

1−α
. For α = 1 we have

∑⌈s⌉
i=1 i

−α ≥ ln(s).
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Figure 1: Illustration of the inequality
∑⌈s⌉

i=1 i
−α ≥

∫ s

1
x−αdx for the case

α ≥ 0. In this example we have α = 1, s = 3.5 and ⌈s⌉ = 4. The red area
equals to the sum. The blue area (fully under red, thus purple) equals to the
integral.

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

x

f
(x
)

x−1

⌊x⌋−1

Proof. We estimate the sum for α 6= 1 through the corresponding integral
(this estimate is illustrated in Figures 1 and 2).

⌈s⌉
∑

i=1

i−α ≥
∫ s

1

x−αdx =
s1−α − 1

1− α
.

The case for α = 1 is a well-known bound on the partial sum of the
harmonic series.

Lemma 4. For all u ∈ N we have

•

∑u
i=1 i

−α ≤ u1−α 2−α
1−α

, if α < 0,

•

∑u
i=1 i

−α ≤ u1−α

1−α
, if α ∈ [0, 1),

•

∑u
i=1 i

−α ≤ α
α−1

, if α > 1,

•

∑u
i=1 i

−α ≤ ln(u) + 1, if α = 1.
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Figure 2: Illustration of the inequality
∑⌈s⌉

i=1 i
−α ≥

∫ s

1
x−αdx for the case

α < 0. In this example we have α = −1.5, s = 3.5 and ⌈s⌉ = 4. The red
area equals to the sum. The blue area equals to the integral and to the green
area, which is fully under the red one.

1 2 3 4 5
0

2

4

6

8

10

12

x

f
(x
)

x1.5

⌊x⌋1.5
(x− 1)1.5

Proof of Lemma 4. By analogy with Lemma 3 we estimate the sum through
a corresponding integral. If α < 0 we have

u
∑

i=1

i−α ≤
∫ u

1

x−αdx+ u−α ≤ u1−α − 1

1− α
+ u−α ≤ u1−α2− α

1− α
.

If α ≥ 0 we have

u
∑

i=1

i−α ≤ 1 +

∫ u+1

2

(x− 1)−αdx ≤ 1 +
u1−α − 1

1− α

If α ∈ [0, 1), then we have

u
∑

i=1

i−α ≤ u1−α − 1 + 1− α

1− α
≤ u1−α

1− α
.
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If α > 1, we have

u
∑

i=1

i−α ≤ 1 +
1

α− 1
≤ α

α− 1
.

The case for α = 1 is a well-known bound on the partial sum of the
harmonic series.

3 Runtime Analysis

In this section we prove upper and lower bounds on the runtime of the fast
(1 + (λ, λ)) GA on OneMax.

3.1 Upper Bound

Our aim in this subsection is to prove an upper bound on the number of
fitness evaluations taken until the fast (1 + (λ, λ)) GA finds the optimum
of the OneMax benchmark. Since it is technically easier, we first regard
the number of iterations until the optimum is found. For algorithms with
fixed population sizes, such a bound would immediately imply a bound on the
number of fitness evaluations (namely by multiplying the number of iterations
with the fixed number of fitness evaluations per iteration). For the fast (1 +
(λ, λ)) GA using a newly sampled value of λ in each iteration, things are not
that easy, but Wald’s equation (Lemma 1) allows to argue that multiplying
with the expected number of fitness evaluations per iteration gives the right
result.

Before proceeding with proofs, we now state two theorems that together
constitute the main result of this subsection. We start by showing that for
reasonable parameter values, the optimum is found in a linear number of
iterations.

Theorem 5. If β ∈ (1, 3) and u ≥ ln
1

3−β (n), then the expected number

of iterations until the fast (1 + (λ, λ)) GA finds the optimum of OneMax

function is O(n).

When β > 2, the expected number of fitness evaluations per iteration is
Θ(1) (see Lemma 9). With this observation and Wald’s equation, we obtain
the following estimate for the runtime.
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Theorem 6. If β ∈ (2, 3) and u ≥ ln
1

3−β (n), then the expected number

of fitness evaluations until the fast (1 + (λ, λ)) GA finds the optimum of

OneMax function is O(n).

We start with the proof of Theorem 5. For the readers’ convenience
we split the proof into Lemmas 7 and 8. The first lemma is essentially an
interpretation of Lemma 7 in [DDE15].

Lemma 7. If λ ≤
√

n
d(x)

, where d(x) is the current Hamming distance be-

tween the current individual x and the optimum, then the probability pd(x)(λ)
of increasing the fitness in one iteration is at least

C
d(x)λ2

n
,

where C > 0 is an absolute constant. If λ >
√

n
d(x)

, then this probability is

at least C.

Proof. By [DDE15, Lemma 7], the probability of a true progress (that is,
an iteration in which we find a strictly better individual than the current
individual x) pd(x)(λ) is at least

C ′



1−
(

1− d(x)

n

)λ2

2



 ,

where C ′ > 0 is an absolute constant. By Lemma 2 we have

pd(x)(λ) ≥ C ′



1−
(

1− d(x)

n

)
λ2

2



 ≥ C ′
d(x)λ2

2n

1 + d(x)λ2

2n

.

If λ ≤
√

n
d(x)

, then we have pd(x)(λ) ≥ C ′ d(x)λ
2

3n
. Note that C := C′

3
is an

absolute constant as well as C ′. If λ >
√

n
d(x)

, then pd(x)(λ) ≥ C′

3
= C.

Lemma 8. Let β ∈ (1, 3). Then the probability pd(x) of having progress in

one iteration given that the current distance to the optimum is d(x) is at least

C(β)
d(x)U3−β

n
,

where U = min{u,
√

n
d(x)
} and C(β) is some constant independent of n.

12



Proof. Note that since u is an integer number, we have u ≥ ⌈U⌉. Hence, by
Lemma 7 we have

pd(x) =

u
∑

λ=1

Cβ,uλ
−βpd(x)(λ) ≥ Cβ,uC

⌈U⌉
∑

λ=1

d(x)λ2−β

n
= Cβ,uC

d(x)

n

⌈U⌉
∑

λ=1

λ2−β

If U ≥ 2, then by Lemma 3 we have

⌈U⌉
∑

λ=1

λ2−β ≥ U3−β − 1

3− β
≥ 1− 2β−3

3− β
U3−β ≥ 3

8
U3−β .

Otherwise, when U < 2 we have

⌈U⌉
∑

λ=1

λ2−β ≥ 1 = Uβ−3U3−β ≥ 2β−3U3−β ≥ 1

4
U3−β .

Finally, we estimate

pd(x) ≥ Cβ,uC
d(x)

n

⌈U⌉
∑

λ=1

λ2−β ≥ Cβ,uC
1

4

d(x)

n
U3−β = C(β)

d(x)U3−β

n

with C(β) := 1
4
Cβ,uC. Since C is an absolute constant by Lemma 7 and

since, by Lemma 4, Cβ,u is at least β−1
β
, which is a constant independent of

u, C(β) is also a constant independent of u.

In order to show a full picture we also computed the values of pd(x) for a
wider range of parameters u and β. The results are shown in Table 1 and
their proofs are included in the appendix.

We are now ready to prove Theorem 5.

Proof of Theorem 5. We estimate the upper bound on the expectation of the
runtime TI (in terms of iterations) as the sum of expected times until the
algorithm leaves each fitness level. By Lemma 8 we have

E[TI ] ≤
n
∑

d=1

1

pd
≤ 1

C(β)





⌊n/u2⌋
∑

d=1

n

du3−β
+

n
∑

d=⌊n/u2⌋+1

√

n

d

β−1


 .

By Lemma 4 we estimate the first sum

⌊n/u2⌋
∑

d=1

n

du3−β
≤ n

(

ln
(

n
u2

)

+ 1
)

u3−β
≤ n(ln(n) + 1)

ln(n)
= n(1 + o(1)),
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Table 1: The probability pd(x) to increase fitness in one iteration for various
values of parameters β ∈ R and u ∈ N.

β u ≤
√

n
d(x)

u >
√

n
d(x)

< 1 Ω
(

d(x)u2

n

)

Ω(1)

= 1 Ω
(

d(x)u2

n log(u)

)

≥ 1+ln(u)−ln(
√

n
d(x)

)

36 ln(u)

(1, 3) Ω
(

d(x)u3−β

n

)

Ω

(

√

n
d(x)

1−β
)

= 3 Ω
(

d(x) log(u)
n

)

Ω
(

log(n/d(x))+1
n/d(x)

)

> 3 Ω
(

d(x)
n

)

where in the last inequality we used the assumption u ≥ ln
1

3−β (n). By
Lemma 4 we estimate the second sum as follows.

n
∑

d=⌊n/u2⌋+1

√

n

d

β−1

≤
n
∑

d=1

√

n

d

β−1

≤ n
β−1
2

n
∑

d=1

d−
β−1
2 ≤ n

β−1
2

n
3−β

2

(3− β)/2
= O(n).

Therefore, we have

E[TI ] ≤
1

C(β)
(O(n) +O(n)) = O(n).

Before we prove Theorem 6 we first estimate E[λ], which is half the
expected cost of one iteration.

Lemma 9. If λ is sampled from the heavy-tailed distribution with parameter

β and upper limit u, then its expected value is

• E[λ] = Θ(1), if β > 2,

• E[λ] = Θ(log(u)), if β = 2,

• E[λ] = Θ(u2−β), if β ∈ (1, 2),

• E[λ] = Θ( u
log(u)

), if β = 1, and

• E[λ] = Θ(u), if β < 1,

14



where the asymptotic notation is for u→ +∞.

Proof. First recall that Cβ,u = (
∑u

i=1 i
−β)−1. By Lemmas 3 and 4 we have

• if β < 1, then Cβ,u = Θ(uβ−1),

• if β = 1, then Cβ,u = Θ(1/ ln(u)), and

• if β > 1, then Cβ,u = Θ(1).

We compute

E[λ] =
u
∑

i=1

iPr[λ = i] = Cβ,u

u
∑

i=1

i1−β.

If β > 2, then by Lemma 4 we have

Cβ,u ≤ E[λ] ≤ Cβ,u
β − 1

β − 2
.

Hence, E[λ] = Θ(1).
If β = 2, then

∑u
i=1 i

1−β is a partial sum of the harmonic series, thus it
is Θ(log(u)). If β < 2, then by Lemmas 3 and 4 we have

Cβ,u
u2−β − 1

2− β
≤ E[λ] ≤ Cβ,u

u2−β

2− β
.

Therefore, E[λ] = Cβ,uΘ(u2−β). Together with the estimates of Cβ,u this
proves the lemma for β < 2.

We are now in the position to prove Theorem 6

Proof of Theorem 6. Let {λt}t∈N be a sequence of random variables, each fol-
lowing the power-law distribution with parameters β and u. We can assume
that for all t ∈ N the fast (1 + (λ, λ)) GA chooses λ := λt in iteration t.
Since the cost of one iteration is 2λ fitness evaluations (λ for the mutation
phase and λ for the crossover phase), the total number of fitness evaluations
TF has the same distribution as

∑TI

t=1 2λt. We aim at proving that the se-
quence (λt)t∈N and TI allow to use Wald’s equation (Lemma 1). We show
that conditions (1)–(4) of this lemma are satisfied.

1. All λt have the same expectation, which is finite by Lemma 9.
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2. The event TI ≥ t is independent of the outcome of λt, which implies
that for all i ∈ [1..u] we have Pr[TI ≥ t | λt = i] = Pr[TI ≥ t].
Therefore, we have

E[λt1{TI≥t}] =

u
∑

i=1

iPr[λt = i] Pr[TI ≥ t | λt = i]

= Pr[TI ≥ t]
u
∑

i=1

iPr[λt = i] = Pr[TI ≥ t]E[λt].

3. By the previous condition we have

+∞
∑

t=1

E[|λt| · 1{TI≥t}] =
+∞
∑

t=1

Pr[TI ≥ t]E[λt] = E[λ]E[TI ],

since for all t ∈ N we have E[λt] = E[λ]. By Theorem 5 and Lemma 9,
both E[λ] and E[TI ] are finite, hence their product is finite as well.

4. By Theorem 5 E[TI ] is finite.

Thus, by Wald’s inequality we have

E[TF ] = E[TI ]E[2λt].

By Theorem 5 and Lemma 9 we conclude

E[TF ] = O(n) ·Θ(1) = O(n).

Although we are mostly interested in β ∈ (2, 3) and reasonably high upper
limit u, a reader might find it interesting to see the upper bounds for the
runtimes yielded by different parameters values.

For this reason we show the estimates for E[TI ] and E[TF ] for a wider
range of parameters values in Table 2 and their proofs are included in the
appendix.

In the proofs of Theorems 5 and 6 we aimed at delivering only asymptotic
upper bounds disregarding the leading constant in order not to reduce the
readability of the paper. However, for the complete picture, without proof
we estimate the leading constant delivered by our arguments.

Recall that C(β) = 1
12
Cβ,uC

′. From the proof of Lemma 7 in [DDE15]
we can show that C ′ which is used in Lemma 7 is at least 1

e
(1 −

exp(− exp(−3
2
))) ≈ 0.0735. For any upper bound u = ω(1) we also have

Cβ,u ≥ β−1
β
. Hence, we estimate the upper bound on the leading constant.

1

C(β)

(

1 +
2

3− β

)

≤ 12β(5− β)

(3− β)(β − 1)C ′
≈ 164

β(5− β)

(3− β)(β − 1)
.
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Table 2: Upper bounds on the expected number of iterations and expected
number of fitness evaluations for different values of β and u. The last column
is calculated by Wald’s equation in the same manner as in Theorem 6.

β E[TI ] E[TF ] = 2E[TI ]E[λ]

< 1
O(n) if u ≥

√

ln(n)

O
(

n

u2 log n

u2

)

if u ≤
√

ln(n)

O(nu) if u ≥
√

ln(n)

O
(

n
u
log n

u2

)

if u ≤
√

ln(n)

= 1
O(n) if u ≥

√

ln(n) ln ln(n)

O
(

n

u2 log
(

n

u2

)

log(u)
)

if u ≤
√

ln(n) ln ln(n)

O( nu
log(u)

) if u ≥
√

ln(n) ln ln(n)

O
(

n
u
log

(

n

u2

))

if u ≤
√

ln(n) ln ln(n)

(1, 2) O(n) if u ≥ ln
1

3−β (n)

O
(

n

u3−β log
(

n

u2

))

if u < ln
1

3−β (n)

O(nu2−β) if u ≥ ln
1

3−β (n)

O
(

n
u
log

(

n

u2

))

if u < ln
1

3−β (n)

= 2
O(n log(u)) if u ≥ ln(n)

O
(

n log(u)
u

log
(

n

u2

))

if u < ln(n)

(2, 3)
O(n) if u ≥ ln

1
3−β (n)

O
(

n

u3−β log
(

n

u2

))

if u < ln
1

3−β (n)

= 3
O(n log log(u)) if u ≥ n

1
ln ln(n)

O
(

n
log(u)

log
(

n

u2

))

if u < n
1

ln ln(n)

O(n log log(u)) if u ≥ n
1

ln ln(n)

O
(

n
log(u)

log
(

n

u2

))

if u < n
1

ln ln(n)

> 3 O(n log(n)) O(n log(n))

Taking into account the leading constant hidden in Lemma 9, which is
β−1
β−2

if β > 2, we estimate the upper bound on the leading constant for E[TF ]
delivered by Theorem 6 as

328 · β(5− β)

(3− β)(β − 2)
. (1)

3.2 Lower Bound

In this section we prove the tightness of our upper bounds by showing a lower
bound of Ω(n) fitness evaluations for the runtime of the fast (1 + (λ, λ)) GA
on OneMax. This is a special case of a deeper result [TG06], which showed
the same lower bound for all comparison-based algorithms (which the (1 +
(λ, λ)) GA is). For the readers’ convenience, we give an elementary proof as
well.

Theorem 10. The expected runtime of the fast (1 + (λ, λ)) GA with param-

eter β ∈ R and any upper limit u ∈ N on the OneMax function is at least

Ω( n
E[λ]

) iterations, where E[λ] is estimated as in Lemma 9, and Ω(n) fitness
evaluations.

Proof. The progress in one iteration cannot be greater than the number ℓ of
bits which we flip in each mutant, since we cannot obtain more than ℓ new
one-bits in the winner x′ of the mutation phase. Therefore, after we have
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sampled λ, the expected progress is

E[f(y)− f(x) | λ] ≤ E[ℓ | λ] = λ.

The expected progress in one iteration thus is

E[f(y)− f(x)] =

u
∑

i=1

Pr[λ = i]E[f(y)− f(x) | λ = i] ≤ E[λ].

Let x0 be the initial individual. Since it is chosen uniformly at random, its
expected fitness is E[f(x0)] =

n
2
. Hence, by the additive drift theorem [HY01]

the expectation of the number of iterations TI before the algorithm finds the
optimum is at least

E[TI ] ≥
n−E[f(x0)]

E[λ]
=

n

2E[λ]
.

Now we can use Wald’s equation as we did in the proof of Theorem 6.
We obtain

E[TF ] = E[TI ]E[2λ] ≥ n

2E[λ]
· 2E[λ] = n.

4 Experiments

Our theoretical findings show that the fast (1 + (λ, λ)) GA with the natural
choice β ∈ (2, 3) has a linear runtime on OneMax, which matches the
performance of the self-adjusting (1 + (λ, λ)) GA. Due to their asymptotic
nature, our results cannot indicate which of the two linear-time algorithms
is faster, how the fast (1 + (λ, λ)) GA compares with other algorithms on
reasonable problem sizes, and how its performance depends on β ∈ (2, 3).
For the latter, the only estimate we have from theory, eq. (1), provides a
very large upper bound on the constant factor, which could suggest that
β = 2.5 + ε may be better than β = 2.5 − ε for 0 < ε < 0.5, but without
a matching lower bound this is speculative. To answer these questions, but
also to investigate the performance on a slightly less artificial problem, we
performed a series of experiments.

As algorithms, we regarded randomized local search (RLS) and the
(1 + 1) EA with a standard bit mutation as well as the self-adjusting
(1 + (λ, λ)) GA, which controls λ (and thus p = λ/n and c = 1/λ) via
the one-fifth success rule [DD18].

We have also considered the version of the (1 + (λ, λ)) GA with the one-
fifth rule with an upper limit of 2 ln(n + 1) on the value of λ, introduced
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in [BD17], since it showed a much better performance on the MAX-3SAT

problem than without this upper limit. For the same reason, we also consider
the fast (1 + (λ, λ)) GA with the same upper limit of 2 ln(n + 1) on the
value of λ, which is imposed by setting the distribution parameter u to u =
2 ln(n+1)). To investigate the effect of varying u further, we also conduct a
series of experiments with a fixed problem size n and different values of u.

For the fast (1 + (λ, λ)) GA, we used the values of β ∈
{2.1, 2.3, 2.5, 2.7, 2.9} unless noted otherwise. In all the adaptive versions
of the (1 + (λ, λ)) GA, the initial value of λ is set to 1.

The source code used to perform these experiments is a part of a larger
project dedicated to the (1 + (λ, λ)) GA available on GitHub4 and as the
supplementary material for this paper.

4.1 Implementation Details and Their Discussion

In all runs we used slightly modified versions of the algorithms to avoid
counting obviously unnecessary fitness evaluations. The particular changes
are as follows.

• In the (1+1) EA, if standard bit mutation flips zero bits, then we resam-
ple the offspring until it is different from the parent. This is equivalent
to not counting the fitness evaluation of the offspring identical to the
parent.

• In all versions of the (1 + (λ, λ)) GA, we resample ℓ until ℓ 6= 0. This
is equivalent to not counting the fitness evaluations in iterations with
ℓ = 0 because here all offspring are identical to the parent. In the
crossover phase, samples taking all bits from the parent x are repeated
(without evaluating the fitness of the copy of the parent) and samples
taking all bits from the mutation winner x′ are not evaluated (that is, do
not count towards the number of fitness evaluations). Additionally, x′

also participates in the selection of the best among x and the crossover
results y(i). When there is a tie, then the crossover winner has a higher
priority than x′.

We consider these natural modifications instead of the original algorithms
in this section, since we are sure that anyone implementing these algorithms
for solving practical problems would do the same. For a practitioner it does
not make sense to waste fitness evaluations on individuals which are identical
to their parents, while in theoretical works these are often counted since

4https://github.com/mbuzdalov/generic-onell
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constant factors are often ignored. We note that similar modifications of
algorithms were called practice-aware in [PD18]. We note that there are
much more ways to tune the runtime of the (1 + (λ, λ)) GA in a practical
application, see, e.g., [GP14]. In contrast to the modifications described
above, for these it is not clear to what extent they are useful in general or
only for particular problems. For this reason, we did not consider them in
this work.

Clearly our theoretical results from Section 3 apply to these mildly modi-
fied algorithms. For the upper bounds it is enough to note that by resampling
identical individuals and by having x′ participate in the selection, the proba-
bility to have a progress in one iteration only increases. Thus, repeating the
arguments from Theorem 5 we obtain the same upper bound on the expected
number of iterations. Since our implementation does not affect the choice
of λ, its expected value E[λ] stays the same. The cost of one iteration is at
most 2λ (but can be smaller). Thus, by Wald’s equation we obtain the same
upper bound on the expected number of fitness evaluations as in Theorem 6.
For the lower bound we use the same arguments as in Theorem 10, with the
only change that since we cannot choose ℓ = 0, we have

E[ℓ | λ] = λ

1−
(

1− 1
λ

)λ
≤ λ

1− 1
e

,

which still gives us a lower bound of Ω(n) fitness evaluations.

4.2 Experimental Setup

The experiments were performed on the OneMax function and on random
satisfiable instances of the MAX-3SAT problem, that is, the problem of
maximizing the number of satisfied clauses in a Boolean formula represented
in conjunctive normal form. The second problem was chosen for two rea-
sons. First, it is a more practical problem than OneMax, second, there
are already theoretical and empirical results for the (1 + (λ, λ)) GA on this
function (see [BD17]). For this problem on n variables, the number of clauses
was chosen to be 4n lnn. An all-ones bit string is assumed to be a planted
optimal solution; this is without loss of generality, as all considered algo-
rithms are unbiased. For each clause, three participating variables and their
signs (i.e., whether it is negated or not) are sampled uniformly and inde-
pendently until this clause is satisfied by the planted solution (that is, not
all three variables are negated). Note that these are easy instances of the
MAX-3SAT problem, so the presented results on this problem should not
be considered as if the proposed algorithms are competitive in solving this
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problem in general. However, these instances have a lower fitness-distance
correlation, which makes them harder in particular for the (1 + (λ, λ)) GA.

To speed-up the experiments, we used the incremental fitness evaluation
technique, which is more commonly seen in gray-box optimization and in
problem-aware solvers. We note that this led only to a faster implementation
of the algorithm, not to a different algorithm behavior. In particular, the
number of iterations or fitness evaluations performed are not affected. We
modified the implementation as follows.

During mutation we do not copy the parent individual, but instead di-
rectly generate the bit indices which are different in the parent and the off-
spring (the “patch”). Following that, we evaluate the fitness of the offspring
based on the fitness of the parent and the patch. For RLS and the (1+1) EA,
if the new fitness is at least as good as the one of the parent, we apply the
patch to the parent, turning it into the offspring. For the (1+(λ, λ)) GA, we
select the best patch out of all the mutants’ patches (based on their fitness
values). The subsequent applications of crossover translate to subsamplings
of that patch, so that fitness evaluation is again based on the parent’s fitness.

For OneMax, evaluation of the offspring’s fitness based on the parent’s
fitness and the patch is rather straightforward: only the bits at the affected
indices are checked. This results in an expected O(1) amount of work per
each iteration of both RLS and the (1 + 1) EA, and in the Θ(λ2) amount of
work for the (1 + (λ, λ)) GA, which still helps much because λ is typically
much smaller than n.

For MAX-3SAT, the incremental evaluation is more difficult as it in-
volves some preprocessing on the side of the fitness function. It amounts to
constructing lists of clauses affected by the changed bits and to evaluating
the satisfaction status of these clauses before and after the change. For the
logarithmic density of clauses (that is, the ratio of the number of clauses to
the number of variables) employed in this paper, this amounts to Θ(logn)
expected work per iteration of RLS and the (1 + 1) EA, and to Θ(λ2 log n)
expected work for the (1 + (λ, λ)) GA, which is still faster than direct eval-
uation, but less efficient than what is possible for OneMax.

We also note that the particular structure of all the considered algorithms
also allows to optimize the memory requirements: the memory used by RLS
and the (1 + 1) EA is Θ(n) words resulting from storing a single bit vector,
whereas the (1 + (λ, λ)) GA uses Θ(n+ λ) words in expectation, as only the
best patches for each of the phases need to be stored.

In our experiments we chose the problem sizes n to be powers of two, so
that the asymptotic behavior of the algorithms is easier to investigate visu-
ally. For OneMax, we limit the problem size to 222, and for MAX-3SAT,
the upper limit is 216. These sizes were derived from the affordable computa-
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tional times. We did not reach the size of 220 on MAX-3SAT as in [BD17],
because the incremental fitness evaluations have a weaker impact with fast
mutation. Indeed, whenever λ is sampled from a heavy-tailed distribution,
the distribution of λ2, and hence of the wall-clock running time, has an even
heavier tail, so occasional high values of λ result in very expensive iterations.
For each algorithm, each problem setting, and each problem size, 100 inde-
pendent runs were performed. For the MAX-3SAT problem, a new random
instance was created for each run.

Our runtime results are shown in Figures 3-6. In Figures 3-5 the x-axis
indicates the problem size in a logarithmic scale, and the y-axis indicates
the ratio of the runtime to the problem size. In this visualization a linear
runtime results in a horizontal plot and any runtime in Θ(n logn) gives a
linearly increasing plot.

4.3 Runtimes on OneMax

In Figure 3 we show the results of the runs on the OneMax function. If we
do not consider β = 2.1, which turns out to be too small (and therefore gives
a too large expected value of λ), then all versions of the fast (1 + (λ, λ)) GA
start outperforming the (1 + 1) EA already at population size n = 210 and
then outperform RLS at n = 220 or earlier. Recalling the discussion after
the proof of Theorem 6 we note that our estimate of the leading constant in
the runtime was overly pessimistic, otherwise we would have no chance to
outperform RLS on these problem sizes.

The one-fifth rule shows a much better performance and yields a runtime
of the (1 + (λ, λ)) GA which is very close to linear already from n = 210 on
for both linear and logarithmic upper bounds on λ. The plots for the heavy-
tailed choice of λ do not look horizontal, but they show a strongly marked
tendency that they will do so at larger population sizes. The runtimes for
all β except β = 2.1 are quite well concentrated, as well as the runtimes of
the (1+ (λ, λ)) GA with the one-fifth rule, in contrast to the runtimes of the
(1 + 1) EA and RLS. We have no results for β = 2.1 for population sizes
n ≥ 221 and for β = 2.3 for n ≥ 222, since they were too expensive (in terms
of computational resources) and most likely not too insightful.

Figure 3 also features the runtime plot of an asymptotically optimal
static choice for λ. It has been proven in [DD18] that the theoretically

asymptotically optimal static choice is λ = Θ(
√

ln(n) ln ln(n)
ln ln ln(n)

). By using

lnp(n) := ln(n + 1) instead to avoid issues with logarithms of too small val-
ues, and by fitting the outer constant factor using auxiliary experiments with

fixed λ ∈ [2..12], we have found that λ = 2
√

lnp(n) lnp lnp(n)
lnp lnp lnp(n)

approximates the
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Figure 3: Mean runtimes and their standard deviation of different algorithms
on OneMax benchmark problem. By λ ∈ [1..u] we denote the self-adjusting
parameter choice via the one-fifth rule in the interval [1..u]. The indicated
interval for each value X is [E[X ]− σ(X), E[X ] + σ(X)], where σ(X) is the
standard deviation of X . We write lnp x := ln(x+ 1). By pow(x) we denote
the power-law distribution with parameters u = n and β = x.

optimal choices quite well, so we have used the version of the (1+(λ, λ)) GA
with this choice in our plots. We also see that with the choice of β = 2.5 the
fast (1 + (λ, λ)) GA outperforms the statically optimal parameter choice at
problem sizes n ≥ 220.

4.4 Runtimes on MAX-3SAT

Figure 4 shows the results of the experiments on the MAX-3SAT problem.
As previously shown in [BD17], large values of λ can be harmful. For this
reason, the (1+(λ, λ)) GA with the unbounded one-fifth rule is outperformed
already by the simple (1+1) EA. The authors of [BD17] proposed to limit the

23



27 28 29 210 211 212 213 214 215 216

5

10

15

20

25

Problem size n

E
va
lu
at
io
n
s
/
n

λ ∈ [1..2 ln(n + 1)]

λ ∈ [1..n]

λ ∼ pow(2.1)

λ ∼ pow(2.3)

λ ∼ pow(2.5)

λ ∼ pow(2.7)

λ ∼ pow(2.9)

(1+1) EA

RLS

Figure 4: Mean runtimes and their standard deviation of different algorithms
on MAX-3SAT instances with 4n ln(n) clauses. By λ ∈ [1..u] we denote the
self-adjusting parameter choice via the one-fifth rule in the interval [1..u]. The
indicated interval for each value X is [E[X ] − σ(X), E[X ] + σ(X)], where
σ(X) is the standard deviation of X . By pow(x) we denote the power-law
distribution with parameters u = n and β = x.

value which λ can take by 2 ln(n+1), which greatly improved the performance
up to the point that RLS was outperformed on this problem.

As we see in Figure 4, the fast (1 + (λ, λ)) GA is quite efficient even
without an upper limit on λ. Except for the case β = 2.1, we managed to
outperform the (1+1) EA and the self-adjusting (1+ (λ, λ)) GA without an
upper limit on λ. Nevertheless, RLS and the self-adjusting (1 + (λ, λ)) GA
with a logarithmic cap on λ remained faster.

The runtimes of all algorithms appear super-linear in the plots.

4.5 Effects of Capping for MAX-3SAT

Since apparently large values of λ are not helpful when optimizing MAX-

3SAT instances (due to the weaker fitness-distance correlation), we con-
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Figure 5: Mean runtimes and their standard deviation of different algorithms
on MAX-3SAT instances with 4n ln(n) clauses with logarithmically capped
population sizes. By λ ∈ [1..u] we denote the self-adjusting parameter choice
via the one-fifth rule in the interval [1..u]. The indicated interval for each
value X is [E[X ]−σ(X), E[X ]+σ(X)], where σ(X) is the standard deviation
of X .

ducted some experiments with the fast (1 + (λ, λ)) GA choosing λ from a
power-law distribution on a smaller range [1..u] of values. Based on the pre-
vious experience, we started with an upper limit of u = 2 ln(n + 1). These
results are presented in Figure 5.

Using this upper limit reduced the computational burden associated with
heavy-tailed distributions and allowed us to regard problem sizes up to 219.
The upper limit also led a better performance in terms of fitness evaluations.
When comparing Figure 4 and Figure 5 around the problem size n = 216,
we see that for β ∈ {2.1, 2.3} a significant speed-up was obtained, whereas
for 2.5 ≤ β ≤ 2.9 the differences of the corresponding mean running times
are negligible. This is not surprising given that for smaller values of β,
the inefficient high values of λ are sampled more often. Interestingly, in
combination with the upper limit small values of β gave the best performance.
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Figure 6: Mean runtimes and their standard deviation of different algorithms
on MAX-3SAT instances with 4n ln(n) clauses for different capping values.
Problem size is n = 216. The indicated interval for each value X is [E[X ]−
σ(X), E[X ] + σ(X)], where σ(X) is the standard deviation of X .

This suggests that it is important to use moderately large values of λ often
and that only too large values lead to efficiency losses.

To investigate the effect of the particular choice of the upper limit u on the
running time for various values of β, we performed additional experiments
where the problem size was fixed to n = 216, but the upper limits were
varying. Figure 6 presents these results, where u was taken from the set
u ∈ {22, 23, . . . , 213}. Note that high values of u again prevented us from
choosing a higher problem size. We also plot for reference the performance
of the (1 + 1) EA on the same problem size.

The plots in Figure 6 indicate that for 2.1 ≤ β ≤ 2.5 the dependency
on the upper limit has a clear optimal value: Too small values of u prevent
the (1 + (λ, λ)) GA from choosing the more efficient mid-size values of λ,
too high values of u lead to sampling too large values of λ too often, which
have little chance of making progress and at the same time are very costly.
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It can be seen, however, that already for β = 2.5 the subsequent increase
of the running time is not too pronounced. Higher values of β tend to a
monotonic behavior, up to the deviations from the mean running time. This
basically indicates that the sensitivity to the upper limit of the distribution
is not large even in practice.

4.6 Summary of Experimental Results

Summing up, from the results of the experiments we conclude the following
three points.

• The fast (1 + (λ, λ)) GA performs generally well, often beating the
classic mutation based algorithms. On OneMax, the self-adjusting
(1+(λ, λ)) GA both without and with an upper limit of u = 2 ln(n+1)
are superior, on MAX-3SAT only the version with upper limit and
RLS are superior.

• The fast (1+(λ, λ)) GA can easily be used as a parameterless algorithm
and this is what we suggest. We note that the (1+(λ, λ)) GA with the
asymptotically optimal static parameter setting could not beat the fast
(1+(λ, λ)) GA onOneMax. The self-adjusting (1+(λ, λ)) GA without
an upper limit was superior on OneMax, but significantly inferior
on MAX-3SAT. The version with upper limit u = 2 ln(n + 1) was
superior on both OneMax and MAX-3SAT. We still do not want to
advertise this approach as clearly such limits are problem-specific and
non-trivial to find. The logarithmic limit for MAX-3SAT is based on
a substantial mathematical analysis [BD17] of these particular MAX-

3SAT instances. For other problems, such a limit may be detrimental,
e.g., it may be hard to leave a local optimum with a large basin of
attraction.

• The choice of β does not play a big role as long as it is not too close to
the borders of the interval (2, 3). Taking β between 2.5 and 2.7 might
be a good general recommendation.

5 Conclusion

In this first runtime analysis of a crossover-based algorithm using the fast
mutation operator, we observed that the fast mutation operator not only can
relieve the algorithm designer from the task of choosing a suitable mutation
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rate, but it can also lead to runtimes asymptotically better than any static
choice of the mutation rate.

Different from previous works, where any power-law exponent greater
than one could be used, our work requires that β is between 2 and 3. We
note, however, that the power-law distributions are often used with exponents
in the open interval (2, 3) and this for good reason. In this regime, we have
a heavy tail (as opposed for β > 3), but we still have a constant expectation
(as opposed to β < 2). Since the complexity of a single iteration is Θ(λ),
having a constant expectation E[λ] is very natural.

On the technical side, our work shows that algorithms with a heavy-
tailed number of offspring can be much easier to analyze than those
with a self-adjusting number of offspring (such as the self-adjusting (1 +
(λ, λ)) GA [DD18]), since Wald’s equation allows to estimate the expected
runtime as the product of the expected number of iterations and the expected
number of offspring generated in one iteration.

The natural question arising from this work is for which other algorithms
and problems such a speed-up can be obtained. Natural candidates are other
crossover-based algorithms or algorithms in which dynamic parameter choices
could obtain a speed-up over static choices. We note that after this research
was conducted, it was found that the (1+(λ, λ)) GA with two of its parame-
ters chosen independently from heavy-tailed distributions has a good perfor-
mance on jump functions [AD20]. The performance is slightly inferior to the
one with optimal static parameters [ADK20], however these were non-trivial
to find as they deviated significantly from the previous recommendations.
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Appendix: Computation of Table 1

In this appendix we compute all estimates of the true progress probability
pd(x) shown in Table 1. We use the same expression for estimating pd(x) as in
Lemma 8, that by Lemma 7 is,

pd(x) =
u
∑

λ=1

Cβ,uλ
−βpd(x)(λ)

≥







Cβ,uC
d(x)
n

∑u
λ=1 λ

2−β, if u ≤
√

n
d(x)

,

Cβ,uC
d(x)
n

∑⌊
√

n
d(x)

⌋

λ=1 λ2−β + Cβ,uC
∑u

λ=⌊
√

n
d(x)

⌋+1 λ
−β, else,

where C is some constant. Recall that by Lemma 4 we have

• if β < 0, then Cβ,u ≥ uβ−1 1−β
2−β

,

• if β ∈ [0, 1), then Cβ,u ≥ uβ−1(1− β),

• if β = 1, then Cβ,u ≥ 1
ln(u)+1

, and

• if β > 1, then Cβ,u ≥ β−1
β
.

Now we consider 11 cases depending on β and u. We start with the cases

when u ≤
√

n
d(x)

and therefore estimate pd(x) as

pd(x) ≥ Cβ,uC
d(x)

n

u
∑

λ=1

λ2−β.

Case 1: β < 0, u ≤
√

n
d(x)

.

By Lemma 3 we have

pd(x) ≥ CCβ,u
d(x)

n

u
∑

i=1

λ2−β

≥ C · uβ−11− β

2− β
· d(x)

n
· u

3−β − 1

3− β
= Ω

(

d(x)u2

n

)

.

Case 2: β ∈ [0, 1), u ≤
√

n
d(x)

.
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By Lemma 3 we have

pd(x) ≥ CCβ,u
d(x)

n

u
∑

i=1

λ2−β

≥ C · uβ−1(1− β) · d(x)
n
· u

3−β − 1

3− β
= Ω

(

d(x)u2

n

)

,

which is the same as in Case 1.
Case 3: β = 1, u ≤

√

n
d(x)

.

In this case we have

pd(x) ≥ CCβ,u
d(x)

n

u
∑

i=1

λ

≥ C · 1

ln(u) + 1
· d(x)

n
· u(u+ 1)

2
= Ω

(

d(x)u2

n log(u)

)

.

Case 4: β ∈ (1, 3), u ≤
√

n
d(x)

.

By Lemma 3 we have

pd(x) ≥ CCβ,u
d(x)

n

u
∑

i=1

λ2−β

≥ C · β − 1

β
· d(x)

n
· u

3−β − 1

3− β
= Ω

(

d(x)u3−β

n

)

.

Case 5: β = 3, u ≤
√

n
d(x)

.

By Lemma 3 we have

pd(x) ≥ CCβ,u
d(x)

n

u
∑

i=1

λ−1

≥ C · 2
3
· d(x)

n
· ln(u) = Ω

(

d(x) log(u)

n

)

.

Case 6: β > 3, u ≤
√

n
d(x)

.

We have

pd(x) ≥ CCβ,u
d(x)

n

u
∑

i=1

λ2−β

≥ C · β − 1

β
· d(x)

n
· 1 = Ω

(

d(x)

n

)

.
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In the following cases we consider u >
√

n
d(x)

, hence we estimate pd(x) as

pd(x) ≥ Cβ,uC
d(x)

n

⌊
√

n
d(x)

⌋
∑

λ=1

λ2−β + Cβ,uC

u
∑

λ=⌊
√

n
d(x)

⌋+1

λ−β

= CCβ,u







d(x)

n

⌊
√

n
d(x)

⌋
∑

λ=1

λ2−β +
u
∑

λ=⌊
√

n
d(x)

⌋+1

λ−β






.

In all cases we first estimate the sums in the brackets and then put it into
the inequality.

Case 7: β < 1, u >
√

n
d(x)

.

We consider three sub-cases.

1. When u ≤ 2
√

n
d(x)

+ 2 and
√

n
d(x)
≤ 4.

In this case we also have u ≤ 2 · 4 + 2 = 10. Hence,

d(x)

n

⌊
√

n
d(x)

⌋
∑

λ=1

λ2−β ≥ d(x)

n
≥ 1

16
≥ u1−β

16 · 101−β
.

2. When u ≤ 2
√

n
d(x)

+ 2 and
√

n
d(x)

> 4.

In this case we have
√

n
d(x)
≥ u

2
− 1. We also have that

√

n
d(x)

3−β
≥

43−β > 24−β (therefore, (
√

n
d(x)

/2)3−β > 2). Hence, by Lemma 3 we

have

d(x)

n

⌊
√

n
d(x)

⌋
∑

λ=1

λ2−β ≥ d(x)

n

⌈
√

n
d(x)

−1⌉
∑

λ=1

λ2−β ≥ d(x)

n
·

(

√

n
d(x)
− 1

)3−β

− 1

3− β

≥ d(x)

n
·

(

√

n
d(x)

/2

)3−β

− 1

3− β
≥ d(x)

n
·

(

√

n
d(x)

/2

)3−β

2(3− β)

≥
√

n

d(x)

1−β 1

24−β(3− β)
≥
(u

2
− 1
)1−β 1

24−β(3− β)

≥ u1−β

2(6−3β)(3− β)
.
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3. When u > 2
√

n
d(x)

+ 2.

In the same way as in Lemma 3 we estimate a sum via a corresponding
integral.

u
∑

λ=⌊
√

n
d(x)

⌋+1

λ−β ≥
∫ u

⌊
√

n
d(x)

⌋+1

x−βdx ≥
∫ u

u/2

x−βdx = u1−β · 1− 2β−1

1− β
.

Summing up all three cases we have that for each β < 1 there exists a
constant γ1(β) = min{ 1

16·101−β ,
1

2(6−3β)(3−β)
, 1−2β−1

1−β
} such that

d(x)

n

⌊
√

n
d(x)

⌋
∑

λ=1

λ2−β +
u
∑

λ=⌊
√

n
d(x)

⌋+1

λ−β ≥ γ1(β) · u1−β.

If β < 0, we have

pd(x) ≥ CCβ,uγ1(β)u
1−β ≥ Cuβ−11− β

2− β
γ1(β)u

1−β = Ω(1).

If β ∈ [0, 1), we have

pd(x) ≥ CCβ,uγ1(β)u
1−β ≥ Cuβ−1(1− β)γ1(β)u

1−β = Ω(1).

Case 8: β = 1, u >
√

n
d(x)

. We aim at showing that

pd(x) ≥ C ·









1

36 ln(u)
+

ln(u)− ln

(

√

n
d(x)

)

36 ln(u)









.

Note that in this case we do not use asymptotic notation for estimating
pd(x) due to having terms of different signs in the bound above (and thus,
the leading constants of these terms are important). However note that as

long as u is by a constant times greater than
√

n
d(x)

, then the first term is

dominant, therefore, this bound is Ω( 1
log(u)

). If u is at least φ ·
√

n
d(x)

for some

super-constant φ, then this bound is Ω( log(φ)
log(u)

).

In this case we have u >
√

n
d(x)
≥ 1, hence u ≥ 2. Therefore, by Lemma 4

we have

C1,u ≥
1

1 + ln(u)
=

1

ln(u)
· ln(u)

1 + ln(u)
≥ 1

ln(u)
· ln(2)

ln(2) + 1
>

1

3 ln(u)
.
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By the formula for a sum of arithmetic progression and estimating the
second sum via a corresponding integral in the same way as in Lemma 3, we
have

d(x)

n

⌊
√

n
d(x)

⌋
∑

λ=1

λ+

u
∑

λ=⌊
√

n
d(x)

⌋+1

λ−1

≥ d(x)

n
·
⌊
√

n
d(x)
⌋
(

⌊
√

n
d(x)
⌋+ 1

)

2
+

∫ u

⌊
√

n
d(x)

⌋+1

dx

x

Since for all x ≥ 1 we have ⌊x⌋
x
≥ 1

2
and ⌊x⌋+1

x
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⌊
√

n
d(x)
⌋
(

⌊
√

n
d(x)
⌋+ 1

)

2n/d(x)
≥ 1

4
.

Now we consider two sub-cases. First, let u ≤ e2
√

n
d(x)

. Then we have

pd(x) ≥ CC1,u ·
1

4
≥ C

12 ln(u)
.

Otherwise, if u > e2
√

n
d(x)

, then we estimate the integral by

∫ u

⌊
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n
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dx

x
≥
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√
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dx

x
= ln(u)− ln
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≥
ln(u)− ln
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2
+

ln(u)− ln
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u
e2

)

2
− 1
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ln(u)− ln
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+ 1− 1.
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Hence, we conclude

pd(x) ≥ CC1,u









1

4
+

ln(u)− ln

(

√

n
d(x)

)

2









≥ C ·
1 + 2

(

ln(u)− ln

(

√

n
d(x)

))

12 ln(u)
.

We unite the two sub-cases with the following lower bound, which holds

both for u ≤ e2
√

n
d(x)

and for u > e2
√

n
d(x)

.

pd(x) ≥ C ·
1 + 2

(

ln(u)− ln

(

√

n
d(x)

))

36 ln(u)

≥ C ·
1 + ln(u)− ln

(

√

n
d(x)

)

36 ln(u)
.

Case 9: β ∈ (1, 3), u >
√

n
d(x)

.

We consider three sub-cases

1. When β ≤ 2 and
√

n
d(x)
≤ 2.

d(x)

n

⌊
√

n
d(x)

⌋
∑

λ=1

λ2−β ≥ d(x)

n
=

√

n

d(x)

1−β

·
√

n

d(x)
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√

n
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·
(

1

2

)β−3

≥
√

n

d(x)

1−β

·
(

1

2

)2

=
1

4

√

n

d(x)

1−β

.

2. When β > 2 and ⌊
√

n
d(x)
⌋ ≤ 2

1
3−β . In this case we also have

√

n
d(x)
≤

2
1

3−β + 1. Hence, we have
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d(x)

n

⌊
√

n
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⌋
∑

λ=1

λ2−β ≥ d(x)

n
=

√

n

d(x)

1−β

·
√
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≥
√
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·
(

2
1
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(

2(
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4

√

n
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1−β

.

3. When β > 2 and ⌊
√

n
d(x)
⌋ ≥ 2

1
3−β or when β ≤ 2 and

√

n
d(x)

> 2.

In this case we have both ⌊
√

n
d(x)
⌋3−β ≥ 2 and

√

n
d(x)
≥ 2. Hence, by

Lemma 3 we have
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.

Summing up all three cases we have that for each β ∈ (1, 3) there exists
a constant γ2(β) = min{1

4
, 1
24−β(3−β)

} such that

d(x)

n

⌊
√

n
d(x)

⌋
∑

λ=1

λ2−β ≥ γ2(β) ·
√

n

d(x)

1−β

.

Taking into account that Cβ,u ≥ β−1
β
, we obtain

pd(x) ≥ CCβ,uγ(β)

√

n

d(x)

1−β

= Ω

(

√

n

d(x)

1−β
)

.

Case 10: β = 3, u >
√

n
d(x)

.
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If
√

n
d(x)
≥ 2, we compute

pd(x) ≥ CC3,u
d(x)

n

⌊
√

n
d(x)

⌋
∑

λ=1

λ−1 ≥ C · 2
3
· d(x)

n
ln

(

⌊
√

n

d(x)
⌋
)

= Ω









ln

(

√

n
d(x)

)

n/d(x)









.

Otherwise,

pd(x) ≥ CC3,u
d(x)

n
= Ω

(

1

n/d(x)

)

.

Therefore,

pd(x) = Ω









ln

(

√

n
d(x)

)

+ 1

n/d(x)









.

Case 11: β > 3, u >
√

n
d(x)

.

In this case we have

pd(x) ≥ CCβ,u
d(x)

n

⌊
√

n
d(x)

⌋
∑

λ=1

λ2−β

≥ C · d(x)
n
· β − 1

β
· 1 = Ω

(

d(x)

n

)

.

Appendix: Computation of Table 2

In this appendix we compute the values of the expected runtime shown in
Table 2. We start with computing the expected runtimes in terms of itera-
tions for each value of the algorithm’s meta-parameter β. Recall that pd is
the probability to create a better offspring in one iteration, which is shown
in Table 1. Hence, using the fitness levels argument we can estimate the
expected number of iterations before we find the optimum as follows.
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E[TI ] ≤
n
∑

d=1

1

pd
=

⌊ n

u2
⌋

∑

d=1

1

pd
+

n
∑

d=⌊ n

u2
⌋+1

1

pd
.

Note that in the first sum we have u ≤
√

n
d
(thus, we should use values

for pd from the left column of Table 1) and in the second sum we have
u >

√

n
d
(thus, we should use the estimates from the right column). Note

that pd = Ω(f(n, d, u)) in Table 1 means that for each β there exists a
constant γ(β) (independent of n, d and u) such that pd ≥ γ(β) · f(n, d, u).
We will use this constant in our further computations.

To estimate the expected runtime we consider five cases.
Case 1: β < 1.
In this case we have

E[TI ] ≤
⌊ n

u2
⌋

∑

d=1

1

pd
+

n
∑

d=⌊ n

u2
⌋+1

1

pd

≤ 1

γ(β)





⌊ n

u2
⌋

∑

d=1

n

du2
+

n
∑

d=⌊ n

u2
⌋+1

1





≤ 1

γ(β)

( n

u2

(

ln⌊ n
u2
⌋ + 1

)

+ n− ⌊ n
u2
⌋
)

= O
( n

u2
ln
( n

u2

)

+ n
)

,

where we used the estimates for the sums from Lemma 4. Note that when
u ≥

√

ln(n), we have

n

u2
ln
( n

u2

)

≤ n

ln(n)
ln(n) = O(n).

Otherwise, we have

n

u2
ln
( n

u2

)

≥ n

ln(n)
(ln(n)− ln ln(n)) = Ω(n).

Therefore, we conclude

E[TI ] =

{

O
(

n
u2 ln

(

n
u2

))

, if u <
√

ln(n),

O(n), if u ≥
√

ln(n).
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Case 2: β = 1. In this case we have

E[TI ] ≤
⌊ n

u2
⌋

∑

d=1

1

pd
+

n
∑

d=⌊ n

u2
⌋+1

1

pd

≤ 1

γ(β)





⌊ n

u2
⌋

∑

d=1

n ln(u)

du2
+

n
∑

d=⌊ n

u2
⌋+1

ln(u)

1 + ln(u)− ln(
√

n
d
)





≤ 1

γ(β)





n ln(u)

u2

(

ln⌊ n
u2
⌋+ 1

)

+

⌊n
u
⌋

∑

d=⌊ n

u2
⌋+1

ln(u) +
n
∑

d=⌊n
u
⌋+1

ln(u)

1 + 1
2
ln(u)





≤ 1

γ(β)

(

n ln(u)

u2

(

ln⌊ n
u2
⌋+ 1

)

+
n ln(u)

u
+ n · ln(u)

1 + 1
2
ln(u)

)

= O

(

n log(u) log( n
u2 )

u2
+

n log(u)

u
+ n

)

Note that
n ln(u) ln( n

u2
)

u2 is a decreasing function of u for all u ≥ 1, which can
be shown by considering its derivative (we omit this tedious computation).
Hence, if u <

√

ln(n) ln ln(n), then we have

n ln(u) ln( n
u2 )

u2
≥ n(ln ln(n) + ln ln ln(n))(ln(n)− ln ln(n)− ln ln ln(n))

2 ln(n) ln ln(n)

= Ω(n).

For such u we also have

n ln(u) ln( n
u2 )

u2
≥ n ln(u)

u
· ln(

n
u2 )

u

≥ n ln(u)

u
· (ln(n)− ln ln(n)− ln ln ln(n))

√

ln(n) ln ln(n)

= Ω

(

n log(u)

u

√

log(n)

log log(n)

)

= Ω

(

n log(u)

u

)

.

If u ≥
√

ln(n) ln ln(n), we have

n ln(u) ln( n
u2 )

u2
≤ n ln ln(n)(ln(n)− ln ln(n)− ln ln ln(n))

2 ln(n) ln ln(n)
= O(n),

and we have

n ln(u)

u
≤ n = O(n).
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Hence, we conclude

E[TI ] =

{

O
(

n log(u)
u2 log

(

n
u2

)

)

, if u <
√

ln(n) ln ln(n),

O(n), if u ≥
√

ln(n) ln ln(n).

Case 3: β ∈ (1, 3).
In this case we have

E[TI ] ≤
⌊ n

u2
⌋

∑

d=1

1

pd
+

n
∑

d=⌊ n

u2
⌋+1

1

pd

≤ 1

γ(β)





⌊ n

u2
⌋

∑

d=1

n

du3−β
+

n
∑

d=⌊ n

u2
⌋+1

√

n

d

β−1




≤ 1

γ(β)

(

n

u3−β

(

ln
( n

u2

)

+ 1
)

+ n(β−1)/2

n−1
∑

d=1

d(1−β)/2

)

≤ 1

γ(β)

(

n

u3−β

(

ln
( n

u2

)

+ 1
)

+ n(β−1)/2 · n
(3−β)/2 − 1

(3− β)/2

)

= O
( n

u3−β
log
( n

u2

)

+ n
)

,

where we used Lemma 4 to estimate the sums. When u < (ln(n))1/(3−β), we
have

n

u3−β
ln
( n

u2

)

≥
n(ln(n)− 2

3−β
ln ln(n))

ln(n)
= Ω(n).

Otherwise, we have

n

u3−β
ln
( n

u2

)

≤ n ln(n)

ln(n)
= n.

Therefore, we have

E[TI ] =

{

O
(

n
u3−β log

(

n
u2

))

, if u < (ln(n))1/(3−β),

O(n), if u ≥ (ln(n))1/(3−β).
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Case 4: β = 3. We compute

E[TI ] ≤
⌊ n

u2
⌋

∑

d=1

1

pd
+

n
∑

d=⌊ n

u2
⌋+1

1

pd

≤ 1

γ(β)





⌊ n

u2
⌋

∑

d=1

n

d ln(u)
+

n
∑

d=⌊ n

u2
⌋+1

n

d
(

ln
(

n
d

)

+ 1
)





≤ 1

γ(β)





n

ln(u)

(

ln
( n

u2

)

+ 1
)

+ n+ n

n
∑

d=⌊ n

u2
⌋+2

1

d
(

ln
(

n
d

)

+ 1
)





≤ 1

γ(β)

(

n

ln(u)

(

ln
( n

u2

)

+ 1
)

+ n + n

∫ n

n/u2

dx

x(ln(n)− ln(x) + 1)

)

,

where we used the fact that f(x) = 1
x(ln(n)−ln(x)+1)

is a decreasing function in

interval [1, n] to estimate the sum via a corresponding integral. We estimate
the integral as follows.

∫ n

n/u2

dx

x(ln(n)− ln(x) + 1)
= −

∫ n

n/u2

d(ln(n)− ln(x) + 1)

(ln(n)− ln(x) + 1)

= ln((ln(n)− ln(x) + 1))

∣

∣

∣

∣

n/u2

n

= ln(2 ln(u) + 1)

Therefore,

E[TI ] ≤
1

γ(β)

(

n

ln(u)

(

ln
( n

u2

)

+ 1
)

+ n(ln(2 ln(u) + 1) + 1)

)

= O

(

n

log(u)
log
( n

u2

)

+ n log log(u)

)

Note that the first term is decreasing in u, while the second one is increasing.
We show that they are asymptotically the same when u = n1/ ln ln(n).

n

ln(n1/ ln ln(n))
ln
( n

n2/ ln ln(n)

)

=
n ln ln(n)

ln(n)
·
(

ln(n)− 2 ln(n)

ln ln(n)

)

= Θ(n ln ln(n)),

n ln ln(n1/ ln ln(n)) = n ln
ln(n)

ln ln(n)
= n ln ln(n)− n ln ln ln(n)

= Θ(n ln ln(n)).
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Therefore, when u ≤ n1/ ln ln(n), the first term is dominant, otherwise the
second term is dominant. Hence, we conclude

E[TI ] =

{

O
(

n
log(u)

log
(

n
u2

)

)

, if u < n1/ ln ln(n),

O(n log log(u)), if u ≥ n1/ ln ln(n).

Case 5: β > 3.
In this case we have

E[TI ] ≤
n
∑

d=1

1

pd
≤ 1

γ(β)

n
∑

d=1

n

d
≤ n(ln(n) + 1)

γ(β)
= O(n log(n))

We complete the computation of the right column of Table 2 by using
Wald’s equation (Lemma 1) and estimates of the expected cost of each iter-
ation shown in Lemma 9.

Case 1: β < 1.
If u ≥

√

ln(n), then

E[TF ] = O(n) ·Θ(u) = O(nu).

If u <
√

ln(n), then

E[TF ] = O
( n

u2
log

n

u2

)

·Θ(u) = O
(n

u
log

n

u2

)

.

Case 2: β = 1.
If u ≥

√

ln(n) ln ln(n), then

E[TF ] = O(n) ·Θ
(

u

log(u)

)

= O

(

nu

log(u)

)

.

If u <
√

ln(n) ln ln(n), then

E[TF ] = O

(

n log(u)

u2
log

n

u2

)

·Θ
(

u

log(u)

)

= O
(n

u
log

n

u2

)

.

Case 3: β ∈ (1, 2).
If u ≥ (ln(n))1/(3−β), then

E[TF ] = O(n) ·Θ(u2−β) = O(nu2−β).
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If u < (ln(n))1/(3−β), then

E[TF ] = O
( n

u3−β
log

n

u2

)

·Θ(u2−β) = O
(n

u
log

n

u2

)

.

Case 4: β = 2.
If u ≥ ln(n), then

E[TF ] = O(n) ·Θ(log(u)) = O(n log(u)).

If u < ln(n), then

E[TF ] = O
(n

u
log

n

u2

)

·Θ(log(u)) = O

(

n log(u)

u
log

n

u2

)

.

Case 5: β ∈ (2, 3).
If u ≥ (ln(n))1/(3−β), then

E[TF ] = O(n) ·Θ(1) = O(n).

If u < (ln(n))1/(3−β), then

E[TF ] = O
( n

u3−β
log

n

u2

)

·Θ(1) = O
( n

u3−β
log

n

u2

)

.

Case 6: β = 3.
If u ≥ n1/ ln ln(n), then

E[TF ] = O(n log log(u)) ·Θ(1) = O(n log log(u)).

If u < n1/ ln ln(n), then

E[TF ] = O

(

n

log(u)
log

n

u2

)

·Θ(1) = O

(

n

log(u)
log

n

u2

)

.

Case 7: β > 3.
For all u we have

E[TF ] = O(n log(n)) ·Θ(1) = O(n log(n)).
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