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Abstract

We study the problem of fair sequential decision making given voter preferences. In each
round, a decision rule must choose a decision from a set of alternatives where each voter
reports which of these alternatives they approve. Instead of going with the most popular choice
in each round, we aim for proportional representation. We formalize this aim using axioms
based on Proportional Justified Representation (PJR), which were proposed in the literature
on multi-winner voting and were recently adapted to multi-issue decision making. The axioms
require that every group of α% of the voters, if it agrees in every round (i.e., approves a
common alternative), then those voters must approve at least α% of the decisions. A stronger
version of the axioms requires that every group of α% of the voters that agrees in a β fraction
of rounds must approve β · α% of the decisions. We show that three attractive voting rules
satisfy axioms of this style. One of them (Sequential Phragmén) makes its decisions online,
and the other two satisfy strengthened versions of the axioms but make decisions semi-online
(Method of Equal Shares) or fully offline (Proportional Approval Voting). The first two are
polynomial-time computable, and the latter is based on an NP-hard optimization, but it
admits a polynomial-time local search algorithm that satisfies the same axiomatic properties.
We present empirical results about the performance of these rules based on synthetic data and
U.S. political elections. We also run experiments where votes are cast by preference models
trained on user responses from the moral machine dataset about ethical dilemmas.
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1. Introduction

We consider the problem of making multiple decisions via voting. In each round, we can choose one
alternative from a set of several alternatives, based on voters who tell us which alternatives they support
(or approve). The set of voters stays the same across rounds, though the set of alternatives may change.
The simplest way of making these decisions is to take, in each round, the alternative with the most
supporters.

A problem with this method is that non-majority groups of voters may have very little influence on the
outcomes. For example, if there is a fixed group of 51% of the voters who all report the same opinion
in every round, then 100% of the decisions will be taken in accordance with the wishes of that group,
with the other 49% of voters ignored or at most acting as tie-breakers. In many contexts, this will be
undesirable, either due to fairness concerns or because the decision maker wishes to hear from each voter
to an equal extent.
Following recent work that studies this model under the name “perpetual voting” [Lackner, 2020], we

define formal properties of voting rules that capture the intuition that a group of α% of the voters should
be able to control the decisions in α% of the rounds. Inspired from work in multi-winner approval voting
[Lackner and Skowron, 2023], we then define a number of voting rules that satisfy these properties. We
believe that these rules have promising applications in a variety of domains:

• Hiring decisions : Consider a department hiring new faculty each year, with existing faculty voting over
the applicants. The department wishes to hire people representing its spectrum of research interests.
For example, if 20% of the department works on one topic and votes for candidate on that topic, then
at least 1 such candidate should be hired every 5 years.

• Uncertainty about the goal : Suppose we are managing an intelligent system that is repeatedly deciding
on an action in order to maximize an objective function that we have specified. But we may not
be certain about our desired objective function (for example because we have moral uncertainty).
Literature in reinforcement learning explores similar problems like reward uncertainty [Liang et al.,
2022] and in the cooperative IRL framework [Hadfield-Menell et al., 2016]. We can decide on a mixture
of objectives (20% on objective 1, etc.). Each objective generates recommendations for good actions in
each round, and we can make the decision using our voting rules.

• Virtual democracy : In cases where a group of people need to make very many similar decisions, we may
wish to automate this process. An approach known as virtual democracy does this by initially learning
voters’ preferences over a space of potential alternatives (specified by feature vectors) for example
based on pairwise comparisons. Then, each decision is made by letting the models vote on the decision
maker’s behalf by predicting their preferences. This approach has led to proof-of-concept systems that
automate moral decisions faced by autonomous vehicles [Noothigattu et al., 2018], kidney exchanges
[Freedman et al., 2020], collective decision making directly from natural language preferences [Mohsin
et al., 2021] and allocation of food donations [Lee et al., 2019]. The approach behind these systems
has recently been criticized as overweighting the opinions of majorities [Feffer et al., 2023]. We show
preliminary evidence in our experiments that using proportional voting methods could avoid this issue.

• Policy decisions of coalition governments: In many countries, the government is formed by coalitions
of several parties with different strengths (for example, in Germany 2021–25 it consists of 3 parties
who received 26%, 15%, and 12% of the vote). A coalition needs to agree on a program, consisting of
decisions on many issues. Our methods could help to design a program where each party’s influence is
proportional to their vote strength.

• Combining generative models: More speculatively, one could use these methods to “mix” different
generative models such as large language models that produce a sequence of tokens one by one.
Recently introduced models such as chatGPT, Bing Chat, Bard, and others have different styles,
personalities, and strengths, and it is common for users to query several models at once. Instead, one
could let users specify a desired mixture of these models, and produce the output sequence by letting
the models vote on the next token. On a related note, Bakker et al. [2022] have recently used LLMs to
generate consensus statements that maximize expected approval for a group of people with diverse
opinions. Given that they collect data for the group over several issues, our methods can be used in
such cases to produce proportional outcomes.

2



Best known voting rule PJR Strong PJR EJR Strong EJR

Online Sequential Phragmén * *

Semi-online Method of Equal Shares
Offline PAV

Table 1: Our results. For each setting (online, semi-online (where the rule knows the total number of rounds in
advance), offline (where the rule knows all the preferences in advance)), we list the best known rule with respect
to proportionality axioms. * = knowing an online rule satisfying EJR (or Strong EJR) would resolve an open
problem in the theory of multi-winner approval voting.

Our results We build on the work of Bulteau et al. [2021] who defined axioms that guarantee group
representation. We consider two of them, which we will call PJR (Proportional Justified Representation)
and Strong PJR. Bulteau et al. [2021] gave existence proofs showing that for every possible voting input,
there exists an output satisfying both axioms, though their proofs do not suggest a natural voting rule
or even a polynomial-time algorithm. In fact, Bulteau et al. [2021] conjecture that no polynomial-time
algorithm can find a PJR outcome. We show that the picture is more positive: an attractive polynomial-
time voting rule building on ideas of Phragmén [1894] satisfies Strong PJR (Section 4.1). This rule is fully
online, making decisions round by round.

We then define an axiom called EJR (Extended Justified Representation), which provides better group
representation guarantees than PJR. We define a simple voting rule (a variant of the “Method of Equal
Shares”) that satisfies EJR which is “semi-online”: it needs to know how many rounds there will be in
total, but it can be given preferences in an online fashion (Section 4.2). However, the Method of Equal
Shares does not satisfy Strong PJR. A rule that maximizes a carefully chosen objective function proposed
by Thiele [1895] known as Proportional Approval Voting (PAV) does satisfy EJR and Strong PJR, and
even satisfies a new axiom that we define called Strong EJR (Section 4.3). While the PAV optimization
problem is NP-hard, we prove that a polynomial-time local search variant of the rule also satisfies Strong
EJR. However, PAV is an offline rule and needs to know full preference information for all the rounds in
advance. We do not know an online rule satisfying EJR or Strong EJR, and we show (in the appendix)
that finding such a rule would resolve a major open problem in the literature on multi-winner approval
voting [Lackner and Skowron, 2023].

We also consider several different ways of defining stronger axioms than (Strong) PJR and EJR, which
either give groups better utility guarantees or give guarantees to more groups. However, by giving
counterexamples, we show that these strengthenings are not always satisfiable (Section 5).

We close with several simulations that compare our rules to existing rules from the literature (which do
not give group fairness guarantees). These simulations are based on synthetic data (where we randomly
generate approvals in such a way that there are a small number of distinct cohesive voter groups) and on
U.S. political election data (Sections 6.1 and 6.2). We also run an experiment for the virtual democracy
application. Following Noothigattu et al. [2018], we use the moral machine dataset Awad et al. [2018],
containing several million ethical judgments by respondents from around the world about how a self-driving
car should behave in trolley-problem-style dilemmas. We partition the responses according to the country
of the respondent. For each country, we learn a preference model predicting the judgments of respondents
from the country. We treat each country as a ‘voter’. We then sample new decision situations and query
the models for the ethically best decisions in that situation, and aggregate the responses using our voting
rule. We compare the aggregated response to an alternative approach where a single model is trained
based on responses from all countries (with each country contributing the same number of data points
for balance). Based on our metrics, we find that the aggregation approach leads to a fairer outcome, in
the sense that agreement with the decision is more equally distributed across countries, compared to the
decision made by the combined model (Section 6.3).

3



2. Related Work

Perpetual Voting Our work is most closely related to perpetual voting [Lackner, 2020] which concerns
online sequential decision making based on approval votes. In this paper, we also consider offline rules.
Lackner [2020] focussed on individual fairness properties, for example requiring that each voter approves
at least 1 decision in every time interval of some bounded length. We are interested in guarantees for
groups of voters who agree with each other, such that larger groups receive stronger guarantees. Such
guarantees have been considered by Lackner and Maly [2023] and Bulteau et al. [2021]; we compare them
to ours in Section 3. Lackner and Maly [2023] also consider “upper quota” axioms, which require that
groups are not overrepresented in the outcome; we only consider axioms that prevent underrepresentation.

Public Decision Making Conitzer et al. [2017] proposed a model they call “public decision making”
which is an offline model of several decisions, where voters have a utility value for each alternative in each
round, and a voter’s total utility is the sum of the utilities obtained in each round. We study the special
case where the utility values are restricted to 0 and 1. Conitzer et al. [2017] focus on fairness notions for
individuals (not groups) derived from ideas in fair division. Freeman et al. [2017] study an online version
of this setting. Freeman et al. [2020] and Skowron and Górecki [2022] consider the special case where
there are exactly two alternatives (“yes/no”) in each round and utilities are 0/1, which is a simple special
case of our setting where fairness properties are easier to obtain. Brill et al. [2023b] consider the same
setting with interdependent issues.

Repeated Portioning In our model, we need to choose one alternative in each round. One could define a
fractional version of this model, where in each round, we choose a mixture of the available alternatives
(formally, a probability distribution or lottery over Cj). In the single-round setting, finding a fair mixture
has been considered by several papers [Bogomolnaia et al., 2005, Fain et al., 2016, Aziz et al., 2020, Brandl
et al., 2021]. For a multi-round setting with online decisions, this model is studied by Banerjee et al. [2023,
Section 5] who consider a proportional fairness objective and propose methods with good regret bounds.

Multi-winner Approval Voting For the task of selecting a committee of exactly k out of m candidates
given approval votes [Lackner and Skowron, 2023], proportionality has been intensely studied. Many
axioms have been proposed that formalize the idea that α% of the voters should be able to elect at least
α% · k of the committee members [Aziz et al., 2017, Sánchez-Fernández et al., 2017, Peters and Skowron,
2020, Brill and Peters, 2023]. Voting rules proposed long ago by Thiele [1895] and Phragmén [1894] do
very well with respect to these axioms [Janson, 2016, Brill et al., 2023a]. A more recent rule proposed
by Peters and Skowron [2020] known as the Method of Equal Shares combines some of the advantages
of the Phragmén and Thiele rules. Skowron et al. [2017] discuss adapting multi-winner rules to obtain
“proportional rankings” of alternatives, which can be seen as a sequential decision making problem. Many
of the rules and axioms we consider in this paper are analogues or generalizations of proposals from
multi-winner voting.

Approval-based Apportionment Brill et al. [2022] considered a model where we need to assign k seats
to political parties, based on voters who submit approval sets over parties. This can be seen as a kind of
multi-winner election where candidates can be added to the committee several times (because a single
party can receive multiple seats). Alternatively, it can be seen as a special case of our model with k
rounds, where the sets of alternatives and all voters’ approval sets remain the same across all rounds.
Being a special case of our model, some negative results of Brill et al. [2022] carry over to our model,
notably that Sequential Phragmén fails EJR and that PAV is NP-hard to compute; we will mention these
connections during our discussion.

Combinatorial Voting A classic literature on voting in combinatorial domains [Lang and Xia, 2016]
studies the problem of making decisions on several issues. The main focus is on the representation of
complex preferences (where preferences on one issue may be conditional on the decision in other issues),
and the computational problem of finding good outcomes given such preferences, often in the sense
of maximizing utilitarian or egalitarian welfare [Amanatidis et al., 2015]. Some of this work considers
(conditional) approval preferences [Barrot and Lang, 2016].
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3. Problem Formulation

3.1. Model

Let N = {1, 2, . . . , n} be the set of voters, with |N | = n. There is a set R = {1, 2, . . . , T} of T rounds,
where T is the time horizon. In each round j ∈ R, we are given a set of alternatives Cj . Each voter i ∈ N
approves some subset Ai

j of Cj . Thus, we have a sequence of T decision rounds together with a sequence
C = (Cj)j of alternative sets and a collection A = (Ai

j)i∈N,j) of approval sets. We call the quadruple
(N,R,C,A) a decision instance.

A decision sequence D = (d1, . . . , dT ) ∈ C1 × · · · ×CT specifies a single decision dj ∈ Cj for each round
j ∈ R. For a voter i ∈ N , we write U i

D = |{j ∈ R : dj ∈ Ai
j}| for the number of decisions in D that i

approves; we treat U i
D as i’s utility. A decision rule f takes as input a decision instance and returns a

decisions sequence D = f(N,R, (Cj)j , (A
i
j)i∈N,j). We call a decision rule semi-online if its decision in

round j ∈ R only depends on the information up to round j, i.e., on N , R, C1, . . . , Cj and Ai
1, . . . , A

i
j . A

rule is online if in addition, the decision in round j does not depend on the time horizon T .

3.2. Axioms

Strong EJR

EJR

Strong PJR

PJR

Strong JR

JR

perpetual
priceability

perpetual
lower quota

for closed groups

lower quota
for closed groups

Figure 1: Implications between axioms. We focus on
the axioms in bold.

We now define several properties (or axioms) of decision
sequences that formalize the idea of proportional repre-
sentation. These come in different strengths and Figure 1
shows implication relationships between them. We will
focus on the four strongest properties of (Strong) EJR
and (Strong) PJR. For completeness, we also mention
two other properties introduced by Lackner and Maly
[2023]: we discuss lower quota for closed groups in Ap-
pendix A.1 and perpetual priceability in Appendix A.2.
In Appendix A.3, we briefly discuss Pareto efficiency.

Our first two main axioms were introduced by Bulteau
et al. [2021].1 Let us say that a group S ⊆ N of voters
agrees in round j ∈ R if there is an alternative c ∈ Cj

that all voters in S approve, so
⋂

i∈S Ai
j ̸= ∅. PJR (short

for Proportional Justified Representation) requires that
a group of an α fraction of the voters, if they agree in
every round, must be “happy” with at least an α fraction
of the decisions. We define this to mean that in ⌊αT ⌋ many rounds, at least one member of S approves
the decision (but this member of S can be different in each round).

Definition 3.1 (PJR). A decision sequence D satisfies PJR if for every ℓ ∈ N and every group of voters
S ⊆ N that agrees in every round and has size |S| ⩾ ℓ · nT , there are at least ℓ rounds j ∈ R in which the
decision dj of D is approved by at least one voter in S (i.e., dj ∈

⋃
i∈S Ai

j).

PJR only provides guarantees for groups that agree in all rounds. Strong PJR also gives guarantees for
groups that agree only in some of the rounds, though the groups need to be larger: a group that agrees in
k rounds deserves to be happy with ℓ decisions if the size of the group is at least ℓ · nk (as compared to
ℓ · nT for groups that agree in all rounds). Note that Strong PJR implies PJR (take k = T ).

Definition 3.2 (Strong PJR). A decision sequence D satisfies Strong PJR if for every ℓ ∈ N and every
group of voters S ⊆ N that agrees in k rounds and has size |S| ⩾ ℓ · nk , there are at least ℓ rounds j ∈ R
in which the decision dj of D is approved by at least one voter in S (i.e., dj ∈

⋃
i∈S Ai

j).

An equivalent way of stating this axiom is that an α fraction of the voters who agree in a β fraction of
the rounds need to be “happy” with at least an ⌊α · β⌋ fraction of the decisions. For example, consider a
group S ⊆ N of voters with fixed size ℓ · nT , and let us ask what Strong PJR guarantees for this group. If S

agrees in all rounds, then it says that S should be happy with ℓ decisions. If S agrees in T
2 rounds, then it

says that S should be happy with ⌊ ℓ2⌋ decisions. Thus, the guarantee provided to a group is proportional
to the number of rounds in which the group agrees.

1We use different names for these axioms. Bulteau et al. [2021] use the term “all periods intersection PJR” for what we
just call PJR, and the term “some periods intersection PJR” for what we call Strong PJR.
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Following the literature on multi-winner voting, we say that a decision sequence satisfies (Strong) JR
(Justified Representation) if it satisfies (Strong) PJR restricted to ℓ = 1. Several of our counterexamples
will apply even to JR and to Strong JR.

To illustrate the axioms, consider the instance shown in Figure 2, with T = 8 rounds and 4 voters. The
first two voters form a group S = {1, 2} that agrees in all rounds (because they both always approve a ).
Thus, for an outcome to satisfy PJR, in at least ℓ = 4 rounds the outcome needs to be either a , b , or c

(because |S| ⩾ ℓ · 48 ). The group S′ = {3, 4} agrees in the first 6 rounds (approving d ), so with ℓ′ = 3,
because |S′| ⩾ ℓ′ · 46 , Strong PJR requires that in at least 3 rounds, the outcome is either d , e , or f .

Round 1 & 2 3 & 4 5 & 6 7 & 8

Voter 1 { a , b } { a , b } { a , b } { a , b }
Voter 2 { a , c } { a , c } { a , c } { a , c }
Voter 3 { d } { d } { d } { e }
Voter 4 { d } { d } { d } { f }

Figure 2: Example illustrating our axioms.

A weakness of PJR and Strong PJR is in how they
define S being “happy” with a decision (“at least one
member of S approves the decision”). This definition
could be satisfied by a decision sequence that gives each
member of S a utility that is much lower than ℓ [Peters
and Skowron, 2020, Sec. 4.2]. In the example of Fig-
ure 2, the decision sequence ( b , b , c , c , d , d , e , f )
satisfies Strong PJR, but the first two voters each only
approve the decision in 2 rounds, instead of in 4 rounds.
Following Aziz et al. [2017], we can fix this issue by defining the axioms EJR (short for Extended
Justified Representation) and Strong EJR. These axioms require that at least one member i of S must
approve at least ℓ of the decisions, i.e., must have utility U i

D ⩾ ℓ. In the example, the decision sequence
( d , d , d , d , a , a , a , a ) satisfies Strong EJR.

Definition 3.3 (EJR). A decision sequence D satisfies EJR if for every ℓ ∈ N and every group of voters
S ⊆ N that agrees in all rounds and that has size |S| ⩾ ℓ n

T , there exists a voter i ∈ S who approves at
least ℓ decisions in D, i.e., U i

D ⩾ ℓ.

Definition 3.4 (Strong EJR). A decision sequence D satisfies Strong EJR if for every ℓ ∈ N and every
group of voters S ⊆ N that agrees in k rounds and has size |S| ⩾ ℓ · nk , there exists a voter i ∈ S who
approves at least ℓ decisions in D, i.e., U i

D ⩾ ℓ.

A decision rule f satisfies one of these axioms if for all possible inputs, the decision sequence selected
by f satisfies it. Note that if f is also online, this means that the proportionality guarantee thereby not
only holds for the entire decision sequence, but also for every prefix of it.

3.3. Methods

We now define three decision rules that are natural analogues of rules that were first proposed in the
context of multi-winner elections.

3.3.1. Sequential Phragmén

Phragmén [1894] proposed an approval-based voting method for electing members of the Swedish parliament.
Lackner and Maly [2023] adapted this rule to the context of perpetual voting, calling their adaptation
“perpetual Phragmén”. We follow their definition. The rule makes decisions round by round. Its main idea
is that each decision provides a value of 1, and this value (usually referred to as load) will be distributed
to the voters who approve the decision. In each round, the rule chooses an alternative such that no voter
ends up with too much load, thereby prioritizing voters who do not yet agree with many prior decisions.
Formally, each voter i starts with load xi = 0. Sequential Phragmén chooses the alternative for which it
can distribute a load of 1 in a way that minimizes the maximum total load assigned to a voter: at each
round j ∈ R, we compute the following value for each alternative c ∈ Cj :

sc = min
S⊆{i∈N :c∈Ai

j}

∑
i∈S xi + 1

|S|
.

x1 x2 x3 x4 x5 x6 x7

sc

S

Figure 3: Load distribution

This value can be understood using a “water filling” analogy, as shown
in Figure 3, where we consider an alternative c approved by 7 voters, and
show their current loads as bars. We then fill 1 unit of blue water on top
of the approving voters’ loads. Note that the water never falls on top of
the loads of voters 5, 6, and 7 because their load is already quite high; in
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other words, this process has only assigned load to the set S = {1, 2, 3, 4}. Then sc is the “water line”,
which is the load of each voter in S after the load of c has been assigned.

The decision for round j ∈ R is the alternative c that minimizes sc, breaking ties arbitrarily. After
making the decision, we update loads by setting xi = sc for each voter i ∈ S (where S is the coalition
attaining the minimum in the definition of sc) and leave xi unchanged for voters not in S. Note that
the load of a voter will never decrease.2 Clearly, Sequential Phragmén is an online rule that requires no
information about future rounds. It can be computed in polynomial time [Lackner and Maly, 2023].

3.3.2. Method of Equal Shares (MES)

MES is a recently introduced voting rule for multi-winner voting [Peters and Skowron, 2020] and
participatory budgeting [Peters et al., 2021]. It can be adapted to our setting in a semi-online fashion:
the rule needs to know the total number of rounds T in advance, but does not need to know voter
preferences of future rounds. MES makes decisions round by round. Similar to the concept of load in
Sequential Phragmén, each decision costs p = n

T units which must be distributed among voters who
approve the alternative. MES works by subtracting this amount from an initial budget assigned to each
voter. Formally, let bi = 1 be the initial budget of voter i. For ρ ⩾ 0, we say that an alternative c ∈ Cj is
ρ-affordable if

∑
i∈N :c∈Ai

j
min(bi, ρ) ⩾ p (so approvers of c can pay the amount p with their remaining

budgets even if no one pays more than ρ). In each round, the alternative dj ∈ Cj that is ρ-affordable
for minimum ρ is chosen, breaking ties arbitrarily. Then for each voter i approving dj , i’s remaining
budget bi is set to max(0, bi − ρ). If in some round j ∈ R, no alternative can be bought for any ρ, i.e.,∑

i∈N :c∈Ai
j
bi < p for all alternatives c ∈ Cj , MES terminates prematurely. For purposes of our theoretical

results, it does not matter how the decisions for remaining rounds are made. All these results (positive
and negative) hold for every way of completing the partial decision sequence that is output by MES.
For actual implementations of MES, one can choose between several “completion rules”, which are

familiar from work on multi-winner voting and participatory budgeting. In our experiments, we followed
the “ε-completion” strategy introduced by [Peters et al., 2021, Sec. 3.4]. In a round j ∈ R where no
alternative is affordable according to the definition of MES, we will choose an alternative aj ∈ Cj and
make all voters who approve aj spend all their remaining money to cover as much cost p of the round as
possible. The remaining part of the cost is covered by the voters i ∈ N who don’t approve a so that the
maximal payment of such a voter, γ, is minimized. We select the alternative aj ∈ Cj minimizing γ and
update voters’ individual budgets.

It is also possible to run MES in an offline fashion (“Offline MES”), by letting it choose at each step in
which round it would like to make a decision (namely, the round where some alternative is ρ-affordable
for minimal ρ, across all alternatives in all rounds where no decision has been taken yet). All our proofs
and counterexamples go through for Offline MES, so it also satisfies EJR but fails Strong PJR.

3.3.3. Proportional Approval Voting (PAV)

Thiele [1895] proposed an alternative method to Phragmén’s, which is based on optimizing an objective
function. We adapt this method to our context in an offline way. PAV selects the decision sequence
D ∈ C1 × · · · × CT that maximizes

PAV-score(D) =
∑
i∈N

1 +
1

2
+

1

3
+ · · ·+ 1

U i
D

,

where we recall that U i
D is the number of rounds in which voter i approves the decision of D. This

harmonic objective function is the unique additive objective that leads to a proportional rule [Aziz et al.,
2017]. Finding the optimum decision sequence for PAV is NP-hard [Brill et al., 2022, Thm. 5.1], just
like in the multi-winner setting [Aziz et al., 2015], but we will show that a polynomial-time local search
variant [Aziz et al., 2018] satisfies the same axioms as PAV.3

2In the multi-winner setting, it is not necessary to define sc using a minimization over S, and we can just take S to be the
set of all voters approving c. This is because in multi-winner voting, it cannot happen that an approver of c already has
more load than sc, because in that case the rule would have chosen c in an earlier iteration [Brill et al., 2023a, Lemma
4.5]. This argument does not work in our setting because c may not have been available in a prior round. An alternative
definition of Phragmén’s method in multi-winner voting is based on virtual bank accounts that are continuously filled
[Janson, 2016, Peters and Skowron, 2020]. This definition does not easily adapt to our setting due to a similar problem:
if in some round no good alternative exists, then the bank accounts will fill up too much, leading to ties in later rounds.

3There also exists a sequential version of PAV that could be applied to our setting to give an online rule. Based on
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4. Satisfying the Axioms

In this section, we establish which of our three rules satisfy which of our four axioms (see Table 1). Bulteau
et al. [2021] conjectured that no polynomial-time rule achieves PJR (their existence proof were based
on an exponential algorithm). Our results show that in fact, PJR as well as the stronger axioms can be
satisfied in polynomial time, by attractive rules, some of which even work online.

4.1. Online: Sequential Phragmén

We begin by analyzing the sequential Phragmén rule.

Theorem 4.1. Sequential Phragmén satisfies Strong PJR.

Proof. For a contradiction, suppose that S ⊆ N witnesses a violation of Strong PJR: it agree in the set of
rounds R∗ = {j1, . . . , jk} ⊆ R and has size |S| ⩾ ℓ · nk , but there are fewer than ℓ rounds in which at least
one member of S approves the decision.
First, we claim that if dj ∈ Cj is the alternative chosen in some round j ∈ R∗, then sdj

⩽ ℓ
|S| . Note

that the total load
∑

i∈S xi assigned to members of S is at most ℓ− 1 because each decision incurs a load
of 1. Since j ∈ R∗, there is an alternative c′ ∈ Cj that everyone in S approves. Hence,

sc′ ⩽
1 +

∑
i∈S xi

|S|
⩽

1 + (ℓ− 1)

|S|
=

ℓ

|S|
,

where the first inequality follows from the definition of sc′ as a minimum. Since Sequential Phragmén
selected dj , we have sdj ⩽ sc′ , showing our claim.

Call a round j ∈ R∗ a bad round if the decision dj is not approved by any voter in S. Now let i ∈ N \S
be a voter not in S, and suppose i gets assigned some load during at least one bad round. Consider the
point just after the last bad round where i is assigned some load. At this point we must have xi ⩽ ℓ

|S|
because otherwise sdj

> ℓ
|S| , contradicting our previous claim. Thus, at most ℓ

|S| load was assigned to i

during bad rounds (i.e., adding up the load additions to i over all bad rounds). Clearly, this last claim is
also true for voters i ∈ N \ S who do not get assigned any load during any bad round.
In a bad round, load is only assigned to voters outside S (since the round is bad). Thus, we can now

bound the total load that gets assigned in bad rounds, by summing over all i ∈ N \ S; it is at most

|N \ S| · ℓ
|S| =

|N |
|S| · ℓ−

|S|
|S| · ℓ ⩽

k
ℓ ℓ− ℓ = k − ℓ.

However, there are at least k− (ℓ− 1) bad rounds, so a total load of at least k− ℓ+1 is distributed across
bad rounds, a contradiction.

In multi-winner voting, Sequential Phragmén is well-known to fail EJR [Brill et al., 2023a], so it is
unsurprising that it also fails EJR in our setting. While it is possible to adapt the example of Brill et al.
[2023a] to our setting, we use a somewhat simpler example.4

Theorem 4.2. Sequential Phragmén fails EJR.

Rounds 1 - 10

Voters 1, 2, 3 { a , b }
Voters 4, 5, 6, 7 { a , c }
Voters 8, 9 { b , c }
Voter 10 { b }

Figure 4: Instance where Sequential
Phragmén fails EJR. Note that the ap-
proval sets are the same in all rounds.

Proof. Consider the instance shown in Figure 4, with T = 10
rounds and n = 10 voters. Here, the same profile is re-
peated for the all the rounds, so it is also an example where
Sequential Phragmén fails EJR in the setting of approval-
based apportionment [Brill et al., 2022]. In this example, Se-
quential Phragmén alternates between two alternatives as win-
ner in each round and produces the decision sequence D =
( a , b , a , b , a , b , a , b , a , b }. The first three voters approve
all the decisions of the outcome, so each of them gets a satisfac-
tion of 10 while the rest of the voters approve only half of the

simulations, Page et al. [2020] conjecture that this rule would satisfy at least a weak version of PJR. However, a result of
Brill et al. [2022, Footnote 4] implies that the sequential version fails this property.

4This example can also be used to show that Sequential Phragmén fails EJR for the related settings of approval-based
apportionment and of multi-winner voting. We thus add a different EJR counterexample to the literature, which may
turn out useful in future work.
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decisions from D, so they each get a satisfaction of 5. The coalition S = {4, 5, 6, 7, 8, 9} agrees in all
rounds on c , so EJR demands that at least one voter in S should approve at least ℓ = 6 decisions (since
6 = |S| ⩾ ℓ · nT = 6 · 1010 ). However, each voter in S approves the decision of only 5 rounds, which is strictly
less than ℓ = 6, so EJR is violated. Hence, Sequential Phragmén fails EJR.

4.2. Semi-online: Method of Equal Shares (MES)

We do not know an online rule that satisfies EJR, and in Appendix B.3 we show that if there exists
such a rule, then there also exists a multi-winner voting rule satisfying EJR and the axiom of committee
monotonicity. Whether such a multi-winner voting rule exists is a well-known open problem [Lackner and
Skowron, 2023].

However, we can satisfy EJR if we use a little extra information: the total number T of rounds. MES is
such a rule: it needs to know T to determine the price p = n/T of deciding a round (or in an equivalent
formulation, to decide the initial budget assigned to each voter), but is otherwise online. For example, to
make the decision in round 1, MES does not need to know what alternatives will be available in future
rounds and what the approval sets will be. We show that MES satisfies EJR.

Theorem 4.3. MES satisfies EJR.

Proof. Write p = n
T for the cost of deciding a round according to MES. Suppose S ⊆ N witnesses a

violation of EJR, where |S| ⩾ ℓ · p but every i ∈ S approves the decision of at most ℓ− 1 rounds.
Suppose MES stops prematurely without making a decision in round j ∈ R. At that point, some voter

i ∈ S has a remaining budget of strictly less than p/|S|, as otherwise S has a combined remaining budget
of at least p and could therefore purchase an alternative that S agrees on in round j. Otherwise, if it does
not stop prematurely, MES makes a decision for all T rounds, in which case all available money is spent
(since T · p = n), and hence we can again find i ∈ S with remaining budget 0, i.e., less than p/|S|.

Thus, i has spent more than 1− p/|S| by the time that MES has terminated, and has used that money
to pay in at most ℓ− 1 rounds. In those rounds, i therefore paid on average strictly more than

1− p/|S|
ℓ− 1

⩾
1− 1/ℓ

ℓ− 1
=

1

ℓ
.

Hence, there must be a round when i paid strictly more than 1/ℓ for the decision; let j ∈ R be the first
such round with decision dj ∈ Cj . Just before paying for dj , every voter in S had at least 1/ℓ budget left
as they each so far paid at most 1/ℓ for at most ℓ− 1 alternatives. But note that the alternative c ∈ Cj

on which S agrees is therefore 1/ℓ-affordable because

|S| · 1
ℓ
⩾ |S| · n

|S|T
= p,

while dj is not 1/ℓ-affordable (since i had to pay strictly more than 1/ℓ for dj). This is a contradiction to
MES choosing the alternative that is ρ-affordable for the lowest ρ.

Does MES provide good guarantees for coalitions that do not agree on all rounds? Unfortunately not.
We show that MES fails Strong PJR and thus also Strong EJR. This is surprising since, in other settings,
MES usually satisfies at least as many proportionality axioms as Sequential Phragmén. The reason for its
failure here is that coalitions may agree only on early rounds where MES greedily maximizes efficiency,
and then MES cannot satisfy the fairness requirements in subsequent rounds where there may not be
enough agreement between voters.

Theorem 4.4. MES fails Strong PJR.

Round 1 & 2 & 3 4 & 5 & 6

Voter 1 { a } ∅
Voter 2 { b } { b }
Voter 3 { b } { b }

Figure 5: Example illustrating how MES
fails Strong PJR (and Strong JR). Note
the empty approval set of voter 1 in
rounds 4, 5, 6.

Proof. Consider the instance shown in Figure 5, with T = 6 rounds
and n = 3 voters. Here, voter 1 approves a in first 3 rounds but
does not approve any alternative in the remaining rounds. Voters 2
and 3 approve b in all rounds. The budget of each voter i is bi = 1
unit while the price of each round is p = n

T = 3
6 = 0.5 units.

In round 1, a is ρ-affordable for ρ = 0.5 as only voter 1 approves
a and thus has to bear its whole cost of p = 0.5. However, b is
ρ-affordable for ρ = 0.25 as both voters 2 and 3 approve it, so they
can equally divide the cost p. The remaining budget of voters 2 and
3 is set to 0.75. By the same computation, b is selected in rounds
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2 and 3, after which voters 2 and 3 have a remaining budget of 0.25. In round 4, the only alternative
to elect is b and voters 2 and 3 have just enough budget to buy it at ρ = 0.25, leading to exhaustion
of their whole budget. In round 5, voters 2 and 3 do not have any budget to buy any alternative while
voter 1 has the budget but does not approve any alternative. Thus, MES terminates prematurely. Any
completion rule used from this point can only elect b in the remaining rounds as that is the only available
alternative. Thus, we obtain the decision sequence D = ( b , b , b , b , b , b ).
Now, the first voter forms an individual group S = {1} which agrees in the first 3 rounds (as voter 1

approves a ). With ℓ = 1, it has size |S| = 1 ⩾ ℓ · n3 = 1 · 33 . Thus, Strong PJR requires that in at least
ℓ = 1 rounds, the outcome is a . However, MES (with any completion rule) never elects a , so MES fails
Strong PJR.

Remark 4.5. The proof of Theorem 4.4 used a requirement of ℓ = 1 rounds, so it also shows that MES
fails Strong JR.

In the proof of Theorem 4.4, MES terminates prematurely. In Appendix B.1, we show that on instances
where MES makes a decision for every round, it satisfies Strong PJR, but may fail Strong EJR.

4.3. Offline: Proportional Approval Voting (PAV)

If we make decisions fully offline (i.e., we know the approval sets for all rounds in advance), there is a
rule that – as we will see – satisfies all four of our axioms: PAV. However, finding the optimum decision
sequence for PAV is NP-hard [Aziz et al., 2015, Brill et al., 2022]. Following a suggestion of Aziz et al.
[2018], we can define a polynomial-time local search variant of PAV which turns out to satisfy the same
proportionality axioms as PAV. The variant starts with an arbitrary decision sequence D and keeps
changing the decision in some round if this increases the PAV-score of the decision sequence by at least
n/T 2. The process terminates if there is no possible change that leads to a sufficient increase.

Definition 4.6 (Local-Search PAV). Given an instance (N,R,A,C) with n voters and time horizon T , a
decision sequence D is a possible output of Local-Search PAV if there exists some initial decision sequence
Dinit such that D can be returned by the following algorithm:

D ← Dinit;
while there is a round j ∈ R and an alternative aj ∈ Cj such that
PAV-score (D \ {dj} ∪ {aj}) ⩾ PAV-score(D) + n

T 2 do
D ← D \ {dj} ∪ {aj}

return D

The threshold of n/T 2 in the definition of Local-Search PAV is chosen to imply the proportionality
properties of PAV while ensuring termination of the local search in polynomial time.

Proposition 4.7 (Aziz et al., 2018). Local-Search PAV terminates in polynomial time.

Proof. Note that a single improving swap can be found and executed in polynomial time, by iterating
through all rounds j ∈ R and all alternatives aj ∈ Cj . Now, let us assess how many improvements the local
search algorithm may perform. Each improvement increases the total PAV-score of the decision sequence by
at least n/T 2. The maximum possible PAV-score of a length-T decision sequence is n·(1+1/2+· · ·+1/T ) =
O(n lnT ). Thus, there can be at most O(n lnT

n/T 2 ) = O(T 2 lnT ) improving swaps.

We can now prove that both PAV and Local-Search PAV satisfy Strong EJR. The proof uses a swapping
argument: if the output violates Strong EJR, then in at least 1 round, it is possible to change the decision
in a way that increases the PAV objective function (by at least n/T 2). This proof technique has also been
used to prove that PAV satisfies EJR in multi-winner voting [Aziz et al., 2017].

Theorem 4.8. PAV and Local-Search PAV satisfy Strong EJR.

Proof. If DPAV is the decision outcome chosen by PAV, and we run Local-Search PAV with Dinit = DPAV,
then it immediately terminates. Hence DPAV is a possible output of Local-Search PAV. Thus, to prove
the theorem, it is sufficient to prove that every possible output of Local-Search PAV satisfies Strong EJR.
So let D be a decision outcome returned by Local-Search PAV with |D| = T . For a contradiction,

suppose that S ⊆ N witnesses a violation of Strong EJR of D, with S agreeing on a set R∗ ⊆ R of
|R∗| = k rounds and with |S| = s ⩾ ℓ · nk but U i

D < ℓ for all i ∈ S. For any round r ∈ R∗, let ar ∈ Cr be
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an alternative on which S agrees and dr be the current decision for that round. If we replace dr by ar in
D, the change in the PAV-score of D is

∆(ar, dr) =
∑
i∈S
dr /∈Ai

r

1

U i
D + 1

+
∑

i∈N\S
dr /∈Ai

r

ar∈Ai
r

1

U i
D + 1

︸ ︷︷ ︸
increase due to addition of ar

−
∑

i∈N\S
dr∈Ai

r

ar /∈Ai
r

1

U i
D

︸ ︷︷ ︸
due to removal of dr

⩾
∑
i∈S
dr /∈Ai

r

1

U i
D + 1

−
∑

i∈N\S
dr∈Ai

r

1

U i
D

(1)

Note that the change for a particular round may be negative. Summing this change over R∗, we get

∑
r∈R∗

∆(ar, dr) ⩾
∑
r∈R∗

( ∑
i∈S
dr /∈Ai

r

1

U i
D + 1

−
∑

i∈N\S
dr∈Ai

r

1

U i
D

)
(from (1))

=
∑
i∈S

∑
r∈R∗

dr /∈Ai
r

1

U i
D + 1

−
∑

i∈N\S

∑
r∈R∗

dr∈Ai
r

1

U i
D

(interchanging sums)

Write U i
R∗ for the number of rounds in R∗ in which i approves the decision of D. Note that for all

i ∈ S, we have U i
R∗ ⩽ U i

D ⩽ ℓ− 1, and so the number of decisions in rounds R∗ not approved by i is at
least k − (ℓ− 1) = k − ℓ+ 1. Hence

∑
r∈R∗

∆(ar, dr) ⩾
∑
i∈S

k − ℓ+ 1

U i
D + 1

−
∑

i∈N\S

∑
r∈R∗

dr∈Ai
r

1

U i
D

⩾
∑
i∈S

k − ℓ+ 1

U i
D + 1

−
∑

i∈N\S

∑
r∈R∗

dr∈Ai
r

1

U i
R∗

(since U i
R∗ ⩽ U i

D for all i ∈ N)

=
∑
i∈S

k − ℓ+ 1

U i
D + 1

−
∑

i∈N\S

1 (since i approves U i
R∗ decisions in rounds R∗)

⩾
∑
i∈S

k − ℓ+ 1

ℓ− 1 + 1
− (n− s) (since U i

D ⩽ ℓ− 1 for all i ∈ S)

=

(
k − ℓ+ 1

ℓ

)
· s− (n− s)

=
sk

ℓ
− s+

s

ℓ
− n+ s

= s
k

ℓ
+

s

ℓ
− n

⩾ n+
s

ℓ
− n ⩾

n

k
(since s ⩾ ℓ · nk )

From the pigeonhole principle, it follows that there exists a round r ∈ R∗ such that ∆(ar, dr) ⩾ 1
k ·

n
k =

n
k2 ⩾ n

T 2 (as |R∗| = k and k ⩽ T ). Hence D admits a swap that increases its PAV-score by at least n
T 2 ,

and thus Local-Search PAV would not terminate and return D. This gives a contradiction and completes
the proof.

5. Impossibility of Stronger Guarantees

In some respects, the axioms we have been considering are weak. PJR and EJR, for example, only
provide guarantees to coalitions that agree in every round. Their strong versions are more robust, but
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their associated guarantees diminish as a coalition has agreement in fewer rounds. Also, readers with a
background in multi-winner voting may have expected PJR and EJR to be formulated differently, in a
way that a coalition deserving ℓ decisions only needs to agree in ℓ rounds (instead of all T rounds). One
might hope that stronger proportionality axioms of this kind could be defined and still be satisfiable.
However, we can show that several strengthenings are in fact impossible to satisfy in general. Our

results follow from a single counterexample construction. This counterexample has the following structure:
fix some coalition size s ⩽ n of interest. In the first k rounds, for each of the

(
n
s

)
subsets S ⊆ N of size s,

there is an alternative aS with all voters in S approving aS . Thus, all these coalitions agree in k rounds,
and thus the impossible axioms we will consider guarantee all of these coalitions some representation.
However, k rounds is not enough to “hit” enough of these coalitions, and in the remaining T − k rounds,
voters are in complete disagreement (i.e., the approval sets of any two voters are disjoint) and so there are
not enough rounds to make up the deficit accrued in the first k rounds.

Formally, the counterexample construction establishes the following result:

Theorem 5.1. Let ε > 0. Choose some k > ⌈ 1−ε
ε ⌉ and some T > k. Then for sufficiently large n, there

exists an instance with n voters and time horizon T such that for every decision sequence D, there is a
coalition S ⊆ N that agrees in k rounds and has size |S| ⩾ (1− ε) · nk , yet none of the voters in S approve
any of the decisions of D.

The proof appears in Appendix B.2. From Theorem 5.1, it follows immediately that for all ε > 0, it is
impossible to satisfy an additive ε-strengthening of Strong PJR (or even Strong JR):

Corollary 5.2 (ε-Strong PJR need not exist). Let ε > 0. Then there exists an instance where no decision
sequence D satisfies “ ε-Strong PJR”, defined to require that for every ℓ ∈ N and every group of voters
S ⊆ N that agrees in k rounds and has size |S| ⩾ (ℓ− ε) · nk , there are at least ℓ rounds j ∈ R in which
the decision dj of D is approved by at least one voter in S (i.e., dj ∈

⋃
i∈S Ai

j).

Above, we briefly mentioned the idea of defining PJR by requiring that a group large enough to deserve
ℓ decisions only need to agree in ℓ rounds. This corresponds perhaps most closely to the original definition
of PJR for multi-winner voting (which, in the context of electing k candidates, requires agreement on ℓ
candidates not k candidates). It also corresponds to the definition of PJR proposed by Freeman et al.
[2020] who study multi-winner voting with a variable number of winners, which is a special case of our
model where in each round, only 2 alternatives are available (“add c to the committee”, “do not add c to
the committee”).

Corollary 5.3 (ℓ-Agreement PJR need not exist). There exists an instance where no decision sequence D
satisfies “ ℓ-Agreement PJR”, defined to require that for every ℓ ∈ N and every group of voters S ⊆ N that
agrees in at least ℓ rounds and that has size |S| ⩾ ℓ · nT , there are at least ℓ rounds j with dj ∈

⋃
i∈S Ai

j.

Proof. Invoke Theorem 5.1 with ε = 0.5, k = 4, and T = 40. The theorem gives an instance where
for every decision sequence D, there is a group of voters S ⊆ N which agrees in 3 rounds, has size
|S| ⩾ (1− ε) · nk = 0.125 · n ⩾ 0.1 · n = 4 · nT , but none of the voters in S approve any of the decisions in
D, violating ℓ-Agreement PJR.

When there are only 2 candidates in every round, Sequential Phragmén, MES, and PAV all satisfy this
property [Freeman et al., 2020].

Do et al. [2022] propose a way to relax PJR and related concepts in a multiplicative way. In Appendix B.2,
we show that such constant-factor relaxations of ℓ-Agreement PJR (defined in Corollary 5.3) are also not
guaranteed to exist. In Appendix B.2, we also explain how to adapt Theorem 5.1 to show that an online
rule cannot satisfy any of these strengthened properties even on instances where they are satisfiable.

6. Experiments

To understand the performance of our methods empirically, we run our methods on both synthetic and
real-world datasets. In addition to our proposed rules, we also consider two rules proposed by Lackner
[2020]: Perpetual Quota (aims at granting each voter a satisfaction as close as possible to their “quota”)
and Perpetual Consensus (similar to Sequential Phragmén but strictly enforces an equal distribution of the
load incurred).5 We chose those rules since they performed well in Lackner’s [2020] experiments. Further,

5These rules aim for proportionality, but do not satisfy any of our axioms [Lackner and Maly, 2023].
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we also consider two baselines: Approval Voting (chooses the alternative with the highest approval score
in each round) and Round Robin (in each round j, voter j mod T chooses an approved alternative).

We evaluate our rules on several metrics of voter utility to complement our theoretical guarantees. For
comparability of results, we normalize utility and define a single voter’s utility as the fraction of rounds in
which the voter approves the decision. Using our previous notation, the normalized utility of voter i in a
decision sequence D is U i

D/T . Based on these normalized utilities, we report three metrics:

• Average Utility : We report the average utility of the voters, i.e., the fraction of rounds with an approved
decision for the average voter. This measures the efficiency of the selected outcome, and it measures
the utilitarian social welfare. Approval Voting maximizes this measure by definition.

• Utility of 25th Percentile: We sort the vector of utilities and report its 25th percentile. This measure
is inspired by the idea of egalitarian welfare (which is the utility of the worst-off agent), but in our
experiments, the obtained egalitarian welfare was often very low or even 0. Hence, we report the utility
of the 25th percentile which better distinguishes the rules.

• Gini Coefficient : This metric quantifies the level of inequality in the voter utilities. A lower value
corresponds to a more equal utility distribution (with the lowest possible Gini coefficient of 0 being
obtained in case every voter has the same utility). High Gini coefficients are obtained when a few
voters are happy with many decisions, and the other voters are happy with few decisions. Note that
on its own, a low Gini coefficient need not signify a desirable decision, since it can also be obtained by
a decision that gives every voter the same but very low utility.

We implemented all the rules in Python 3.8, based on existing implementations. For Sequential
Phragmén (a.k.a. Perpetual Phragmén), Perpetual Quota, Perpetual Consensus, Approval Voting, and
Round Robin (a.k.a. Serial Dictatorship), we used the perpetual python package.6 For PAV, we used a
standard integer linear-program (ILP) encoding [Peters and Lackner, 2020], using Gurobi 9. For MES,
our implementation builds upon the pabutools package.7

6.1. Synthetic Data

To compare the performance of the rules, we follow a similar setup to the one used by Lackner [2020]. The
data generation is based sampling locations of voters and alternatives in two-dimensional Euclidean space,
with voters approving nearby alternatives. Because we are particularly interested in group representation,
we use distributions of voter locations that have several clusters.

More precisely, both voters and alternatives are sampled as points in a two-dimensional Euclidean space.
In each round, a fresh set of alternatives is sampled uniformly in the square [−1,−1]× [1, 1] The voter
locations stay fixed across rounds, and for each voter i ∈ N , we sample i’s location independently of other
voters from a bivariate normal distribution N (x∗

i , y
∗
i ) centered at a point (x∗

i , y
∗
i ) with standard deviation

σ = 0.2 (unless stated otherwise). We present results for four distributions of voter locations, which differ
in their choices of points (x∗

i , y
∗
i ) and the size of the groups:

• Restricted : The voters are split into 2 disjoint groups S1 and S2 with 1
3 of voters in S1 and 2

3 of
voters in S2. The locations of voters in S1 are sampled from N (−0.5,−0.5), while the locations of
voters in S2 are sampled from N (0.5, 0.5). We further restrict the voter locations to lie in the square
[−1,−1]× [1, 1], if necessary resampling from the location distributions until this constraint is satisfied.

• Many Groups: The voters are split into 4 disjoint groups concentrated in different areas. The first 3
groups each form 20% of the population while the last group forms 40%. For each group, both x- and
y-coordinates are drawn independently from N (±0.5,±0.5).

• Unbalanced : The voters are split into 2 disjoint groups S1 and S2 with 20% of voters in S1 and 80%
of voters.in S2. The locations of voters in S1 are sampled from N (−0.5,−0.5), and the locations of
voters in S2 are sampled from N (0.5, 0.5). For this distribution, we used standard deviation σ = 0.1.

• Balanced and Nearby : The voters are split into 2 disjoint groups S1 and S2 60% of voters in S1 and
40% of voters.in S2. In this distribution, the groups are quite close to each other in comparison to
other distributions. All the voters of S1 were sampled from N (−0.25, 0) while the voters of S2 were
sampled from N (0.25, 0).

6https://github.com/martinlackner/perpetual
7https://github.com/Grzesiek3713/pabutools
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Figure 6: Performance of the different rules on the Restricted distribution for n = 20 voters, T = 20 rounds, 20
alternatives in each round, with f = 1.5. The length of the bar represents the median across all the trials while
the error bars represent the 25th and 75th percentile with the numeric text after the bar showing the mean value.

Our experiments are parameterized by a factor f ⩾ 1, which determines how many alternatives are
approved by voters. Specifically, voters approve all alternatives whose Euclidean distance is within f
times the distance to their closest alternative.
For each of the distributions mentioned above, we considered the following 4 cases:

• n = 20 voters, T = 20 rounds and each round having 20 alternatives, with f = 1.5. This led to an
average approval set size of 2.11.

• n = 20 voters, T = 50 rounds and each round having 20 alternatives, with f = 1.5. This led to an
average approval set size of 2.12.

• n = 50 voters, T = 50 rounds and each round having 40 alternatives, with f = 1.5. This led to an
average approval set size of 2.2.

• n = 50 voters, T = 50 rounds and each round having 40 alternatives, with f = 3. This led to a larger
approval set size with the average being 7.52.

Each experiment was repeated for 1000 trials. We report our results for the various distributions in
Appendix C.1 (Figures 12, 13, 14 and 15). Each figure contains multiple subfigures to show the plots
for different parameter values. In each subfigure, bar plots are shown for each metric. The length of the
bar represents the median value across all the 1000 trials for the rule while the error bars represent the
25th and 75th percentile, with the numeric text after the bar showing the mean value. As an example, in
Figure 6, we show the results for the Restricted distribution and the first bundle of parameter values.
Across the various distributions, we find some prominent patterns for each metric.

• Overall Satisfaction: In regard to this metric, a clear separation emerges between the voting methods
across all the distributions. Approval Voting demonstrates the highest performance, which is expected
(as it naturally maximizes this objective function over all decision sequences). On the other hand,
Round Robin performs the worst among the rules for all parameter settings and all distributions.
Among the rules aiming for proportional outcomes, we see the following rank order for almost all
parameter settings and distributions: PAV > Sequential Phragmén > MES > Perpetual Quota >
Perpetual Consensus. The differences between adjacent rules in this ordering tend to be small. We
see some exceptions to this ordering for the Unbalanced distribution, where Perpetual Quota does
better than usual, but is still worse than PAV. The advantage of PAV over other rules is particularly
apparent in the Many Groups distributions.

• Gini coefficient : Across distributions, Approval Voting consistently produces the outcomes with the
most inequality between voters, as measured by the Gini coefficient. That means that some voters
are happy with many decisions, and others are happy with few decisions. All other rules produce
outcomes with a more equal distribution of utility. Among the proportional rules, there is no consistent
ranking between rules in their performance on this metric, and their Gini coefficients are often similar.
Under the Balanced and Nearby distribution, however, Perpetual Consensus and Perpetual Quota have
noticeably lower Gini coefficient. Depending on the parameters and distribution, the Round Robin
method performs either slightly worse or comparably to the more sophisticated proportional rules.
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• Bottom 25%: Here, we find that Approval Voting consistently performed poorly, often resulting in
almost no decisions being approved by the bottom 25% of the voters, leading to a score of close to
0 for this metric under the Restricted and the Many Groups distributions. Round Robin performed
better than Approval Voting but still worse than the other rules.

Among those other rules, PAV generally performed the best. However, in the Balanced and Nearby
distribution, Perpetual Quota occasionally outperformed PAV. Both Sequential Phragmén and MES
showed similar performance to Perpetual Quota and Consensus, with Sequential Phragmén having
slightly better results sometimes.

Notably, in the Balanced and Nearby distribution, Perpetual Quota and Consensus consistently
outperformed MES and Sequential Phragmén. This could indicate that these methods perform
particularly well when the voters have similar preferences.

6.2. Political Data

In addition to synthetic data, we evaluated the rules on datasets from U.S. political elections, in particular
from the 2022 General Election. In these elections, voters are asked to elect candidates to various
federal, state, and local political offices (for example, U.S. president, senators, representatives, state
boards, commissioners, judges) as well as to express opinions on yes/no ballot initiatives (for example,
constitutional amendments). In response to heightened public interest in election integrity since 2020,
several jurisdictions (notably most counties in Colorado) have published (anonymized) Cast Vote Records
(CVR) data that show, for each voter, their votes on all these issues simultaneously. This makes them
interesting for our purposes. Notably, in almost all cases, voters may only vote for a single alternative
for each issue (rather than using approval),8 but our rules disagree even on such simple instances, so an
empirical evaluation is interesting. The current voting rule used for these elections is formally equivalent
to what we have called Approval Voting (i.e., in each round select the alternative with the highest vote
count), one of the baseline rules included in our simulations.
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(a) Results for the 2022 General Elections in California.
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(b) Results for the 2022 General Elections in Colorado.

Figure 7: Performance of the different rules on the 2022 General Elections in the state of California and Colorado.
The height of the bar represents the median across all the instances; while the error bars represent the 25th and
75th percentile with the numeric text after the bar showing the mean value.

8There are some exceptions. In particular, where several members needed to be elected to a board, voters are usually
allowed to vote for several candidates (but no more votes than there are open positions). We reinterpreted such issues to
be about the election of a single candidate, and interpreted the votes as forming an approval set. We did this to make
the dataset fit better with our formal setup.
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In the dataset for Colorado, we collected 169 instances from 14 different counties. Each instance
corresponds to all the voters that were issued a particular ballot (usually, one instance per district of the
county, since the candidates and offices differ between districts). On average, these instances contain 42
issues and 2 255 voters. For California, we collected 41 instances from Shasta county with each instance
on average having 32 issues and 1 682 voters. We ignored instances with more than 10 000 voters because
the computation of PAV did not finish in reasonable time.
We show the results of the simulations on this data in Figure 7 with one figure for each of the two

states, using the same plot format that we used for results on synthetic data. For each metric, the bar
chart shows the median value across the instances from the relevant state.

We can see that Approval Voting (i.e., the method that is actually used to determine winners) has a high
Gini coefficient compared to all the other rules. Sequential Phragmén, Perpetual Quota and Consensus
perform the best in terms of the Gini coefficient. Remarkably, the average satisfaction of the proportional
rules is very close to the optimum average satisfaction achieved by Approval Voting. This is particularly
striking for PAV, which achieves an almost optimal overall satisfaction while simultaneously ensuring a
more equal utility distribution as measured by Gini coefficient and bottom 25% satisfaction.

6.3. Learning Preferences from the Moral Machine

In the introduction, we discussed the idea of virtual democracy [Noothigattu et al., 2018, Freedman
et al., 2020, Mohsin et al., 2021], which automates decision making by learning models of preferences of
individual users (or defined demographic groups of users), and using predicted preferences as inputs to
the voting rule. This can be particularly useful when preference elicitation costs are high, or decisions
need to be made in real time. Proportional aggregation rules like ours can be useful in this context to
ensure that each user (or demographic) gets a fair share in the decision making process.
We are particularly interested in whether proportionally aggregating multiple models representing

different demographics can lead to better outcomes than a single learnt model making decisions. We
present preliminary empirical evidence in this section. Following the work of Noothigattu et al. [2018],
and in the spirit of a prototype application, we consider virtual democracy as applied to the moral
machine experiment [Awad et al., 2018]. This experiment is a modern take on ethical “trolley problems”
and involves decisions that a self-driving car might face. Users are asked to make decisions by pairwise
comparisons of instances where a self-driving car must either swerve or stay in the lane, with both choices
leading to injuring a different group of people. These groups of people can be seen as alternatives that can
be described by a structured feature vector.9 Several million responses are available in a public dataset.
Noothigattu et al. [2018] learn a model predicting the preferences of each respondent. However, there

are only 13 pairwise comparisons per respondent, meaning that such individual models have low accuracy.
Instead, we partition the respondents by their country. Kim et al. [2018] show that learning a single model
for respondents from a country leads to reasonable accuracy (perhaps due to cultural similarities).
We limit ourselves to 197 countries for which the dataset contains over 100 samples. We use the

Plackett-Luce (PL) model [Plackett, 1975, Duncan, 1959] which is a random utility model appropriate for
social choice preference learning [Azari Soufiani et al., 2012]. Just like in the approach of Noothigattu
et al. [2018], we learn for each country a vector w that assigns a weight to each feature. Taking the dot
product between w and the feature vector of an alternative gives rise to an estimated latent utility of the
agent (i.e., the country) for the alternative. Informally, by training the PL model, we find a vector w
which captures the behavior of the respondents of the countries, by (with maximum likelihood) assigning
a higher utility to the alternative selected in each pairwise comparison.

To speed up training, for each country we train a model by sampling up to 4000 pairwise comparisons
from respondents of that country. We also train a combined model trained on respondents from all
countries. We will later compare the choices of the combined model with the output of our voting rules
which aggregates the predicted responses of the country models. The combined model is trained by
sampling 100 samples from each country (to ensure balanced representation of all countries in the training
data). The mean accuracy on unseen pairwise comparisons of the 197 country-wise models is 70.06%
on samples from the country and for the single combined model it is 71.10% on global samples; this
performance is similar to results reported by Kim et al. [2018].

9Features include the number of men, women, pregnant women, criminals, children, animals, and other characters, that will
be injured in the scenario, as well as features indicating (1) whether these persons are the passengers of the vehicle or
pedestrians, (2) whether the pedestrians are currently crossing the road despite a red traffic signal, (3) whether it would
be necessary to intervene in the car’s travel path to save the people.
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Figure 8: Performance of the different rules on the Moral Machine Dataset, based on high-disagreement alternatives,
with parameter setting (d): 100 rounds with each round having 200 alternatives and each voter approving the top
2 alternatives.

For evaluation, we consider four different parameter settings (a)-(d). We produce 100 decision rounds
together with alternatives for each round. From this, we generate approval sets by computing the utilities
for each alternative as predicted by the country model, and let the country approve (a) the alternatives
with above-average utility, (b)/(d) the top 2 alternatives, (c) the top 10 alternatives. In each round, we
produce either 50 alternatives ((a)-(c)) or 200 alternatives ((d)), in one of the following ways:

• Random. We create a large pool of unseen alternatives and sample a random subset of these as the
alternatives for each round.

• High-disagreement alternatives. We find that on random alternatives, the country models have high
agreement (i.e., they tend to approve the same alternatives from the sampled set of alternatives),
making the aggregation problem relatively straightforward. Thus, a more interesting case involves
finding alternatives with high disagreement. We quantify disagreement on an alternative as high
variance in the ranks assigned by each model to the alternative. From the set of all alternatives present
in the dataset, we pick the 500 alternatives with the highest variance in ranks. Then in each round we
sample alternatives randomly from this high-disagreement set of 500 alternatives.

We then use our voting rules to compute decision outcomes using the country models as voters. To
compare the voting rules to the performance of the combined model, we pick the alternative assigned the
highest utility by the combined model as its decision for the round.
We present our results in Appendix C.2, and in Figure 8 we show as an example the results with

high-disagreement alternatives and parameter settings (d), chosen to show the largest separations between
rules. For parameter settings with large approval sets (especially (a) but also (c)), the conclusions are less
clear, which we attribute to high overall agreement among different voters.

Looking at Figure 8, it is striking how Approval Voting and the Combined Model attain almost identical
values on each metric, and how these are quite different from the metrics obtained by the proportional
rules. Indeed, in the experiment, Approval Voting and the Combined Model choose the same decision
in 84% of rounds, but both agree with the 5 proportional rules less frequently. (The Combined Model
agrees with proportional rules in 54%–70% of rounds, and Approval Voting agrees in 59%–77% of rounds.)
Notably, the 5 proportional rules all feature a much smaller Gini coefficient (indicating a more equal
distribution of satisfaction across countries) and a higher satisfaction at the 25th percentile. The similar
performance and behavior between Approval Voting and the Combined Model suggests that the Combined
Model exhibits a bias towards plurality and majority opinions. This contradicts a possible hope one might
have had that, because the Combined Model is trained based on identical numbers of samples from each
country, it will “merge” their views roughly proportionally.

The conclusions from Figure 8 also hold for high-disagreement alternatives with parameter setting (b),
and to a lesser extent for (c), where the performance of the proportional rules is more similar to Approval
Voting and the Combined Model. For random (non-high-disagreement) alternatives, we also see the same
separation between proportional and non-proportional methods with respect to the Gini coefficient (but
not 25th percentile satisfaction), when using parameter settings (b) and (d).

We see the results from this small experiment as a potential starting point for a larger research program
that studies how a preference model trained on preferences of diverse agents makes decisions, when
compared to aggregation rules that explicitly take into account each individual’s preferences.
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7. Discussion and Future Work

We have shown that simple polynomial-time voting rules can provide strong proportionality guarantees
in the problem of sequential decision making based on users’ preferences. We hope our work inspires
applications of voting rules in sequential decision making.

Open problems We leave some theoretical open problems for future work, notably whether an online rule
can satisfy EJR or Strong EJR – a negative result may be easier to find in this setting than for multi-winner
voting. Also open is whether a semi-online rule can satisfy Strong EJR. More conceptually, are there are
stronger versions of EJR for this setting that are still satisfiable? Can the concept of proportionality
degree [Skowron, 2021] be adapted to our setting? What about FJR (Full Justified Representation [Peters
et al., 2021]) or the core? Can other methods from multi-winner voting also be adapted to our setting,
like the Greedy Cohesive Rule [Peters et al., 2021] or the Greedy Justified Candidate Rule [Brill and
Peters, 2023]?10

Extensions Our model can be extended to make it compatible with more real-world applications.
Examples include allowing voters to specify utilities or to rank alternatives instead of approvals [Peters
et al., 2021], to allow weighting issues by importance [Page et al., 2020], and to allow for dependencies
between issues [Brill et al., 2023b]. Also, one could add a budget constraint with alternatives having costs,
making the model applicable to participatory budgeting [Peters et al., 2021].

Strategic issues Peters [2018] proved an impossibility theorem showing that no proportional multi-
winner voting rule can be strategyproof, which means that in the worst case, voters may be able to get
a better outcome by misrepresenting their preferences. A special case of multi-winner approval voting
is “approval-based apportionment” [Brill et al., 2022, Airiau et al., 2023], and as we have mentioned
before, this special case is also a special case of our model (when the set of alternatives and voter
preferences are the same in each round). Since the impossibility theorem holds even for this special case
[Delemazure et al., 2023, Lackner et al., 2023], it follows that no proportional rule in our setting can
be strategyproof. Strategyproofness has also been considered in multi-issue decision making without
proportionality objectives [Amanatidis et al., 2015, Barrot et al., 2017].
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Nathanaël Barrot and Jérôme Lang. Conditional and sequential approval voting on combinatorial domains.
In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI), pages
88–94, 2016. [→ p. 4]
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A. More Axioms from the Literature

In this section, we consider other proportionality axioms that have been introduced in prior work by
Lackner and Maly [2023], and discuss implication relationships among them. We also discuss Pareto
efficiency.

A.1. Quota for Closed Groups

Lackner and Maly [2023] proposed some relatively weak notions of proportionality in the perpetual voting
framework. One of their axioms applies only to simple profiles (where the set of alternatives and the
approval sets are the same in each round, with every voter approving just a single alternative). This
“simple proportionality” is easily seen to be implied by all the other proportionality axioms we consider.
Thus, we focus on their axioms based on profiles in which there are “closed groups”: groups of voters
that submit identical approval sets in every round and such that any voter outside the group approves a
disjoint set of alternatives.

Definition A.1 (Closed Group). A group S ⊆ N is closed if for every round j ∈ {1, . . . , T}, it holds that
Ai

j = Ai′

j for all i, i′ ∈ S and that Ai
j ∩Ai′

j = ∅ for all i ∈ S and i′ ∈ N \ S.
For example, in Figure 5, the groups {1} and {2, 3} are closed. Lackner and Maly [2023] defined axioms

which bound the number of rounds in which the decision should be one of the alternatives approved by a
closed group.

Definition A.2 (Perpetual Lower Quota for Closed Groups). A decision sequence D = (d1, . . . , dT )
satisfies perpetual lower quota for closed groups11 if, for every k, 1 ⩽ k ⩽ T , writing D:k = (d1, . . . , dk)
for the prefix of D of length k, it holds for every voter i ∈ N who is part of a closed group S that
U i
D:k

⩾ ⌊k · |S|
n ⌋.

Lackner and Maly [2023] also proposed perpetual upper quota for closed groups, which is defined in the
same way, except that the inequality at the end is “U i

D:k
⩽ ⌈k · |S|

n ⌉”. Because this is a different kind of
property (avoiding over-representation rather than guaranteeing representation), and because none of our
rules satisfy it, we will not study it in more detail.
Observe that perpetual lower quota for closed groups contains a requirement for all prefixes of the

decision sequence D. This makes the axiom “perpetual”. This is natural and desirable if the decision-
making process is online. However, in an offline setting, it is less natural, and so we can drop the
perpetuality and define a weaker axiom that is more broadly applicable.

Definition A.3 (Lower Quota for Closed Groups). A decision sequence D satisfies lower quota for closed
groups if for every closed group S, we have for every voter i ∈ S that U i

D ⩾ ⌊T · |S|/n⌋.

For an example, refer to Figure 5 where lower quota for closed groups would demand that each voter in
S = {1} should approve at least ⌊6 · 1/3⌋ = 2 decisions of the outcome, while each voter in S′ = {2, 3}
should approve at least ⌊6 · 2/3⌋ = 4 decisions of the outcome.

We now show that lower quota for closed groups is implied by one of our previous axioms.

Theorem A.4. PJR implies lower quota for closed groups.

Proof. Let D be a decision sequence that satisfies PJR. Let S ⊆ N be a closed group. Write ℓ = ⌊T · |S|/n⌋.
Then |S| = (T · |S|/n) · nT ⩾ ℓ · nT , and S agrees in every round since it is a closed group. Thus, PJR
implies that there are ℓ rounds where at least one member of S approves the decision of D. But because
S is closed, this means that in those ℓ rounds, every member of S approves the decision. Hence D satisfies
lower quota for closed groups.

A.2. Priceability

Peters and Skowron [2020] introduced an axiom called priceabilty to ensure proportionality and (approxi-
mately) equal influence among voters in the setting of multi-winner voting. The essence of priceability
lies in assigning each voter an equal budget of virtual money, which they can only spend on alternatives

11Lackner and Maly [2023] call this axiom just “lower quota for closed groups”. We added the word “perpetual” to the
name since we will define below a weaker version suitable for the offline setting.
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they approve. Thinking of the virtual money as voting power, the axiom ensures that each voter has
approximately equal influence over the outcome. Lackner and Maly [2023] extended priceability to the
setting of perpetual voting and showed that Sequential Phragmén (which they call Perpetual Phragmén)
satisfies perpetual priceability. We state their axiom below and discuss its relation to our axioms.

Priceability is defined based on the idea that it costs 1 unit of money to pay for the decision in 1 round.
Then a “price system” is used to split this cost between voters that approve this decision.

Definition A.5 (Price System). Given a decision sequence D = (d1, . . . , dk) of length k,12 we say that D
is supported by the price system (B, {pj}j⩽k) where the real number B ⩾ 0 is the budget that each voter
starts with and for each j ∈ {1, . . . , k}, pj : N ×Cj → [0, 1] is a payment function, such that the following
conditions hold:

(P1) pj(i, c) = 0 if c /∈ Ai
j , i.e., no voter pays for an alternative that she does not approve.

(P2)
∑k

j=1

∑
c∈Cj

pj(i, c) ⩽ B, i.e., voters cannot spend more than their budget.

(P3)
∑

i∈N pj(i, dj) = 1 for j ∈ {1, . . . , k}, i.e., each decision of D gets a total payment of 1.

(P4)
∑

i∈N pj(i, d) = 0 for j ∈ {1, . . . , k} and d ̸= dj , i.e., decisions not included in D do not receive
any payments.

To define priceability for perpetual voting, Lackner and Maly [2023] propose the concept of a minimal
price system which intuitively requires that no money is wasted at any time step.

Definition A.6 (Minimal Price System [Lackner and Maly, 2023]). Consider a decision sequence
D = (d1, . . . , dk) of length k supported by a price system (B, {pj}j⩽k) satisfying conditions (P1)-(P4) of
Definition A.5. If k = 0 (so that D = ()), we say that the price system is minimal if B = 0. If k ⩾ 1, we
say that the price system is minimal if it satisfies the following two conditions:

(P5) there exists a minimal price system
(
B∗, {p∗j}j⩽k−1

)
that supports (d1, . . . , dk−1)

(P6) there are no B′, d′k and p′k such that B∗ ⩽ B′ < B and
(
B′, {pj}j⩽k−1 ∪ {p′k}

)
is a price system

supporting (d1, . . . , dk−1, d
′
k).

We can now define perpetual priceability.

Definition A.7 (Perpetual Priceability [Lackner and Maly, 2023]). A decision sequence D satisfies
perpetual priceability if there exists a minimal price system that supports D.

With the above definition in place, we will now show that perpetual priceability implies PJR. (Similarly,
in multi-winner voting, priceability implies PJR [Peters and Skowron, 2020].) The proof below follows
the same style as a proof by Lackner and Maly [2023] that perpetual priceability implies perpetual lower
quota for closed groups (Definition A.2).

Theorem A.8. For decision sequences of length T , Perpetual Priceability implies PJR.

Proof. Let D = (d1, d2, . . . , dT ) be a decision sequence of length T that satisfies perpetual priceability.
Assume for a contradiction that D violates PJR. Thus, there is ℓ ∈ N and a group S ⊆ N which agrees in
all the T rounds, has size |S| = s ⩾ ℓ n

T , but there are fewer than ℓ rounds in which at least one member
of S approves the decision in D.
Let

(
B, {pj}j⩽T

)
be a minimal price system that supports D. Note that B ⩾ T/n, as otherwise it

would not be possible to pay for T decisions. Assume first that B = T/n. Then no budget is left after
round T , and thus every voter has spent their entire budget B. Thus, the total payment of voters in S is
|S| · Tn ⩾ ℓ. Since each decision is made using 1 unit, in total S must have paid for the decision in at least
ℓ rounds. As a voter only pays for an alternative they approve, it follows that in each of those ℓ rounds,
at least one voter in S approves the decision. Hence, PJR is satisfied.

So assume B > T
n . Because at most ℓ− 1 decisions in D are approved by at least one member of S, the

members of S have spent at most ℓ− 1 units until after round T . Since they start out with a total budget
of sB, we see that the voters in S have a remaining budget of at least

sB − (ℓ− 1) ⩾ sB − (sT
n − 1) > sT

n − (sT
n − 1) ⩾ 1 (2)

12We use the variable k to denote the length instead of T since the definition of perpetual priceability references decision
sequences that are shorter than the full time horizon T .
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Hence there is an ε > 0 such that the remaining budget of the voters in S is 1 + ε. By the definition of

minimal price systems, for every 1 ⩽ r ⩽ T , there is a price system (Br−1, {p(r−1)
j }j⩽r−1) that witnesses

the minimality of the price system (Br, {p(r)j }j⩽r), where (BT , {p(T )
j }j⩽T ) = (B, {pj}j⩽T ).

We claim that B1 < B. Observe that in the first round B1 ⩽ 1/s must hold, as with a budget of 1/s
the voters in S can together afford one of the alternatives that they jointly approve; thus B1 > 1/s would
contradict minimality in round 1. Moreover, we can assume that ℓ ⩾ 1 as otherwise PJR is trivially
satisfied. Thus s ⩾ n

T , and hence n/s ⩽ T . Also, by assumption, B > T/n. Putting all of this together,
we get

B1 ⩽ 1
s = 1

n ·
n
s ⩽ T

n < B.

Now let r∗ be the largest index r for which Br < B (recalling that at the end, BT = B). We claim that
there is a B′ with Br∗ ⩽ B′ < Br∗+1 = B such that there is an alternative a′ ∈ Cr∗+1 and p′r∗+1 such

that (B′, {p(r
∗)

j }j⩽r∗ ∪ {p′r∗+1}) is a price system supporting the decision sequence (d1, . . . , dr∗ , a
′). This

would be a contradiction to the minimality of (Br∗+1, {p(r
∗+1)

j }j⩽r∗+1).
Let a′ be an alternative approved by everyone in S in round r∗ + 1. Furthermore, let

B′ = max(B − ε/s,Br∗).

Observe that Br∗ ⩽ B′ < B. Now, we can define p′r∗+1 such that
∑

i∈S p′r∗+1(i, a
′) = 1 and p′r∗+1(i

′, c) = 0
whenever i′ /∈ S or c ̸= a′. This is possible, because the voters in S have at least a budget of 1 in round
r∗ + 1 (from (2)). Hence, this is a price system that supports (d1, . . . , dT−1, a

′) which contradicts the
minimality of (B, {pj}j⩽T ).

As perpetual priceability implies PJR, one may wonder whether it implies stronger axioms. Since
Sequential Phragmén satisfies perpetual priceability [Lackner and Maly, 2023] but fails EJR (Theorem 4.2),
it follows that perpetual priceability does not imply EJR. The next result shows that it does not imply
Strong PJR either.

Theorem A.9. Perpetual Priceability does not imply Strong PJR.

Round 1 2 3 4

Voter 1 { a } { g } { g } { g }
Voter 2 { b } { g } { g } { g }
Voter 3 { c } { g } { g } { g }
Voter 4 { d } { h } { h } { h }
Voter 5 { e } { h } { h } { h }
Voter 6 { f } { h } { h } { h }

Figure 9: Example instance where a rule
may produce a perpetually priceable out-
come which may not satisfy Strong JR.

Proof. Consider the decision instance shown in Figure 9 with
T = 4 rounds and N = {v1, . . . , v6} with each voter having a
single-alternative approval set in each round. Consider the decision
sequence D = ( a , h , h , h ). We show that it satisfies perpetual
priceability but fails Strong PJR.
In the first round, everyone has a disjoint approval set, so no

matter which alternative is chosen in this round, one voter needs to
pay its entire cost. Thus, any price system supporting the decision
in the first round must have B1 = 1. Setting p1(v1, a ) = 1 and
p1(i, c) = 0 for all i ̸= v1 and all c ̸= a , we obtain a minimal price
system (B1, p1) supporting D′ = ( a ).

Thus, everyone receives the budget of 1 unit after round 1 and
only v1 has spent all of its money while other voters have their
entire budget remaining. In round 2, h can be bought by each of its supporters paying 1

3 unit as
3 · 13 = p = 1. Similarly, h can be brought in rounds 3 and 4 as well without requiring to increase the
budget of anyone. This defines payment functions p2, p3, and p4 for those rounds, and setting B = 1, we
obtain a minimal price system (B, {pj}j⩽4) supporting D. Thus, D satisfies perpetual priceability.

However, D fails Strong PJR: Consider the coalition S = {v2, v3} which agrees in the last k = 3 rounds.
For ℓ = 1, we have |S| ⩾ ℓnk = 6

3 = 2. Thus, Strong PJR requires that at least 1 decision in the outcome
must be approved by S. However, no one in S approves either a or h , and thus D fails Strong PJR.
Hence, perpetual priceability does not imply Strong PJR.

Remark A.10. In the example in Theorem A.9, we used a requirement of ℓ = 1 rounds, so the proof of
Theorem A.9 shows that perpetual priceability does not even imply Strong JR.

Note that perpetual priceability implies Strong PJR for coalitions that agree “initially”, that is they
agree in an initial set of rounds R∗ = {1, . . . , k} (since by definition of perpetual priceability, the decision
sequence restricted to the first k decisions is itself perpetually priceable, and therefore this restricted
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sequence satisfies PJR, which is enough to imply Strong PJR with initial agreement). Note that the
example in Theorem A.9 does not feature initial agreement.
In future work, it would be interesting to define a notion of priceability that applies to our setting

without an implicit assumption of being online (that is, without necessarily requiring that all prefixes of
the decision sequence are themselves priceable).

A.3. Pareto Efficiency

Pareto efficiency forbids that we use our available resources suboptimally. Formally, an outcome is Pareto
efficient when it is impossible to change the outcome so as to make some individual better off without
making anyone else worse off.

Definition A.11 (Pareto Efficiency). A decision sequence D is Pareto efficient if there does not exist
another decision sequence D′ ∈ C1 × C2 × · · · × CT such that for all i ∈ N , U i

D′ ⩾ U i
D and there is some

voter i ∈ N such that U i
D′ > U i

D.

Unlike our other axioms, Pareto efficiency is not about proportionality (since a Pareto efficient outcome
can be very non-proportional). However, it is interesting to see if any of our rules satisfy Pareto efficiency,
and therefore combine an efficiency guarantee with proportionality. Since it maximizes a function of voter
utilities, PAV satisfies Pareto efficiency, while also satisfying our strongest proportionality notions. On
the other hand, MES and Sequential Phragmén fail Pareto efficiency. This makes PAV a compelling rule
for multi-issue collective decision making, when an NP-hard offline method is acceptable. (The outcome
of Local-Search PAV need not be Pareto-efficient.)

Theorem A.12. The decision sequence produced by PAV is Pareto efficient.

Proof. Suppose for a contradiction that the decision sequence D produced by PAV is not Pareto efficient.
Then there exists another decision sequence say D′ such that for all i ∈ N , U i

D′ ⩾ U i
D and there is some

voter v ∈ N such that Uv
D′ > Uv

D. Thus, the PAV-score of D′ is

PAV-score(D′) =
∑
i∈N

(
1 + 1

2 + 1
3 + · · ·+ 1

Ui
D′

)
> PAV-score(D)

which contradicts that PAV selects the decision sequence which maximizes the PAV-score.

Theorem A.13. The decision sequence produced by MES and Sequential Phragmén may not be Pareto
efficient.

Rounds 1 - 2 3 - 7

Voter 1 { a } { c }
Voter 2 { a } { d }
Voters 3, 4, 5, 6, 7 { b } { b }

Figure 10: Example instance where both
MES and Sequential Phragmén produce
Pareto inefficient outcomes.

Proof. Figure 10 shows an example where both MES and Sequen-
tial Phragmén fail Pareto efficiency, with T = 7 rounds and n = 7
voters. Here, voters 1 and 2 agree in the first 2 rounds on a , but
neither of them agrees with anyone else in other rounds. Mean-
while, voters 3, 4, 5, 6, 7 agree in all rounds on b . Both Sequential
Phragmén and MES would produce D = ( b , b , b , b , b , c , d )
(or breaking ties differently, with d in round 6 and c in round 7)
but the decision sequence D′ = ( a , a , b , b , b , b , b ) Pareto
dominates D as U1

D′ = 2 > U1
D = 1 while U i

D′ ⩾ U i
D for all i ∈ N .

Intuitively, it is better to satisfy voters 1 and 2 using the efficient choice a which is available in the first
two rounds, rather than using the less efficient alternatives c and d . But due to their (semi-)online
nature, neither MES nor Sequential Phragmén can know that an alternative as good as a will not be
available in later rounds.

In the example in the proof of Theorem A.13, Offline MES can select the same Pareto inefficient decision
sequence, so it also fails Pareto efficiency.

B. Omitted Proofs from the Main Text

B.1. More Details About MES Failing Strong PJR and Strong EJR

In Theorem 4.4, we showed that MES fails Strong PJR. Notably, in our counterexample, MES terminates
prematurely. Here we show that, in a sense, this is the cause for the Strong PJR failure: We show that if
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MES does not terminate prematurely (i.e., it outputs decisions for all the T rounds), its output decision
sequence D satisfies Strong PJR. (However note that the proof of Theorem 4.4 showed an instance where
MES fails Strong PJR no matter what completion strategy is used.)

Theorem B.1. If MES outputs a decision sequence D which contains a decision for all rounds (without
terminating prematurely), then for all S ⊆ N and ℓ ∈ N with |S| ⩾ ℓ n

T , there are at least ℓ rounds in
which at least one member of S approves the decision of D (no matter in how many rounds S agrees).
Thus, D satisfies Strong PJR.

Proof. Let ℓ ∈ N and let S ⊆ N be a group of voters with |S| ⩾ ℓ n
T . Recall that MES initially gives each

voter a budget of 1 while each round’s decision has a price of p = n
T . As MES produced a decision for all

rounds, in total p · T = n amount was spent. This implies that every voter’s budget of 1 is used in full.
Thus, the voters in S paid a total amount of |S| during the execution of MES. Recall that voters only pay
when they approve a round’s decision. Thus, the number of rounds in which the decision is approved by
at least 1 voters in S must be at least |S|/p = |S| · Tn ⩾ ℓ rounds, as desired.

We can ask further if MES satisfies even Strong EJR in cases where it does not terminate prematurely;
however this is not the case.

Theorem B.2. MES can fail Strong EJR even on instances where it outputs a decision for all rounds.

Rounds 1 - 10 11 - 16

Voter 1 { a } { c }
Voter 2 { a } { d }
Voter 3 { a } { e }
Voters 4, 5, 6, 7, 8 { b } { b }

Figure 11: Example instance where MES does
not terminate prematurely yet fails Strong EJR.

Proof. Consider the instance shown in Figure 11 which is
adapted from the instance shown in Figure 10 where MES
(and Sequential Phragmén) do not produce Pareto-efficient
outcomes. We have T = 16 rounds and n = 8 voters. The
group of voters S1 = {1, 2, 3} agrees in the first 10 rounds
(jointly approving a ) while the group S2 = {4, 5, 6, 7, 8}
agrees in all rounds (approving b ). The budget of each
voter i is bi = 1 unit while the price of each round is
p = n

T = 8
16 = 1

2 = 0.5 units.
In round 1, a is ρ-affordable for ρ = 1

6 whereas b is
ρ-affordable for ρ = 1

10 . Thus, b is selected in round 1. The remaining budget of voters in S2 is each set
to bi − ρ = 1− 1

10 = 9
10 . By the same calculation, it can be seen that b is selected in every round until

round 10, after which every voter in S2 has exhausted their budget.
Beginning in round 11, only voters in S1 have budget remaining. However, the voters 1, 2 and 3 do

not agree in these remaining rounds. Further, every alternative apart from b is approved by only one
voter, so its supporter will have to pay the full cost of p = 0.5 if it is selected. Thus, across the rounds
11-16, each of the 3 voters in S1 will get to select the outcome of 2 of the rounds (with the exact sequence
depending on how ties are broken).
Thus, the final decision sequence D will have b for the first 10 rounds and c , d , e each appearing

twice in the last 6 rounds (in some order). Now notice that S1 agrees in the first k = 10 rounds, so with
ℓ = 3, since |S1| ⩾ ℓ · nk = 3 · 8

10 , Strong EJR requires that some voter in S1 approves decisions of at least
ℓ = 3 rounds. However, each voter in S1 approves exactly 2 decisions in D, violating Strong EJR.

B.2. Impossibility of Stronger Guarantees: More Details

Here we give proofs and additional results related to the discussion in Section 5.

Theorem 5.1. Let ε > 0. Choose some k > ⌈ 1−ε
ε ⌉ and some T > k. Then for sufficiently large n, there

exists an instance with n voters and time horizon T such that for every decision sequence D, there is a
coalition S ⊆ N that agrees in k rounds and has size |S| ⩾ (1− ε) · nk , yet none of the voters in S approve
any of the decisions of D.

Proof. Pick n ∈ N such that n ⩾ k(T+1)
εk+ε−1 . Note for later that (because εk + ε− 1 > 0, since k > ⌈ 1−ε

ε ⌉),
we have

n(εk + ε− 1) ⩾ k(T + 1).

Adding nk to both sides, and rearranging,

nk ⩾ n · (1− ε) · k + n(1− ε) + k(T + 1).
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Finally, dividing by k, we get

n ⩾ n(1− ε) + n(1−ε)
k + T + 1. (3)

We now construct an instance with n voters and time horizon T . Write s = ⌈(1− ε) · nk ⌉. In the first
k rounds, there are

(
n
s

)
many alternatives, one for each coalition S ⊆ N with |S| = s, that is approved

by exactly the voters in S. In the remaining T − k rounds, there are n alternatives, each approved by a
distinct voter (thus each voter has a singleton approval set in those rounds, and no two voters approve
the same alternative).
Let D be any decision sequence. We first compute how many voters approve at least 1 decision in

D. In the first k rounds, the decisions in D can satisfy at most k · s different voters. In the remaining
T − k rounds, at most 1 voter can be satisfied per round, so at most T − k in total. Hence the number of
satisfied voters is at most

k · s+ (T − k) = k · ⌈(1− ε) · nk ⌉+ (T − k) ⩽ n · (1− ε) + k + (T − k) = n · (1− ε) + T.

Thus, the number of voters who approve none of the decisions in D is at least

n− (n · (1− ε) + T )
(3)

⩾ n(1−ε)
k + 1 ⩾ s.

Take any set S ⊆ N of exactly s voters who approve none of the decisions in D. By construction of the
instance, they agree in the first k rounds, and |S| = s = ⌈(1 − ε) · nk ⌉. Thus, S satisfies the conditions
promised in the theorem statement.

In Corollary 5.3, we showed that a property we called Multi-Winner PJR need not exist – this property
requires that a group of voters who agree in ℓ rounds and has at least ℓ n

T members should approve at least
ℓ decisions. Following Do et al. [2022], we now consider two relaxations of this axiom which introduce
multiplicative approximations by a factor α. We show that for each constant 0 < α < 1, there are instances
where even this relaxed version is not satisfiable.

The first relaxation requires a group that the group approves only ⌊α · ℓ⌋ decisions instead of ℓ decisions.

Corollary B.3 (α-ℓ-Agreement PJR need not exist). Let 0 < α < 1. There exists an instance where no
decision sequence D satisfies “α-ℓ-Agreement PJR”, defined to require that for every ℓ ∈ N and every
group of voters S ⊆ N that agrees in at least ℓ rounds and that has size |S| ⩾ ℓ · nT , there are at least
⌊α · ℓ⌋ rounds j ∈ R with dj ∈

⋃
i∈S Ai

j.

Proof. Invoke Theorem 5.1 with ε = 0.5, k = ⌈ 1α⌉, and T = ⌈ 8
α2 ⌉ to obtain an instance.

Assume that D is a decision sequence satisfying α-ℓ-Agreement PJR. The theorem says that there exists
a group S which agrees in k rounds and has size |S| ⩾ 0.5 · nk and such that none of the decisions in D are
approved by any member of S.
Write ℓ = k. Note that S agrees in ℓ rounds and (using the fact that ⌈x⌉ ⩽ 2x for all x > 1) that

|S| ⩾ 0.5 · n
k
= 0.5 · n

⌈1/α⌉
⩾ 0.5 · n

2/α
=

1

4
· α

2

α
· n =

2

α
· n

8/α2
⩾ ℓ · n

T
.

Hence α-ℓ-Agreement PJR requires that in at least ⌊α · ℓ⌋ = ⌊α · ⌈ 1α⌉⌋ ⩾ ⌊α ·
1
α⌋ = 1 rounds, at least one

member of S approves the decision of D, contradiction.

The second relaxation requires that the coalition agrees in ℓ/α rules to be guaranteed to approve ℓ
decisions.

Corollary B.4 (ℓ/α-Agreement-PJR need not exist). Let 0 < α < 1. There exists an instance where no
decision sequence D satisfies “ ℓ/α-Agreement-PJR”, defined to require that for every ℓ ∈ N and every
group of voters S ⊆ N that agrees in at least ℓ/α rounds and that has size |S| ⩾ ℓ · nT , there are at least ℓ
rounds j with dj ∈

⋃
i∈S Ai

j.

Proof. Invoke Theorem 5.1 with ε = 0.5, k = ⌈ 1α⌉, and T = ⌈ 4α⌉ to obtain an instance.
Assume that D is a decision sequence satisfying ℓ/α-Agreement-PJR. The theorem says that there

exists a group S which agrees in k rounds and has size |S| ⩾ 0.5 · nk and such that none of the decisions in
D are approved by any member of S.
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Write ℓ = 1. Note that S agrees in k = ⌈ 1α⌉ ⩾
ℓ
α rounds and that

|S| ⩾ 0.5 · n
k
⩾ 0.5 · n

2/α
= 0.25 · α · n =

n

4/α
⩾ ℓ · n

T
.

Hence ℓ/α-Agreement PJR requires that in at least ℓ = 1 rounds, at least one member of S approves the
decision of D, contradiction.

We have seen several axioms that cannot always be satisfied. However, we could hope to find rules
that satisfy these axioms whenever they are run on an instance where there exists a decision sequence
satisfying this axiom. While there are certainly artificial offline rules doing this (e.g., the rule that outputs
an arbitrary sequence satisfying the axiom should one exists, and otherwise outputs the PAV sequence), it
is not clear if there are natural such rules.

Online or semi-online rules, however, provably cannot satisfy such a property, as one can see by adapting
the counterexample construction of Theorem 5.1: The first T − 1 rounds remain exactly the same as in
that construction. We observe the decisions made by the online rule in these rules. In the last round, take
s+ 1 voters who do not approve any of the decisions made thus far, and have each of them approve a
distinct alternative (like in the original construction). For the remaining n− (s+ 1) voters, introduce an
alternative c that they all approve. No matter which alternative the rule chooses in round T , there remain
s voters who do not approve any decision, leading to a violation. However, a violation could have been
avoided by choosing in round 1 an alternative commonly approved by s of the s+ 1 voters, and choosing
c in round T . Thus, we have arrived at a situation where a violation-free decision sequence exists exists
but the offline rule cannot find it. This kind of construction works for all the axiom variants we have
considered in this section.

B.3. Can Online Rules Satisfy EJR?

We have seen that the online rule Sequential Phragmén fails EJR, while the semi-online MES satisfies
EJR. Is it possible for an online rule to satisfy EJR? While we do not know the answer to this question,13

we show that any online rule that satisfies EJR for sequential decision making can be translated into a
multi-winner voting rule that satisfies EJR and committee monotonicity. As Lackner and Skowron [2023,
Sec. 7.1] write, a “main open question is whether there exist [approval-based multi-winner] rules that
satisfy EJR and committee monotonicity”. Thus, we leave finding an online rule that satisfies EJR as a
challenging problem for future work.

In the remainder of this section, we describe the way in which an online decision rule can be used as a
multi-winner voting rule. To do so, we must first give basic definitions about the latter topic.

Definition B.5 (Multi-winner Voting Rule). Given a set of voters N , a set of alternatives C, a profile of
approval sets A = (Ai)i∈N (with Ai ⊆ C for all i ∈ N), and a desired committee size k, a multi-winner
voting rule f outputs a committee f(N,C,A, k) = W ⊆ C with |W | = k.

Intuitively, a multi-winner voting rule is said to be committee monotonic if it selects the winning
committee for size k by first computing the winning committee for size k − 1, and then adding a kth
alternative. Thus, when an alternative is a member of the winning committee, it can never become a
losing alternative when the committee size k is increased.

Definition B.6 (Committee Monotonicity). A multi-winner voting rule f satisfies committee monotonicity
if for all N , A, C, and k ⩾ 1, we have f(N,C,A, k − 1) ⊂ f(N,C,A, k).

Our EJR axiom is inspired by the Extended Justified Representation axiom originally proposed for the
multi-winner voting context by Aziz et al. [2017].

Definition B.7 (Multi-Winner EJR). Let k be the desired committee size. A committee W satisfies
Multi-Winner EJR if for every ℓ ∈ N, for every group of voters S ⊆ N of size |S| ⩾ ℓ · nk with |

⋂
i∈S Ai| ⩾ ℓ,

there is at least one voter i ∈ S with |W ∩Ai| ⩾ ℓ.

We can now formally state our reduction.

13In the special case where the set of available alternatives and the approval sets are the same across rounds, a known online
method satisfies EJR [Brill et al., 2022]. Sequential Phragmén fails EJR even in this special case.
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Theorem B.8. An online decision rule that satisfies EJR in sequential decision making induces a
multi-winner voting rule that simultaneously satisfies Multi-Winner EJR and committee monotonicity.

Proof. Let f be an online decision rule that satisfies EJR. We will derive a multi-winner voting rule by
describing a procedure that, given a profile of approval sets, selects alternatives in some order one-by-one
until all alternatives have been selected. Let us label the alternatives in order of selection as d1, . . . , dm.
To obtain a committee of size k, we will take W = {d1, . . . , dk}. By construction, such a method must be
committee monotonic.
So let N be a set of voters, C be a set of alternatives, and A = (Ai)i∈N be a profile of approval sets

over C. We use our online rule f in the following adaptively constructed sequence of T = |C| rounds. In
round 1, the set of available alternatives is C1 = C, and the approval sets are Ai

1 = Ai for every i ∈ N .
We apply f to this round and thereby obtain d1, the first selected alternative.

Thereafter, in round j = 2, . . . ,m, we have already obtained a sequence of decisions d1, . . . , dj−1 which
we will assume inductively are pairwise distinct. In round j ∈ R, we take the set of available alternatives
to be Cj = C \ {d1, . . . , dj−1}. Further, we take the approval sets to be Ai

j = Ai ∩ Cj for all i ∈ N .
Then we apply our rule f to obtain the next decision dj , which by choice of Cj is distinct from all prior
decisions.
To finish, we need to prove that the multi-winner voting rule we have defined satisfies Multi-Winner

EJR. Let k be a desired committee size, and let W = {d1, . . . , dk}. Let ℓ ∈ N and suppose that S ⊆ N is
a group of voters with |S| ⩾ ℓ · nk and |

⋂
i∈S Ai| ⩾ ℓ. Assume for a contradiction that every member of S

approves at most ℓ− 1 alternatives in W . Then there must exist an alternative a that all members of S
approve, but that is not a winner: a ∈

⋂
i∈S Ai \W . Now consider the decision instance given by the first

k rounds constructed above (thus, having time horizon T = k). For that decision instance, note that S
forms a group of voters that agrees in every round (because a ∈ Cj for all j = 1, . . . , k). Also |S| ⩾ ℓ · nT .
Hence, because f satisfies EJR, there is a voter i ∈ S who approves at least ℓ of the decisions made by f
on this decision instance, a contradiction.
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C. Full Results from Experiments

C.1. Synthetic Data

C.1.1. Restricted distribution

Figure 12: Performance of the different rules on the Restricted distribution for various parameter values.
The length of the bar represents the median across all the trials while the error bars represent the 25th
and 75th percentile with the numeric text after the bar showing the mean value.
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(a) Results for n = 20 voters, T = 20 rounds, 20 alternatives in each round, with f = 1.5.
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(b) Results for n = 20 voters, T = 50 rounds, 20 alternatives in each round, with f = 1.5.
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(c) Results for n = 50 voters, T = 50 rounds, 40 alternatives in each round, with f = 1.5.
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(d) Results for n = 50 voters, T = 50 rounds, 40 alternatives in each round, with f = 3.
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C.1.2. Many Groups distribution

Figure 13: Performance of the different rules on the Many Groups distribution for various parameter values.
The length of the bar represents the median across all the trials while the error bars represent the 25th
and 75th percentile with the numeric text after the bar showing the mean value.
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(a) Results for n = 20 voters, T = 20 rounds, 20 alternatives in each round, with f = 1.5.
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(b) Results for n = 20 voters, T = 50 rounds, 20 alternatives in each round, with f = 1.5.
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(c) Results for n = 50 voters, T = 50 rounds, 40 alternatives in each round, with f = 1.5.
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(d) Results for n = 50 voters, T = 50 rounds, 40 alternatives in each round, with f = 3.
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C.1.3. Unbalanced distribution

Figure 14: Performance of the different rules on the Unbalanced distribution for various parameter values.
The length of the bar represents the median across all the trials while the error bars represent the 25th
and 75th percentile with the numeric text after the bar showing the mean value.
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(a) Results for n = 20 voters, T = 20 rounds, 20 alternatives in each round, with f = 1.5.
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(b) Results for n = 20 voters, T = 50 rounds, 20 alternatives in each round, with f = 1.5.
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(c) Results for n = 50 voters, T = 50 rounds, 40 alternatives in each round, with f = 1.5.
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(d) Results for n = 50 voters, T = 50 rounds, 40 alternatives in each round, with f = 3.
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C.1.4. Balanced and Nearby distribution

Figure 15: Performance of the different rules on the Balanced and Nearby distribution for various parameter
values. The length of the bar represents the median across all the trials while the error bars represent the
25th and 75th percentile with the numeric text after the bar showing the mean value.
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(a) Results for n = 20 voters, T = 20 rounds, 20 alternatives in each round, with f = 1.5.
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(b) Results for n = 20 voters, T = 50 rounds, 20 alternatives in each round, with f = 1.5.
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(c) Results for n = 50 voters, T = 50 rounds, 40 alternatives in each round, with f = 1.5.
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(d) Results for n = 50 voters, T = 50 rounds, 40 alternatives in each round, with f = 3.
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C.2. Learning Preferences from the Moral Machine

C.2.1. Random Alternatives

Figure 16: Performance of the different rules on the Moral Machine Dataset based on random alternatives.
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(a) 100 rounds with each round having 50 alternatives and each voter approving alternative having more than
average utility.
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(b) 100 rounds with each round having 50 alternatives and each voter approving top 2 alternatives.
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(c) 100 rounds with each round having 50 alternatives and each voter approving top 10 alternatives.
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(d) 100 rounds with each round having 200 alternatives and each voter approving top 2 alternatives.
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C.2.2. High-disagreement Alternatives

Figure 17: Performance of the different rules on the Moral Machine Dataset, based on high-disagreement
alternatives.
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(a) 100 rounds with each round having 50 alternatives and each voter approving alternative having more than
average utility.
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(b) 100 rounds with each round having 50 alternatives and each voter approving top 2 alternatives.
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(c) 100 rounds with each round having 50 alternatives and each voter approving top 10 alternatives.
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(d) 100 rounds with each round having 200 alternatives and each voter approving top 2 alternatives.
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