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A B S T R A C T

This study investigates how a hinterland consignee (importer) makes decisions regarding the storage of empty
containers for reuse by a shipper (exporter). The system is modeled as a double-ended queue with non-zero
matching times, limited truck resources, and both consignee and shipper having fixed withholding capacities.
The consignee’s withholding threshold is strategically set to minimize overall transport and detention costs.
We derive closed-form expressions for performance measures in the case of a single storage facility at the
shipper, utilizing a matrix-based approach. We extend this methodology numerically to the general case.
Additionally, we present an accurate fixed-point approximation facilitating the determination of performance
measures and optimal threshold. Our findings show the importance of withholding decisions in import and
balanced areas for cost reduction. In export areas, a policy of full reuse proves nearly optimal. Analyzing
dynamic state-dependent consignee decisions via a Markov decision process, we establish that the optimal
policy involves withholding thresholds increasing with stored quantity at the shipper. While optimal, state-
dependent thresholds yield limited cost savings compared to a fixed threshold, suggesting minimal impact from
consignee-shipper information sharing. Additionally, we examine the influence of variability in matching and
production times, observing decreased costs with reduced variability, particularly in export areas, but with
minor impacts on withholding decisions.
1. Introduction

Containerization is a standardized system of freight transport that
moves containers from door to door. This includes container ships, deep
sea terminals with special handling equipment, and intermodal infras-
tructure in the hinterland such as inland terminals. The United Nations
Conference on Trade and Development stated that in 2017 around 80%
of global trade by volume or 70% by value was carried by sea and
handled by ports. In line with the growth in intercontinental maritime
transport, hinterland container traffic has grown substantially.

Once a container has been unloaded at its destination in the hin-
terland, another transport leg must be found, as moving an empty
container is almost as costly as moving a full container. In an ideal
situation, an inbound container should find an outbound load once
it has been unloaded before being sent back to the sea terminal. The
strategy of matching an empty container from an importer with a load
from an exporter, so that the container is full in both directions, is
called a street turn strategy. However, containers are often immediately
sent back empty from the hinterland to the sea terminal, leading
to additional transportation costs and pollution. An important reason
for these empty movements is the imbalance between imports and
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exports. In an import-heavy area, containers are often sent back empty
due to the impossibility of finding an outbound load. However, other
factors incentivize the immediate return of empty containers to the sea
terminal. In particular, distance and a lack of coordination between
importers and exporters in the hinterland may discourage operating
matches between empty containers and outbound loads. More impor-
tantly, the high detention costs imposed by shipping lines create an
urgency to send back empty containers instead of storing them until a
match can be found.

With the rapid increase in global container shipments in late 2020
and 2021, a global shortage of containers has been reported. As a result,
ocean carriers increased the demurrage and detention fees and have
limited the free detention periods. Not only does this lead to additional
movements of empty containers, but also this makes it more difficult
for shippers to get access to containers for their exports. Until 2020,
shippers could safely assume that containers would always be available
on a more or less just-in-time basis. In the newly developed situation by
late 2020, shippers might need to ensure they have product ready for
shipment whenever a container might be available in their immediate
neighborhood after imported cargo has been unloaded. While in 2023
vailable online 1 March 2024
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the global containerized transport volume has substantially decreased,
experts expect that period of scarce container availability may repeat
itself in the future.

In this paper, we investigate the optimization of container matching
within the hinterland, focusing specifically on a strategic decision by
shippers to ensure the availability of export goods ahead of container
availability. The consignee-shipper relationship, often overlooked in
consignee-centric literature, is central to our exploration. By incorpo-
rating a detailed account of shipper inventory decisions and constraints
on resources for container reuse operations, we assess the determinants
influencing consignee decision-making. To this end, we model the
system as a double-ended queue with a non-zero matching time and a
finite number of resources, where the consignee’s objective is to select a
withholding threshold for containers that minimizes the sum of holding
and travel costs.

Main contributions. The main contributions of our study can be catego-
rized as follows:

(i) Performance analysis. We analyze the double-ended queue with
non-zero matching time and finite number of resources. In the
single storage case, we obtain closed-form performance mea-
sures through matrix computation and inversion. This approach
is extended to the multi-truck and larger storage case using a
numerical method that, although exact, becomes computationally
intensive as the number of states increases. To address this, an
iterative fixed-point approximation is developed, reintroducing
some blocked containers from one time interval into the next in-
terval, in a model where the two sides of the queue are viewed as
independent. We demonstrate the convergence of this process to a
modified arrival rate, enabling the approximation of performance
measures with an accuracy of 5% in approximately 90% of cases.
Additionally, in the single-storage case, we extend the analysis to
Erlang matching time and production time distributions, employ-
ing a 𝑧-transform to determine closed-form performance measures
as functions of the roots of a polynomial.

(ii) Admission control. First, we demonstrate the accurate derivation of
the optimal withholding threshold using the fixed-point approxi-
mation. Next, in the single-truck case, the dynamic counterpart
of the admission control problem is formulated as a Markov
decision process. We prove that the optimal inventory policy
at the consignee is a state-dependent threshold policy with the
withholding threshold increasing with the inventory level at the
shipper.

(iii) Insights for the management of empty containers. We identify three
contexts where the withholding decision plays distinct roles. In
export-heavy areas, there is only marginal gain in well selecting
the withholding threshold, and a near-optimal solution is to store
all arriving containers. In balanced areas, the withholding thresh-
old balances holding and travel costs. In import-heavy areas, the
withholding threshold controls the flow of containers either in
immediate return or in the direction of the shipper. The consignee
benefits from the inventory capacity of the shipper, but the effect
is highly concave for the selection of the optimal threshold, allow-
ing the consignee, in many cases, to ignore information about the
shipper’s inventory capacity. Moreover, in export-heavy areas, a
larger traffic intensity or lower service capacity tends to reduce
withholding thresholds, while the opposite is true in import-heavy
areas. Finally, while the reduction of variability in travel time or
production time at the shipper tends to reduce costs, it marginally
influences the selection of the optimal withholding threshold.

tructure of the paper. The next section reviews the relevant literature.
ection 3 formulates the model and the optimization problem. Section 4
erives the performance measure of the double-ended queue with
on-zero matching time. Section 5 presents an approximation for com-
uting the performance measures. Section 6 evaluates the withholding
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policy and discusses its main drivers. Section 7 investigates the dynamic
version of the control problem. Section 8 extends the model formulation
to include Erlang matching and production times. Finally, Section 9
concludes the paper. The appendix of this paper contains a numerical
method for performance evaluation, some supporting numerical results,
and the mathematical proofs.

2. Literature review

The related literature can be categorized into three areas: (i) per-
formance analysis of double-ended queues, (ii) admission control of
queueing systems, and (iii) management of empty containers in the
hinterland.

Performance evaluation. The concept of the double-ended queue was
first introduced by Kendall (1951). This queueing model considers
independent processes for both customer arrivals and server operations,
making it applicable to a diverse range of applications such as shared-
mobility systems (He et al., 2021), disaster and repair management (Di
Crescenzo et al., 2012), passenger and taxi queues (Shi & Lian, 2016),
buyers and sellers interaction (Liu et al., 2015), and the allocation of
live organs (Elalouf et al., 2018). Several studies have explored aspects
of the double-ended queue, including customer joining behavior (Jiang
et al., 2021), performance evaluation (Diamant & Baron, 2019), and
congestion control policies (Liu & Weerasinghe, 2021). However, most
of these studies assume zero matching times, a limitation that we
address in this paper.

With a zero matching time, the performance analysis is already chal-
lenging due to the bidirectional state space. Early studies established
and analyzed the Chapman–Kolmogorov forward differential-difference
equations for this queue (Sasieni, 1961). When at least one of the two
queues has an infinite capacity, the matrix-geometric method proposed
by Neuts (1981) enables the derivation of performance measures, as
seen in Liu et al. (2020). For transient analyses, the Laplace transform
method is also effective in performance evaluation (Conolly et al.,
2002). However, in our case where both sides of the queue have finite
capacities, these methods are not applicable. With two finite queues,
the supplementary variable method was employed in Kashyap (1966).
Nevertheless, with a non-zero matching time, the supplementary vari-
able method leads to a state space with excessively high dimensionality,
rendering performance evaluation impractical.

Analyzing a double-ended queue with non-zero matching time poses
inherent challenges. Notably, the work of Kim et al. (2010) is cited
for its development of a simulation model aimed at evaluating the
performance measures. Additionally, Shi et al. (2015) contributed to
this discourse by employing a numerical method based on the matrix
geometric approach introduced by Neuts (1981). It is important to
highlight that the latter method is specifically tailored to scenarios
where matches can only be operated singularly and one of the queues
has an infinite capacity. When confronted with a finite queue, direct
application of this method is precluded, as the proportional relation-
ship between two adjacent line vectors of probabilities is not main-
tained. Wang et al. (2023) analyzed a specific double-ended queue with
a two-mass point distribution for the matching time. Finally, Nguyen
and Phung-Duc (2022) investigated customers’ strategic joining deci-
sions in a double-ended queue with a non-zero matching time for a
passenger-taxi system. They considered the equilibrium joining behav-
ior of customers, requiring an evaluation of the expected wait in a given
state at arrival without the need for the expected wait to be averaged
across all arriving states.

Admission control. The admission control problem for a social planner
involves determining whether to allow an arriving customer to join
a queue, aiming to achieve an optimal trade-off between congestion
and rejection. This problem has garnered significant attention in the
literature. For an overview of admission control studies, we refer to the

book by Boucherie and Van Dijk (2017), and the references therein.
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One common approach is to employ a performance evaluation
method for a given family of joining policies, often threshold or ran-
domizing policies. This method is used to optimize joining parameters
such as the joining probability or the joining threshold (Stidham,
1985). It relies on a performance evaluation method with properties
suitable for optimizing joining parameters, necessitating consideration
of a sufficiently simple queueing model.

Optimal admission policies can also be obtained without perfor-
mance evaluation. Dynamic programming is a standard tool for com-
puting and proving optimal policies (Boucherie & Van Dijk, 2017). In
this paper, we employ the uniformization technique explained in Put-
erman (1994) to transform the continuous-time Markov chain into
a discrete-time one. This transformation enables us to compute the
optimal dynamic policy and corresponding performance measures. In
the single-truck case, we additionally prove the threshold form of the
optimal policy by establishing the propagation of certain properties
for the value function, such as convexity and submodularity, using the
approach of Koole (2007). To the best of our knowledge, the solution
to the admission control problem in the single-truck case constitutes a
novel contribution. While the admission control problem for this queue
has been considered by Liu and Weerasinghe (2021), Lee et al. (2021),
and Su and Li (2023), these studies focused on scenarios with a zero
matching time.

Container management in the hinterland. Container management has
been a prominent area of interest within the transport and maritime
economics communities. Early research in the operations management
and transportation science fields on containerization is reviewed by De-
jax and Crainic (1987), while a recent survey can be found in Lee and
Song (2017). Numerous studies have concentrated on sea terminal con-
tainer management, addressing scheduling, estimating, and modeling
aspects (Bakshi et al., 2011; Roy et al., 2020; Vis & Roodbergen, 2009).
The transportation of empty containers has also garnered significant
attention. However, few studies, including this paper, have explored
the inventory theory perspective of managing empty containers in the
hinterland.

Li et al. (2004) investigated strategies for importing and exporting
empty containers to address shortages and reduce redundancy in the
port. Using a Markov decision process approach, similar to this study,
they find that a two-threshold policy is optimal for controlling import
and export. Song (2007), Song and Zhang (2010) focused on optimizing
the repositioning of empty containers within a single port, considering
a two-state Markov chain demand model and aiming to minimize costs
associated with holding, leasing, and repositioning. One difference with
our model is that decisions are taken periodically instead of being taken
at any point in time. Using a two-threshold policy, similar to the one
of Li et al. (2004), Zhang et al. (2014) proposed an approximated
solution approach for repositioning empty containers between multiple
ports over multiple periods, taking into account stochastic demand, lost
sales, and various operating costs. Later, Xie et al. (2017) investigated
the repositioning problem not only through an inventory management
angle but also through contracting. They characterized the optimal
delivery policy between a dry port and seaport in a centralized model
and proposed a bilateral buy-back contract to coordinate the decentral-
ized system. Using a two-stage game model, Yu et al. (2018) analyzed
optimal delivery policies and detention time decisions in an export-
heavy area consisting of sea and inland container terminals, a container
operator, and an ocean carrier, revealing coordination challenges in the
decentralized setup.

While the aforementioned studies examined the inventory manage-
ment of containers in the hinterland, they analyzed it only through
the relationship between the shipping lines and the consignee. While
this relationship is essential in the management of empty containers,
it ignores the possibilities of street turn strategies that involve an
exporter (a shipper) for the reuse of containers. In this study, we
932

turn our attention to the consignee-shipper interaction for the decision
to keep a container at the consignee’s location. Legros et al. (2019)
investigated this problem but in a context of an import-heavy area,
where the shipper’s inventory decision could be ignored. We instead
propose a more general setting which accounts for any import-export
ratio and allows understanding the impact of the shipper’s decision on
the consignee’s inventory policy.

3. Formulation of the problem

We analyze the management of empty containers by a consignee in
the hinterland. A consignee imports products via containers from a sea
terminal. Later, empty containers are sent back to the sea terminal to
be reloaded for a new import operation. Due to increased fuel prices
and a shortage of trucks and drivers, road transportation costs have
recently gone up and now represent a major part of import costs. To
reduce these costs, consignees send their containers to shippers in need
of sending their products to the sea terminal. The policy of reusing
containers for the return trip to the sea terminal is referred to as a street
turn strategy, as opposed to an immediate return policy, in which all
containers are sent back empty to the sea terminal. For simplicity of
modeling, we assume that we have a single shipper. We could instead
consider a group of shippers viewed as a single entity, as in areas where
shippers are located close to each other and face similar costs.

We assume that the containers’ arrival process at the consignee is
Poisson with constant parameter 𝜆𝑐 . This parameter is called the arrival
rate of containers and represents the expected number of containers
arriving per time unit. The Poisson assumption is justified for the arrival
processes at sea terminals. Some statistical analyses have revealed that
vessel arrivals fit well with a Poisson distribution (Kozan, 1997). In
addition, truck arrivals at the sea terminal can be modeled by Poisson
distributions (Roy et al., 2022). We make the further assumption that
the arrival rate is constant over time. This may not be realistic because
in some areas there is a very pronounced variation by time of day
and day of the week, due to the activity at the sea terminal. If time
dependency varies slowly relative to the system dynamics, then such
systems have been typically analyzed using a point-wise stationary ap-
proximation, where the performance at a given time is approximated by
the steady-state performance of the stationary system with a constant
arrival rate (Green & Kolesar, 1991).

The shipper needs to send its loads to the sea terminal. It either
asks the shipping line or the consignee to send an empty container.
The need for empty containers at the shipper follows a Poisson process
with rate 𝜆𝑠. The demand rate 𝜆𝑠 is the quantity of products produced
by the shipper per time unit, measured in equivalent container volume.
This parameter is also referred to as the production rate. We assume
that it is cheaper for the shipper to use a container from the consignee
than to request a container from the shipping line and pay for the
travel time between the sea terminal and its location. The time to send
a container from the consignee’s location to the shipper is non-zero
because it includes the time for the consignee and shipper to make an
agreement, the time to find an available truck, and the transportation
time between the consignee and shipper. To account for the variability
of these durations, we assume that the total time to send a container
from the consignee’s location to the shipper, known as the matching
time, is exponentially distributed with rate 𝜇. The matching rate 𝜇 is
the inverse of the expected matching time. We further assume that there
are 𝑚 trucks devoted to the matches, which creates a bound on the
number of simultaneous matches that can be carried out. Furthermore,
the shipper stores part of its stockpile for future matches. Specifically,
the shipper has an inventory capacity of 𝑞 container volumes. If 𝑞 = 0,
the shipper declines to reuse containers from the consignee. If 𝑞 > 0,
then a quantity of at most 𝑞 equivalent containers is stored at the
shipper’s location, either through matching processes or waiting for a
match to occur.

The consignee’s objective is to determine the optimal withholding

policy that minimizes the operational cost per time unit associated with
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Fig. 1. Queueing model for the street-turn policy.
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a street turn strategy. We use 𝜆𝑟 to represent the expected rate of con-
ainers immediately returned to the sea terminal. This represents the
xpected number of containers that return empty to the sea terminal per
ime unit. Consequently, the average total extra travel cost of the street
urn strategy is defined as 𝜆𝑟𝑡𝑟𝑑, where 𝑑 is the additional distance
n kilometers traveled if a container is immediately returned. This is
he difference between the distance from the consignee’s location to
he sea terminal and the distance between the consignee’s location and
he shipper’s location. The parameter 𝑡𝑟 represents the travel cost per

kilometer. According to estimates by Pakulniewicz (2021), the average
cost to transport a container on the road was e1.77 per kilometer in
Europe in the second quarter of 2021. A similar range of values holds
in the United States, with a noticeable upward trend. For our numerical
estimations, we adopt a reference extra distance of 𝑑 = 120 kilometers,
esulting in an extra travel cost of 𝑑𝑡𝑟 = e212.4 per container.

In addition to the extra travel cost, a street turn policy incurs
xpenses related to the storage and detention of empty containers. Bi-
Rentz (2022) found that self-storage costs range from $130 to $175
er month per container, leading to an average estimate of $5 per con-
ainer per day for storage. The equivalent detention cost per container
s estimated to be e227.29 per day in New York (xChange, 2023), and
lightly lower in Europe. This observation suggests that storage costs
an be considered negligible compared to detention costs, resulting
n a holding cost of ℎ𝐸(𝑁), where 𝐸(𝑁) is the expected number of

containers in the system (at the location or operating a match). For
our numerical illustration, we consider a detention cost ℎ of e200 per
day, or equivalently e8.33 per hour, assuming the unit of time to be
an hour.

The consignee has control over the maximal number of containers
in the system, through the selection of a withholding threshold 𝑛. The
withholding threshold is optimized such that the expected cost 𝐸(𝐶)
efined as

(𝐶) ∶= 𝜆𝑟𝑡𝑟𝑑 + ℎ𝐸(𝑁), (1)

s minimized. The withholding threshold can be selected as low as
esired. However, it should be noted that if 𝑛 < 𝑚, then 𝑚 − 𝑛 trucks
re never used and can be removed, which turns the situation to the
ase where the threshold level is higher than the number of trucks.
ig. 1 depicts the queueing model under consideration. In this figure,
he queue on the left side represents the inventory at the consignee’s
ocation with containers arriving over time. The queue on the right side
epresents the inventory of production at the shipper’s. In the center,
he resources are represented by the trucks that can transport the empty
ontainers from the consignee’s location to the shipper’s location.

In Section 7, we investigate the dynamic version of this control
roblem, where the withholding threshold can be selected as a function
f the system state at the shipper. Next, in Section 8, we extend the
odel to Erlang distributions for the matching time and production

ime to investigate the role of the variability of these durations in
ecision making. We end this section with a list of notations used
hroughout the paper (Table 1).
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. Performance evaluation

In this section, we evaluate the performance measures of the double-
nded queue. First, using a matrix approach, we derive closed-form ex-
ressions for stationary probabilities and performance measures when
= 1. This approach can be extended numerically to scenarios with
ultiple trucks and more than one storing space at the shipper. Next,
e present some lower bounds for the performance measures in the
eneral case.

A state of the system is defined by the pair (𝑥, 𝑦), where 𝑥 represents
he number of containers in the system (either in the inventory or on
he road for a match to be operated) with 𝑥 = 0, 1,… , 𝑛, and 𝑦 is the
quivalent container volume of goods at the shipper for 𝑦 = 0, 1,… , 𝑞.
e introduce the ratios 𝑐 ∶= 𝜆𝑐

𝜇 and 𝑠 ∶= 𝜆𝑠
𝜇 to simplify the involved

expressions. The stationary probability of being in state (𝑥, 𝑦) is denoted
y 𝑝𝑥,𝑦. The transition rate from state (𝑥, 𝑦) to state (𝑥′, 𝑦′), denoted as
(𝑥,𝑦),(𝑥′ ,𝑦′) for 𝑥 = 0, 1,… , 𝑛 and 𝑦 = 0, 1,… , 𝑞, is defined as follows:

(𝑥,𝑦),(𝑥′ ,𝑦′) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜆𝑐 if 𝑥 = 0, 1,… , 𝑛 − 1 and 𝑦 = 0, 1,… , 𝑞,

with (𝑥′, 𝑦′) = (𝑥 + 1, 𝑦),

𝜆𝑠 if 𝑥 = 0, 1,… , 𝑛 and 𝑦 = 0, 1,… , 𝑞 − 1,

with (𝑥′, 𝑦′) = (𝑥, 𝑦 + 1),

min(𝑥, 𝑦, 𝑚)𝜇 if 𝑥 = 0, 1,… , 𝑛 and 𝑦 = 0, 1,… , 𝑞, with
(𝑥′, 𝑦′) = (𝑥 − 1, 𝑦 − 1), and

0, otherwise.

In Fig. 2, we present the Markov chain corresponding to the case
= 1. The system of equations derived from this Markov chain descrip-

ion can be analytically solved, enabling the expression of stationary
robabilities as given in Theorem 1.

heorem 1 (Stationary Probabilities). The stationary probabilities are
iven by

𝑥,0 =

(

𝑐(𝑠+1)
𝑠

− 1
)

[

𝑟𝑥2 (𝑟2 − 𝑐)(𝑐(𝑐 + 𝑠) − 𝑟1𝑠) − 𝑟𝑥1 (𝑟1 − 𝑐)(𝑐(𝑐 + 𝑠) − 𝑟2𝑠)
]

𝑟𝑛+22 (𝑠 + 1)(1 − 𝑟1)(𝑐 − 𝑟1) − 𝑟𝑛+21 (𝑠 + 1)(𝑟2 − 1)(𝑟2 − 𝑐) − 𝑐𝑠(𝑟2 − 𝑟1)
,

for 𝑥 = 0, 1,… , 𝑛 − 1, (2)

𝑝𝑛,0 =
𝑐
𝑠

(

𝑐(𝑠+1)
𝑠

− 1
)

[

𝑟𝑛−12 (𝑟2 − 𝑐)(𝑐(𝑐 + 𝑠) − 𝑟1𝑠) − 𝑟𝑛−11 (𝑟1 − 𝑐)(𝑐(𝑐 + 𝑠) − 𝑟2𝑠)
]

𝑟𝑛+22 (𝑠 + 1)(1 − 𝑟1)(𝑐 − 𝑟1) − 𝑟𝑛+21 (𝑠 + 1)(𝑟2 − 1)(𝑟2 − 𝑐) − 𝑐𝑠(𝑟2 − 𝑟1)
and

(3)

𝑝𝑥,1 =
𝑐
(

𝑐(𝑠+1)
𝑠

− 1
)

[

𝑟𝑥2 (𝑐(𝑐 + 𝑠) − 𝑟1𝑠) − 𝑟𝑥1 (𝑐(𝑐 + 𝑠) − 𝑟2𝑠)
]

𝑟𝑛+22 (𝑠 + 1)(1 − 𝑟1)(𝑐 − 𝑟1) − 𝑟𝑛+21 (𝑠 + 1)(𝑟2 − 1)(𝑟2 − 𝑐) − 𝑐𝑠(𝑟2 − 𝑟1)
,

for 𝑥 = 0, 1, 2,… , 𝑛, (4)
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Table 1
Table of notations.

System state

𝑥 Number of containers at the consignee’s location or carrying out a match
𝑦 Amount of goods at the shipper in container volumes

System parameters

𝜆𝑐 Containers’ arrival rate at the consignee’s location
𝜆𝑠 Containers’ demand rate at the shipper’s location
𝜇 Matching rate
𝑚 Number of trucks to carry out matches
𝑐, 𝑠 Ratios 𝜆𝑐∕𝜇 and 𝜆𝑠∕𝜇
𝑞 Maximum inventory for the shipper to hold (expressed in container equivalents)
𝑛 Withholding threshold for empty containers
𝑛𝑦 State-dependent admission withholding thresholds for empty containers

Cost parameters and distances

𝑡𝑟𝑑 Extra transportation cost per container (e212.4 per container)
ℎ Holding cost per time unit and per container (e8.33 per hour)

Performance measures

𝑝𝑥,𝑦 Stationary probability to be in state (𝑥, 𝑦)
𝜆𝑟 Rate of empty containers returned immediately to the sea terminal per time unit
𝐸(𝑁) Expected number of containers in the system
𝐸(𝐶) Expected operational cost per time unit
Fig. 2. Markov chain with 𝑞 = 1.
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where 𝛥 = (𝑐 + 𝑠 + 1)2 − 4𝑠, 𝑟1 =
𝑐
(

𝑐+𝑠+1−
√

(𝑐+𝑠+1)2−4𝑠
)

2𝑠 , and 𝑟2 =
𝑐
(

𝑐+𝑠+1+
√

(𝑐+𝑠+1)2−4𝑠
)

2𝑠 .

To prove this result, we begin by expressing the vector (𝑝𝑥,0, 𝑝𝑥,1)
as a function of (𝑝𝑛,0, 𝑝𝑛,1) for 𝑥 = 1, 2,… , 𝑛. This enables us to de-
termine a matrix that establishes a proportionality between (𝑝𝑥,0, 𝑝𝑥,1)
and (𝑝𝑥+1,0, 𝑝𝑥+1,1). Using the relations at 𝑥 = 0 and inverting the
considered matrix, we subsequently express (𝑝𝑥,0, 𝑝𝑥,1) as a function of
(𝑝𝑥−1,0, 𝑝𝑥−1,1). Next, we calculate the equivalent diagonal matrix that
relates the two vectors and observe that its eigenvalues are solutions to
the quadratic equation in 𝑧: 𝑠𝑧2 − 𝑐(𝑐 + 𝑠+1)𝑧+ 𝑐2 = 0. The solutions to
this equation are denoted as 𝑟1 and 𝑟2. Consequently, each probability
𝑝𝑥,0 and 𝑝𝑥,1 can be expressed as functions of 𝑟𝑥1 and 𝑟𝑥2 . The coefficients
of 𝑟𝑥1 and 𝑟𝑥2 are determined by the initial relation at 𝑥 = 0 and the
normalizing condition.

In Proposition 1, we deduce the expected number of empty contain-
ers and the rate of immediately returned containers.

Proposition 1 (Performance Measures). The expected number of contain-
ers 𝐸(𝑁) and the rate of immediately returned containers 𝜆𝑟 are given by

𝐸(𝑁) =
𝑛𝛼 𝑠

𝑐 𝑓 (𝑛) +
𝑟2(1−𝑟𝑛2)((𝑐+𝑠)𝑟2−𝑐)

(𝑟2−1)2
−

𝑟1(1−𝑟𝑛1)((𝑐+𝑠)𝑟1−𝑐)
(𝑟1−1)2

(𝑠 + 1)𝑓 (𝑛) + 𝑠𝐵
, and

𝜆𝑟 = 𝜆𝑐

𝑠
𝑐 (𝛼 − 1)𝑓 (𝑛)

(𝑠 + 1)𝑓 (𝑛) + 𝑠𝐵
,

(5)

here 𝑓 (𝑛) ∶=
𝑟𝑛+12
𝑟2−1

(𝑟2−𝑐∕𝑠)+
𝑟𝑛+11
1−𝑟1

(𝑟1−𝑐∕𝑠), 𝐵 ∶= 𝑐
√

𝛥
𝑠−𝑐(𝑠+1) , and 𝛼 ∶= 𝑐(𝑠+1)

𝑠 .

We deduce these expressions from the stationary probabilities of
heorem 1. We find 𝜆𝑟 with 𝜆𝑟 = 𝜆𝑐 (𝑝𝑛,0 + 𝑝𝑛,1). Next, the expected

umber of containers is given by 𝐸(𝑁) =
𝑛
∑

𝑥=1
𝑥(𝑝𝑥,0 + 𝑝𝑥,1). Note that we

𝑐2 and 𝑟 + 𝑟 = 𝑐(𝑐+𝑠+1) .
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implify the involved expressions using 𝑟1𝑟2 = 𝑠 1 2 𝑠 o
ower bounds in the general case. The method to obtain the performance
easures can be extended to the general case. However, this does not

ead to closed-form solutions. Instead, we end this section by relating
he double-ended queue with two canonical queues that can be used
s lower bounds for the system performance. When one of the system
arameters, 𝜆𝑠 or 𝜇, is high as compared to the others, we can obtain
ower bounds for the performance measures as follows:

• Export-heavy area. When 𝜆𝑠 ≫ 𝜆𝑐 , 𝜇, the system can be viewed as
an 𝑀∕𝑀∕𝑚∕𝑛 queue with arrival rate 𝜆𝑐 and service rate 𝜇 as it
asymptotically never happens that an available empty container
has to wait before a production is being made. In this case,
the performance measures can be approximated by the formulas
provided in (6) with 𝑐𝑘 = 𝜆𝑐

𝜇 .
• Instantaneous match. When 𝜇 ≫ 𝜆𝑐 , 𝜆𝑠, we approximate the model

by a double-ended queue with zero matching time. We thus
obtain 𝜆𝑟 = 𝜆𝑐

1− 𝑠
𝑐

1−
(

𝑠
𝑐

)𝑛+𝑞+1 , and 𝐸(𝑁) =
1− 𝑠

𝑐

1−
(

𝑠
𝑐

)𝑛+𝑞+1

𝑛
∑

𝑥=1
𝑥
(

𝑐
𝑠

)𝑥−𝑛
.

5. Fixed-point approximation

When 𝑛 and 𝑞 become large, deriving the stationary probabilities
becomes computationally intensive. To avoid this difficulty, we pro-
pose a fixed-point approximation for the computation of performance
measures.

Consider a given interval 𝑘 of observation. We approximate the
double-ended queue by two independent queues, each with 𝑚 exponen-
ial servers operating at a service rate of 1. We designate Queue 1 as the
ueue of empty containers at the consignee and Queue 2 as the queue of
oods at the shipper’s location in equivalent container volume. At inter-
al 𝑘, the arrival of containers at Queue 1 follows a Poisson distribution
ith rate 𝑐𝑘, and the arrival of production in equivalent containers at
ueue 2 follows a Poisson distribution with rate 𝑠𝑘. Consequently, we
stimate performance measure by leveraging the performance metrics

f Queue 1, which is characterized as an 𝑀∕𝑀∕𝑚∕𝑛 queue, while
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Queue 2 is an 𝑀∕𝑀∕𝑚∕𝑞 queue. These metrics are detailed in Gross
nd Harris (1985), pages 75–76, and are expressed as follows:

(𝑁)𝑘 =

𝑐𝑚𝑘
( 𝑐𝑘

𝑚

)

𝑚!
(

1− 𝑐𝑘
𝑚

)2

[

1 −
(

𝑐𝑘
𝑚

)𝑛−𝑚+1
−
(

1 − 𝑐𝑘
𝑚

)

(𝑛 − 𝑚 + 1)
(

𝑐𝑘
𝑚

)𝑛−𝑚
]

∑𝑚−1
𝑥=0

𝑐𝑥𝑘
𝑥! +

𝑐𝑚𝑘
𝑚!

1−(𝑐𝑘∕𝑚)𝑛−𝑚+1
1−𝑐𝑘∕𝑚

+ 𝑐𝑘

(

1 −
𝜆𝑘𝑟
𝜆𝑐

)

, and (6)

𝜆𝑘𝑟 = 𝜆𝑐

𝑐𝑛𝑘
𝑚!𝑚𝑛−𝑚

∑𝑚−1
𝑥=0

𝑐𝑥𝑘
𝑥! +

𝑐𝑚𝑘
𝑚!

1−(𝑐𝑘∕𝑚)𝑛−𝑚+1
1−𝑐𝑘∕𝑚

, assuming that 𝑛 ≥ 𝑚.

We initialize the computation of the sequences (𝑐𝑘)𝑘≥0 and (𝑠𝑘)𝑘≥0
ith 𝑐0 = 𝑐 and 𝑠0 = 𝑠. This initialization assumes that a container in

Queue 1 never has to wait for the production from the shipper, and
vice versa, the shipper never has to wait for the arrival of a container
at the consignee. This initialization then leads to an underestimation of
the expected number of containers in the system.

At a given interval, even if a server should not operate a match,
we assume that a match is processed. A correction is made at the next
interval by reintroducing the containers that should not have been
processed into the flow of arriving containers. The probability that a
container from Queue 1 cannot operate a match is assumed to be the
probability that a server at Queue 2 is idle. This idling probability,
denoted as 𝐼(𝑧, 𝑦) with arrival rate 𝑧 and system capacity 𝑦 ≥ 𝑚, is
given by

𝐼(𝑧, 𝑦) =

𝑚−1
∑

𝑥=0

𝑚−𝑥
𝑚

𝑧𝑥

𝑥!

𝑚−1
∑

𝑥=0

𝑧𝑥
𝑥! +

𝑧𝑚
𝑚!

1−(𝑧∕𝑚)𝑦−𝑚+1
1−𝑧∕𝑚

.

Consequently, the arrival rate at iteration 𝑘+1 at Queue 1 is the sum
of the new arrivals with arrival rate 𝑐 and those which were blocked at
the last interval, 𝑐𝑘𝐼(𝑠𝑘, 𝑞). Similarly, the arrival rate at Queue 2 is the
sum of 𝑠 and 𝑠𝑘𝐼(𝑐𝑘, 𝑛). Thus, we estimate the system performance by
letting 𝑘 tend to infinity in the following iterative definition:

𝑐𝑘+1 = 𝑐 + 𝑐𝑘𝐼(𝑠𝑘, 𝑞), and 𝑠𝑘+1 = 𝑠 + 𝑠𝑘𝐼(𝑐𝑘, 𝑛), with 𝑐0 = 𝑐 and 𝑠0 = 𝑠.

(7)

In Theorem 2, we prove that both 𝑐𝑘 and 𝑠𝑘 converge to a finite limit
as 𝑘 grows to infinity.

Theorem 2 (Convergence Result). The sequences (𝑐𝑘)𝑘≥0 and (𝑠𝑘)𝑘≥0 con-
verge to finite limits 𝑐∗ and 𝑠∗, respectively, which are solutions of the
following system:

𝑐∗ = 𝑐 + 𝑐∗𝐼(𝑠∗, 𝑞), and 𝑠∗ = 𝑠 + 𝑠∗𝐼(𝑐∗, 𝑛). (8)

One difficulty to prove the convergence result is that (𝑐𝑘)𝑘≥0 and
𝑠𝑘)𝑘≥0 are not monotonous in 𝑘. Instead, we first prove that these

two sequences are bounded. Next, we consider the function from R2

to R2 defined as (𝑢, 𝑣) ∶→ (𝑐 + 𝑢𝐼(𝑣, 𝑞), 𝑠 + 𝑣𝐼(𝑢, 𝑛)), and prove that this
function is a contraction mapping. To establish this property, we use
the expression of the upper bounds for 𝑐𝑘 and 𝑠𝑘 and a novel property
of the idling probability, as given in Lemma 1.

Lemma 1 (Property of the Idling Probability). For 𝑧 > 0 and 𝑦 ≥ 𝑚, we
have

1 − 𝐼(𝑧, 𝑦) + 𝑧
𝜕𝐼(𝑧, 𝑦)

𝜕𝑧
> 0. (9)

The proof of Lemma 1 relies on the concavity result of the through-
ut out of an 𝑀∕𝑀∕𝑚∕𝑛 queue from Meester and Shanthikumar
1990).
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Table 2
Computation of the optimal threshold level 𝑛 (𝑞 = 20, 𝑚 = 10, 𝜇 = 1).
𝑠 \𝑐 5 8 9 10 11 12 15

5 15\15 10\10 10\10 10\10 10\10 10\10 10\10
8 60\63 21\21 15\15 13\13 12\12 12\12 11\11
9 124\128 48\48 22\22 17\17 15\15 14\14 13\13
10 125\131 57\57 30\30 21\21 18\18 16\16 14\14
11 128\131 58\59 36\36 24\24 20\20 18\18 15\15
12 131\132 59\60 38\38 26\26 21\21 18\18 15\15
15 132\132 60\60 40\40 28\28 22\22 19\19 16\16

Accuracy. The value of the proposed approximation lies in its capacity
to accurately evaluate performance measures across diverse parameter
sets. In the appendix, we present a comparison between the fixed-point
approximation and exact performance measures. The approximation
does not function as an upper or lower bound. Its limitation is its
neglect of correlation between the two queues. However, around two-
thirds of our numerical results exhibit a relative difference of less than
1%, and approximately 90% display a relative difference of less than
5%, indicating the approximation’s relative accuracy. Furthermore,
the accuracy tends to improve, with some counterexamples, with a
high arrival rate at the importer compared to the production rate at
the shipper (i.e., in import areas), increasing inventory capacities at
the shipper and consignee (parameters 𝑛 and 𝑞), and augmenting the
transport capacity (i.e., the number of trucks, 𝑚). It should be noted that
as the number of trucks increases, the approximation tends to perform
better in cases where 𝑐 < 𝑠, while situations with 𝑐 = 𝑠 remain less
accurately approximated. Moreover, when 𝑠 becomes very large as in
xport-heavy area, then the approximation also becomes accurate, even
f the transport capacity is low.

pproximation of the optimal threshold level. In Table 2, we calculate
he threshold level for various values of 𝑐 and 𝑠. Additional numerical
llustrations are provided in the appendix. The first value before the
ackslash represents the exact threshold, while the second value after
he backslash indicates the approximate threshold obtained using the
ixed-point approximation.

This shows that the fixed-point approximation method gives the
xact threshold in most cases. However, in some instances, particularly
hen 𝑐 is low (indicating an export-heavy area) and when 𝑠 approaches

he system capacity 𝑚, the approximation tends to overestimate the
ptimal threshold. It is important to note that in these cases, the
ensitivity of the performance measures to the threshold 𝑛 is very low.
onsequently, any inaccuracies in determining the optimal threshold
o not result in significant consequences for the evaluation of the
erformance measures.

. Optimal withholding decisions

We now evaluate the expected cost of the optimal withholding
olicy in order to determine the contexts where reusing containers
s most advantageous as compared to an immediate return policy.

e focus on (i) the import-export ratio, (ii) the intensity of demand
elative to the service capacity, and (iii) the inventory capacity at the
hipper. First, we identify cases in which the immediate return policy is
ptimal. Adjusting the result of Theorem 1, we establish in Corollary 1
condition ensuring the optimality of the immediate return policy.

orollary 1 (Optimality of the Immediate Return Policy). The full rejection
olicy is optimal if and only if

𝑐 𝑡𝑟𝑑(𝜙(𝑞) + 𝑠𝐵) < ℎ(𝑐𝜙(𝑞) + 𝐵(𝑐 − 𝑠)), (10)

here 𝜙(𝑞) =
𝑡𝑞+12 (𝑡2−𝑠∕𝑐)

𝑡2−1
+

𝑡𝑞+11 (𝑡1−𝑠∕𝑐)
1−𝑡1

, 𝐵 = 𝑠
√

(𝑐+𝑠+1)2−4𝑐
𝑐−𝑠(𝑐+1) , 𝑡1 =

𝑠(𝑠+𝑐+1−
√

(𝑐+𝑠+1)2−4𝑐) , and 𝑡 = 𝑠(𝑠+𝑐+1+
√

(𝑐+𝑠+1)2−4𝑐) .
2𝑐 2 2𝑐
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Table 3
Impact of the import-export balance and traffic intensity (𝑚 = 5, 𝑞 = 5, 𝜇 = 1).
𝑠 𝑐 = 1 𝑐 = 2 𝑐 = 5 𝑐 = 8 𝑐 = 10 𝑐 = 1 𝑐 = 2 𝑐 = 5 𝑐 = 8 𝑐 = 10

Optimal threshold (𝑛) Optimal cost 𝐸(𝐶)
1 5 3 2 2 2 40.949 236.002 870.836 1507.841 1932.634
2 24 8 4 4 4 9.065 81.394 690.631 1326.650 1751.388
5 65 41 8 6 6 8.367 18.117 370.296 990.930 1413.231
8 81 56 11 7 6 8.351 17.375 267.433 874.686 1294.372
10 86 61 12 8 7 8.348 17.251 236.770 838.582 1256.199

Saving= 𝐸(𝐶)
𝜆𝑐 𝑡𝑟𝑑

Matching proportion

1 19.279% 55.556% 82.000% 88.738% 90.990% 88.754% 97.718% 96.994% 97.425% 97.537%
2 4.268% 19.161% 65.031% 78.075% 82.457% 50.000% 88.989% 94.213% 94.966% 95.116%
5 3.939% 4.265% 34.868% 58.317% 66.536% 20.000% 40.000% 70.035% 70.852% 71.238%
8 3.932% 4.090% 25.182% 51.476% 60.940% 12.500% 25.000% 50.696% 51.508% 51.462%
10 3.930% 4.061% 22.295% 49.352% 59.143% 10.000% 20.000% 42.157% 43.254% 43.332%

Holding cost Proportion of holding cost=
Holding cost

𝐸(𝐶)
1 17.062 18.754 14.851 15.572 15.802 41.667% 7.947% 1.705% 1.033% 0.818%
2 9.065 34.621 28.846 30.865 31.443 100.000% 42.535% 4.177% 2.327% 1.795%
5 8.367 18.117 52.063 44.183 45.776 100.000% 100.000% 14.060% 4.459% 3.239%
8 8.351 17.375 66.861 50.708 44.818 100.000% 100.000% 25.001% 5.797% 3.463%
10 8.348 17.251 70.188 58.088 52.580 100.000% 100.000% 29.644% 6.927% 4.186%
To prove this condition, we modify the formulas of Theorem 1 by
nterchanging the roles of 𝑠 and 𝑐 and the roles of 𝑛 and 𝑞. Corollary 1
uggests that the immediate return policy tends to be optimal when
he holding cost ℎ is high compared to the rejection cost 𝑡𝑟𝑑, and in
mport-heavy areas where 𝜆𝑐 is high.

mport-export ratio. In Table 3, we present various scenarios involving
xport–import ratios and parameter intensities by selecting 𝑐 and 𝑠
rom the set {1, 2, 5, 8, 10} within a context where there are 𝑚 = 5
rucks and it takes one hour to transport a container from the consignee
o the shipper. For each (𝑐, 𝑠) combination, we determine the optimal
hreshold level, the corresponding expected cost 𝐸(𝐶), the savings mea-
ured in terms of the ratio between the optimal cost and the cost of an
mmediate return policy, the holding cost, the proportion of the holding
ost in the expected cost 𝐸(𝐶), and the matching proportion computed
s 𝜆𝑐−𝜆𝑟

𝜆𝑠
. This latter metric evaluates the proportion of production at

he shipper that can be sent to the sea terminal through the reuse of
ontainers.

We observe that the optimal threshold increases with 𝑠 and de-
creases with 𝑐. This observation is justified by Proposition 2, which
establishes that the same outcome holds for the fixed-point approxi-
mation.

Proposition 2 (Effect of 𝑐 and 𝑠). In the fixed-point approximation, the
optimal threshold is increasing in 𝑠 and decreasing in 𝑐.

We prove this proposition by differentiating Eq. (8), in combination
ith the monotonicity properties of the 𝑀∕𝑀∕𝑚∕𝑛 queue.

This result is intuitive, implying that when there is more demand
rom the shipper compared to container arrivals (as occurs when 𝑠 is

large and 𝑐 is low, characterizing an export-heavy area), the consignee
should store more containers. These contexts also yield the greatest
savings through the implementation of a street-turn policy, as indicated
by the low values of the ratio 𝐸(𝐶)

𝜆𝑐 𝑡𝑟𝑑
. In such cases, the cost is primarily

onstituted of holding costs, signifying that almost no containers are
mmediately returned. Consequently, the selection of the withholding
hreshold plays a marginal role in cost, as long as it is sufficiently high
o ensure close-to-full reuse.

Even in contexts that do not inherently encourage reuse, such as
mport-heavy areas, substantial savings can be observed. In the worst-
ase scenario, around 10% of the cost can be saved compared to a
ull rejection policy. In these cases, the holding proportion is marginal,
o the role of the withholding threshold is to organize the routing of
ontainers either directly back to the sea terminal or to the shipper.
n contrast in balanced-area, the withholding threshold acts to balance
olding and transportation costs.
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Traffic intensity and service capacity. In Table 3, we observe that the
optimal threshold is non-monotonic in traffic intensity, exemplified
when 𝑐 = 𝑠. This non-monotonicity can be attributed to the interplay of
two competing phenomena. As the flow of container arrivals increases,
holding costs tend to rise, motivating a reduction in the withhold-
ing threshold. Simultaneously, if the demand from the shipper also
increases, the withholding threshold should increase. However, when
combined with the import-export ratio, an increase in traffic intensity
results in an increased withholding threshold in import-heavy areas, as
the impact of an increase in 𝑠 becomes more significant than an increase
in 𝑐. Conversely, the opposite holds in export-heavy areas.

An increase in service capacity has a similar effect to a reduction in
traffic intensity, as illustrated in Fig. 3 by the non-monotone behavior
of the optimal threshold. Furthermore, consistent with the impact of
traffic intensity, the optimal cost is decreasing and convex in the
number of trucks, as illustrated in Fig. 3(b).

Inventory capacity of the shipper. In practice, the consignee is not neces-
sarily informed by the shipper on the value of the inventory capacity 𝑞.
Thus, it is interesting to know whether the knowledge of 𝑞 is essential in
decision making. In Table 4, we determine the optimal threshold level
for different values of 𝑞. We observe that the consignee benefits from
the shipper’s inventory capacity. This result is proven with the fixed-
point approximation in Proposition 3. As the shipper and consignee are
in a symmetric situation, the shipper also benefits from the consignee’s
inventory, which makes the street turn strategy a win-win situation
for both participants, incentivizing the shipper to store part of the
production for street turn.

Proposition 3 (Effect of 𝑞). In the fixed-point approximation, the optimal
threshold is increasing in 𝑞.

As 𝑞 increases, the expected cost decreases and a larger number of
containers is stored. However, the impact of an increased inventory
level at the shipper has a limited effect on the optimal cost. This is
particularly true when the imbalance between imports and exports
is high. In an import-heavy area, the inventory at the exporter does
not have time to reach its maximum level, which limits the effect
of an increase of 𝑞. In export-heavy areas, most containers from the
consignee are already used for matches when 𝑞 is small, so there is
scant opportunity for improved cost savings when 𝑞 increases. The
role of 𝑞 is a bit more apparent in balanced areas, where the size of
shipper inventory plays a role in the effective demand as viewed by
the consignee. The low sensitivity of the optimal decisions and optimal
costs to 𝑞 reveals that knowing the inventory policy of the shipper
(i.e., the value of 𝑞) has in many cases a minor impact.
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Fig. 3. Impact of the number of trucks (𝑐 = 𝑠 = 8, 𝑞 = 20).
Table 4
Effect of the inventory capacity at the shipper (𝑚 = 𝑞 = 1, 𝜇 = 1).
𝑞 𝑐 = 2, 𝑠 = 0.5 𝑐 = 1, 𝑠 = 1 𝑐 = 0.5, 𝑠 = 2

𝑛 𝜆𝑟∕𝜆𝑐 𝐸(𝑁) 𝐸(𝐶) 𝑛 𝜆𝑟∕𝜆𝑐 𝐸(𝑁) 𝐸(𝐶) 𝑛 𝜆𝑟∕𝜆𝑐 𝐸(𝑁) 𝐸(𝐶)

1 1 0.839 0.839 363.273 2 0.533 1.400 124.947 6 0.030 1.632 16.822
2 1 0.799 0.799 345.884 3 0.385 1.905 97.700 12 0.000 1.113 9.301
3 1 0.779 0.779 337.215 4 0.300 2.447 84.090 13 0.000 1.024 8.540
4 1 0.768 0.768 332.544 4 0.266 2.306 75.740 13 0.000 1.005 8.382
5 1 0.761 0.761 329.786 4 0.246 2.218 70.719 13 0.000 1.001 8.345
10 1 0.751 0.751 325.473 5 0.182 2.603 60.308 13 0.000 0.999 8.333
7. Optimal dynamic withholding policy in the single-truck case

Shifting to the dynamic admission control problem, we explore
optimal policies for managing empty containers when the shipper’s
stored production quantity is communicated to the consignee. Using
a Markov decision process approach, we find that the optimal dynamic
withholding policy is a state-dependent threshold policy in the single-
truck case. In Definition 1, we define a state-dependent threshold
policy.

Definition 1 (Definition of a State-Dependent Threshold Policy). A state-
dependent threshold policy is defined by the thresholds 𝑛0, 𝑛1,… , 𝑛𝑞 .
These thresholds separate the states in which a container is kept in the
system from those where it is returned to the sea terminal. Specifically,
for 𝑦 = 0, 1,… , 𝑞, when 𝑥 containers are already present in the system
with 𝑥 ≥ 0, the handling of a new container at arrival is determined as
follows:

• If 𝑥 < 𝑛𝑦, then the container is either stored at the consignee or
sent for matching.

• If 𝑥 ≥ 𝑛𝑦, then the container is directly returned to the sea
terminal.

We deduce from this definition that when 𝑛0 = 𝑛1 = ⋯ = 𝑛𝑞 , the
state-dependent threshold policy becomes the static threshold policy
analyzed in the previous section.

First, we provide the optimality equations for the long-run relative
value function 𝑉 (𝑥, 𝑦), and average optimal cost 𝐸(𝐶)∗ in the case
𝑚 = 1. This is possible because the maximal event rate 𝜆𝑐 + 𝜆𝑠 + 𝜇 is
bounded. Thus, for 𝑥 ≥ 0 and 𝑦 = 0, 1,… , 𝑞, we have

𝐸(𝐶)∗ = ℎ𝑥
𝜆𝑐 + 𝜆𝑠 + 𝜇

+
𝜆𝑐

𝜆𝑐 + 𝜆𝑠 + 𝜇
min(𝑉 (𝑥 + 1, 𝑦) − 𝑉 (𝑥, 𝑦), 𝑡𝑟𝑑)

+
𝜆𝑠

𝜆𝑐 + 𝜆𝑠 + 𝜇
1𝑦<𝑞(𝑉 (𝑥, 𝑦 + 1) − 𝑉 (𝑥, 𝑦))

+
min(𝑥, 𝑦, 1)𝜇
𝜆𝑐 + 𝜆𝑠 + 𝜇

(𝑉 (𝑥 − 1, 𝑦 − 1) − 𝑉 (𝑥, 𝑦)). (11)

The minimizing operator in (11) represents the control action to either
store or return a container.

In Theorem 3, we prove the threshold form of the optimal policy
for 𝑚 = 1.
937
Table 5
Properties of the function 𝑓 (𝑥, 𝑦).

Property Inequality

Increasing in 𝑥 𝑓 (𝑥 + 1, 𝑦) ≥ 𝑓 (𝑥, 𝑦)

Decreasing in 𝑦 𝑓 (𝑥, 𝑦 + 1) ≤ 𝑓 (𝑥, 𝑦)

Increasing in (𝑥, 𝑦) 𝑓 (𝑥 + 1, 𝑦 + 1) ≥ 𝑓 (𝑥, 𝑦)

Convex in 𝑥 𝑓 (𝑥 + 2, 𝑦) + 𝑓 (𝑥, 𝑦) ≥ 2𝑓 (𝑥 + 1, 𝑦)

Convex in 𝑦 𝑓 (𝑥, 𝑦 + 2) + 𝑓 (𝑥, 𝑦) ≥ 2𝑓 (𝑥, 𝑦 + 1)

Submodular in (𝑥, 𝑦) 𝑓 (𝑥, 𝑦 + 1) + 𝑓 (𝑥 + 1, 𝑦) ≥ 𝑓 (𝑥 + 1, 𝑦 + 1) + 𝑓 (𝑥, 𝑦)

Relation A 𝑓 (𝑥 + 2, 𝑦 + 1) + 𝑓 (𝑥, 𝑦) − 𝑓 (𝑥 + 1, 𝑦) − 𝑓 (𝑥 + 1, 𝑦 + 1) ≥ 0

Relation B 𝑓 (𝑥 + 1, 𝑦 + 2) + 𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦 + 1) − 𝑓 (𝑥 + 1, 𝑦 + 1) ≥ 0

Theorem 3 (Optimal Withholding Policy). In the single-truck case (i.e.,
𝑚 = 1), the optimal dynamic withholding policy for the consignee is a
state-dependent threshold that follows Definition 1.

To prove Theorem 3, we prove that if it is optimal to return a
container in state (𝑥, 𝑦), then the same action is optimal in state (𝑥+1, 𝑦).
A necessary condition for this is that if 𝑉 (𝑥 + 1, 𝑦) − 𝑉 (𝑥, 𝑦) − 𝑡𝑟𝑑 ≥ 0,
then 𝑉 (𝑥 + 2, 𝑦) − 𝑉 (𝑥 + 1, 𝑦) − 𝑡𝑟𝑑 ≥ 0, or equivalently 𝑉 (𝑥 + 2, 𝑦) −
𝑉 (𝑥 + 1, 𝑦) − 𝑡𝑟𝑑 ≥ 𝑉 (𝑥 + 1, 𝑦) − 𝑉 (𝑥, 𝑦) − 𝑡𝑟𝑑, which can be rewritten as
𝑉 (𝑥 + 2, 𝑦) + 𝑉 (𝑥, 𝑦) − 2𝑉 (𝑥 + 1, 𝑦) ≥ 0.

Therefore, by showing that 𝑉 (𝑥, 𝑦) is convex in 𝑥, we prove that the
optimal policy converges to the unique average optimal policy, as de-
fined in Definition 1. We prove this result by considering the equivalent
discrete time Markov using uniformization. This allows us to define the
value function in an iterative way and prove the threshold form of the
optimal policy by iteration. However, the convexity property in 𝑥 of
𝑉 (𝑥, 𝑦) cannot be proven in isolation but has to be proven with a set of
other properties. This set of properties  is defined for a given function
𝑓 in Table 5.

Remarks:

• The induction approach to prove Theorem 3 cannot be extended
to the case 𝑚 > 1, although we observe numerically that Theo-
rem 3 also holds for 𝑚 > 1. The first-order monotonicity properties
can be proven for 𝑚 > 1. However, after a 𝜇-transition, Relations
A and B induce a negative term. The problem is mainly due
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to the combination of the convex properties together with the
submodular property.

• The optimal dynamic policy differs from the static one. How-
ever, the difference between these two policies in terms of cost
is minor. Some supporting numerical data are provided in the
appendix. This underscores that a dynamic threshold policy might
be unnecessarily complex to implement, demanding real-time in-
formation about the shipper inventory. Instead, a static threshold
policy proves to be nearly optimal and simpler to implement.

• The decision variable is the number of containers in the system,
not the number of containers at the location. The result could
not be proven if the latter was used to define the state space.
This distinction is important compared to other admission control
problems where one can equivalently consider the quantity in the
queue or the quantity in the system.

. Model extensions

In this section, we explore two extensions of the initial model
here either the matching time (Section 8.1) or the production time

Section 8.2) follows an Erlang distribution rather than an exponential
ne. The Erlang distribution is known for its lower variability compared
o the exponential distribution and can tend to a deterministic distribu-
ion. This characteristic may better reflect the reality of transportation
ime, where although randomness exists, the variability might not be as
ronounced as that in an exponential distribution. For production time,
he inventory at the shipper often accumulates gradually in quantities
maller than an equivalent container volume. As a result, one may
eed to wait through several exponential phases until an equivalent
ontainer volume can be stored.

The aim of this section is to evaluate the influence of the variability
n matching or production time on the optimal threshold level and
orresponding expected cost. To this end, we analyze the simplest case
here 𝑞 = 1. We employ a 𝑧-transform to derive performance measures.
his technique enables the expression of performance measures in
losed-form as functions of the roots of a polynomial, facilitating a more
omprehensive understanding of the impact of distribution variability
n the optimal threshold level.

.1. Erlang matching time

We consider an Erlang matching time with 𝑟 phases and rate 𝑟𝜇
per phase. In this way, by varying 𝑟, we change the variability of the
distribution without modifying its mean. We redefine a state of the
system by the couple (𝑥, 𝑦) where 𝑥 is the number of containers and
𝑦 is the number of matching phases that remains to be done before
the goods from the shipper can be sent to the shipping line. We have
𝑥 = 0, 1,… , 𝑛 and 𝑦 = 0, 1,… , 𝑟. State 𝑦 = 0 corresponds to the case

here there are no goods available at the shipper for operating a match,
hile with states 𝑦 = 1, 2,… , 𝑟, there are still 𝑦 phases that need to be

ompleted. It should be noted that if 𝑥 = 0, then either 𝑦 = 0 (i.e., the
ystem is empty), or 𝑦 = 𝑟 (i.e., there is no container available but a
uantity of goods is waiting for a match to be operated). The cases
here 𝑦 = 1, 2,… , 𝑟 − 1 are only possible if at least one container is
vailable (i.e., 𝑥 ≥ 1).

The transition rate from state (𝑥, 𝑦) to state (𝑥′, 𝑦′), denoted by
(𝑥,𝑦),(𝑥′ ,𝑦′) for 𝑥 = 0, 1,… , 𝑛 and 𝑦 = 0, 1,… , 𝑟, is defined by

𝑡(𝑥,𝑦),(𝑥′ ,𝑦′) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

𝜆𝑐 if 𝑥 = 0, 1,… , 𝑛 − 1 and 𝑦 = 0, 1,… , 𝑟,

with (𝑥′, 𝑦′) = (𝑥 + 1, 𝑦),

𝜆𝑠 if 𝑥 = 0, 1,… , 𝑛 and 𝑦 = 0, with (𝑥′, 𝑦′) = (𝑥, 𝑟),

𝑟𝜇 if 𝑥 = 1, 2,… , 𝑛 and 𝑦 = 2,… , 𝑟,
with (𝑥′, 𝑦′) = (𝑥, 𝑦 − 1),

𝑟𝜇 if 𝑥 = 1, 2,… , 𝑛 and 𝑦 = 1,

with (𝑥′, 𝑦′) = (𝑥 − 1, 0),

0 otherwise.
938

⎩

Table 6
Performance measures with Erlang matching time.
Cases 𝐸(𝑁)

𝑟 = 1 See Proposition 1

𝑛 = 1
𝑠 + 𝑐 + 𝑐

𝑠
𝑠 + 𝑐 + 1 + 𝑠∕𝑐 + 𝑐∕𝑠

𝑛 = ∞, 𝑐(𝑠 + 1)
𝑠

< 1 𝑐
𝑠
−𝑠2(𝑐(𝑟 − 1) − 2𝑟) + 2𝑐𝑟

2𝑟(𝑠 − 𝑐(𝑠 + 1))

𝑛 = ∞, 𝑟 = ∞, 𝑐(𝑠 + 1)
𝑠

< 1 𝑐
𝑠
2𝑐 + 2𝑠2 − 𝑐𝑠2

2(𝑠 − 𝑐(𝑠 + 1))

The stationary probabilities are denoted by 𝑝𝑥,𝑦. They can be found
using the same approach as in the multi-server case. However, in this
context, we propose employing a 𝑧-transform, allowing us to derive
performance measures in closed-form as functions of the roots of a
polynomial. We define the polynomials 𝑃0(𝑧), 𝑃1(𝑧), 𝑃2(𝑧), . . . , 𝑃𝑟(𝑧) as

𝑘(𝑧) ∶=
𝑛
∑

𝑥=0
𝑝𝑥,𝑘𝑧𝑥, for 𝑘 = 0, 1,… , 𝑟. From the balance equations that

elate the stationary probabilities, we obtain

𝑐(1 − 𝑧) + 𝑠)𝑃0(𝑧) − 𝑐(1 − 𝑧)𝑝𝑛,0𝑧𝑛 = 𝑟𝑧−1𝑃1(𝑧), (12)
𝑐(1 − 𝑧) + 𝑟)𝑃𝑘(𝑧) − 𝑐(1 − 𝑧)𝑝𝑛,𝑘𝑧𝑛 = 𝑟𝑃𝑘+1(𝑧), for 𝑘 = 1, 2,… , 𝑟 − 2,

𝑐(1 − 𝑧) + 𝑟)𝑃𝑟−1(𝑧) − 𝑐(1 − 𝑧)𝑝𝑛,𝑟−1𝑧𝑛 = 𝑟𝑃𝑟(𝑧) − 𝑟𝑝0,𝑟, and
𝑐(1 − 𝑧) + 𝑟)𝑃𝑟(𝑧) − 𝑐(1 − 𝑧)𝑝𝑛,𝑟𝑧𝑛 − 𝑟𝑝0,𝑟 = 𝑠𝑃0(𝑧).

his set of equations allows us to express the polynomials 𝑃0(𝑧), 𝑃1(𝑧),
. . , 𝑃𝑟(𝑧) as functions of the probabilities 𝑝0,𝑟, 𝑝𝑛,0, 𝑝𝑛,1, . . . , 𝑝𝑛,𝑟.
ubsequently, the stationary probabilities 𝑝0,𝑟, 𝑝𝑛,0, 𝑝𝑛,1, . . . , 𝑝𝑛,𝑟 can be
educed by solving a linear system of equations, as given in Proposi-
ion 4.

roposition 4 (Stationary Probabilities). The polynomial in 𝑧 defined as

𝑟(𝑧) = 𝑐𝑧(𝑐(1 − 𝑧) + 𝑟)𝑟 + 𝑠𝑧
𝑟
∑

𝑘=1

(

𝑟
𝑘

)

𝑐𝑘(1 − 𝑧)𝑘−1𝑟𝑟−𝑘 − 𝑠𝑟𝑟

as 𝑟+1 distinct roots, 𝑧1, 𝑧2,… , 𝑧𝑟+1 from which we deduce the probabilities
0,𝑟, 𝑝𝑛,0, 𝑝𝑛,1, . . . , 𝑝𝑛,𝑟 as the solution of the following system of linear
quations:
𝑟
∑

𝑘=0
𝑝𝑛,𝑘 −

𝑠
𝑠 + 1

𝑝0,𝑟 = 𝑐 − 𝑠
𝑠 + 1

, and

𝑠𝑝𝑛,0𝑧
𝑛
𝑖 + 𝑠𝑧𝑛−1𝑖

𝑟
∑

𝑘=1

(

𝑟
𝑐(1 − 𝑧𝑖) + 𝑟

)𝑘
𝑝𝑛,𝑘 − (𝑐(1 − 𝑧𝑖) + 𝑠)𝑝0,𝑟 = 0,

for 𝑖 = 1, 2,… , 𝑟 + 1. (13)

Next, we deduce the performance measures in Corollary 2.

Corollary 2 (Performance Measures). The performance measures are given
by

𝜆𝑟 = 𝜆𝑐

(

1 − 𝑠
𝑐(𝑠 + 1)

+ 𝑠
𝑐(𝑠 + 1)

𝑝0,𝑟

)

, and

𝐸(𝑁) =
1 − 𝑝0,𝑟
𝑠 + 1

𝑠2(𝑐(𝑟 − 1) − 2𝑟) − 2𝑐𝑟
2𝑟(𝑐(𝑠 + 1) − 𝑠)

+
𝑐(𝑛(𝑠 + 1) + 1)
𝑐(𝑠 + 1) − 𝑠

𝑝𝑛,0

+
𝑟
∑

𝑘=1

𝑐(𝑛𝑟(𝑠 + 1) − 𝑠(𝑟 − 𝑘))
𝑟(𝑐(𝑠 + 1) − 𝑠)

𝑝𝑛,𝑘.

From Proposition 4 and Corollary 2, we can derive the performance
measures in closed-form in some cases in Table 6.

We observe that 𝑟 is not part of the expression of 𝐸(𝑁) when
= 1, revealing that the variability of the matching time does not

lay a role in this case. When 𝑛 tends to infinity, we find that 𝜕𝐸(𝑁)
𝜕𝑟 =

− 𝑠𝑐2 < 0, revealing that the expected number of containers in
2𝑟2(𝑠−𝑐(𝑠+1))
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Table 7
Impact of the matching time variability (𝜇 = 1).
𝑛 𝑟 = 1 𝑟 = 2 𝑟 = 5

𝐸(𝑁) 𝜆𝑟∕𝜆𝑐 𝐸(𝐶) 𝐸(𝑁) 𝜆𝑟∕𝜆𝑐 𝐸(𝐶) RD 𝐸(𝑁) 𝜆𝑟∕𝜆𝑐 𝐸(𝐶) RD

𝑐 = 2, 𝑠 = 0.5
1 0.839 0.839 363.273 0.839 0.839 363.273 0.000% 0.839 0.839 363.273 0.000%
2 1.822 0.834 369.349 1.825 0.834 369.331 −0.005% 1.827 0.834 369.317 −0.009%
3 2.820 0.833 377.513 2.824 0.833 377.537 0.006% 2.826 0.833 377.556 0.011%
4 3.820 0.833 385.834 3.824 0.833 385.864 0.008% 3.826 0.833 385.886 0.013%
5 4.820 0.833 394.166 4.824 0.833 394.196 0.008% 4.826 0.833 394.219 0.013%
10 9.820 0.833 435.832 9.824 0.833 435.863 0.007% 9.826 0.833 435.885 0.012%
15 14.820 0.833 477.499 14.824 0.833 477.530 0.006% 14.826 0.833 477.552 0.011%

𝑐 = 1, 𝑠 = 1
1 0.600 0.600 132.440 0.600 0.600 132.440 0.000% 0.600 0.600 132.440 0.000%
2 1.400 0.533 124.947 1.412 0.529 124.212 −0.588% 1.421 0.526 123.656 −1.033%
3 2.293 0.512 127.896 2.317 0.510 127.553 −0.268% 2.336 0.508 127.334 −0.440%
4 3.239 0.505 134.162 3.273 0.503 134.166 0.003% 3.299 0.502 134.202 0.029%
5 4.213 0.502 141.675 4.254 0.501 141.887 0.150% 4.284 0.501 142.059 0.271%
10 9.191 0.500 182.797 9.241 0.500 183.212 0.227% 9.273 0.500 183.495 0.382%
15 14.191 0.500 224.458 14.241 0.500 224.877 0.187% 14.243 0.500 225.161 0.313%

𝑐 = 0.5, 𝑠 = 2
1 0.355 0.355 40.641 0.355 0.355 40.641 0.000% 0.355 0.355 40.641 0.000%
2 0.699 0.185 25.516 0.698 0.171 23.982 −6.011% 0.698 0.161 22.861 −10.407%
3 0.998 0.110 20.010 0.989 0.095 18.352 −8.283% 0.982 0.085 17.216 −13.964%
4 1.251 0.070 17.806 1.226 0.057 16.250 −8.740% 1.206 0.049 15.223 −14.507%
5 1.461 0.045 16.997 1.415 0.035 15.528 −8.641% 1.379 0.029 14.574 −14.254%
10 2.036 0.007 17.667 1.875 0.004 16.044 −9.188% 1.767 0.003 15.009 −15.043%
15 2.200 0.001 18.445 1.970 0.000 16.468 −10.716% 1.838 0.000 15.344 −16.809%
(
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the system (and the holding cost) is increasing in the matching time
variability.

In Table 7, we calculate the expected number of containers, rejec-
tion probability, and expected cost for different values of 𝑛, 𝑟, 𝑐, and 𝑠.
Moreover, we derive the relative difference in cost between a situation
with 𝑟 = 2 or 𝑟 = 5 and the one with 𝑟 = 1 as RD= 𝐸(𝐶)𝑟=2,5−𝐸(𝐶)𝑟=1

𝐸(𝐶)𝑟=1 .
We observe that the variability in matching time only significantly

mpacts the performance measures in export-heavy areas. In a queue
ith Erlang service, the expected time spent in the system, measured at
rrival, depends on the number of remaining phases of service for the
ontainer currently operating a match and the number of containers
aiting. However, the expected matching time of waiting containers

s not a function of the number of phases of the matching time. Thus,
he number of phases only affects the wait generated by the container
urrently in matching operation. Consequently, the relative importance
f the number of phases tends to diminish in highly congested queues,
uch as in import-heavy areas.

In general, an increase in the number of phases 𝑟 leads to a reduction
in rejection probability and congestion. However, counterexamples can
be found, especially in import-heavy and balanced areas. In these cases,
having lower variability in matching time allows more containers to
join the inventory, leading to increased values of 𝐸(𝑁) as 𝑟 increases.
However, the rejection probability remains almost constant. This ex-
plains why the expected cost can increase with 𝑟. In terms of decision
making, the number of phases 𝑟 almost never has an impact on the
optimal threshold level. In the examples in the table, the minimizer of
the cost is the same for 𝑟 = 1, 2, and 5. Some rare counterexamples
can still be found, but even then, a difference of at most 1 is observed
between a situation with 𝑟 = 1 and one with 𝑟 = ∞.

8.2. Erlang production time

We now employ the same approach to investigate the case of an
Erlang production time. We assume that the production of goods at the
shipper follows an Erlang distribution with 𝑟 phases, each with a rate

′ ′
939

of 𝑟𝜆𝑠. The transition rate from state (𝑥, 𝑦) to state (𝑥 , 𝑦 ), denoted by
𝑡(𝑥,𝑦),(𝑥′ ,𝑦′) for 𝑥 = 0, 1,… , 𝑛 and 𝑦 = 0, 1,… , 𝑟, is defined as:

𝑡(𝑥,𝑦),(𝑥′ ,𝑦′) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜆𝑐 if 𝑥 = 0, 1,… , 𝑛 − 1 and 𝑦 = 0, 1,… , 𝑟,

with (𝑥′, 𝑦′) = (𝑥 + 1, 𝑦),

𝑟𝜆𝑠 if 𝑥 = 0, 1,… , 𝑛 and 𝑦 = 0, 1,… , 𝑟 − 1

with (𝑥′, 𝑦′) = (𝑥, 𝑦 + 1),

𝜇 if 𝑥 = 1, 2,… , 𝑛 and 𝑦 = 𝑟, with (𝑥′, 𝑦′) = (𝑥 − 1, 0),

0 otherwise.

As in the previous section, we introduce the polynomials 𝑃𝑖(𝑧) =
∑𝑛

𝑥=0 𝑝𝑥,𝑖𝑧
𝑥, where 𝑝𝑥,𝑖 is the stationary probability of being in state

(𝑥, 𝑖). From the balance equations, we find that:

(𝑐(1 − 𝑧) + 𝑟𝑠)𝑃0(𝑧) − 𝑐(1 − 𝑧)𝑧𝑛𝑝𝑛,0 = 𝑧−1(𝑃𝑟(𝑧) − 𝑝0,𝑟), (14)
𝑐(1 − 𝑧) + 𝑟𝑠)𝑃𝑘(𝑧) − 𝑐(1 − 𝑧)𝑧𝑛𝑝𝑛,𝑘 = 𝑠𝑟𝑃𝑘−1(𝑧) for 𝑘 = 1, 2,… , 𝑟 − 1,

𝑐(1 − 𝑧) + 1)𝑃𝑟(𝑧) − 𝑝0,𝑟 − 𝑐(1 − 𝑧)𝑧𝑛𝑝𝑛,𝑟 = 𝑠𝑟𝑃𝑟−1(𝑧).

In Proposition 5, we provide the stationary probabilities 𝑝0,𝑟, 𝑝𝑛,0,
𝑛,1, . . . , 𝑝𝑛,𝑟 expressed as functions of the roots of a polynomial. In
orollary 3, we present the performance measures.

roposition 5 (Stationary Probabilities). The polynomial in 𝑧 defined as

𝑟(𝑧) = 𝑧(𝑐(1 − 𝑧) + 1)
( 𝑐
𝑠𝑟
(1 − 𝑧) + 1

)𝑟

as 𝑟+1 distinct roots, which are different from 1, denoted as 𝑧1, 𝑧2,… , 𝑧𝑟+1.
rom these roots, we deduce the probabilities 𝑝0,𝑟, 𝑝𝑛,0, 𝑝𝑛,1, . . . , 𝑝𝑛,𝑟 as the
olution of the following system of equations:

− 𝑠
𝑐(𝑠 + 1) − 𝑠

𝑝0,𝑟 +
𝑐(𝑠 + 1)

𝑐(𝑠 + 1) − 𝑠

𝑟
∑

𝑖=0
𝑝𝑛,𝑖 = 1, and

[

1 − 𝑧𝑖
( 𝑐
𝑠𝑟

(1 − 𝑧𝑖) + 1
)𝑟]

𝑝0,𝑟 − 𝑐(1 − 𝑧𝑖)𝑧𝑛+1𝑖

𝑟
∑

𝑖=0
𝑝𝑛,𝑖

( 𝑐
𝑠𝑟

(1 − 𝑧𝑖) + 1
)𝑖

= 0,

for 𝑖 = 1, 2,… , 𝑟 + 1. (15)

Corollary 3 (Performance Measures). The performance measures are given
by

𝜆𝑟 = 𝜆𝑐

(

1 − 𝑠 + 𝑠 𝑝0,𝑟

)

, and

𝑐(𝑠 + 1) 𝑐(𝑠 + 1)
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c

G

𝐸(𝑁) = 𝑛𝑠
𝑟

− 𝑠
𝑐(𝑠 + 1) − 𝑠

+
𝑐(𝑟 − 1 + 2𝑟𝑠)

2𝑟(𝑠 + 1)(𝑐(𝑠 + 1) − 𝑠)

+
𝑛𝑠2

𝑟 + 𝑐 − 𝑠 + 𝑐(𝑟−1+2𝑟𝑠)
2𝑟(𝑠+1)

𝑐(𝑠 + 1) − 𝑠
𝑝0,𝑟 +

𝑟
∑

𝑖=0
𝑝𝑛,𝑖

𝑐𝑖
𝑟2
.

As for the case of Erlang matching time, performance measures
an be derived in certain scenarios. For example, when 𝑛 tends to

infinity, we find that 𝐸(𝑁) = 𝑠
𝑠−𝑐(𝑠+1) −

𝑐(𝑟−1+2𝑟𝑠)
2𝑟(𝑠+1)(𝑠−𝑐(𝑠+1)) −

𝑐−𝑠+ 𝑐(𝑟−1+2𝑟𝑠)
2𝑟(𝑠+1)
𝑠 ,

subject to the stability condition 𝑐(𝑠 + 1) < 𝑠. We deduce that 𝜕𝐸(𝑁)
𝜕𝑟 =

− 𝑐(2𝑠−𝑐(𝑠+1))
2𝑟2𝑠(𝑠+1)(𝑠−𝑐(𝑠+1)) < 0, which establishes that 𝐸(𝑁) decreases with

the number of phases 𝑟. Furthermore, by letting 𝑟 tend to infinity,
analogous to the deterministic production time case, we obtain the
expression 𝐸(𝑁) = 1 + 1

1−𝑐 − 3𝑐
2𝑠 −

𝑐
𝑠+1 − 𝑐(1+𝑐2)

2(1−𝑐)(𝑠−𝑐(𝑠+1)) .
The observations made for the effect of the variability of the produc-

tion time are similar to those for the variability of the matching time.
An illustration is provided in the Appendix. In particular, production
time variability predominantly influences export-heavy regions, where
a decrease in production time variability leads to a reduction in the
expected cost. Conversely, in import-heavy regions, instances can be
identified where the expected cost increases with lower variability.
Furthermore, it is noteworthy that the optimal withholding threshold
level is not affected by production time variability.

9. Conclusion

We investigated optimal container management for a hinterland
consignee, aiming to minimize travel and holding costs in a double-
ended queue system. The consignee’s decision on whether to store
or return a container, determined by a withholding threshold, was
explored. Closed-form performance measures were derived for a ship-
per with single storage facility, using a matrix approach that was
extended to a numerical method in the general case, along with a fixed-
point approximation for efficient computations. Results highlighted
diverse withholding roles based on import, balance, or export focus,
and the non-monotonic impact of traffic intensity and service capacity
on withholding thresholds. In the dynamic admission control problem,
we found the optimal withholding policy to be state-dependent in
the single-truck case, with a marginal cost reduction in multi-resource
scenarios. Examination of variability in matching and production times
showed some cost savings in export areas, with a marginal impact on
withholding decisions.

There are several avenues for future research. First, the assumptions
made can be modified by considering generally distributed processes
for the arrival of and demand for containers or a non-Erlang distri-
bution of matching times. Although changing distributions may lead
to different quantitative results, it is unlikely to modify the insights
provided by the Markovian analysis. Other costs could be included in
the analysis, such as the cost to empty and clean containers upon arrival
or the cost to buy a new container when an old one is no longer suitable
for use. Finally, instead of considering the individual optimization for
the consignee in isolation, we could determine the optimal inventory
policy for both the consignee and shipper as a way to minimize their
overall costs. This would open discussions of how the benefits of the
street turn strategy should be shared between the two participants
and how such a collaboration could be achieved in practice. Further,
street turn strategies have the potential to reduce unnecessary container
movements leading to lower carbon emissions. We could reconsider the
optimization question by including environmental objectives to further
incentivize matching operations.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ejor.2024.02.035.
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