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Abstract

A model simulating the drying of a solution in a meniscus in contact with a moving sub-

strate is developed. It takes into account the hydrodynamics in the solution in the framework

of lubrication approximation, the vapor diffusion in the gas phase and the variation of physical

properties during drying. The free surface profile and spatial evaporation flux are not imposed

a priori but result from the simulation of the mass transfer in the liquid/gas system (1.5 sided

model). Several regimes are observed depending on the substrate velocity. For large substrate

velocity the classical Landau-Levich regime is obtained. For smaller velocities a drying front

appears which is characterized by a strong concentration gradient and a peak of the evapora-

tion flux. The coupling between the evaporation flux and the meniscus shape in this regime

is analyzed. At last another regime appears at very low substrate velocity and seems driven

by a competition between advection and diffusion. This macroscopic model simulates recent

experimental results, namely the dependence of the deposit thickness on the substrate velocity,

which scales as 1/V in the regime dominated by evaporation.

∗To whom correspondence should be addressed
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Introduction

Evaporation in the vicinity of a contact line or in a meniscus has been the focus of numerous

experimental and theoretical studies during the last years. Indeed, despite its apparent simplicity,

this problem involves complex physics due notably to the coupling between the hydrodynamics in

the liquid and the mass transfer in the gas phase. Understanding the dominant phenomena which

control the evaporation is also a challenging problem for applications, since many coatings are

obtained by drying a solution or a suspension. Numerous recent experimental studies are devoted

to the obtention of uniform coatings or structured ones for specific applications.

Boundary effects due to the presence of a contact line or a meniscus, that are encountered for

example in droplet drying or dip coating, induce strong spatial variations of the evaporation flux

and then a liquid flow. As a consequence the dried deposit may exhibit complex morphology like

periodic patterns due to stick/slip phenomena. For instance the famous coffee stain effect studied

by Deegan et al1 requires the coupling of the hydrodynamic flow inside the droplet and the ability

for the deposit to pin the contact line. Since then several experimental or theoretical works have

been developed for different geometries such as droplets, dip coating or similar experiments with a

moving substrate. Several types of material have been investigated, such as colloids including silica

particles2–4 and polymer beads,5,6 but also small molecules,7 carbon nanotubes,8 polymers9,10

and biological molecules.11 Some characteristics of the deposition process seem to be generic

and relatively independent of the nature of the material.12 Modeling the coupling between the

hydrodynamics in the liquid and the transfer in the gas is then an interesting working track to

better understand the deposit formation.

In this study we focus on evaporation of a volatile liquid in an inert gas so that evaporation is

limited by the diffusion of solvent vapor in the gas. The physical phenomena which control the

evaporation kinetics are then different from one fluid systems where the solvent vapor is the only

gas, like for instance in heat-pipes.13 Several works investigate the flow induced by evaporation

in the vicinity of a contact line for a pure volatile liquid evaporating in ambient air. In most of

the cases lubrication approximation is used and the spatial variation of the evaporation flux or the

2



free surface geometry are fixed a priori. Suspensions have also been studied but most often without

taking into account the effect of particle concentration on fluid hydrodynamics. The deposit is then

only a signature of the flow field obtained for the pure liquid. With these assumptions simulations

are performed to get the flow field inside the liquid induced by evaporation and/or Marangoni

effect. Depending on the parameters the deposit can be uniform, more important at the external

edge of the droplet ("coffee stain" effect) or on the contrary concentrated at the center. For instance

Fischer14 analyzes the influence of different evaporation flux profiles on the particle flow direction

(towards the center or the edge) for evaporating droplets without Marangoni effect. Petsi and

Burganos15 also consider a fixed evaporation profile and study the particle flow for pinned or

unpinned contact lines, with Stokes 2D equations and Navier slip condition at the contact line.

Berteloot et al.16 develop a model to estimate the meniscus deformation induced by evaporation.

The coupling between different evaporation flux profiles and Marangoni flow has been considered

by Murisic and Kondic17 for pure liquid, without pinning. Hu and Learson18 have compared water

and organic solvents for spherical droplets with a given evaporation flux and thermal Marangoni

effect. They explain the difference in the dried deposit (deposit at the center or the edge) by

annihilation of Marangoni flow in water droplets, due to the surface contamination.

To our knowledge studies taking into account explicitly the dependence of physical properties

with the concentration for such geometries are more sparse. Recently Craster and co-authors19

have developed a model to analyze pinning, retraction and terracing of droplets containing nanopar-

ticles. In the hydrodynamic model the authors take into account the concentration dependence of

the viscosity and use a disjoining pressure approach to describe small scale interactions. The

evaporation is driven by the departure from equilibrium at the interface. Thiele20 and co-authors

develop a similar approach as well as statistical models to characterize contact line pinning or

dewetting for evaporating thin films. Numerous references to experimental or numerical works

can be found in their review paper. The effect of a strong increase of the viscosity at the contact

line has also been analyzed experimentally by Monteux et al.10 on polymer droplets.

In this paper we use a macroscopic description taking into account the hydrodynamics in the

3



solution, the variation of physical properties during drying and the coupling with the gas phase

(drying in air at atmospheric pressure). The free surface profile and spatial evaporation flux are

then not imposed a priori but result from the simulation of the mass transfer in the liquid/gas

system. The objective is to show that several experimental results, namely the deposit thickness,

can be explained by this quite simple macroscopic model, neglecting physicochemical interactions

with the substrate and assuming newtonian rheology. This study follows recent experimental works

where different systems (biological molecules, colloidal suspensions and polymer solutions) have

been dried on a moving substrate. Geometries are close to dip coating experiments. In the work of

Le Berre et al.11 a droplet of phospholipid solution is dragged on a substrate at constant speed. In

our previous work a capillary rise is achieved between two glass plates immersed in a reservoir.12

The position of the capillary rise is governed through the emptying of the reservoir, achieved using

a syringe pump. The accessible range of flow rates allows us to explore contact line velocities from

less than 1µm/s up to 2mm/s. Several regimes have been observed when varying the substrate

velocity depending on the capillary number, Ca, that compares capillary to viscous forces, with

Ca = ηV/γ , η being the dynamic viscosity, V the substrate velocity and γ the surface tension (we

consider only small velocities for which inertial effects can be neglected). For sufficient capillary

number, viscous forces are large enough to drag a film from the bath. This regime is known as

the Landau-Levich regime21,22 and the thickness of the dragged film is proportional to Ca2/3. The

Landau model has been established for the dip coating geometry but can be easily adapted to our

confined geometry, where the gap d between the two plates is smaller than the capillary length.

Compared to the Landau theory, the only modification concerns the fit between the static and

dynamic meniscus. The static curvature to take into account in our case is simply the inverse of

the static meniscus radius, equal to 2/d. This leads to:

h = 0.67 d Ca2/3 (1)

For smaller capillary numbers another regime was observed where the film thickness varies in

the opposite way, i.e., it increases when the velocity decreases. The dried thickness is found
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proportional to about V−1, whatever the system. Moreover, the following relation was obtained

hd ∼ F ϕ0

V
(2)

where ϕ0 is the solute volume fraction in the bulk and F the evaporation flux measured with pure

liquid (cf. more details in the section dedicated to the evaporation flux). Experimental observations

show that this relation holds for systems as different as small molecules, colloidal suspensions or

polymer solutions and ask for deeper investigation to understand what are the dominant phenomena

involved in this regime. The model developed in this paper describes the way the evaporation flux

and concentration profile take shape for different substrate velocities. It explains the different

regimes observed experimentally and more generally gives new insight in the coupling between

liquid and gas and its consequence on evaporation and meniscus shape.

Problem formulation

Model equations

We consider the drying in a meniscus of a binary solution composed of one volatile solvent and

one nonvolatile solute, on a moving flat substrate. The temperature is assumed constant (isother-

mal problem). Coupled mass transfers in the liquid and in the gas phases are taken into account.

Drying takes place in air at atmospheric pressure, local thermodynamic equilibrium is assumed at

the interface and the evaporation is limited by the solvent vapor transfer into the air. Complete de-

scription of the gas phase dynamics (2-sided model) would be too complex. For sake of simplicity

the air is assumed stagnant but diffusive bidimensional effects in the gas are taken into account and

turn out to be one of the key aspect controlling the drying behavior, as will be seen in the following.

This is the so-called 1.5-sided model which is a compromise between the complete hydrodynamic

description and the 1-sided model in which transfer with the surroundings is estimated with an a

priori known mass transfer coefficient. At last, it can be shown that in the regime where evapora-
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tion is the dominant mechanism the substrate velocity is small enough to neglect entrainment of

the gas phase induced by the moving substrate.

In the liquid phase the velocity field is assumed quasi-parallel to the substrate (lubrication

approximation) with no-slip at the substrate and zero tangential stress at the free surface. The

direction of the flow is noted x⃗, the axis normal to the substrate is z⃗. Gravity as well as Marangoni

effect are neglected. Another important assumption concerns the concentration in the liquid phase

which is assumed uniform on the thickness. Indeed taking into account the 2D concentration field

in the solution would make the simulation much more complex, especially with a deformable

interface. This assumption is consistent with the above description of evaporation limited by the

solvent diffusion in the air. In most of the configurations considered in the following, diffusion

velocity in the liquid is large enough to ensure a uniform concentration in the z⃗ direction. This

assumption may become questionable in the thick part of the meniscus for the smallest diffusion

coefficient tested in this study. Nevertheless in the first step considered in this paper concentration

variations in the z⃗ direction are not taken into account. With the above-mentioned approximations

and assuming a newtonian fluid, Stokes equations lead to the standard result:23,24

Q(x, t) =
h3

3η
∂
∂x

(σ
∂ 2h
∂x2 )+V h (3)

where h is the liquid height, η the dynamic viscosity, σ the surface tension and V the substrate

velocity. Q(x, t) is the liquid volume flux at abscissa x and time t over a cross section normal to x⃗

(by unit of width),

Q(x, t) =
∫ h(x)

0
u(x,z)dz (4)

where u(x,z) is the velocity component in the x⃗ direction.

The global mass conservation and the nonvolatile solute mass conservation read respectively:20
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∂h
∂ t

+
∂Q
∂x

=−vev(x, t) (5)

∂ (ϕh)
∂ t

+
∂ (ϕQ)

∂x
=

∂
∂x

(hDmut
∂ϕ
∂x

) (6)

where vev(x, t) is the local evaporation velocity (positive for evaporation), ϕ the solute volume

fraction and Dmut the mutual diffusion coefficient of the binary system (Fick law written with the

assumption of constant liquid density).

The boundary conditions are the following: At x = 0 we assume that we get the bulk solute

volume fraction, ϕ0, and we impose the liquid height h0 and the curvature C0 (Eq. (7)). If one

performs an analogy with previous capillary rise experiments,12 C0 is the curvature of a static

meniscus, deduced from the gap d between the plates: C0 = 2/d, with d = 1mm. The lubrication

theory is valid if the free surface slope is much lower than 1, which is true if h0 is small enough.

In all the results presented in the following h0 = 100µm (some other calculations were performed

with h0 = 30µm and give the same results concerning the deposit thickness or the evaporation

flux, so that they are not presented here). Spatial derivatives of h in Eq. (5) and ϕ in Eq. (6) being

respectively of fourth and second order, three boundary conditions are also needed at x =W . These

outlet conditions far from the bulk are given in Eq. (8) (As far as the length of the simulation box

is large enough, the choice of the outlet conditions is not very important since they do not modify

significantly the upstream flow).

at x = 0 : h = h0,
∂ 2h
∂x2 =C0, ϕ = ϕ0 (7)

at x =W :
∂h
∂x

= 0,
∂ 2h
∂x2 = 0,

∂ϕ
∂x

= 0 (8)

The local evaporation velocity in Eq. (5) is determined by solving a diffusion problem in the

gas phase, in a domain of length W and height H, shown in Figure 1 (for process with a forced air

flow above the free surface, H would roughly correspond to the boundary layer thickness). Since H
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is much larger than h0, we assume a rectangular domain for the gas phase. This means that liquid

thickness variations are neglected when computing mass transfer in the gas phase. The bottom

boundary of this domain corresponding to the liquid-gas interface is then: z = 0 and 0 < x < W .

The diffusion equation in the gas phase reads:

∂cg

∂ t
= Dg(

∂ 2cg

∂x2 +
∂ 2cg

∂ z2 ) for 0 < x <W and 0 < z < H (9)

where cg is the solvent vapor concentration in the air. The vertical walls are assumed impermeable.

At the top a Dirichlet condition is imposed, with solvent vapor concentration equal to 0. Then we

get the following boundary conditions for the gas domain:

∂cg

∂x
= 0 for (x = 0 or x =W ) and 0 < z < H (10)

cg = 0 for 0 ≤ x ≤W and z = H (11)

The last boundary condition corresponds to the coupling between the liquid and the gas phases

and is achieved by writing the mass flux conservation and the local thermodynamic equilibrium at

the interface:

ρvev =−Dg
∂cg

∂ z
for 0 ≤ x ≤W and z = 0 (12)

cg = a(ϕ ,T )Pvs0(T )
Ms

RT
for 0 ≤ x ≤W and z = 0 (13)

where ρ is the liquid solvent density, Ms the solvent molar mass, R the ideal gas constant, T the

temperature, Pvso the saturated vapor pressure of the pure solvent, and a the activity of the solvent

at the interface (with the assumption that the solvent vapor behaves like an ideal gas, its activity is

the ratio of the partial vapor pressure over the saturated vapor pressure of the pure solvent). The

effect of the capillary pressure on the solvent chemical potential is neglected. As already said,

evaporation cooling effect is disregarded so the temperature T is assumed uniform in the whole

system, and equal to the room temperature.
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This paper mainly focuses on the steady state and we use as initial conditions the result of

a previous calculus for a close configuration. It has been checked that the choice of the initial

conditions has no effect on the steady state result.

Liquid phase

Evaporation

W
H

Gas phase
(air + solvent vapor)

z
x

h 0

Dirichlet boundary condition, Eq. (11)

Impermeable surface, Eq. (10) 

Free surface, Eq. (12) and Eq. (13)

Figure 1: Sketch of the problem geometry

The above set of equations (Eq. (3) to Eq. (13)) is solved numerically by finite differences,

using a pure implicit scheme of order 1 in time and 2 in space. At each time step, equations are

solved iteratively in the liquid and in the gas, until convergence is achieved. The discretization of

equations in the liquid (Eq. (3) to Eq. (8) and Eq. (12)) leads to a set of nonlinear algebraic equa-

tions, solved by Newton-Raphson algorithm. An adaptive mesh is implemented, in order to refine

the mesh in region of high concentration gradient. In the gas phase, the set of algebraic equations

resulting from discretization of equations Eq. (9) to Eq. (11) and Eq. (13) is linear, and solved by

Successive Over-Relaxation method (SOR). A specific software has been written in Fortran, and

most of the computations have been performed on iDataPlex IBM clusters. Computational time

vary from a few minutes in the Landau-Levich regime, to several weeks in the evaporative regime.

The solution gives the meniscus shape, the local evaporation flux and the concentration field in

the gas, as well as the concentration and velocity fields in the solution as a function of the control
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parameters (substrate velocity, bulk solute concentration, solution properties and geometry).

In this model microscopic-scale interactions with the substrate are not taken into account. No

limitation is a priori imposed on the thickness h(x) that can become close to zero. In that case the

above equations are no more valid and other model, introducing for instance a disjoining pressure,

should be used. Nevertheless the aim of this paper is to show that a simple model coupling transfer

in the gas and in the solution can explain some of the observed experimental behaviors. When the

thickness goes to zero for some values of the control parameters, the above model does not intend

to give a physical description of the film but points out a change in the drying regime.

Data

Geometric characteristics are the following. For all computations we have W = 1mm , h0 = 0.1mm,

C0 = 2mm−1. Three values have been compared for the box height H: H = 0.3,3 or 30mm. The

bulk solute volume fraction is ϕ0 = 0.01,0.05 or 0.1. To avoid adjustable parameters we have

used a model system whose characterization has been carefully performed in previous studies, that

is a Polyisobutylene/toluene solution. All the simulations are done at T = 25oC. Variations of

the density ρ and surface tension σ with the solvent concentration are neglected and we use the

following values: ρ = 900kg.m−3 , σ = 30mN.m−1. Toluene saturated vapor pressure, molar mass

and diffusion coefficient in the gas phase are, respectively: Pvs0 = 3792Pa , Ms = 92.14g.mol−1

and Dg = 8.6×10−6m2.s−1.

For polymer solution, it is well known that the solution viscosity strongly depends on the

polymer molar mass and polymer concentration. Except when specified, the viscosity used in

the simulations corresponds to a molar mass MW = 500 kg.mol−1. Some simulations were also

made with the viscosity corresponding to a larger molar mass MW = 103kg.mol−1. To express the

dependence on polymer concentration the following empirical fit25,26 have been used (Figure 2):

y = 8.22+13.2 x+5.2 x2 +0.70 x3 for MW = 500 kg.mol−1 (14)
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y = 9.26+11.94 x+3.86 x2 +0.42 x3 for MW = 103 kg.mol−1 (15)

with y = log10(η) and x = log10(ϕ).

The concentration dependence of the activity and mutual diffusion coefficient have been ob-

tained from gravimetry experiments.27 The activity depends on polymer concentration and is given

by the Flory-Huggins law, plotted in Figure 3(a):

a(ϕ) = (1−ϕ) exp(ϕ +χϕ 2) with χ = 0.45+0.30ϕ (16)

For the mutual diffusion coefficient Dmut , the following constant values have been considered:

Dmut = 10−11,10−10,10−9m2.s−1, and also a concentration dependent function given by:27 (Fig-

ure 3(b)):

log10(Dmut) =−9.85−0.14 ϕ +0.78 ϕ 2 +3.61 ϕ 3 −7.39 ϕ 4 (17)

0.001 0.01 0.1 1

Polymer volume fraction

10
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10
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6

10
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10

V
is
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)

M
w

= 500 kg/mol - Exp. data
Eq. (14)
M

w
=1000 kg/mol - Exp. data

Eq. (15)

Figure 2: viscosity of PIB/Toluene solutions for two molar masses.
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(a) Solvent activity
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(b) Mutual diffusion coefficient

Figure 3: Thermodynamic characteristics of PIB/Toluene solutions. The experimental points have
been obtained in the concentrated domain. The mutual diffusion coefficient fit is then extended to
the dilute domain where Dmut is of the order of 10−10m2s−1 and where no important variation of
Dmut is expected.

Local description - meniscus shape, concentration and velocity

fields

We first analyze the coupling between the evaporation and hydrodynamics for the following con-

figuration: ϕ0 = 0.01, Mw = 500kg.mol−1, H = 3mm, Dmut = 10−10m2/s. The substrate velocity

is varied on two orders of magnitude, 10µm.s−1 ≤ V ≤ 1mm.s−1. Then the capillary number

Ca = ηV/σ that compares capillary to viscous forces ranges from 4.5×10−7 to 4.5×10−5.

The corresponding meniscus shape, local polymer volume fraction, evaporation flux and liquid

velocity are given in Figure 4. Meniscus shape is plotted in semilog-scale to get a better view of

the meniscus profile.

At the largest substrate velocity (V = 1mm.s−1 and Ca = 4.5× 10−5), a film of about 1µm is

pulled out from the bath, due to viscous forces (dark blue curve in Figure 4(a)). This corresponds to

the well known Landau-Levich regime described in dip coating experiments and will be discussed

in next section. In this regime of high substrate velocity, evaporation has no significant effect.
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Indeed the evaporation flux is uniform on the whole film length and too small for the polymer

concentration to change much when the solution flows from x = 0 to x = W . As a consequence,

the concentration field in the gas phase is quasi one-dimensional (Figure 5(a)).

When decreasing the substrate velocity, a drying front appears which is characterized by a

strong concentration gradient and a peak of the evaporation flux (Figure 4(a)-(c)). The concen-

tration field in the gas phase is now two-dimensional as shown in Figure 5(b). Diffusion in the x⃗

direction induces a curvature of the concentration isolines, so that the vapor concentration gradient

above the surface in the z⃗ direction is very small at the right of the evaporation peak. As a con-

sequence the evaporation flux falls down and becomes very weak (Figure 4(c)), while the activity

is still larger than 0.5. In this regime, called evaporative regime in the following, evaporation and

hydrodynamics are strongly coupled. Let us note that we recover the tip effect described by Dee-

gan and co-authors1 in the analysis of the coffee stain effect. But here we have no flux divergence

because the liquid considered in the model is a binary solution including a non volatile component,

so the film thickness doesn’t vanish anywhere, and we get a continuous (even if steep) concentra-

tion field (a very refined mesh is used in the front zone to capture accurately the evaporation peak

shape).

Another important result concerns the meniscus structure. For all the substrate velocities, one

can observe that the last part is "frozen" (i.e. the liquid velocity is equal to the substrate velocity)

while a flow in the substrate frame is observed in the first part of the box, due to the substrate move-

ment and evaporation (Figure 4(d)). As detailed below, simulation results show a strong correlation

between the meniscus shape, the evaporation flux and the liquid velocity in the evaporative regime.

The meniscus height and its spatial derivative (slope) are displayed in Figure 6(a) and Figure 6(b)

for V = 30µs−1. The spatial evolution of the slope reveals that the meniscus can be divided into

two parts. In the first one the linear variation of the slope implies a constant curvature, equal to

the curvature imposed at the boundary condition at x = 0. This part will be called "quasi-static

meniscus" since friction is not strong enough to modify the curvature significantly (red dotted

lines in Figure 6(a) and Figure 6(b)). Then a steep transition occurs where the slope derivative
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(meniscus curvature) suddenly changes. In the second part of the meniscus the slope goes to zero

on a length of a few microns. We can also see on Figure 6(b) that the transition between the two

zones corresponds to the maximum of the evaporation flux on one hand (vertical dotted line) and

to the transition between the "flowing" and "frozen" zone on the other hand. Indeed the transition

between these two zones occurs when u = V and can be clearly displayed by superimposing the

simulated profile and the one obtained by stating u =V in the mass balance steady state equations

(from Eq. (4) and Eq. (5)):
∂h
∂x

=−vev(x)
V

(18)

where vev(x) is the evaporation velocity obtained from the simulation (cf. blue dashed line in

Figure 6(a) and Figure 6(b)). These three phenomena occurring at the same location (steep change

in the meniscus curvature, cancelation of the liquid flow and maximum of the evaporation flux) are

due to the increase of the polymer concentration. Indeed this induces a large increase of the solution

viscosity which annihilates the flow and makes the Laplace pressure unable to maintain the quasi-

constant curvature in the meniscus. In addition the meniscus being no more supplied in solvent

after the transition, the activity decreases and so does the evaporation flux. Finally the evaporation

flux becomes close to zero and after the meniscus we get a quasi-flat film (Eq. (18)). It will be

interesting, but beyond the scope of the present paper, to analyze in which configurations these

mechanisms hold when taking into account microscopic interactions with the substrate through a

disjoining pressure term.

Effect of viscosity and bulk concentration

The consequence of these different regimes on the dried deposit thickness is now analyzed. The

final thickness of the dried deposit is obtained by the relation hd = ϕ(x)h(x) where ϕ and h are

taken in any point of the "frozen" zone.

Let us first look at the results obtained with the configuration of the previous section, corre-

sponding to the red circles in Figure 7. As already noticed, several regimes can be observed de-
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Figure 4: Profiles as a function of horizontal distance x for ϕ0 = 0.01, Mw = 500kg.mol−1, H =
3mm, Dmut = 10−10m2s−1 and for different substrate velocities. The correspondence between color
and substrate velocity is given in Figure 4(b).
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Figure 5: Isovalues of the solvent activity in the gas phase for two substrate velocities V , same
conditions than in Figure 4.
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Figure 6: Meniscus structure. V = 30µm.s−1, other parameters are the same than in Figure 4. The
vertical black dotted line indicates the position of the maximum of the evaporation flux
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pending on the substrate velocity or Capillary number. At high Ca viscous forces prevail, the thick-

ness increases with the substrate velocity. This dynamical wetting regime has been described by

Landau and Levich21,22 and simulations are in agreement with the thickness deduced from Landau-

Levich model, as shown in Figure 7(a) where Eq. (1) is drawn in full line with the viscosity corre-

sponding to the bulk concentration ϕ0. But for V ∼ 500µm.s−1 (i.e. Ca ∼ 2×10−5 ) a minimum

is obtained and the slope of the thickness variation switches to negative value. The dried thickness

is proportional to 1/V in this regime where evaporation plays a dominant part. This dependence in

1/V has been observed experimentally for various systems, like biological molecules11 or colloid

suspensions and polymer solutions.12 At last for very low velocities (V < 10µm.s−1 for this con-

figuration) another transition appears and the film thickness goes to zero and no steady state can

be reached in the framework of this model (in all the curves of Figure 7 the last point on the left

corresponds to the smallest velocity that can be handle by the model; below this critical velocity

the film thickness goes to zero).

If the viscosity is changed, either by changing the polymer molar mass or by changing the bulk

concentration, a strong effect is obtained in the Landau-Levich regime, as expected. The transition

from the Landau-Levich regime to the evaporative regime is shifted to lower velocities when the

viscosity increases (cf. Figure 7(a)). But scaling the dried thickness by the bulk concentration

(hd/ϕ0) gathers all the points on the same master curve in the evaporative regime, as shown in

Figure 7(b). The viscosity has thus no influence in this regime. This result is consistent with

previous experimental observations. Indeed the same scaled dried thickness hd/ϕ0 was obtained

for polymer solutions with different molar masses or different bulk concentrations.12

Evaporation flux and deposit thickness

To study the influence of the box height and then of the evaporation flux, we first analyze the

coupling between the meniscus shape and the local evaporation flux in the evaporative regime.

Comparison is made with the evaporation of pure solvent. With the geometric assumptions of the
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V−1.

18



model, we consider a parabolic meniscus (constant curvature and small slope approximation), of

height h0 at x = 0, curvature C0, which intercept the substrate at x = Lst with 0 contact angle.

From this definition we get Lst =
√

2h0/C0 ≈ 0.316mm. The local evaporation velocity vst
ev(x) is

obtained from numerical resolution of the diffusion equation in the gas phase (Eq. (9) to Eq. (11))

with the following boundary conditions at the bottom of the box: evaporation of pure solvent for

0 ≤ x ≤ Lst (a(ϕ ,T ) = 1) and impermeability for Lst ≤ x ≤W . The mean evaporation velocity v̄st
ev

and the total flux for the pure solvent Fst
ev are then

Fst
ev =

∫ Lst

0
vev(x)dx, v̄st

ev =
Fst

ev
Lst

(19)

They are given for three values of the box height H in Table 1.

Table 1: Pure solvent evaporation rate as a function of gas domain height H

H (mm) v̄st
ev (µm.s−1) Fst

ev (µm2.s−1)
30 0.14 45
3 1.2 3.9×102

0.3 6.4 2.0×103

Let Lev be the length corresponding to significant evaporation for the solution on the moving

substrate (Lev can also be considered as an estimation of the meniscus size as seen in the section

dedicated to the meniscus structure). For example it can be defined as the length where the evapo-

ration flux is larger than 3% of the maximal value of the evaporation peak for a given configuration

(cf. for instance Figure 4(c)). The mean evaporation rate v̄ev and total evaporation flux Fev are then

defined in the following way:

Fev =
∫ W

0
vev(x)dx, v̄ev =

Fev

Lev
(20)

For the intermediate value of H (H = 3mm, Fst
ev = 3.9×102 µm2.s−1), changing the substrate

velocity or the system characteristics leads to large changes of Lev as shown in Figure 8(a). Large

variations of the global evaporation flux Fev could then be expected. In fact this is not the case

as the mean evaporation rate v̄ev varies in the opposite way, as illustrated in Figure 8(b). The two
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effects compensate each other and the ratio Fev/Fst
ev is close to one whatever the substrate velocity

and system properties (cf. Figure 8(c)).

For H = 30mm (i.e. a smaller value of Fst
ev = 45 µm2.s−1), the ratio Fev/Fst

ev is also close

to one (cf. blue symbols in Figure 9(c)). It is only for the smallest value of H (H = 0.3mm

Fst
ev = 2.0 103 µm2.s−1), that this result does not hold any more (cf. green symbols in Figure 9(c)).

Indeed, if Lev is much larger than H, the vapor diffusion between the evaporative part of the free

surface and the top of the box is mainly 1D, since 2D effects at the end of the evaporative zone can

be neglected. As a consequence, in that case, Fev should be proportional to Lev. Here H = 0.3mm

is of the same order than Lev so that the concentration field in the gas is between the 2D and 1D

regimes.

The effect of the global evaporation flux on the deposit thickness is illustrated in Figure 9(b).

As expected the Landau-Levich regime is unchanged while the evaporative regime is strongly

dependent of Fev. Moreover the points corresponding to H = 0.3mm, and then to a non constant

Fev, do not follow a decrease in 1/V . But scaling the dried thickness by Fev gathers all the points

on the master curve 1/V in the evaporative regime (Figure 9(c)), so that we get the following

expression in this regime:

hd =
Fev ×ϕ0

V
(21)

Eq. (21) is similar to the expression used in the paper of Le Berre at al.11 and in our previous

experimental work,12 where it was deduced from a simple approach based on global mass bal-

ances. This relation between the thickness, the evaporation flux and the substrate velocity is then

characteristic of the steady evaporative regime, for geometries where the meniscus is in contact

with an infinite reservoir (then it is not valid for droplets). This simple model assumes that all the

solute that enters in the evaporative zone contributes to the dried film. This would be wrong in the

case of non negligible concentration gradient in the thickness (not taken into account in our simu-

lations). In that case, recirculation flow would induce a solute net flux towards the bulk, resulting

in a distortion of the mass conservation in a section of the meniscus.

On a practical point of view, the global evaporation flux Fev is however hardly reachable exper-
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imentally. But as shown above Fev and Fst
ev are close, provided that H is much larger than Lev, and

Fst
ev can be more easily obtained. This was done in our preliminary experiments12 by evaporating

pure solvent. Even if the geometry of the experimental set-up is not exactly the same as the one

simulated here, the same result was obtained, i.e. scaling the experimental thickness by Fst
ev gathers

all the points on the same curve in the evaporative regime.

Mutual diffusion coefficient

The last parameter we have studied is the mutual diffusion coefficient Dmut . This coefficient has

little effect on the value of the dried deposit thickness, but changes the critical velocity where the

evaporative regime stops and the thickness goes to zero (cf. Figure 9(c) and Table 2). The results

given in Table 2 have been obtained with ϕ0 = 0.01 and Mw = 500kg.mol−1, and complementary

simulations have shown a weak sensitivity to large change in the viscosity. For each configuration

the critical velocity lies between the two values given in the table (a stationary regime was obtained

for the largest velocity but not for the smallest one). The symbol < means that the end of the

evaporative regime was not observed in the explored domain of velocities.

Hence It seems that the diffusion plays a dominant part in the transition and that it is induced

by the development of a polymer counter flux, due to diffusion, from the meniscus to the bulk.

These are preliminary results since, as said before, the simulation of this regime should need a

modification of the model used here. It will then be interesting to investigate this diffusive flux as

a possible mechanism responsible for deposit patterning.

Table 2: End of the evaporative regime - critical velocity in µm.s−1 (ϕ0 = 0.01, Mw =
500kg.mol−1).

Dmut (m2.s−1) H = 30mm H = 3mm H = 0.3mm
10−9 55-74 30-55
10−10 3-4 5.5-10 17-30
10−11 < 0.1 < 0.1
variable (Eq. (17)) 5.5-10
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Conclusion

In this paper a macroscopic model of the drying of a binary solution on a moving substrate has been

developed for the meniscus. The model takes into account the hydrodynamics in the solution in

the framework of lubrication approximation, the vapor diffusion in the gas phase and the variation

of physical properties during drying. The free surface profile and spatial evaporation flux are

not imposed a priori but result from the simulation of the mass transfer in the liquid/gas system.

Several regimes have been observed as a function of the substrate velocity. For large substrate

velocity the classical Landau-Levich regime is obtained. For smaller velocities a drying front

appears which is characterized by a strong concentration gradient and a peak of the evaporation

flux. As a consequence the meniscus can be divided into two parts. In the first one the curvature is

quasi-constant and the meniscus can be considered as quasi-static. Then a steep transition occurs

corresponding to the maximum of the evaporation flux and to a strong decrease of the liquid flow.

In the second part (high viscosity, no flow) the meniscus is shaped by the evaporation flux, which

results of the coupling between the liquid and gas phases. It is the viscosification of the meniscus

edge that is responsible for the change of the meniscus length when the substrate velocity is varied.

It was also shown that this macroscopic model simulates in a very satisfactory way recent ex-

perimental results, namely the dependence of the deposit thickness on the substrate velocity, which

varies as V 2/3 in the Landau-Levich regime and V−1 in the regime dominated by evaporation. The

model also accounts for the experimental scalings obtained by dividing the thickness by the bulk

concentration and evaporation flux. At last another regime appears at very low substrate velocity

and seems to be due to a competition between advection and diffusion. Further developments are

needed to analyze it. More generally the next step is to complete this model that couples the liquid

and gas phases by taking into account small scale interactions between the substrate and the film.

Another development would concern the extension of the model to a complete two dimensional

simulation.
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