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Abstract

Mérope is a software devoted to the geometrical design and the discretization of
microstructures of random heterogeneous materials. Mérope aims at building
large samples of microstructured materials, called Representative Volume Ele-
ments, in order to derive their effective physical behaviors. Various microstruc-
tures are supported: spherical, polyhedral or spheropolyhedral inclusions, poly-
cristals, Gaussian fields and boolean combinations of these. Discretization takes
two forms: either regular Cartesian grids of (composite) voxels for computations
with FFT-based solvers, or tetrahedral meshes for computations with Finite El-
ement solvers. A special emphasis on the code has been put on performance,
which will be further improved in the future.

This article aims at introducing the main features of the software as well as
exemplifying its use.

Keywords: Microstructure, Sphere Packing, Voxelation, Mesh, Material
science, Homogenization

1. Introduction

Mérope is a software devoted to the geometrical design and the discretization
of microstructures of random heterogeneous materials. It aims at building large
samples of these, called Representative Volume Elements, in order to derive
their effective physical behaviors on large scales.

Mérope is a stand-alone component of the CEA software platform PLEIADES
[31] dedicated to the simulation of nuclear fuels. It includes a C++ library
wrapped into a Python interface, and can be used in combination with Finite
Element (FE) solvers and solvers based on the Fast Fourier Transform (FFT).
Mérope is distributed under a licence for research and education only on a github
repository [24], which contains a fairly comprehensive documentation, on which
this article is based.
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1.1. The RVE method

Modern simulation of complex materials, such as nuclear fuels [31], concrete,
wood, electromagnetic metamaterials, particle-based composites [39, 9], ... gen-
erally relies upon a multi-scale approach. Indeed, the materials under concern
are typically heterogeneous at the microscopic scale: they feature a microstruc-
ture which dictates their effective behaviors at larger scales. In the sequel,
the microstructure is supposed to be random, but stationary ergodic – roughly
speaking, the statistics of the microstructure is invariant by translation, see [23]
for more details.

There exist analytical approaches to derive the effective behavior of very specific
heterogeneous materials [41] ; however, in general, one can but resort to numer-
ical simulations. The strategy is the following: the heterogeneous material is
sampled on a volume, which is sufficiently large with respect to the character-
istic length of the microstructure: the Representative Volume Element (RVE).
Then a physical simulation is performed, which is used in turn to derive the
relevant parameters modeling the effective behavior on larger scales.

The RVE method takes root in the field of mathematical homogenization [3,
23]. In the past decades, understanding and improving this procedure moti-
vated many researches, from theoretical and applied points of view. The in-
terested reader may consult this non-exhaustive list of references: [7] for the
well-posedness of the strategy, [26, 39] for numerical investigations about the
boundary conditions, [18, 11] for a fine analysis of the approximation error with
medium-size RVEs, and [5] for an overview of virtual microstructure generation.

a) b) c) d)

e) f) g) h)

Figure 1: Examples of microstructures created with Mérope. From left to right: a) Polydis-
perse sphere packing inside a sphere, b) Polycrystal coated with a material with bubbles, c)
Spherical inclusions (detail with composite voxels), d) 2D polycrystal with intergranual layers
e) Gaussian field, f) Combination of Gaussian fields and a polycristal, g) Periodic mesh of
spherical inclusions inside a matrix (the matrix is cut in order to visualize the spheres), h)
Deformation of g) under mechanical loading in linear elasticity (colors indicate the amplitude
of deformation, the matrix is cut in order to visualize the spheres).
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1.2. Functionalities of Mérope

The numerical implementation of the RVE method involves two main com-
ponents: a microstructure generator, for sampling an RVE, and a solver, for
simulating the physics under concern. Mérope focuses on the first task, which
is subdivided into two steps: define an abstract microstructure, and then, dis-
cretize it as a mesh.

Mérope models 2D and 3D materials that belong to 3 main classes: inclusions
inside a matrix, polycrystals, and anamorphosed Gaussian random fields. It
allows for arbitrary combination of these by means of masks and Boolean oper-
ators. See Figure 1 b)–g) for illustrative examples.

Then, two different types of meshes can be produced: either a voxelation –that
is, a regular Cartesian mesh– or an unstructrured tetraedric mesh (in the 3D
case). Each type of discretization is intended for a specific class of solvers: either
FFT-based solvers, or usual FE solvers.

Since this is only a high-level introductory article, we will not write code nei-
ther point to specific scripts there. Nevertheless, impatient reader can con-
sult the gallery here https://github.com/MarcJos/Merope/blob/main/doc/

Gallery.md, where he may find a large variety of microstructures, as well as
Python scripts for producing them.

1.3. Microstructure generators

There exist various softwares, either specific- or general-purpose, dedicated to
microstructure generation. Here, we focus on classical ones, and disregard the
promising ones based on machine-learning approaches, see [27] for example. In
particular, we would like to emphasize on the following ones: voro++ [36],
which is a compact library purely dedicated to building Laguerre tessellation
(a crucial model for polycrystals); Neper [34], which is a medium-size code
providing various functionalities for building and analyzing polycristals; Dream
3D [19], which is general-purpose industrial code for microstructure, with a
particular emphasis on voxellized microstructures.

In this landscape, Mérope features as a medium-size general-purpose code, with
specific features related to homogenization, among which: the use of a peri-
odic geometry, not only for voxelations but also for tetrahedral meshes, with
adapted periodic surfaces, the use of composite voxels for FFT solvers. The
variety of microstructures than can be obtained is broad (in particular, broader
than Neper and Voro++), and the possibility to combine them paves the way
to modeling realistic microstructures. Mérope is used through a user-friendly
Python interface, and is based on a C++17 implementation, and proves to be
competitive in terms of speed and robustness.

1.4. Performance

Notice that, from an operational point of view, microstructure generation is
rarely the performance bottleneck in the RVE simulation when computing an
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effective physical law; the major part of the computational time is spent inside
the solver. Nevertheless, this is not the case anymore when the user attempts to
optimize the microstructure parameters [33]: then, the speed of the microstruc-
ture generator becomes crucial. Thus, special attention has been paid to the
performance of Mérope. Some important parts have been parallelized for multi-
core shared memory architectures. Furthermore, we performed benchmarks in
[24] that indicate for example that Mérope challenges successfully Neper [34] for
polycrystal generation and voxelation. Mérope can generate a 3D polycrystal
of 105 crystallites and voxellize it over a grid of 108 voxels within 15 seconds.

1.5. Outline

Sections 2 and 3 explain in more details the available microstructure geometries
and how they are discretized, respectively. Section 4 exemplifies the use of
Mérope on a (virtual) porous microstructure. We hope that it may serve as
a didactic basis for numerical experimentalists. Section 5 briefly comments on
the architecture of Mérope and its performances. Last, Section 6 concludes the
article and proposes some perspectives.

2. Geometry of the microstructure

2.1. Periodicity

Many sampling strategies and Partial Differential Equation (PDE) boundary
conditions can be used in the RVE method in order to obtain the effective
behavior of the material. In particular, it is common to appeal to Dirichlet,
Neumann or periodic boundary conditions, for a RVE sampling geometry which
may be periodic or not (see [26]).

Nevertheless, it has been established empirically and mathematically in [26,
17, 11, 39] that periodic RVEs with periodic boundary conditions are superior:
Given an RVE size, they yield more accurate effective behaviors than other
reasonable strategies. Very roughly, the advantage of this periodic framework is
that it amounts to considering the physics under concern on a periodic cuboid,
for which there is intrinsically no boundary. Thus, the quality of the computed
effective behavior is not tarnished by boundary-layer effects.

Hence, Mérope exclusively produces geometries on periodic cuboids – the only
exception to this rule concerns sphere packings, where other options are avail-
able, see Section 2.2. In particular, this means that, when representing the
geometry inside a cuboid of the Euclidian space, one sees that the microstruc-
ture crosses the boundary in a periodic way: for example, in Figure 2, the “cut”
part of the red disk on the right-hand border is retrieved on the left-hand border.

When solving a PDE such as mechanical equilibrium, periodic boundary con-
ditions should be employed as well. This is naturally tackled by FFT-based
solvers. Concerning unstructured tetraedric meshes, it should be handled specif-
ically, see Section 3.2.
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Figure 2: Representation of two disks in a periodic square

2.2. Sphere packing

2.2.1. Principle

The first building block for polycrystals and inclusion-made microstructures in
Mérope are non-intersecting polydisperse sphere packings (polydispersity means
that the spheres may have different radii). These can be generated by two
different procedures:

• the Random Sequential Addition algorithm (RSA) [41], which iteratively
places non-intersecting spheres, the centers of which are drawn randomly
by a Poisson point process of uniform intensity (we discuss it in more
details in Section 2.2.2),

• the mechanical contraction algorithm of Williams and Philipse (WP) [43],
which starts from a diluted RSA output, and squeezes it.

Moreover, it is possible to generate as well random intersecting balls, with a Pois-
son Point Process of uniform intensity [40] (also called “Boolean algorithm”).

Spheres are placed inside a shape, in 2D or 3D, that can be either a periodic
cuboid, a standard cuboid, a sphere, or a cylinder. See Figure 3 for examples.

Figure 3: Various non-intersecting sphere packings in 2D and 3D, inside various shapes (from
left to right: 3D inside periodic cube, 3D inside a sphere, 2D inside a disk, 3D inside a cylinder,
2D inside a periodic square)

The volume fraction, that is the total volume of spheres over the volume of the
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2D 3D
RSA ∼ 55% ∼ 38%
WP ∼ 84% ∼ 61%

Table 1: Asymptotic maximal volume fraction of monodisperse spheres packing ; see [42, Table
1] for the RSA values ; WP values are empirical values related to the Mérope implementation
(for large RVEs with more than 104 spheres).

cuboid, is an important characteristic of sphere packings. For monodisperse
spheres (i.e. spheres with equal radii), each non-intersecting sphere packing
features an asymptotic maximal volume fraction when the volume of the cuboid
goes to infinity. This volume fraction is described in Table 1. As expected
by construction, the RSA procedure reaches relatively low volume fractions,
whereas the WP procedure allows for higher volume fractions. Nevertheless,
the WP algorithm depends on implementation parameters, and produces more
heterogeneous configurations.

2.2.2. Algorithmic aspects of the RSA implementation

Here, we give more details on our implementation of the RSA algorithm [41].
The classical algorithm proceeds iteratively with these two steps for placing a
new sphere a radius r:

• draw a sphere center c inside the box according to a Poisson point process
of uniform intensity,

• verify if the new sphere of center c and radius r intersects already validated
spheres. If it does, reject the new sphere else, validate the new sphere.

The algorithm reaches the maximal configuration when it is impossible to place
a new sphere of desired radius r. Such a configuration is virtually out of reach
for naive implementations of the RSA: Indeed, the more already placed spheres
there are, the harder it becomes to place a new sphere.

Nevertheless, our implementation of the RSA algorithm is based on [13], that
we generalize to polydisperse spheres packing. This algorithm resorts to an
additional octree structure paving the cuboid, which keeps track of the zones
where new spheres can be placed –these zones are small cuboids. New candidate
spheres are drawn only in these zones. At some steps, each zone is further
subdivided in new zones, which are removed if it is guaranteed that a new
sphere cannot be placed inside. Such an algorithm is provably unbiased, and
yields maximal configurations.

Empirically, its speed (measured as the number of new spheres placed in a sec-
ond) is roughly independent of the size of the domain and the already achieved
volume fraction. In this regards, Mérope’s performances are comparable to the
original article [13], e.g. placing about 7.000 spheres by second when performing
the RSA algorithm on a single CPU. Depending on the available main mem-
ory, between 105 and 107 spheres can be placed. We are currently improving
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the current implementation by resorting to MPI and OpenMP to accelerate it
further, and reach higher numbers of spheres [25].

2.3. Inclusion-made structures and polycrystals

Mérope emulates microstructures as a collection of simple inclusions (spheres,
polyhedrons or spheropolyhedrons, possibly with inner layers), embedded into
a matrix. The point of view is the following: each point of the microstructure is
described by a single phase, which basically indicates the type of material, into
which the point is. For Mérope inclusion-made structures, either the point is
inside an inclusion of a given material, or it is inside the matrix. Such models
are common in material science [5]; they are rich enough to represent porous
media, metals, ceramics [33]...

Each inclusion is accessible to the user, who can change its phase or insert
additional layers of uniform width inside it. (See for example the polycrystal in
Figure 1 d), where each crystallite features 3 different layers.)

Polycrystal are considered as a subclass of inclusion-made structures, in which
the inclusions actually cover all the volume (there is no matrix phase). In
Mérope, random polycrystals are built from sphere packing, by means of La-
guerre or Voronoi tessellations, where the center of each tessel is the center of an
underlying sphere. For Laguerre tessellations, the radius of the sphere is used as
weight (this weight is 0 for Voronoi tessellations). Namely, a point x of the RVE
belongs to the crystallite i if it minimizes the quantity di(x) := dist(x, ci)

2− r2i ,
where ci and ri are the center and radius of the ith sphere, respectively, and
where the function “dist” is the periodic euclidean distance. Anisotropy of
the crystal (aspect ratio) can be imposed by applying a linear transform to an
isotropic crystal.

It may also be useful to prescribe a priori the volume of each crystallite –for
example based on experimental observations. (See Figure 4 for examples). Such
a requirement is made possible by selecting the appropriate radius for each
crystallite of the Laguerre tessellation (without changing its center). To this
purpose, Mérope implements the state-of-the-art accelerated gradient-descent
algorithm proposed in [29].

Last but no least, Mérope employs the library voro++ [36] to compute the
Laguerre and Voronoi tessellations.

2.4. Random fields

Materials displaying variable densities, such as MOX fuels [14], can be modeled
by random fields.

Mérope implements a subclass of these fields: stationary Gaussian scalar fields
of zero mean, see e.g. Figure 1 e). We refer to [30] for mathematical details. We
just emphasize that such fields g are entirely characterized by their covariance
function

c(x, y) = c(x− y) = ⟨g(x)g(y)⟩,
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Figure 4: From left to right : 2D Original Laguerre tessellation; 2D Optimized Laguerre tes-
sellation such that all crystallites share the same volume; 2D Optimized Laguerre tessellation
such that the volume of each crystallite of center c is proportionnal to |c|2.

where x and y are points of the RVE, and ⟨X⟩, the expectation of a random
variable X. Gaussian fields g are then submitted to a nonlinear transform (or
anamorphosed). This transformation is convenient to obtain finally a random
field the range of which is physically relevant; for example a density in [0, 1],
a thermal conductivity larger than 0, etc. Both the covariance function and
the nonlinear transform can be optimized to mimic properties measured on
experimental samples (see [14]).

2.5. Combining microstructures

Mérope microstructures of all types can be combined recursively by means of
masks and Boolean operations, giving rise to more complex materials. For ex-
ample, the microstructure of Figure 1 f) is obtained by combining two different
Gaussian fields, with a polycrystal as a mask. Notice however that, if all ge-
ometries can be voxellized, the meshing procedure with tetrahedra is restricted
to simple microstructures.

3. Discretization of the microstructure

3.1. Voxelation

3.1.1. Principle

Voxelations are natural inputs for FFT-based solvers. This class of solvers,
often used in thermomechanics, is quite recent (see the seminal article [32]),
and takes advantage of the efficiency of the modern HPC implementation of the
FFT-based routine, to achieve micromechanics computation on “gigantic” RVE
with an important speed-up, compared with FE solvers used on unstructured
mesh. (We refer to [38] for a comprehensive review on these methods.)

Mérope can be used in combination with the FFT-based solver AMITEX-FFTP
[15], and offers “composite” voxels functionalities [9] for thermal conductivity
problems. Composite voxels allow for mitigating the discretization error, by
identifying all the phases present in each voxel, and averaging their physical
properties in a suitable way. As shown in [38, 9], they reduce drastically the
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discretization error, when the contrast of physical properties is high. As shown
in Section 4 on a specific case, using composite voxels for high-contrast materials
may reduce the error on the effective conductivity from 100% to 1%.

3.1.2. Algorithmic aspects and composite voxels

A special effort has been dedicated to gain efficiency in voxelation. The principle
of the algorithm is the following: each inclusion is responsible for its voxelation,
which it performs by computing on a subgrid its own voxelation. Then, on each
subgrid, we use a strategy for fast coloring the pure voxels (i.e. voxels that only
contain a single phase); the larger the inclusion sizes are compared to the voxel
dimensions, the more efficient is this strategy.

On the illustrative basis of Figure 5, we detail how this subgrid of voxels is
computed. We take advantage of the data alignment in the last coordinates
and consider “columns” of voxels. Then, this column is subdivided into 3 zones
(each zone is possibly not connected), depending on the 3 possible interaction
between the layer and the voxel: either the latter is fully inside the layer (pure
inner voxel), or fully out of the layer (pure outer voxel), or intersects the bound-
ary of the layer (composite voxel). Only the limit of the zones are computed
first. Hence, pure outer voxels are discarded, whereas pure inner voxels can
be efficiently colored in a simple loop. The composite voxels, which are a mi-
nority, are further investigated. For each of them, the volume fraction of the
considered layer is computed and put inside the voxel. If the surface of the layer
intersected by the voxel is planar this computation is analytical [10], else, the
surface is approximated by a planar surface.

When all the inclusions has filled the large common grid, each voxel is either
pure, with a single phase (possibly the one of the matrix), or a mixture of
phases i with volume fractions ϕi. These volume fractions are used in turn to
compute averaged physical laws. Thus, it is possible to average the thermal
conductivity λ of a mixture of materials by Reuss, Voigt, Smallest or Largest
estimates, namely: 

λReuss =
1∑

i ϕi
1
λi

, λVoigt =
∑
i

ϕiλi,

λSmallest = min
i

λi, λLargest = max
i

λi.

(1)

It is intended to make use of general laws for laminates in the future, in coordi-
nation with the solver AMITEX-FFTP. We refer to Section 4 for a study case
using composite voxels, exemplifying that they yield more accurate results.

For assessing Mérope’s performances, we performed benchmarks in [24], com-
paring Mérope with various other microstructure generator. For example, on a
single CPU, Mérope challenges successfully Neper [34] for polycrystal generation
and voxelation, being faster by a factor between 2 and 20 depending on the type
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Boundary of the periodic box.

Voxel inside the box.

Inclusion layer.

Limit of the composite zone.

Virtual voxel out of the box (mapped by periodicity).

Column of voxels under concern.

Pure inner voxel.

Composite voxel.

Pure outer voxel.

Figure 5: Voxelation principle. In gray, the layer of the (circular) inclusion that shall be
voxellized. The thick line materializes the “boundary” of the periodic cuboid ; the small
squares with continuous boundaries are truly inside the domain, whereas the small squares
with dashed boundaries shall be copied by periodicity. The blue lines delimit the “column”
of voxels that are currently voxellized. Inside this zone, pure inner voxels (green), pure outer
voxels (white), and composite voxels (red) are identified.

of microstructure.1 For example, Mérope can generate a 3D polycrystal of 105

crystallites and voxellize it over a grid of 108 voxels within 15 seconds. Thanks
to its performance, it has also been used for optimizing microstructure param-
eters in [33], where, although a full 3D microstructure has to be generated, it
was only required to voxellize slices of it2.

3.2. Mesh

Tetraedric meshes are inputs for usual FE solvers, such as MFEM3 [4], Manta
[22] or Cast3M [1]. The specificity of Mérope is that it produces periodic meshes,
the periodicity surfaces of which are not flat, but adapted to the microstructure
(see Figure 1 g) and h) and Figure 6, where it appears clearly on a 2D slice).
Thus, it avoids numerical artifacts due to the usual flat periodicity surfaces (see
e.g. [37]), which are caused by inclusions touching these surfaces and may result
in mesh singularities.

Mérope defines the periodicity surface as follows:

1See https://github.com/MarcJos/Merope/blob/main/doc/Performances.md. Computa-
tions have been performed on a CPU Intel Xeon Platinum 8268, comparing Neper 4.8.1-1 and
Mérope 1.1.2, both compiled with g++ 12.1.0.

2Voxellizing first in 3D and then extracting a slice was not an option! Instead, Mérope
proposes partial voxelation facilities.

3We refer the interested reader to examples in https://github.com/thelfer/mfem-mgis.
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Figure 6: Left: Periodic mesh represented as follows: The unitary periodic mesh is in bright
colors, and three periodic copies of the mesh are in darkened colors. (Edges are not shown.)
Right: For comparison, a more complicated 3D geometry of periodic mesh, where the upper
part of the matrix (blue) is removed in order to see the inner inclusions (red).

• For polycrystals, it is naturally the enveloppe of the polycrystal, when
embedded in in R3, see e.g. [34].

• For well-separated spherical inclusions, the associated Laguerre tessella-
tion is built (see Section 2.3). Then, the outer surface of this tessellation
embedded in R3 is employed as the periodicity surfaces. By construction,
this surface is as far as possible from the spheres, and thus, no mesh sin-
gularity may happen. This idea was present in [12], and will be described
in more details in the upcoming [6].

Notice that, due to the technicality involved in building tetraedric meshes, the
user may only mesh simple structures, namely: spherical inclusions and poly-
crystals. Also, strictly speaking, Mérope does not produce a mesh itself, but
rather an input file in the .geo format for the mesh generator gmsh [16], which
is an open-source software.

4. Simple and illustrative case study

4.1. Description of the study

As an illustrative case study for Mérope, we propose a totally virtual study of
the effective thermal conductivity λ̄ of an imaginary microstructured material.
Although the results are not interesting per se, we would like to underline the
methodology, which is general.

The material under concern is made of clay filled with lead bullets coated by a
thin silver layer (see Figure 7). First, we make precise our microstructure def-
inition. Then, we study the discretization error, and choose a homogenization
rule for the composite voxels. (This will illustrate the efficiency of composite
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Figure 7: A representation of the microstructure. In black, the lead, in yellow, the silver, and
in varying colors, the value of the thermal conductivity of the clay. A part of the clay matrix
has been removed in order to see the bullets.

voxels.) Next, we investigate the influence of the size of the RVE. As a conclu-
sion, we propose a choice of coherent parameters in terms of discretization step,
RVE size, and sample number, in order to have the best precision with limited
computational cost (here, we strive for an error of order 3%).

4.2. Description of the material microstructure

The clay will be modeled as a heterogeneous material, the conductivity of which
is described by an anamorphosed Gaussian field, that is

λclay(x) = λ0,clay(2 + tanh(g(x))),

where x is the point coordinate, the function g is a stationary Gaussian field
[30] of zero mean and covariance function

c(x− y) = E[g(x)g(y)] = exp(−(x− y)2/2r20).

The bullets are of two distinct classes, the first ones of radii r1 and volume
fraction ϕ1, and the second ones of radii r2 and volume fraction ϕ2. We further-
more assume that the bullets distribution can be modelled by the mechanical
contraction algorithm of Williams and Philipse. All the bullets are made of a
core of lead coated by a thin silver layer of width l. The lead and silver materi-
als are supposed to be of homogeneous thermal conductivities, λlead and λsilver,
respectively. In Table 2, we display the numerical values of each parameter.
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r0 r1 r2 l ϕ1 ϕ2 λ0,clay λlead λsilver

Value 1.0 2.0 3.5 0.25 0.2 0.3 0.6 35.3 429
Unit mm mm mm mm - - W/m/K W/m/K W/m/K

Table 2: Geometric and physical parameters of the microstructure. See [2] for conductivities
of silver and lead.

Although this framework is not related to any realistic application, it embodies
main features of actual problems, when attempting to compute the thermal con-
ductivity of a microstructure representative of nuclear materials [33, 8], which
may involve high contrasts and thin layers.

4.3. Discretization error

The first step is an empirical study of the discretization error. We take a small
cube, with edge length 15mm, on which we investigate the error, using different
types of pure voxels, the conductivity of which is equal to the one its center, and
composite voxels, namely according the rules Voigt, Reuss, Smallest, Largest
(see Section 3.1). One difficulty of the structure that we defined is that the
Gaussian fields cannot be easily refined.4 However, since the major source of
error is due to the coating, due to its fineness and its high conductivity, w.r.t.
to the other material. Hence, we only study this numerical error, by averaging
the conductivity of the clay as being equal to λ0,clay. The results are displayed
in Figure 8.

Figure 8: Left: First eigenvalue of the effective conductivity, in W/m/K, in function of the
discretization step in mm (length of the edge of a voxel), for various composite voxels. Right:
Relative error on the effective conductivity in function of the discretization step, in mm, for

various composite voxels, using the Euclidean norm on the matrix ∥M∥ =
√∑3

i,j=1(M)2ij .

The effective conductivity is matrix-valued. To visualize them more easily, we

4Picking another Gaussian field on a smaller scale is different from refining a given Gaussian
field, which would necessitate when refining to interpolate and then pick new random variables
on the new points.
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plot the largest eigenvalue of this matrix on the left of Figure 8. First, as
expected, for fixed voxel size, these eigenvalues are ordered as follows:

λ̄Smallest ≤ λ̄Reuss ≤ λ̄Voigt ≤ λ̄Largest.

This inequality is expected from the local inequalities obtained from (1). Nev-
ertheless, we observe that the range of values is broad for moderate voxel sizes.
For example, the eigenvalues range from 3.9Wm−1K−1 to 34Wm−1K−1 for
a voxel size of 0.12mm, which is smaller than the smallest characteristic size
(namely, the width of the silver coating). Hence, the choice of a suitable dis-
cretization rule for composite voxels is of paramount importance, otherwise, it
may lead to a relative error of more than 1000%.

Then, we observe that the error increment of the Reuss composite voxels is far
smaller than for the other voxel rules. Thus, we use as a reference value the
effective thermal conductivity for the Reuss rule computed with the smallest
possible voxel edge length, namely 0.015mm. This value relates to a voxelation
of around 109 voxels, which is already costly in terms of memory (just storing
the coefficient field in double precision takes 8GB of memory; then using a FFT
solver such as AMITEX-FFTP may take more than 400GB RAM), and takes
time (around 5h for evaluating the homogenized matrix on 18 CPUs Intel Xeon
Platinum 8268 with the software AMITEX-FFTP [15]). On the right, we show
the relative error on the homogenized matrix, by comparing the outputs of our
computation to this reference value.

This establishes the better accuracy of the Reuss method, followed by the Small-
est method, and then the Voigt, Center and Largest methods. Notice than, even
for moderate size of voxels of 0.12mm, the error for the Reuss method is of or-
der 1%, whereas it is higher higher than 100% for all other methods but for
the Smallest method, where it is of order 10%. The superiority of the Reuss
method is not unexpected. Indeed, it corresponds to a homogenization rule in
a laminate where the thermal flux is assumed to be orthogonal to the layers [3].
In the precise case that we are studying, since the silver is of high conductivity
with respect to the other materials, the thermal flux is easily driven by the silver
layer, and then effective conductivity is highly dependent on the thermal barrier
caused by the touching zones between two different bullets, where the thermal
flux is approximately orthogonal to the surfaces of the spheres.

4.4. Homogenization error

The last step is the study of the homogenization error or, in other words, the
representativeness of a cube of edge length L. As in [18], we decompose the
error on the effective conductivity λ̄, estimated by the value λ̄L in the cube of
edge length L, into two parts :〈

∥λ̄− λ̄L∥2
〉
= ∥λ̄−

〈
λ̄L

〉
∥2 +

〈
∥λ̄L − ⟨λ̄L⟩∥2

〉
. (2)

The right-hand side term of (2) is the square of the bias, and the second one is
the square of the standard deviation. Here, the average ⟨·⟩ denotes the expecta-
tion (recall that our microstructure is assumed to be random). Notice that, in
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practice, the empirical apparent thermal conductivity λ̃L is evaluated by aver-
aging over N microstructures independently throw. This results in decreasing
the standard deviation as〈

∥λ̄− λ̃L∥2
〉
= ∥λ̄−

〈
λ̄L

〉
∥2 + 1

N

〈
∥λ̄L − ⟨λ̄L⟩∥2

〉
.

Following [28, 11], when L ↑ ∞, we expect the scaling laws

∥λ̄−
〈
λ̄L

〉
∥ ≃ CL−3, and

√〈
∥λ̄L − ⟨λ̄L⟩∥2

〉
≃ CL− 3

2 .

Figure 9: Left: Relative standard deviation of the apparent thermal conductivity as a function
of the edge length L (with theoretical scaling in L−3). Right: Relative empirical bias of the
apparent thermal conductivity as a function of the edge length L, and standard deviation
thereof. For both graphs, the discretization error is displayed, as well as theoretical scalings.

Here comes the numerical investigations. First, according to Section 4.3, we
choose a voxel edge length being equal to 15/128 ≃ 0.12mm, with Reuss com-
posite voxels (leading to approximately a relative error of 1.5% due to discretiza-
tion). Then, for each edge length L in the range 7.5 to 120 by dyadic steps,
we draw independently random microstructures for which we compute the ap-
parent thermal conductivity. This leads us to evaluate empirically the standard
deviation of the apparent thermal conductivity, as well as an empirical bias,
which we compute as |λ̃L − λ̃Lmax

|, where Lmax = 120. For convenience, we

renormalize our results by |λ̃L=120|.

Our results are plotted in Figure 9. First, we remark that we get the correct scal-
ing of the standard deviation. The latter even seems to survive independently
of the discretization error: this is not surprising in the sense that it comes from
the law of large numbers, which is somehow independent to the discretization
error. Then, as already remarked in [39], we do not recover the expected scaling
of the bias. Here, it may be explained easily: the standard deviation of the bias
becomes larger that the value of the bias itself (hence, the precise value of the
bias becomes meaningless).

4.5. Conclusions of the numerical study

From an applied perspective, a numerical experimentalist attempting to com-
pute the effective thermal coefficient of the given material may draw the follow-
ing conclusions:
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• A discretization step h = 0.12mm is sufficient to get a discretization error
of about 1%.

• Then, the size of the volume should be chosen as L = 30. Indeed, for
higher L the bias then becomes smaller than the discretization error.

• At L = 30, the relative standard deviation is of s = 3%. Hence, for having
a relative error of e := 1% due to randomness within a 95% confident
interval, N independent computation of the apparent thermal conductivity
should be performed, with N = (2 ∗ s/e)2 = 36.

Last, putting together all the sources of error, for the chosen parameter, we end
up with an error of order 3% as desired (the total error being the sum of the
discretization error, the bias and the standard deviation).

Such a preliminary study is crucial. If the numerical experimentalist is not
only interested in a single class a microstructures as in Section 4.1, but rather
with a family of such structures with varying parameters, he may transpose
its conclusions about discretization error and representativeness to the whole
family. (Thus, he may save time and computational resources.)

Evaluating each source of error in order to get the best precision can easily
decrease by a factor 10 − 100 the total CPU hours cost of the whole study. In
practice, since a single FFT (or FE) computation with a large number of voxels
is costly (it can take hours on a dozen of processors, cf. Section 4.3), such a
method can save thousands of CPU hours, which is far from being negligible
when using a laptop or a small cluster.

5. Prerequisites, architecture, code quality and performance

5.1. Prerequisites and synergy with other applications

For compiling the Mérope code, the user shall have as a prerequisite:

• a recent Linux distribution (Debian 10+, Ubuntu 22+),

• cmake 3.16+, g++ 10.2+, and Python 3.5,

• the Math Kernel Library (used for implementation of the FFT),

• Pybind11 [21], which is used to build the Python user interface from the
C++ Mérope code,

• voro++ [36] to compute the Laguerre and Voronoi tessellations.

Moreover, Mérope can be (and has been) used in synergy with the following
applications:

• the mesh generator gmsh [16],

• the FFT-based solver AMITEX-FFTP [15],

• the code generator for physical laws MFront [20],
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• the FE solvers Cast3M [1] and MFEM [4],

• the Discrete Element Method simulator Rockable [35], which may create
an input geometry which is voxellized through Mérope.

5.2. Architecture

The main part of Mérope is a collection of C++ libraries, implemented with
standard C++17. Two main modules are distinguished:

• The module AlgoPacking, which is dedicated to the generation of sphere
packing, and which collects basic geometry functions.

• The module merope core, which contains the microstructure abstractions,
and the discretization procedures.

The user accesses these libraries through a Python interface, which maps one-
to-one the C++ functions, thanks to the pybind11 library [21].

Some Python scripts are proposed to the user. These generate microstructures
and perform some RVE experiments, such as computing the effective thermal
coefficients of a polycrystalline material.

5.3. Code quality

Mérope attemps to propose a state-of-the-art code to build virtual microstruc-
tures, in terms of user-friendliness, flexibility, and robustness. In this regards,
the github repository [24] proposes a fairly comprehensive documentation. Con-
cerning the code quality, non-regression is ensured by continuous integration
tests performed on some CEA computers (but not directly through continuous
integration platform provided by github). These tests have shown that the cov-
erage rate for functions is about 75%, which is moderately satisfactory, and will
be improved in the future.

6. Conclusion and perpsectives

Mérope is a numerical tool for generating samples of random microstructures
in order to compute their effective properties with the RVE approach in 2D
and 3D. It proposes a rich varieties of microstructures: inclusions with layers,
polycrystals, random fields, and arbitrary combinations of the latter. Two types
of discretization are implemented: voxelation, for FFT solvers, and tetraedric
mesh, for FE solvers. The voxelation procedures are more advanced and fea-
ture state-of-the-art functionalities, whereas the meshing procedure is limited
to simple structures, although it proposes a quite innovative implementation of
periodic surfaces [12]. Mérope has been used in the research on nuclear fuels
[33, 6], but its functionalities may reach a broader audience, interested in RVE
numerical computations -especially in micromechanics.

Mérope is extensively documented and submitted to regression tests. Its per-
formances have been assessed by benchmarks, leading to the conclusion that it
enjoys state-of-the art performances on a single CPU.
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Mérope is currently still under development. The main perspectives concern the
following functionalities:

• HPC implementation (in MPI), in particular for sphere packing –which is
of independent interest. (We refer to the upcoming [25].)

• Generalization of the use of composite voxels for arbitrary physics, in tight
coupling with the solver AMITEX-FFTP.

• Extension of the meshing procedure to more general microstructures.

• Post-processing facilities for extracting statistics of microstructures.
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