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On weaker notions for Kähler-Ricci solitons

Nefton PALI

June 13, 2024

Abstract

We show that shrinking Kähler-Ricci solitons over a compact Kähler
manifold are gradient shrinking Kähler-Ricci solitons. The proof relies
on a remarkable identity on the kernels of a real and a complex elliptic
operator proved in our solution of the variational stability problem for
gradient shrinking Kähler-Ricci solitons in [Pal6].

1 Introduction

The notion of Ricci soliton has been introduced by D.H. Friedon in [Fri]. It is
a natural generalization of the notion of Einstein metric. The terminology is
justified by the fact that the pull back of the Ricci soliton metric via the flow
of automorphisms generated by its vector field is a solution to Hamilton’s Ricci
flow [Ham].

A remarkable and very useful generalization of this flow and his solitons has
been introduced by Moroianu-Murcia-Shahbazi in [Mo-Mu-Sh1, Mo-Mu-Sh2].

An other very important generalization of Ricci solitons has been introduced
by Nurowski-Randall in [Nur-Ran]. Indeed the later generalization is not only
very important in pure mathematics but also quite fundamental in theoretical
physics.

In this article we will restrict our considerations to the case of compact
Kähler manifolds. In this case the notion of gradient shrinking Kähler-Ricci
soliton is quite standard nowadays (see for example [Cao, Pal5, Pal6] among a
very large number of other authors).

In this article we will call them standard Kähler-Ricci solitons, for terminol-
ogy simplicity.

We will consider below two weaker definitions of Kähler-Ricci solitons.
The second one is usually called shrinking Kähler-Ricci soliton in the liter-

ature on the subject.

Key words : Kähler manifold, Kähler-Ricci soliton. Holomorphic vector fields.
AMS Classification : 53C25, 53C55, 32J15.
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Given a Kähler structure (g, J) over a complex manifold X, we will denote
by TX,J the real tangent bundle TX equipped with the complex structure J over
its fibers.

Then O(X,TX,J) will denote the space of real J-holomorphic vector fields
over X.

Definition 1 A Kähler structure (g, J) over a complex manifold X is called a
very weak Kähler Ricci soliton if there exists a vector field ξ ∈ C∞(X,TX) such
that g − Ric(g) = Lξg.

Definition 2 A Kähler structure (g, J) over a complex manifold X is called
a weak Kähler Ricci soliton if there exists a real holomorphic vector field ξ ∈
O(X,TX,J) such that g − Ric(g) = Lξg.

We will show the following result.

Theorem 1 Let (g, J) be a weak Kähler Ricci soliton over a compact complex
manifold X and let ω := gJ be the associated symplectic form. Then there exists
a unique vector field ξ̂ ∈ O(X,TX,J) such that g − Ric(g) = Lξ̂g and such that

LJξ̂ω = 0. In particular (X, J) is a Fano variety.

It is known (see Remarks 2 and 3 in Section 4 in [Pal2]) that a Kähler
structure which satisfies the two equations in the statement of Theorem 1 with
respect to a vector field ξ ∈ O(X,TX,J), is a standard Kähler Ricci soliton.

We notice now that in the case of a very weak Kähler Ricci soliton, the
symplectic form ω satisfies the equation

ωJ − RicJ(ω)J = LξωJ + ωLξJ,

since the Chern-Ricci form RicJ(ω) satisfies the identity

RicJ(ω) = Ric(g)J, (1)

in the Kähler case (see for example [Pal4]). Therefore the form Lξω is J-
invariant if and only if

LξJ = 0, (2)

since the bilinear form ωLξJ is J-anti-invariant. (The later is because the endo-
morphism LξJ is J-anti-linear). The condition 2 is equivalent to the holomorphy
condition

ξ ∈ O(X,TX,J),

in the case of an integrable almost complex structure J , (see the identity (19.5)
in Lemma 28 in the Section 19.4 of the Appendix in [Pal4]).

Thus in the case of a weak Kähler Ricci soliton, we deduce that the soliton
equation g − Ric(g) = Lξg, is equivalent to the equation

ω − RicJ(ω) = Lξω. (3)
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2 Proof of Theorem 1

STEP I. The Fano condition and the potential of the holomorphic
vector field ξ.

The fact that the form ω is symplectic implies

Lξω = d(ξ⌟ω).

Then the Equation (3) implies that the manifold (X,J) is a Fano variety, by
definition. We recall that H1

d(X,C) = 0 in the case of Fano manifolds.

Then by Hodge decomposition, the identity H0,1

∂
(X,C) = 0 holds.

For any function u ∈ C∞(X,C) we define the J-complex g-gradient as the
real vector field

∇g,Ju := ∇g Reu+ J∇g Imu ∈ C∞(X,TX).

With this notations, the complex decomposition formula holds

∇g,Ju⌟g = ∂Ju+ ∂̄Ju. (4)

We notice (see the proof of Lemma 1 below or the proof of Lemma 10 in Section
13 in [Pal6]), that over a connected manifold (in this proof we will always assume
is the case) the condition

∇g,Ju = 0,

is equivalent to u being constant. Let Ω > 0 be an arbitrary volume form and
let C∞

Ω (X,R)0 be the space of smooth functions with zero integral with respect
to Ω.

We consider now the J-anti-linear component of the complex Hessian map

H0,1
g,J : C∞

Ω (X,C)0 −→ C∞(X,Λ0,1
J T ∗

X ⊗C TX,J)

u 7−→ ∂TX,J
∇g,Ju.

Lemma 1 Let (X, J, g) be a compact connected Kähler manifold with H1
d(X,C) =

0. Then the map

KerH0,1
g,J −→ H0(X,TX,J)

u 7−→ ∇g,Ju,

is an isomorphism of complex vector spaces.

Proof We observe first the injectivity. Using the complex decomposition (4)
we infer the formula

d(∇g,Ju⌟g) = ∂J∂J(u− u),
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which in the case ∇g,Ju = 0 implies Imu = 0 and thus Reu = 0. In order
to show the surjectivity we consider an arbitrary ξ ∈ H0(X,TX,J). Then the
identity (5) below implies

∂̄J(ξ
1,0
J ⌟ω) = 0.

The identity H0,1

∂
(X,C) = 0, implies the existsence of a unique function u ∈

C∞
Ω (X,C)0 such that

i∂̄Ju = ξ1,0J ⌟ω = iξ1,0J ⌟g.

Thus ξ = ∇g,Ju thanks to the complex decomposition (4). □

Lemma 2 Let (X, J) be a complex manifold and let ω ∈ C∞(X,Λ1,1
J T ∗

X), ξ ∈
C∞(X,T 1,0

X ). Then the following identity holds

∂J(ξ⌟ω) = ∂T 1,0
X,J

ξ⌟ω − ξ⌟∂Jω. (5)

Proof Let η, µ ∈ C∞(X,T 0,1
X ). The identities (see [Pal1])

∂J(ξ⌟ω)(η, µ) = η.ω(ξ, µ)− µ.ω(ξ, η)− ω(ξ, [η, µ]),

∂Jω(η, ξ, µ) = η.ω(ξ, µ) + µ.ω(η, ξ)

− ω([η, ξ, ]1,0, µ) + ω([η, µ], ξ)− ω([ξ, µ]1,0, η)

= ∂J(ξ⌟ω)(η, µ)− ω(∂T 1,0
X,J

ξ(η), µ) + ω(∂T 1,0
X,J

ξ(µ), η)

= ∂J(ξ⌟ω)(η, µ)− ω(∂T 1,0
X,J

ξ(η), µ)− ω(η, ∂T 1,0
X,J

ξ(µ))

= [∂J(ξ⌟ω)− ∂T 1,0
X,J

ξ⌟ω](η, µ),

impliy the required identity. □

Therefore with the notations in the proof of Lemma 1 we have in our case

Lξω = d(ξ⌟ω)

= ∂J(ξ
1,0
J ⌟ω) + ∂J(ξ

0,1
J ⌟ω) + ∂̄J(ξ

1,0
J ⌟ω) + ∂̄J(ξ

0,1
J ⌟ω)

= ∂Jα+ i∂J ∂̄Ju+ ∂̄J ᾱ− i∂̄J∂Ju

= i∂J ∂̄J(u+ u).
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This combined with (3) implies the identity

ω − RicJ(ω) = i∂J ∂̄J(u+ u). (6)

We write now 2u = f + ih, with f, h real valued and we set Ω := efdVg. Then
(6) rewrites as

ω = RicJ(Ω), (7)

where RicJ(Ω), is the Chern-Ricci form. We will denote by

Ric∗J(Ω)ω := ω−1 RicJ(Ω),

the associated endomorphism.
STEP II. Combination of the soliton equation with the weighted

complex Bochner Formula.
We use the convention ∆g := −div∇g. We consider the Laplacian operators

acting on any v ∈ C∞(X,C),

∆Ω
g v := ∆gv + df(∇gv).

∆Ω
g,−Jv := ∆Ω

g v + ig(∇gv, J∇gf).

We notice the identity

∆Ω
g,−Jf = ∆Ω

g f.

We observe now that the fact that the condition

ξ = ∇g,Ju ∈ O(X,TX,J),

implies the identity

∇g,J∆
Ω
g,−Ju = 2Ric∗J(Ω)ω∇g,Ju, (8)

thanks to the weighted complex Bochner formula (12) in the next section or
formula (13.4) in [Pal6]. Then (7) combined with (8) implies

∇g,J

(
∆Ω
g,−J − 2I

)
u = 0,

(where I is the identity operator), which means(
∆Ω
g,−J − 2I

)
u = c1 + ic2,

for some real constants c1 and c2. The later is equivalent to the system
∆Ω
g f − g(∇gh, J∇gf)− 2f = c1,

∆Ω
g h− 2h = c2.
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The function 2ĥ := 2h+ c2, satisfies the identity(
∆Ω
g − 2I

)
ĥ = 0.

We infer

J∇gh ∈ O(X,TX,J),

by the remarkable identity (18.1) in Corollary 5, Section 18 of [Pal6] i.e. identity
(27) in Corollary 2 in the next section, and by the identity (18) in the next
section. We deduce

∇gf ∈ O(X,TX,J).

The fact that

LJ∇gvω = 0,

for any smooth function, (see Remark 2 in Section 4 of [Pal2]) implies

2Lξω = L∇gfω.

Thus

ξ̂ := 2−1∇gf,

is the required vector field in the statement of Theorem 1 and it is unique by
the identity (6). This concludes the proof of Theorem 1.

We would like to address now the following question.
Question. Over a compact Kähler manifold, is a very weak Kähler Ricci

soliton a standard one?

3 Real eigenfunctions of the weighted complex
Laplacian

For the readers convenience we include in this section the statement and a self
contained proof of the remarkable identity (18.1) in Corollary 5, Section 18 of
[Pal 4], i.e. identity (27) in Corollary 2 below, with

∆Ω
g,J := ∆Ω

g,−J .

We start with a few notations from [Pal 4]. We equip the set of smooth Rie-
mannian metrics M over X with the scalar product

(u, v) 7−→
∫
X

⟨ u, v⟩g Ω, (9)

for all u, v ∈ H := L2(X,S2
RT

∗
X). Let P ∗

g be the formal adjoint of some operator
P with respect to a metric g. We observe that the operator

P ∗Ω
g := efP ∗

g (e
−f•),
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with f := log
dVg

Ω , is the formal adjoint of P with respect to the scalar product
(9). With the above notation we can define the general Ω-Laplacian operator
∆Ω
g as

∆Ω
g = ∇∗Ω

g ∇g = ∆g +∇gf⌟∇g.

We define the Ω-divergence operator acting on vector fields as follows;

divΩ ξ :=
d(ξ⌟Ω)

Ω
= ef divg(e

−fξ) = divg ξ − g(ξ,∇gf).

We infer in particular the identity divΩ ∇gu = −∆Ω
g u, for all functions u. We

observe also the integration by parts formula

−
∫
X

udivΩ ξΩ =

∫
X

g(∇gu, ξ)Ω.

We consider also the linear operator

BΩ
g,J : C∞(X,R) −→ C∞

Ω (X,R)0,

BΩ
g,Ju := divΩ(J∇gu).

This is a first order differential operator. Indeed

BΩ
g,Ju = TrR(J∇2

gu)− df · J∇gu

= g(∇gu, J∇gf),

since J is g-anti-symmetric. If we extend BΩ
g,J over C∞(X,C) by complex

linearity, then

∆Ω
g,J = ∆Ω

g − iBΩ
J,g

= −2 divΩ ∇0,1
g,J .

We denote by

ΛΩ
g,J := Ker(∆Ω

g,J − 2I) ⊂ C∞
Ω (X,C)0,

and by

ΛΩ,⊥
g,J := [Ker(∆Ω

g,J − 2I)]⊥Ω ⊆ C∞
Ω (X,C)0,

its L2
Ω-orthogonal inside C

∞
Ω (X,C)0. Let also

2dcJu := i(∂J − ∂J)u = −du · J.
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We define now the set V1 :=
{
Ω > 0 |

∫
X
Ω = 1

}
. Notice that the tangent space

of M×V1 is given by

TM×V1
= C∞(X,S2T ∗

X)⊕ C∞(X,Λ2nT ∗
X)0,

where n := dimCX and

C∞(X,Λ2nT ∗
X)0 :=

{
V ∈ C∞(X,Λ2nT ∗

X) |
∫
X

V = 0

}
.

We denote by Endg(TX) the bundle of g-symmetric endomorphisms of TX . We
will systematically use the fact that for any (g,Ω) ∈ M×V1, the tangent space
TM×V1,(g,Ω) identifies with C

∞(X,Endg(TX))⊕C∞
Ω (X,R)0 via the isomorphism

(v, V ) 7−→ (v∗g , V
∗
Ω) := (g−1v, V/Ω).

We consider now the pseudo-Riemannian structure over the space M×V1 given
by the formula (g,Ω) ∈ M× V1 7−→ Gg,Ω, with

Gg,Ω(u, U ; v, V ) =

∫
X

[⟨u, v⟩g − 2U∗
ΩV

∗
Ω ]Ω,

for all (u, U), (v, V ) ∈ TM×V1
. We consider the vector space

Fg,Ω := {(v, V ) ∈ TM×V1
| ∇∗Ω

g v∗g +∇gV
∗
Ω = 0}.

Despite it is not needed here we recall (see [Pal6]) that Fg,Ω is the orthogonal
space, with respect to G, to the tangent space at the point (g,Ω) ∈ M× V1 of
the orbit

[g,Ω] = Diff0(X) · (g,Ω),

of the point (g,Ω) under the action of the identity component of the group of
smooth diffeomorphisms Diff0(X) of X. In formal terms the following equality
holds

T⊥G

[g,Ω],(g,Ω) = Fg,Ω.

Let now Jint be the space of smooth integrable complex structures over X. We
consider the space of ω-compatible complex structures

Jω := {J ∈ Jint | ω = J∗ωJ, ωJ < 0},

and let Mω := −ω · Jω ⊂ M. Over a Fano manifold, the Chern-Ricci map
provides a natural embedding of Jω inside M×V1. The image Sω ⊂ M× V1

of this embedding is

Sω := {(g,Ω) ∈ Mω × V1 | ω = RicJ(Ω), J = g−1ω}.

We consider now the vector space

DJg := {v ∈ C∞(X,S2
RT

∗
X) | v∗g = ∂̄TX,J

∇g,Jψv, ψv ∈ ΛΩ,⊥
g,J },
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where v′J and v′′J denote respectively the J-invariant and J-anti-invariant parts
of v. We define also the vector space

TJg,Ω[0] :=
{
(v, V ) ∈ DJg × TV1

| d
[
(∇∗Ω

g v∗g +∇gV
∗
Ω)⌟ω

]
= 0

}
.

We consider also the sub-space of TJg,Ω[0]

FJg,Ω := {(v, V ) ∈ Fg,Ω | v ∈ DJg }.

For any (g,Ω) ∈ Sω we denote by

[g,Ω]ω := Symp0(X,ω) · (g,Ω) ⊂ Sω,

the orbit of the point (g,Ω) under the action of the identity component of the
group of smooth symplectomorphisms Symp0(X,ω) of X. With these notations,
the following property holds.

Lemma 3 For any point (g,Ω) ∈ Sω we have

T⊥G

[g,Ω]ω,(g,Ω) ∩ TJg,Ω[0] = FJg,Ω. (10)

We need now a few preliminaries.

3.1 The weighted complex Bochner identity

The weighted complex Bochner identity plays a crucial role in all this article.
For the reader convenience we recall here its statement and proof from [Pal6].

Lemma 4 Let (X, J, g) be a Kähler manifold with symplectic form ω := gJ
and let Ω > 0 be a smooth volume form. Then for all u ∈ C∞(X,R) and
v ∈ C∞(X,C) the complex Bochner type formulas hold

2∂
∗g,Ω

TX,J
∂gTX,J

∇gu = ∇g,J∆
Ω
g,Ju− 2∂TX,J

∇gf∇gu, (11)

2∂
∗g,Ω

TX,J
∂TX,J

∇g,Jv = ∇g,J∆Ω
g,Jv − 2Ric∗J(Ω)ω∇g,Jv. (12)

Proof Let ξ ∈ C∞(X,TX) and observe that for bi-degree reasons the following
identity holds

2∂
∗g,Ω

TX,J
∂gTX,J

ξ = 2∇∗Ω
g ∂gTX,J

ξ

= ∆Ω
g ξ −∇∗Ω

g (J∇g,J•ξ)

= ∆Ω
g ξ −∇∗

g(J∇g,J•ξ)− J∇g,J∇gfξ.
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Let (ek)
2n
k=1 be a local g-orthonormal frame over a neighborhood of an arbitrary

point p such that ∇gek(p) = 0. Then at the point p the following equalities hold

−∇∗
g(J∇g,J•ξ) = J∇g,ek∇g,Jekξ

=
1

2
(J∇g,ek∇g,Jekξ − J∇g,Jek∇g,ekξ),

since (Jek)
2n
k=1 is also a local g-orthonormal frame. Then the fact that [ek, Jek](p) =

0 implies

−∇∗
g(J∇g,J•ξ) =

1

2
JRg(ek, Jek)ξ = Ric∗(g)ξ.

We infer the complex Bochner type formula

2∂
∗g,Ω

TX,J
∂gTX,J

ξ = ∆Ω
g ξ +Ric∗(g)ξ − J∇g,J∇gfξ. (13)

In a similar way we obtain

2∂
∗g,Ω

TX,J
∂TX,J

ξ = ∆Ω
g ξ − Ric∗(g)ξ + J∇g,J∇gfξ. (14)

Using formulas (13) and

∇g∆
Ω
g u = ∆Ω

g∇gu+Ric∗g(Ω)∇gu, (15)

we deduce the expressions

2∂
∗g,Ω

TX,J
∂gTX,J

∇gu = ∇g∆
Ω
g u−∇2

gf∇gu− J∇2
guJ∇gf

= ∇g∆
Ω
g u− (∇2

gf + J∇2
gfJ)∇gu

− J(∇2
guJ∇gf −∇2

gfJ∇gu)

= ∇g∆
Ω
g u− 2∂TX,J

∇gf∇gu− J∇g[g(∇gu, J∇gf)].

Using the first order expression of BΩ
J,g we obtain

2∂
∗g,Ω

TX,J
∂gTX,J

∇gu = [∇g∆
Ω
g − J∇gB

Ω
g,J ]u− 2∂TX,J

∇gf∇gu.
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We infer the complex differential Bochner type formula (11). In a similar way
using formulas (14) and (15) we deduce

2∂
∗g,Ω

TX,J
∂TX,J

∇gu = ∇g∆
Ω
g u− 2Ric∗g(Ω)∇gu+∇2

gf∇gu+ J∇2
guJ∇gf

= ∇g∆
Ω
g u− 2Ric∗g(Ω)∇gu+ (∇2

gf + J∇2
gfJ)∇gu

+ J(∇2
guJ∇gf −∇2

gfJ∇gu)

= ∇g∆
Ω
g u− 2Ric∗g(Ω)∇gu+ 2∂TX,J

∇gf∇gu

+ J∇g[g(∇gu, J∇gf)].

Using the first order expression of BΩ
J,g we obtain

2∂
∗g,Ω

TX,J
∂TX,J

∇gu = [∇g∆
Ω
g + J∇gB

Ω
g,J ]u− 2Ric∗J(Ω)ω∇gu.

We infer the complex differential Bochner type formula

2∂
∗g,Ω

TX,J
∂TX,J

∇gu = ∇g,J∆Ω
g,Ju− 2Ric∗J(Ω)ω∇gu. (16)

More generally for all v ∈ C∞(X,C) this writes as (12). □

Notice that for bi-degree reasons the identity (15) decomposes as

2∂
∗g,Ω

TX,J
∂gTX,J

∇gu+ 2∂̄
∗g,Ω

TX,J
∂̄TX,J

∇gu = ∇g,J∆
Ω
g,Ju+∇g,J∆Ω

g,Ju

− 2∂TX,J
∇gf∇gu− 2Ric∗J(Ω)ω∇gu.

Then we can obtain (16) from (11) and vice versa. We observe also that in the
case RicJ(Ω) = ω the complex Bochner identity (12) writes as

2∂̄
∗g,Ω

TX,J
∂̄TX,J

∇g,Jv = ∇g,J(∆Ω
g,J − 2I)v, (17)

for all v ∈ C∞(X,C). We obtain now an integration by parts formula.
Let ξ ∈ C∞(X,TX), A ∈ C∞(X,T ∗

X,−J ⊗ TX,J) and observe that the com-
parison between Riemannian and Hermitian norms of TX -valued 1-forms in the
Appendix [Pal3] implies∫

X

⟨∂TX,J
ξ, A⟩gΩ =

1

2

∫
X

[⟨∂TX,J
ξ, A⟩ω + ⟨A, ∂TX,J

ξ⟩ω]Ω

=
1

2

∫
X

[⟨ξ, ∂∗g,Ω

TX,J
A⟩ω + ⟨∂∗g,Ω

TX,J
A, ξ⟩ω]Ω

=

∫
X

⟨ξ, ∂∗g,Ω

TX,J
A⟩gΩ.
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Using this and multiplying both sides of (17) by ∇g,Jv we obtain the identity

2

∫
X

|∂TX,J
∇g,Jv|2gΩ =

∫
X

〈
∇g,J(∆Ω

g,J − 2I)v,∇g,Jv
〉
g
Ω, (18)

in the case RicJ(Ω) = ω. This implies that the first eigenvalue estimate
λ1(∆

Ω
g,J) ⩾ 2. On the other hand the identities (17) and (18) show that in

the case RicJ(Ω) = ω the following identity holds

ΛΩ
g,J = KerH0,1

g,J . (19)

We infer the following well known result. (See the Appendix B in [Pal6] for a
more complete statement.)

Corollary 1 Let (X, J) be a Fano manifold and let g be a J-invariant Kähler
metric such that ω := gJ ∈ 2πc1(X, [J ]). Let also Ω > 0 be the unique smooth
volume form with

∫
X
Ω = 1 such that RicJ(Ω) = ω. Then the map

ΛΩ
g,J −→ H0(X,TX,J)

u 7−→ ∇g,Ju,

is well defined and it represents an isomorphism of complex vector spaces. More-
over the first eigenvalue λ1(∆

Ω
g,J) of the operator ∆Ω

g,J satisfies the estimate

λ1(∆
Ω
g,J) ⩾ 2, with equality in the case H0(X,TX,J) ̸= 0.

3.2 Proof of Lemma 3

Proof For any (v, V ) ∈ DJg × TV1
we consider the expression

v∗g = ∂̄TX,J
∇g,Jψv,

with unique ψv ∈ ΛΩ,⊥
g,J . Then the weighted complex Bochner identity (17),

implies the equality

∂̄
∗g,Ω

TX,J
v∗g +∇gV

∗
Ω =

1

2
∇g,J

[
(∆Ω

g,J − 2I)ψv + 2V ∗
Ω

]
. (20)

Thus
FJg,Ω = {(v, V ) ∈ DJg × TV1

| (∆Ω
g,J − 2I)ψv = −2V ∗

Ω}. (21)

Let

Rψv := Re[(∆Ω
g,J − 2I)ψv],

Iψv := Im[(∆Ω
g,J − 2I)ψv],
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(for any z ∈ C we write z = Re z + i Im z) and observe that (20) implies the
identity

(∇∗Ω
g v∗g +∇gV

∗
Ω)⌟ω =

1

2
dIψv + dcJ(Rψv + 2V ∗

Ω),

for any (v, V ) ∈ DJg × TV1 . Thus

TJg,Ω[0] =
{
(v, V ) ∈ DJg × TV1

| Rψv
= −2V ∗

Ω

}
. (22)

We notice now the equalities

T[g,Ω]ω,(g,Ω) = {(Lξg, LξΩ) | ξ ∈ C∞(X,TX) : Lξω = 0}

= {(LJ∇gug, LJ∇guΩ) | u ∈ C∞
Ω (X,R)0}

= {(2gJ∂TX,J
∇gu,div

Ω(J∇gu)Ω) | u ∈ C∞
Ω (X,R)0},

indeed

(LJ∇gug)
∗
g = J∇2

gu−∇2
guJ = 2J∂TX,J

∇gu.

We deduce that (v, V ) ∈ T⊥G

[g,Ω]ω,(g,Ω) if and only if for all u ∈ C∞
Ω (X,R)0 the

following equalities hold

0 = 2

∫
X

[⟨J∂̄TX,J
∇gu, v

∗
g⟩g − divΩ(J∇gu) · V ∗

Ω ]Ω

= −2

∫
X

⟨∇gu, J(∂̄
∗g,Ω

TX,J
v∗g +∇gV

∗
Ω)⟩gΩ

= 2

∫
X

u · divΩ[J(∂̄∗g,Ω

TX,J
v∗g +∇gV

∗
Ω)]Ω.

If we assume (v, V ) ∈ TJg,Ω[0] then

∂̄
∗g,Ω

TX,J
v∗g +∇gV

∗
Ω = −1

2
J∇gIψv

, (23)

thanks to (20) and (22). Thus if (v, V ) ∈ T⊥G

[g,Ω]ω,(g,Ω) ∩ TJg,Ω[0] then

0 = −
∫
X

u ·∆Ω
g IψvΩ,

for all u ∈ C∞
Ω (X,R)0, i.e. ∆Ω

g Iψv
= 0, which is equivalent to the condition

Iψv
= 0. We infer

T⊥G

[g,Ω]ω,(g,Ω) ∩ TJg,Ω[0] ⊆ FJg,Ω.

The reverse inclusion is obvious. We deduce the identity (10). □
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3.3 Positivity of the metric Gg,Ω over the space TJ
g,Ω[0]

We show first the following integration by parts formulas.

Lemma 5 For any u, v ∈ C∞(X,C) the following integration by parts identity
holds ∫

X

[
∆Ω
g,Ju · v +∆Ω

g,Ju · v
]
Ω = 2

∫
X

g(∇g,Ju,∇g,Jv)Ω. (24)

If u ∈ C∞(X,R) then also the integration by parts identity holds∫
X

[
∆Ω
g,Ju · v +∆Ω

g,Ju · v
]
Ω = 2

∫
X

g(∇gu,∇g,Jv)Ω. (25)

Proof Using the complex decomposition (4) and the fact that Hermitian prod-
uct ⟨·, ·⟩ω on T ∗

X ⊗R C is the sesquilinear extension of the dual of g, we deduce

g(∇g,Ju,∇g,Jv) = ⟨∂Ju+ ∂Ju, ∂Jv + ∂Jv⟩g

= ⟨∂Ju+ ∂Ju, ∂Jv + ∂Jv⟩ω

= ⟨∂Ju, ∂Jv⟩ω + ⟨∂Ju, ∂Jv⟩ω

= ⟨∂Ju, ∂Jv⟩ω + ⟨∂Ju, ∂Jv⟩ω.

Integrating by parts and taking the conjugate we infer the identity

2

∫
X

g(∇g,Ju,∇g,Jv)Ω =

∫
X

[
∆Ω
g,Ju · v +∆Ω

g,Ju · v
]
Ω. (26)

Replacing u with u, v with v in (26) we obtain (24). In the case u ∈ C∞(X,R)
formula (26) implies directly (25). □

Lemma 6 For any (g,Ω) ∈ Sω the restriction of the symmetric form Gg,Ω to
the vector space TJg,Ω[0], with J := g−1ω, is positive definite.

Proof Let (u, U), (v, V ) ∈ TJg,Ω[0]. Using the expression (22) for the space

TJg,Ω[0] we have

u∗g = ∂̄TX,J
∇g,Jφ,

−2U∗
Ω = Re

[
(∆Ω

g,J − 2I)φ
]
,

and

v∗g = ∂̄TX,J
∇g,Jψ,

−2V ∗
Ω = Re

[
(∆Ω

g,J − 2I)ψ
]
,
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with unique φ,ψ ∈ ΛΩ,⊥
g,J . We decompose now the term

Gg,Ω(u, U ; v, V ) =

∫
X

[
⟨u, v⟩g − 2U∗

Ω · V ∗
Ω

]
Ω

=

∫
X

[〈
∂TX,J

∇g,J φ, ∂TX,J
∇g,Jψ

〉
g

]
Ω

− 1

2

∫
X

Re
[
(∆Ω

g,J − 2I)φ
]
Re

[
(∆Ω

g,J − 2I)ψ
]
Ω.

Integrating by parts and using the weighted complex Bochner formula (17) we
transform the integral

I1 :=

∫
X

〈
∂TX,J

∇g,J φ, ∂TX,J
∇g,Jψ

〉
g
Ω

=

∫
X

〈
∂
∗g,Ω

TX,J
∂TX,J

∇g,J φ,∇g,Jψ
〉
g
Ω

=
1

2

∫
X

〈
∇g,J(∆Ω

g,J − 2I)φ ,∇g,Jψ

〉
g

Ω.

Using the integration by parts formula (25) we deduce

I1 =
1

4

∫
X

[
∆Ω
g,J(∆

Ω
g,J − 2I)φ · ψ +∆Ω

g,J(∆
Ω
g,J − 2I)φ · ψ

]
Ω

=
1

4

∫
X

[
(∆Ω

g,J − 2I)φ ·∆Ω
g,Jψ + (∆Ω

g,J − 2I)φ · ∆Ω
g,Jψ

]
Ω.

Adding and subtracting 2ψ to the factor ∆Ω
g,Jψ and respectively 2ψ to the factor

∆Ω
g,Jψ, we infer

I1 =
1

2

∫
X

[
(∆Ω

g,J − 2I)φ · ψ + (∆Ω
g,J − 2I)φ · ψ

]
Ω

+
1

4

∫
X

[
(∆Ω

g,J − 2I)φ · (∆Ω
g,J − 2I)ψ + (∆Ω

g,J − 2I)φ · (∆Ω
g,J − 2I)ψ

]
Ω

=
1

2

∫
X

[
(∆Ω

g,J − 2I)φ · ψ + φ · (∆Ω
g,J − 2I)ψ

]
Ω

+
1

4

∫
X

[
(∆Ω

g,J − 2I)φ · (∆Ω
g,J − 2I)ψ + (∆Ω

g,J − 2I)φ · (∆Ω
g,J − 2I)ψ

]
Ω.

We deduce the general formula

Gg,Ω(u, U ; v, V ) =

∫
X

{
1

2

[
(∆Ω

g,J − 2I)φ · ψ + (∆Ω
g,J − 2I)ψ · φ

]}
Ω

+
1

2

∫
X

Im
[
(∆Ω

g,J − 2I)φ
]
Im

[
(∆Ω

g,J − 2I)ψ
]
Ω.
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In particular

Gg,Ω(u, U ;u, U) =

∫
X

[
(∆Ω

g,J − 2I)φ · φ
]
Ω

+
1

2

∫
X

{
Im

[
(∆Ω

g,J − 2I)φ
]}2

Ω ⩾ 0,

with equality if and only if φ = 0, i.e. (u, U) = (0, 0), thanks to the variational
characterization of the first eigenvalue λ1(∆

Ω
g,J) ⩾ 2 of the elliptic operator

∆Ω
g,J . □

We show now that the identity (18.1) in Corollary 5 Section 18 of [Pal 4] (i.e.
Corollary 2 below) is a consequence of the above positivity result.

Corollary 2 For any (g,Ω) ∈ Sω the following identity holds

KerR(∆
Ω
g − 2I) = KerR(∆

Ω
g,J − 2I), (27)

with J := g−1ω.

Proof Let u ∈ C∞
Ω (X,R)0 and (φt)t∈R ⊂ Symp0(X,ω) the 1-parameter sub-

group generated by the symplectic vector field ξ := (du)∗ω = −J∇gu. We set

Jt := φ∗
tJ , gt := φ∗

t g, Ωt := φ∗
tΩ and we compute ġ0 = Lξg and Ω̇0 = LξΩ.

The expression of the tangent space to the symplectic orbit [g,Ω]ω in the proof
of Lemma 3 implies

ġ∗0 = −2J∂TX,J
∇gu,

Ω̇∗
0 = −BΩ

g,Ju.

Then the weighted complex Bochner formula (17) implies

∂
∗g,Ω

TX,J
ġ∗0 +∇gΩ̇

∗
0 = −2J∂

∗g,Ω

TX,J
∂TX,J

∇gu+∇gΩ̇
∗
0

= −J∇g(∆
Ω
g − 2I)u+∇gB

Ω
g,Ju+∇gΩ̇

∗
0

= −J∇g(∆
Ω
g − 2I)u.

We deduce that (ġ0, Ω̇0) ∈ FJg,Ω if and only if (∆Ω
g −2I)u = 0. On the other hand

the (strict) positivity of the metric Gg,Ω over TJg,Ω[0] ⊃ T[g,Ω]ω,(g,Ω) implies

T[g,Ω]ω,(g,Ω) ∩ T⊥G

[g,Ω]ω,(g,Ω) = {0}.

Then Lemma 3 implies

T[g,Ω]ω,(g,Ω) ∩ T⊥G

[g,Ω]ω,(g,Ω) = T[g,Ω]ω,(g,Ω) ∩ FJg,Ω = {0},
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So if (ġ0, Ω̇0) ∈ FJg,Ω then (ġ0, Ω̇0) = (0, 0). We infer the inclusion

KerR(∆
Ω
g − 2I) ⊆ KerRB

Ω
g,J ,

and thus the required identity (27). □
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