
HAL Id: hal-04486610
https://hal.science/hal-04486610v1

Submitted on 4 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Automatic boomerang attacks search on Rijndael
Loïc Rouquette, Marine Minier, Christine Solnon

To cite this version:
Loïc Rouquette, Marine Minier, Christine Solnon. Automatic boomerang attacks search on Rijndael.
Journal of Mathematical Cryptology, 2024, 18 (1), pp.1-16. �10.1515/jmc-2023-0027�. �hal-04486610�

https://hal.science/hal-04486610v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Research Article

Loïc Rouquette*, Marine Minier, and Christine Solnon

Automatic boomerang attacks search on
Rijndael

https://doi.org/10.1515/jmc-2023-0027
received September 04, 2023; accepted October 07, 2023

Abstract: Boomerang attacks were introduced in 1999 by Wagner (The boomerang attack. In: Knudsen LR,
editor. FSE’99. vol. 1636 of LNCS. Heidelberg: Springer; 1999. p. 156–70) as a powerful tool in differential
cryptanalysis of block ciphers, especially dedicated to ciphers with good short differentials. They have been
generalized to the related-key case by Biham et al. (Related-key boomerang and rectangle attacks. In: Cramer
R, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Aarhus, Denmark, May 22–26, 2005, Proceedings. vol. 3494 of
Lecture Notes in Computer Science. Springer; 2005. p. 507–25. doi: 10.1007/11426639_30). In this article, we
show how to adapt the model proposed in 2020 by Delaune et al. (Catching the fastest boomerangs application
to SKINNY. IACR Trans Symm Cryptol. 2020;2020(4):104–29) for related-key boomerang attacks on the block
cipher SKINNY to the Rijndael case. Rijndael is composed of 25 instances that could be seen as generalizations
of the Advanced Encryption Standard. We detail our models and present the results we obtain concerning
related-key boomerang attacks on Rijndael. Notably, we present a nine-round attack against Rijndael-128-160,
which has 11 rounds and beats all previous cryptanalytic results against Rijdael-128-160.

Keywords: boomerang attack, constraint programming, automatic tools, Rijndael

MSC 2020: 94A60, 90C27, 90C30

1 Introduction

The boomerang attack [1] was introduced at FSE’99 as a variant of differential attacks [2]. A cipher E is seen as
the decomposition of two subciphers: = ∘E E E1 0, where the differential analysis takes place in each subci-
pher. Boomerang attacks are efficient when the cipher E has short differentials with high probabilities. They
have been generalized to the related-key case in the study by Biham et al. [3]. Recently, new insights on what
exactly happens in the middle (at the junction of E1 and E0) have been investigated. First, in the study by Cid
et al. [4], a special table named boomerang connectivity table (BCT) has been introduced for substitution-
permutation networks (SPN) to compute the probability of the middle round. Second, a careful analysis of the
SKINNY cipher has been provided in the study by Delaune et al. [5] to automatically take into account more
possible dependencies that could happen in the middle part of the cipher considering or not related-key. The
proposed search is divided into two steps: in the first step, the possible differences are modeled by Boolean
variables, and this step aims at minimizing an upper bound of the probability of the truncated boomerang
distinguisher; and in the second step, which takes as input the trails found at Step 1, the model aims at
maximizing the overall probability considering that the active S-boxes depend on the output of the Step 1.

* Corresponding author: Loïc Rouquette, LORIA, Université de Lorraine, Lorraine, F-54000, France; CITI, INRIA, INSA Lyon, F-69621
Villeurbanne, France, e-mail: loic.rouquette@insa-lyon.fr, loic.rouquette@epita.fr
Marine Minier: LORIA, Université de Lorraine, Lorraine, F-54000, France, e-mail: marine.minier@loria.fr
Christine Solnon: CITI, INRIA, INSA Lyon, F-69621 Villeurbanne, France, e-mail: christine.solnon@insa-lyon.fr

Journal of Mathematical Cryptology 2024; 18: 20230027

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/jmc-2023-0027
https://doi.org/10.1007/11426639_30
mailto:loic.rouquette@insa-lyon.fr
mailto:loic.rouquette@epita.fr
mailto:marine.minier@loria.fr
mailto:christine.solnon@insa-lyon.fr

Thus, in Step 1, we compute a truncated related-key boomerang S1 where each differential byte δA of the
ciphering process is replaced by a Boolean variable ΔA that indicates whether δA contains a difference or not.
In Step 2, we instantiate S1 into a related-key boomerang distinguisher. Note that some truncated boomerangs
cannot be instantiated to a boomerang because some abstractions are done at Step 1.

In this article, we implement and adapt for the Rijndael case [6] the two-step solving process of [5], which
was originally proposed for SKINNY to compute related-key boomerang differential characteristics and extended
to the advanced encryption standard (AES) in [7]. Note that the models proposed in [7] are quite different as they
include a callback search inmixed integer linear programming (MILP) and only concern the AESwith probability
1 for the key part. We do not include such a callback search in the present article. Those problems are solved with
constraint programming (CP): for the first step, we use Picat-SAT [8], and for the second step, Choco [9]1.

Rijndael is a family of block ciphers (more precisely, it is 25 instances of the same cipher where the block size
and the key size vary) originally proposed at the AES competition. But the National Institute of Standards and
Technology (NIST) only retained as a standard its 128-bit block version under the key sizes 128, 192, and 256 bits.
Studying the security of Rijndael is interesting to enlighten the AES standardization process. The standardization
process was completed in 2002. What can be enriched is our understanding of the security of Rijndael and,
therefore, of the AES. Among the most interesting results, we obtain a nine-round (over 11 rounds) boomerang
related-key differential attack for Rijndael with a block size equal to 128 bits and a key size equal to 160 bits.

When looking at the state of the art concerning the cryptanalysis of Rijndael, some of the results are in the
single-key scenario [10–15] or in the related-key scenario [16]. In this article, we obtained a related-key
boomerang attack on nine rounds of Rijndael-128-160 working for 2121 keys among 2160 possible keys (meaning
that the probability over the key space is equal to −2 39). This is the best cryptanalytic result concerning
Rijndael-128-160 when to compared to the existing attacks. Note that Rijndael-128-160 has attracted only a
few cryptanalytic attention until now.

The rest of this article is organized as follows: in Section 2, we recall the full description of Rijndael, what is
a boomerang attack, and how those attacks are modeled in [5]; in Section 3, we detail the methods and our CP
models; in Section 4, we sum up all the related-key boomerang distinguishers we obtained and present two
attacks based on the most efficient distinguishers; and finally, in Section 5, we conclude this article.

2 Preliminaries

2.1 Rijndael

Rijndael-Clen-Klen (where Clen is the block size and Klen is the key size) is a set of 25 different SPN block ciphers
designed by Daemen and Rijmen [17]. Each instance varies according to the block size (128, 160, 192, 224, or 256 bits)
and to the key size (128, 160, 192, 224, or 256 bits), but the ciphering process is the same for all variants, except for the
ShiftRows operation and the number of rounds (given in Table 1). It has been chosen as the new AES by the NIST
[18], with a 128-bit block size and a key length that can be set to 128, 192, or 256 bits. The number of rounds Nr

depends on text size Clen and the key size Klen and varies between 10 and 14. For all versions, the ith round input
block is represented by a × N4 b matrix of bytes, denoted by []X i , where ()= ∕N C 32b len is the number of columns.
Each byte at row j and columnk of this block is denoted by []X i j k, , . []X i is thus the state at the beginning of round
i. Note that []X i is also the state after applying the AddRoundKey function on the previous round []−X i 1 . The round
function is repeated −N 1r times, and it is composed of one nonlinear function (SubBytes) and three linear
functions (ShiftRows, MixColumns, and AddRoundKey) described below.
– SubBytes is a bytewise transformation that is applied to each byte of the current block using an 8-bit to 8-bit

nonlinear S-box, denoted by SBOX. We denote []SX i the state of round i, after applying SubBytes,
i.e., [] ([]) [] []= ∀ ∈ ∀ ∈ −SX i j k X i j k j k N, , SBOX , , 0, 3 0, 1b .

1 The code is available at https://gitlab.com/rloic-gitlab/boomerang-rijndael.

2 Loïc Rouquette et al.

https://gitlab.com/rloic-gitlab/boomerang-rijndael

– ShiftRows is a linear mapping that rotates to the left the rows of the current matrix []SX i . Shift values, denoted
by []P jNb

, depend on the number of columns Nb and the row number j and are defined by the following table:

=

= = = =

P

N j j j j0 1 2 3

4 0 1 2 3

5 0 1 2 3

6 0 1 2 3

7 0 1 2 4

8 0 1 3 4

.

b

We denote []Y i the state of round i after applying ShiftRows, i.e., [] [][()= +Y i j k SX i j P j k, , , , Nb

[] []] ∀ ∈ ∀ ∈ −N j k Nmod 0, 3 0, 1b b .
– MixColumns is a linear multiplication of each column of the current state by a constant matrix M in the

Galois field GF(28). We denote []Z i the state of round i after applying MixColumns, i.e., for each row []∈l 0, 3

and each column []∈ −k N0, 1b , we have:

[] [] []
[]

∑= ⊗
∈

Z i l k M l j Y i j k, , , , , ,

j 0,3

where ⊗ denotes the multiplication in GF(28) and M is the following ×4 4 circulant matrix:

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

.

– AddRoundKey performs a bitwise XOR between the subkey []RK i of round i and the current state []Z i :
[] [] []+ = ⊕X i j k Z i j k RK i j k1, , , , , , , [] []∀ ∈ ∀ ∈ −j k N0, 3 , 0, 1b .

Algorithm 1: Rijndael KeySchedule function

input: A key matrix K of []N4; k bytes
output: The expanded key WK of [()]× + −N N4; 1 1b r bytes
for []∈k N0, b and []∈j 0, 3 do
⌊ WK[j k,] ←K[j k,];
for [()]∈ × + −k N N N, 1 1b b r do

[] [] ([])

[]

[] [] ([()])

[]

[] [] ([])

[]

[] [] [()]

⎢

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

=
= − ⊕ − ⊕

∈
⌊ = − ⊕ + −

> ∧ =
∈

⌊ = − ⊕ −

⎢
⎣⎢

∈
⌊ = − ⊕ + −

k N

k k N k

j

j k j k N j k

k k N

j

j k j k N j k

j

j k j k N j k

if then

for do

else if then

for do

else

for do

mod 0

WK 0, WK 0, SBOX WK 1, 1 RC ;

1, 3

WK , WK , SBOX WK 1 mod 4, 1 ;

6 mod 4

0, 3

WK , WK , SBOX WK , 1 ;

0, 3

WK , WK , WK 1 mod 4, 1 ;

k

k i

k

k

k

k

return WK

Table 1: The number of rounds Nr of Rijndael-Clen-Klen

Clen 128 160 192 224 256

Klen =128 10 11 12 13 14
Klen =160 11 11 12 13 14
Klen =192 12 12 12 13 14
Klen =224 13 13 13 13 14
Klen =256 14 14 14 14 14

Automatic boomerang attacks search on Rijndael 3

The subkeys []RK i are generated from the master key K using a KeySchedule algorithm composed of byte
shifting, SBOX substitutions and XORs, which are is fully described in Algorithm 1. We denote by = ∕N K 32k len

the number of columns of the master key K . Each subkey []RK i is extracted from the expanded key WK

computed by Algorithm 1 in the following way:

[] [()] [] []= + × + ∀ ∈ ∀ ∈ −RK i j k WK j i N k j k N, , , 1 , 0, 3 , 0, 1 .b b

Those −Nr 1 rounds are surrounded at the top by an initial key addition with the subkey []RK 0 and at the
bottom by a final transformation composed by a call to the round function where the MixColumns operation is
omitted.

2.2 Boomerang attacks

The boomerang attack is a variant of the differential attack that was introduced by David Wagner in 1999 [1].
Given an initial message M1, an adversary first constructs a second message = ⊕M M α2 1 . She encrypts M1

and M2 to obtain C1 and C2, respectively. Then, she adds a difference δ to those two ciphertexts to obtain
= ⊕C C δ3 1 and = ⊕C C δ4 2 . Finally, she deciphers C3 and C4 to obtain M3 and M4, respectively, and she

compares ⊕M M3 4 with the initial difference = ⊕α M M1 2.
In their basic form, boomerang distinguishers are built by rewriting E as the composition of two sub-

ciphers (i.e., = ∘E E E1 0) and by finding a good differential for each part where the overall structure is seen as
a rectangle shown in Figure 1. If p and q denote the probabilities of the differentials over the upper and lower
trails E0 and E1 (i.e., ()= →p α βPr E0

and ()= → −q δ γPr E1

1), respectively, a first approximation returns that the
probability induced by Figure 1 is thus close to p q2 2.

Figure 1: A related-key boomerang attack with four keys. This figure is inspired from the one of [20].

4 Loïc Rouquette et al.

In [3], the main principle of a boomerang attack has been extended to the related-key case. In addition to
the classical boomerang attack, four keys ()K K K K, , ,1 2 3 4 are concerned, each one allowing to cipher one branch
of the rectangle as displayed in Figure 1. The differences in the keys are chosen to be compatible with the
differences between the plaintexts and are such that = ⊕K K λ2 1 , = ⊕K K λ4 3 , = ⊕K K θ3 1 , and = ⊕K K θ4 2 .
This of course happens with a certain probability when the KeySchedule is nonlinear.

Recently, Cid et al. [4] have analyzed how to exactly compute the probability in the middle round using a
dedicated table called the BCT for SPN ciphers. However, Song et al. [19] and Delaune et al. [5] analyzed more
carefully the interactions of the boomerang on several rounds in the middle and introduce some other tables
(even in the related-key setting). More precisely, the BCT is only applied on one round (the middle one),
whereas the other tables are applied on several rounds (with differences that may not be fixed everywhere).
A part of those tables is described in the next subsection for the SPN case.

2.3 Delaune et al.’s model

Delaune et al. [5] proposed a model divided into two steps to search for optimal boomerang distinguishers on
SPN ciphers (possibly in the related-key setting). In Step 1, a MILP model searches for truncated boomerangs.
Each Step 1 solution is the input of a Step 2 search that tries to instantiate the truncated boomerang with
concrete differences to maximize the overall probability of the boomerang distinguisher. Our own search is
organized in the same way and divided into the two same steps.

A related-key boomerang attack uses two differential trails; the first one is called the upper trail and
determines α and β, the input and output differences of the distinguisher for the upper trail. The other one is
called the lower trail and determines γ and δ, the input and output differences of the distinguisher for the
lower trail (note that the lower trail is in the decryption direction, from ciphertext to plaintext). In the model
proposed by Delaune et al. [5], the upper and lower trails are searched together on all the rounds.

For each differential byte δA, two variables are defined:
– a Boolean variable ΔA, which is true if δA contains a difference, and false otherwise2, i.e., ()= ≠Δ δ 0A A ;
– a Boolean variable freeA, which indicates whether the difference δA is free of conditions and can take any

value with a uniform probability.

As there are two trails, these variables are duplicated: the variables used in the upper trail are denoted by ΔAup

and freeAup
and the variables used in the lower trail are denoted by ΔAlo

and freeAlo
.

Constraints are added between Δ variables to model linear operators of SKINNY (ART, ShiftRows, and
MixColumns). We do not detail these constraints as they are straightforwardly derived from the definition of
linear operators. In addition, for each m-ary linear operation () ()=o o f i i, …, , …,m m1 1 , a constraint is added to
ensure that all output variables are free whenever any input variable is free, i.e.,

∨ ∨ ⇒ ∧ ∧free … free free … free .i i o om m1 1

Let us now consider the case of the nonlinear operator Sbox. For each couple of differential bytes (δA, δSA)
such that δA is the input difference of an Sbox and δSA is the corresponding output difference, the constraint

() ()= ∧ =Δ Δ Δ ΔA SA A SAup up lo lo

is added to express the fact that there is an input difference iff there is an output difference, in both upper and
lower trails. Then, the following constraints are defined to link together Δ and free variables. First, if δAup

is
free, then δSAup

is also free because the upper trail follows the encryption direction. The contrary happens for
the lower trail because it follows the decryption direction:

() ()⇒ ∧ ⇒free free free freeA SA SA Aup up lo lo

2 These variables are called is ActiveA in [5], but we call them ΔA to be consistent with notations introduced in [21].

Automatic boomerang attacks search on Rijndael 5

In addition, if δSAup
is free, then δAup

must contain a difference. Again the lower trail is in the decryption
direction.

() ()⇒ ∧ ⇒Δ Δfree free .SA A A SAup up lo lo

Each S-box probability is computed with a different table (Differential Distribution Table [DDT], DDT2, BCT,
Lower BCT [LBCT], Upper BCT [UBCT], Extended BCT [EBCT]). The right table is chosen depending on the values
of the variables ΔAup

, ΔAlo
, freeAup

, freeAlo
, freeSAlo

, and freeSAup
as defined in Model 1. We always consider a valid

propagation of differences for those tables. A last constraint ensures, when a table is selected for an S-Box, that
we know the required parameters to compute its transition probability.

() ()¬ ∨ ¬ ∧ ¬ ∨ ¬free free free freeSA SA A Aup lo up lo

The goal is to find the values that satisfy all constraints and have the maximal probability. This is done by
minimizing the sum of ()− plog

2
for each individual probability p. To do so, once the right table is chosen, we

integrate the best possible transition probability of the chosen table to include it in the general probability
computation, which is our objective function. Then, our overall probability computes the best possible prob-
ability that can be reached using the various tables, while differences are consistently propagated.

So, Step 1 outputs boomerang trails considering that the probability computation is the best one even if
this best probability cannot be reached when instantiating the exact difference values. This is the role of Step 2
to instantiate the difference values and to compute the best possible probability.

Model 1. Link between binary variables and tables: for each table { }∈T BCT, DDT, DDT , LBCT, UBCT, EBCT2 ,
the predicate ()i j kisT , ,X is true iff table T must be used to link []δX i j k, , to []δSX i j k, , .

6 Loïc Rouquette et al.

3 Automatic search of related-key boomerang distinguishers on
Rijndael

In this section, we detail the way we implemented the previous models to fit the case of Rijndael. As in the study by
Delaune et al. [5], we divided our search into two steps: in Step 1, we search for truncated boomerang distinguishers
with minimal hamming weight, whereas in Step 2, given the output Boolean differences of Step 1, we search for the
instantiated boomerang distinguisher with the best probability. We describe in this section each of these two steps.

3.1 Step 1: Automatic search of related-key truncated boomerang distinguishers

As summed up in Section 3, the first step of a related-key boomerang attackmay be divided into two parallel searches
of related-key truncated differential characteristics (one for the upper trail and the other for the lower trail) and some
glue needs to be added for the middle part using the Boolean free variables propagation. For each differential byte δA

(where { [] [] [] []∈A X i j k SX i j k Y i j k Z i j k, , , , , , , , , , , , [] [] [] []}∈ − ∈ ∈ −RK i j k i N j k N, , : 1, 1 , 0, 3 , 0, 1r b), we
define four Boolean variables, i.e., ΔAup

, freeAup
, ΔAlo

, and freeAlo
, and the meaning of these variables is the same

as in the study by Delaune et al. [5].
As Rijndael also has Sboxes in the key schedule, we also introduce four Boolean variables for each differential

byte []δ i j k, ,RK that passes through an S-box (as defined in Algorithm 1), denoted by []Δ i j k, ,SRKup
, []i j kfree , ,SRKup

,
[]Δ i j k, ,SRKlo

, and []i j kfree , ,SRKlo
: these variables model the fact that there is an output difference and that this

output difference is free of condition for the upper and lower trails, respectively.
Since Rijndael’s KeySchedule is represented by a two-dimensional matrix, we introduce the same Δ and

free variables for WKup, WKlo, SWKup, and SWKlo, which correspond to the variables RKup, RKlo, SRKup, and
SRKlo. The RK and WK variables are linked by the following equations:

[] [()]

[] [()]

[] [()]

[] [()]

= + × +
= + × +
= + × +
= + × +

Δ i j k Δ j i Nb k

i j k j i Nb k

Δ i j k Δ j i Nb k

i j k j i Nb k

trail

, , , 1

free , , free , 1

, , , 1

free , , free , 1

,

where can be either up or lo.

RK WK

RK WK

SRK SWK

SRK SWK

trail trail

trail trail

trail trail

trail trail

Constraints are added between Δ variables to model Rijndael operators, and we use the same constraints
as those introduced in Models 1 and 2 in the study by Rouquette et al. [22], except that these constraints are
duplicated for the upper and the lower trail, respectively. For example, the constraint associated with
AddRoundKey in Model 1 in the study by Rouquette et al. [22] is:

[] [] []+ + + ≠ΔX i j k ΔZ i j k ΔRK i j k1, , , , , , 1.

In our model, this constraint becomes:

[] [] []

[] [] []

+ + + ≠
+ + + ≠

ΔX i j k ΔZ i j k ΔRK i j k

ΔX i j k ΔZ i j k ΔRK i j k

1, , , , , , 1

1, , , , , , 1.

up up up

lo lo lo

We do not detail these constraints here and refer the readers to Models 1 and 2 in the study by Rouquette et al. [22].
Besides these constraints, we add the new constraints defined in Model 2:

– Constraints (B1)–(B5) relate free variables together: (B1) corresponds to AddRoundKey, (B2) corresponds to
ShiftRows, (B3) corresponds to MixColumns, and (B4) and (B5) correspond to the KeySchedule. Note that for
each round operation (AddRoundKey, ShiftRows, and MixColumns), we have one constraint in the encryption
direction for the upper trail, and one constraint in the decryption direction for the lower trail. For the
KeySchedule, there are also two constraints, but they are both in the encryption direction because subkeys
are all computed from the master key, in both trails.

– Constraints (B6) and (B7) define the S-Box rules that glue the two trails as done in the study by Delaune et al. [5].

Automatic boomerang attacks search on Rijndael 7

– Constraint (B8) defines the objective functionobj thatmust beminimized (as we consider−log
2
values). There are six

tables implied in the computation of the objective function: DDT, DDT2, BCT, EBCT, LBCT, and UBCT. The predicates used
to choose the correct tables are given in Model 1. These predicates are extended to RK variables in a straightforward
way by replacing X with RK . Each predicate isT_X and isT_RK (with { }∈T DDT, DDT , BCT, EBCT, LBCT, UBCT2) is
multiplied by the −log

2
of the maximum probability of table T, denoted by PT.

Implementation. Our Step 1 model has been implemented in MiniZinc [23], which is a high-level and solver-
independent language for modeling constraint satisfaction and optimization problems. MiniZinc models are then
compiled into FlatZinc, a solver input language that is understood by a wide range of solvers (such as Choco [9], Chuffed
[24], or Picat-SAT [8]). In our experiments, we have used Picat-SAT as it is the most efficient for our Step 1 problem.

8 Loïc Rouquette et al.

Model 2. Model linking together the free variables for a related-key boomerang computation.

3.2 Step 2: Instantiating the related-key truncated boomerang distinguishers

In this section, we describe how to solve Step 2, which aims at computing the maximal probability of a related-
key boomerang distinguisher corresponding to a given truncated distinguisher computed in Step 1 (as
explained in the previous section). We first describe the mathematical model and then show how it may be
easily implemented using a CP language.

For each round [[∈ −i N1, 1r , each row []∈j 0, 3 , and each column [[∈k N0, b , if []i j kfree , ,Aup
(resp.

[]i j kfree , ,Alo
) is true in the Step 1 solution, then the corresponding differential byte []δ i j k, ,Aup

(resp. []δ i j k, ,Alo
)

at Step 2 may take any value with uniform probability and is free of constraints. Hence, we do not introduce
differential byte δA for these truncated variables. Otherwise, when []i j kfree , ,Aup

(resp. []i j kfree , ,Alo
) is false,

we introduce an integer variable []δ i j k, ,Aup
(resp. []δ i j k, ,Alo

) in the Step 2 model.
For S-Box variables, the possible values of this integer variable depend on the value of its associated Δ

Boolean variable (assigned at Step 1): if []Δ i j k, ,Xup
(resp. [] []Δ i j k Δ i j k, , , , ,X SXlo up

, and []Δ i j k, ,SXlo
) is false, then

[]δ i j k, ,X up (resp. [] []δ i j k δ i j k, , , , ,X SXlo up
, and []δ i j k, ,SXlo

) is assigned to 0; otherwise, its set of possible values is
[[1, 256 . The same operation is done for the δ δ δ, ,RK RK SRKup lo up

, and δSRKlo
variables.

Considering that ShiftRows, MixColumns, and AddRoundKey are linear functions, it is possible to infer the
free state of the δ δ δ, ,Y Y Zup lo up

, and δZlo
variables from the free state of δ δ δ δ δ δ δ, , , , , ,X X SX SX RK RK SRKup lo up lo up lo up

, and
δSRKlo

variables. Hence, the δ δ δ, ,Y Y Zup lo up
, and δZlo

differential variables are only introduced in Step 2 when they
are not free.

Finally, we introduce integer variables that represent −log
2
probabilities associated with S-boxes. For each

round []∈ −i N0, 1r , each row []∈j 0, 3 , and each column [[∈k N0, b , we define an integer variable []p i j k, ,

that corresponds to the −log
2
probability of crossing both the upper trail S-box (from []δ i j k, ,Xup

to []δ i j k, ,SXup
)

and the lower trail S-box (from []δ i j k, ,SXlo
to []δ i j k, ,Xlo

). The values of Δ and free Boolean variables computed
at Step 1 are used to determine which constraint must be used to link []p i j k, , variables with their corre-
sponding differential variables as defined in Model 3. The same operation can be applied to the S-Box columns
of the KeySchedule by introducing []p i j k, ,

RK
variables. []p i j k, ,

RK
is the probability for the Round Key byte at

round i, row j , and column k to pass its S-Box. Knowing that not all the Round Key columns go through an S-
Box, we only introduce a []p i j k, ,

RK
variable when necessary.

Model 3. Constraints that relate []p i j k, , integer variables with differential variables (using predicates defined
in Model 1). For each table { }∈t DDT DDT BCT UBCT EBCT LBCT, , , , ,2 , Tt denotes the set of all tuples with a
nonnull probability. For example, TDDT contains all triples ()δ δ p, ,in out such that δin and δout belong to
[]⋯0, ,255 and (())= − ≠p DDT δ δ plog , , 0

2 in out .

Automatic boomerang attacks search on Rijndael 9

δX , δSX , δY , δZ , δK , and δRK variables are constrained with respect to SubBytes, ShiftRows, MixColumns,
AddRoundKey, and KeySchedule as described in Model 3 of [22], using table constraints. However, this model is
duplicated for the upper and lower trails, respectively.

The objective function is then the sum of all []p i j k, , and []p i j k, ,
RK

integer variables, and the goal is to
minimize this sum.

Implementation. Our Step 2 model widely uses table constraints, which are constraints of the form
() ∈x x T, …, n1 , where x1, …, xn are integer variables and T is a set of allowed tuples (of arity n). Table
constraints are one of the main advantages of using CP because those tables can be defined on large alphabet
and are directly handled by CP solvers.

This model has been implemented with the Choco CP library version 4.10.6 [9].

3.3 Combining the two steps

Step 1 is in fact composed of two different sub-problems: the first one, Step1-Opt, searches for the best possible
value of obj (denoted by obj*), and the second one, Step1-Next, searches for Step 1 solutions with the obj value
fixed to obj*. As there are usually many Step 1 solutions, we do not compute all of them at once, but we
enumerate them one at a time, and for each enumerated Step 1 solution, Step 2 is performed to search for the
best related-key differential characteristic corresponding to it, as done in the study by Rouquette et al. [22].
This search that interleaves Step1-next and Step 2 is iterated until finding the optimal related-key differential
characteristic, or detecting that the optimal probability exceeds the block or key exhaustive search according
to the Rijndael instance. Note that it may be possible that the optimal related-key differential characteristic has
more than obj* active S-boxes (either because there is no Step 2 solution with obj* active S-boxes, or because it
is possible to have a larger probability with more active S-boxes). Hence, the interleaved process increases obj*

until proving optimality of the best found differential characteristic.
Note also that Delaune et al. [5], in their original article, also proposed a way to compute the clusters

induced. One of the main differences between Rijndael and SKINNY relies on the fact that the linear part of
SKINNY is composed of XOR, whereas the one of Rijndael includes multiplication in a finite field. As stated in
[25,26], it is out of computational reach to compute such clusters for the AES and thus Rijndael. So, due to the
very high computational cost of our method without the cluster computation, we do not include any cluster in
our approach.

4 Attacks

4.1 From the distinguisher to the attack

Once an efficient related-key boomerang distinguisher between rounds 1 and −N 2r is found, there exist
several techniques to extend it to a key recovery attack (see, e.g., [27] for a complete survey). We focus
here on the method proposed by Zhao et al. [28] even if it concerns algorithms with linear key schedule
but it could be adapted for algorithms with nonlinear key schedule. Thus, we will apply their techniques to
recover master key bits in round 0 and round −Nr 1 that do not contain MixColumns operation. Due to the
very high diffusion of Rijndael, we do not investigate to add more rounds at the beginning or at the end of the
cipher. So, let us first introduce the technique described by Zhao et al. [28].

The parameters on which the complexities of an attack are computed are the following ones:
– The distinguisher Ed with Nd rounds is placed in the middle of the attack. The input difference of the

distinguisher is α, whereas the output difference is δ.
– We add Na rounds Ea at the beginning and Nf rounds Ef at the end.

10 Loïc Rouquette et al.

– At the beginning, in the deciphering direction, for Na rounds, the difference α is extended backward and
with probability 1 to a truncated difference ′α , with ra possibly active bits and −n ra inactive bits.

– At the end, in the ciphering direction, for Nf rounds, the difference δ is extended with probability 1 to a
truncated difference ′δ , with rf possibly active bits and −n rf inactive bits.

Then, the attack could work on + +N N Na d f rounds by guessing some key materials appearing before and
after the distinguisher and by counting how many times the distinguishing property happens. The correct key
bits have the higher counters. In the following, the guessed key bits at the beginning are denoted byma and the
guessed key bits at the end are denoted by mf .

The attack of [28] works as follows where s is the expected number of right pairs:
(1) Build = ⋅ ∕∕ −y s p q r2n r2 2 2a structures of 2ra plaintexts each, and store them with their associated

plaintexts.
(2) For each possible value of the ma key bits,

(a) initialize 2mf key counters;
(b) partially encrypt each plaintext M1 of each structure using the guessed ma key bits up to the beginning

of Ed. Add α to the computed value and decrypt it up to the plaintext, to obtain M2. Construct the set S

(of size ⋅y 2ra) given by {() () () }= ⊕ =S M C M C E M K E M K α, , , such that , ,a a1 1 2 2 1 1 2 2 ;
(c) insert S into a hash table H indexed by the −n rf bits that are inactive in ′δ , each collision defines a

quartet ()C C C C, , ,1 2 3 4 ;
(d) use these quartets to determine the correct mf key bits. The time complexity of this stage is denoted

by ε.

The time complexity of the attack is dominated by stage 2.(b) or 2.(d). The complexity, given in the number
of encryptions, for stage 2.(b) is

⋅ ⋅ = ⋅ ⋅ ⋅+ + ∕y μ s

p q r

μ2 2
1

,m r m n 2

2 2

a a a

whereas the complexity of stage 2.(d) is

()⋅ ∕ ⋅− +s p q r ε2 .m n r2 2 2a f

Since stage 2.(b) does partial encryptions over Eb, μ can be approximated by
+ +

N

N N N

a

a d f

, while ε corresponds

to the cost of gradually decrypting rounds to check the validity of a key guess and could be approximated by
s

1 .
Then, the success probability Ps of the related-key boomerang attack could be approximated by the success

probability of a differential attack given in [29]:

()
⎜ ⎟=
⎛
⎝

− −
+

⎞
⎠

− −
P Φ

sS Φ

S

1 2

1
,s

N
h

N

1

where SN is the signal-to-noise ratio, so is equal to ∕ −p q r 2 n2 2 and h is the advantage, h is typically equal to 80
(bits) or higher.

To adapt this attack to the case of a nonlinear key-schedule, one has just to compute the correct quartet of
keys before the attack. Then, the probability to have a correct quartet only depends on the probability of the
S-boxes induced by the KeySchedule and could be directly computed from the distinguisher. The probability of
the distinguisher is thus computed without the probability appearing in the KeySchedule. Then, it may be
considered as a weak key attack because all the keys could not provide a right quartet. If we denote by
PKeySchedule the probability of the KeySchedule and by PEd

the probability of the encryption path, then, the
cost of this stage is about ∕P4 KeySchedule.

Automatic boomerang attacks search on Rijndael 11

4.2 Results

The Step 1 model is implemented in MiniZinc and run on Picat [8], which uses the Lingeling solver [30]. The
Step 2 is implemented in Java, using the Choco library version 4.10.6 [9]. We choose the Picat solver to solve the
Step 1 as it is a SAT solver, so is especially suited to problems on Boolean formulae. Previous works like [31]
have shown that Picat has good performances on multiple Step 1 models. Since the Step 2 contains a lot of table
constraints, it appears that CP solvers are more adapted.

All experiments are run on a virtual machine Ubuntu 18.04.5 LTS x86_64 with an Intel Xeon Gold 5118

processor and 32 Gio of RAM. The requirements are : Java 10.0.12 OpenJDK, Gradle 6.8, MiniZinc 2.5.5,
Picat 3.1.2, and Choco 4.10.6. Each instance is run on a single thread.

We put a time out of 6 months. After, those 6 months, the results we obtained are summed up in Table A1
for both Step 1 and Step 2 computations for the related-key boomerang distinguisher on Rijndael.

Even if our models could not reach the largest instances of Rijndael, we obtain the following results:
– Rijndael-128-160 with seven rounds, best probability: −2 95. The version with eight rounds is not reachable.
– Rijndael-160-128 with four rounds, best probability: −2 18. Rijndeal-160-128 with five rounds is not reachable.
– Rijndael-192-160 with five rounds, best probability: −2 73. The version with six rounds is not reachable.

Moreover, we have those partial results (only Step 1 has finished to run) for:
– Rijndael-160-160 for six rounds with an upper bound equal to −2 118;
– Rijndael-160-192 for seven rounds with an upper bound equal to −2 102;
– Rijndael-160-224 for eight rounds with an upper bound equal to −2 114;
– Rijndael-160-256 for nine rounds with an upper bound equal to −2 120;
– Rijndael-192-128 for four rounds with an upper bound equal to −2 36;
– Rijndael-192-192 for six rounds with an upper bound equal to −2 84.

The Step 2 for each instance has taken between 8 and 15 days. For example, for Rijndael-192-160 for six rounds,
the computation for Step 2 has taken 8 days. We tested the validity of our models by experimentally checking
the boomerang distinguisher on four rounds of Rijndael-128-128, the AES with a 128-bit key. We also verified
that our models give us the classical bounds for the AES and for all the key lengths (128/192/256 bits) [32].

Figure 2 displays some statistics about computation times. The upper part of the figure represents which
step over the three is the most time consuming, while the lower part of the figure represents the computation
time. We can see that the Step 1 (Step1-Opt + Step1-Enum) step is the most time-consuming in general, expected

Figure 2: Computation times for instances X Yb k , where X is the block length and Y is the key length. The upper part of the chart
represents the computation time proportion (in percentage of the total computation time) between Step-1-Opt (), Step-1-Enum (),
and Step2 (). In the lower part, the chart represents the computation time (in seconds) for each step: Step1-Opt (), Step1-Enum (),
and Step2 () and the cumulative total time ().

12 Loïc Rouquette et al.

for six (over 37) instances. Moreover, we see that the instances where Step 2 is the most time-consuming are
not among the most difficult instances. Hence, improvements should target Step 1 modeling and resolution to
improve the overall performances.

4.3 Attack on nine rounds of Rijndael-128-160

The nine rounds attack of Rijndael-128-160 is presented in Figure A2 in Appendix B. The distinguisher works for
rounds 1 to 8 and has a probability of −2 56 for the encryption part and of −2 39 for the KeySchedule.

Thus, the attack implies the following parameters: =N 1a , =r 32a , − =n r 96a , =N 1f , =r 32f , − =n r 96f ,
=m 32a , =m 32f , = −P 2E

56

d
, and = −P 2KeySchedule

39. Thus, applying the previous attack, with =s 4, we need to
cipher 261 structures of 232 plaintexts. The complexity of the attack is dominated by stage 2.(b) and is equal to
2122 encryptions. The success probability of the attack is equal to 97.67%.

The probability that a right quartet of keys is found is equal to 239, and the complexity to find such a
quartet is equal to 241 encryptions. Another way to say that is that the number of keys that work for our attack
is equal to =−2 2160 39 121.

5 Conclusion

In this article, we have presented the related-key boomerang distinguishers and the related-key boomerang
attacks we obtained for some of the 25 instances of the block cipher Rijndael. Among our most significant
results, we obtained a nine-round attack on Rijndael-128-160, which has 11 rounds.

However, the computational costs of our models are prohibitive for the largest Rijndael instances. So, we plan to
try to improve those models and notably the way the Step 1 is computed to try to reach the missing instances.

Acknowledgements: This work has been partly funded by the French Agence Nationale de la Recherche
through the Decrypt project under Contract ANR-18-CE39-0007. Some of the experiments presented in this
article were carried out using the LIMOS’ servers. This work has been accepted for presentation at CIFRIS23,
the Congress of the Italian association of cryptography “De Componendis Cifris.”

Conflict of interest: The authors state that there is no conflict of interest.

Code availability: The code produced for the current study is available in the boomerang_rijndael repository:
https://gitlab.com/rloic-gitlab/boomerang-rijndael.

References

[1] Wagner D. The boomerang attack. In: Knudsen LR, editor. FSE’99. vol. 1636 of LNCS. Heidelberg: Springer; 1999. p. 156–70.
[2] Biham E, Shamir A. Differential cryptanalysis of DES-like cryptosystems. In: Menezes AJ, Vanstone SA, editors. CRYPTO’90. vol. 537 of

LNCS. Heidelberg: Springer; 1991. p. 2–21.
[3] Biham E, Dunkelman O, Keller N. Related-key boomerang and rectangle attacks. In: Cramer R, editor. Advances in Cryptology -

EUROCRYPT 2005, 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings. vol. 3494 of Lecture Notes in Computer Science. Springer; 2005. p. 507–25. doi: 10.1007/
11426639_30.

[4] Cid C, Huang T, Peyrin T, Sasaki Y, Song L. Boomerang connectivity table: a new cryptanalysis tool. In: Nielsen JB, Rijmen V, editors.
EUROCRYPT 2018, Part II. vol. 10821 of LNCS. Heidelberg: Springer; 2018. p. 683–714.

Automatic boomerang attacks search on Rijndael 13

https://gitlab.com/rloic-gitlab/boomerang-rijndael
https://doi.org/10.1007/11426639_30
https://doi.org/10.1007/11426639_30

[5] Delaune S, Derbez P, Vavrille M. Catching the fastest boomerangs application to SKINNY. IACR Trans Symm Cryptol.
2020;2020(4):104–29.

[6] Daemen J, Rijmen V. AES proposal: Rijndael. 1999.
[7] Derbez P, Euler M, Fouque P, Nguyen PH. Revisiting related-key boomerang attacks on AES using computer-aided tool. In:

Agrawal S, Lin D, editors. Advances in Cryptology - ASIACRYPT 2022 - 28th International Conference on the Theory and Application
of Cryptology and Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part III. vol. 13793 of Lecture Notes in
Computer Science. Springer; 2022. p. 68–88. doi: 10.1007/978-3-031-22969-5_3.

[8] Zhou N, Kjellerstrand H. The Picat-SAT compiler. In: Practical Aspects of Declarative Languages - PADL 2016. vol. 9585 of LNCS.
Springer; 2016. p. 48–62.

[9] Prud’homme C, Fages JG, Lorca X. Choco documentation; 2016. http://www.choco-solver.org.
[10] Jr JN, Pavaaaao IC. Impossible-differential attacks on large-block Rijndael. In: Garay JA, Lenstra AK, Mambo M, Peralta R, editors.

Information security, 10th International Conference, ISC 2007. vol. 4779 of LNCS. Springer; 2007. p. 104–17.
[11] Zhang L, Wu W, Park JH, Koo B, Yeom Y. Improved impossible differential attacks on large-block Rijndael. In: Wu T, Lei C, Rijmen V,

Lee D, editors. Information Security, 11th International Conference, ISC 2008. vol. 5222 of LNCS. Springer; 2008. p. 298–315.
[12] Galice S, Minier M. Improving integral attacks against Rijndael-256 Up to 9 rounds. In: Vaudenay S, editor. Progress in Cryptology -

AFRICACRYPT 2008. vol. 5023 of LNCS. Springer; 2008. p. 1–15.
[13] Wang Q, Gu D, Rijmen V, Liu Y, Chen J, Bogdanov A. Improved impossible differential attacks on large-block Rijndael. In: Kwon T,

Lee M, Kwon D, editors. Information security and cryptology - ICISC 2012. vol. 7839 of LNCS. Springer; 2012. p. 126–40.
[14] Minier M. Improving impossible-differential attacks against Rijndael-160 and Rijndael-224. Des Codes Cryptogr.

2017;82(1–2):117–29. doi: 10.1007/s10623-016-0206-7.
[15] Liu Y, Shi Y, Gu D, Dai B, Zhao F, Li W, et al. Improved impossible differential cryptanalysis of large-block Rijndael. Sci China Inf Sci.

2019;62(3):32101:1–32101:14. doi: 10.1007/s11432-017-9365-4.
[16] Wang Q, Liu Z, Toz D, Varici K, Gu D. Related-key rectangle cryptanalysis of Rijndael-160 and Rijndael-192. IET Inf Secur.

2015;9(5):266–76. doi: 10.1049/iet-ifs.2014.0380.
[17] Daemen J, Rijmen V. The design of Rijndael: AES – the Advanced Encryption Standard. Berlin; London: Springer; 2002. OCLC:

751525895.
[18] Advanced Encryption Standard (AES); 2001. National Institute of Standards and Technology (NIST), FIPS PUB 197, U.S. Department

of Commerce.
[19] Song L, Qin X, Hu L. Boomerang connectivity table revisited. Application to SKINNY and AES. IACR Trans Symmetric Cryptol.

2019;2019(1):118–41. doi: 10.13154/tosc.v2019.i1.118-141.
[20] Jean J. TikZ for Cryptographers; 2016. https://www.iacr.org/authors/tikz/.
[21] Gerault D, Lafourcade P, Minier M, Solnon C. Computing AES related-key differential characteristics with constraint programming.

Artif Intell. 2020 Jan;278:103183. https://linkinghub.elsevier.com/retrieve/pii/S0004370218303631.
[22] Rouquette L, Gérault D, Minier M, Solnon C. And Rijndael: automatic related-key differential analysis of Rijndael. In: Batina L,

Daemen J, editors. Progress in Cryptology - AFRICACRYPT 2022: 13th International Conference on Cryptology in Africa, AFRICAC-
RYPT 2022, Fes, Morocco, July 18–20, 2022, Proceedings. vol. 13503 of LNCS. Springer Nature Switzerland; 2022. p. 150–75.

[23] Nethercote N, Stuckey PJ, Becket R, Brand S, Duck GJ, Tack G. MiniZinc: towards a standard CP modelling language. In: Principles
and Practice of Constraint Programming - CP 2007. vol. 4741 of LNCS. Springer; 2007. p. 529–43.

[24] Chu G, Stuckey PJ. Chuffed solver description; 2014. http://www.minizinc.org/challenge2014/description_chuffed.txt.
[25] Canteaut A, Roué J. On the behaviors of affine equivalent Sboxes regarding differential and linear attacks. In: Oswald E, Fischlin M,

editors. Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I. vol. 9056 of Lecture Notes in Computer Science.
Springer; 2015. p. 45–74. doi: 10.1007/978-3-662-46800-5_3.

[26] Daemen J, Rijmen V. Understanding two-round differentials in AES. In: Prisco RD, Yung M, editors. Security and Cryptography for
Networks, 5th International Conference, SCN 2006, Maiori, Italy, September 6–8, 2006, Proceedings. vol. 4116 of Lecture Notes in
Computer Science. Springer; 2006. p. 78–94. doi: 10.1007/11832072_6.

[27] Dong X, Qin L, Sun S, Wang X. Key guessing strategies for linear key-schedule algorithms in rectangle attacks. IACR Cryptol ePrint
Arch. 2021;2021:856. https://eprint.iacr.org/2021/856.

[28] Zhao B, Dong X, Meier W, Jia K, Wang G. Generalized related-key rectangle attacks on block ciphers with linear key schedule:
applications to SKINNY and GIFT. Des Codes Cryptogr. 2020;88(6):1103–26. doi: 10.1007/s10623-020-00730-1.

[29] Selçuk AA. On probability of success in linear and differential cryptanalysis. J Cryptol. 2008 Jan;21(1):131–47.
[30] Biere A. Lingeling and friends at the SAT Competition 2011. 2011. Institut for Formal Models and Verification, Johannes Kepler

University. https://epub.jku.at/obvulioa/content/titleinfo/5973538.
[31] Libralesso L, Delobel F, Lafourcade P, Solnon C. Automatic generation of declarative models for differential cryptanalysis. In:

Michel LD, editor. 27th International Conference on Principles and Practice of Constraint Programming, CP 2021, Montpellier,
France (Virtual Conference), October 25–29, 2021. vol. 210 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2021. p.
40:1–40:18. doi: https://doi.org/10.4230/LIPIcs.CP.2021.40.

[32] Biryukov A, Nikolic I. Automatic search for related-key differential characteristics in byte-oriented block Ciphers: application to AES,
Camellia, Khazad and others. In: Advances in Cryptology - EUROCRYPT 2010. vol. 6110 of LNCS. Springer; 2010. p. 322–44.

14 Loïc Rouquette et al.

https://doi.org/10.1007/978-3-031-22969-5_3
http://www.choco-solver.org
https://doi.org/10.1007/s10623-016-0206-7
https://doi.org/10.1007/s11432-017-9365-4
https://doi.org/10.1049/iet-ifs.2014.0380
https://doi.org/10.13154/tosc.v2019.i1.118-141
https://www.iacr.org/authors/tikz/
https://linkinghub.elsevier.com/retrieve/pii/S0004370218303631
http://www.minizinc.org/challenge2014/description_chuffed.txt
https://doi.org/10.1007/978-3-662-46800-5_3
https://doi.org/10.1007/11832072_6
https://eprint.iacr.org/2021/856
https://doi.org/10.1007/s10623-020-00730-1
https://epub.jku.at/obvulioa/content/titleinfo/5973538
https://doi.org/https://doi.org/10.4230/LIPIcs.CP.2021.40

Appendix

A Overall probabilities

B Related-key boomerang distinguisher on nine rounds for
Rijndeal-128-160

Figure A1: The probabilities found for the different versions of Rijndael. Each table represents a variant Clen of Rijndael. Nr is the
number of rounds, Dr is the number of rounds for which we compute the probability of distinction (=Dr Nr2). objs1 is the upper bound
found by Step1-Opt. objs2 is the best probability found with Step2-Opt. objs2 is not given either when we did not perform the
computation or when the computation did not finish. The optimality column indicates whether the algorithm has found (✓) the optimal
bound (complete search) or not (x) (incomplete search).

Automatic boomerang attacks search on Rijndael 15

Fi
gu

re
A2

:T
he

Ri
jn
da

el
-1
28
-1
60

ni
ne

ro
un

ds
at
ta
ck
.T

he
di
st
in
gu

is
he

r
w
or
ks

fo
r
ro
un

ds
1–
8
an

d
ha

s
a
pr
ob

ab
ili
ty

of
2

5
6
fo
r
th
e
en

cr
yp
tio

n
pa

rt
an

d
of

2
3
9
fo
r
th
e
K
e
y
S
c
h
e
d
u
l
e
.

16 Loïc Rouquette et al.

	1 Introduction
	2 Preliminaries
	2.1 Rijndael
	2.2 Boomerang attacks
	2.3 Delaune et al.'s model

	3 Automatic search of related-key boomerang distinguishers on Rijndael
	3.1 Step 1: Automatic search of related-key truncated boomerang distinguishers
	3.2 Step 2: Instantiating the related-key truncated boomerang distinguishers
	3.3 Combining the two steps

	4 Attacks
	4.1 From the distinguisher to the attack
	4.2 Results
	4.3 Attack on nine rounds of Rijndael-128-160

	5 Conclusion
	Acknowledgements
	References
	Appendix�� A Overall probabilities
	B Related-key boomerang distinguisher on nine rounds for Rijndeal-128-160

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

